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ABSTRACT 

 

The fundamental principles governing the natural phenomena of life is one of 

the critical issues receiving due importance in recent years. Most complex real-world 

systems are found to have a similar networking model that manages their behavioral 

pattern. Recent scientific discoveries have furnished evidence that most real world 

networks follow a scale-free architecture.  A number of research efforts are in progress 

to facilitate the learning of valuable information by recognizing the underlying reality 

in the vast amount of genomic data that is becoming available. A key feature of scale-

free architecture is the vitality of the highly connected nodes (hubs). 

 

This project focuses on the multi-cellular organism Drosophila melanogaster, 

an established model system for human biology. The major objective is to analyze the 

protein-protein interaction and the metabolic network of the organism to consider the 

architectural patterns and the consequence of removal of hubs on the topological 

parameters of the two interaction networks. 

 

Analysis shows that both interaction networks pursue a scale-free model 

establishing the fact that real networks from varied situations conform to the small 

world pattern. Similarly, the topology of the two networks suffers drastic variations on 

the removal of the hubs. It is found that the topological parameters of average path 

length and diameter show a two-fold and three-fold increase on the deletion of hubs for 

the protein-protein interaction and metabolic interaction network, respectively. The 

arbitrary exclusion of the nodes does not show any remarkable disparity in the 

topological parameters of the two networks. This aberrant behavior for the two cases 



 iii 

underscores the significance of the most linked nodes to the natural topology of the 

networks.  
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CHAPTER 1 

INTRODUCTION 

 

The understanding of the phenomenon of life demands a strong discernment of 

its doctrines (refer to glossary). Several components are responsible for the function 

and maintenance of cellular processes in any living species. 

 

1.1 The Cell 

 

The cell is the building block and basic subunit of any self-regulating living 

system. It is responsible for carrying out the different processes that occur in an 

organism. There are different kinds of these classes of cells, each with their own 

function. Examples of tissues containing different types of cells include bone, blood, 

muscle, skin and hair. A cell contains several key elements including nucleus, 

mitochondrion, ribosome, vacuole, centriole and cytoplasm (refer to glossary for 

information on organic components of the cell). Each element of the cell is responsible 

for a particular task in the mechanism of the organism [1]. For instance, nucleus, 

endoplasmic reticulum, vacuole and ribosome are involved in the developmental 

process of an organism. A typical animal cell, containing these elements that assist in 

the safe and proper execution of the mechanism of the biological species, is shown in 

Figure 1.1.  
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Figure 1.1: An illustration of the components of an animal cell (eukaryote) [2] 

1.2 Genetics of an Organism 

 

A chromosome is the visible state of genetic material during a phase of division 

of the cell. Deoxyribonucleic acid (DNA) is the major storehouse of genetic material. 

 

The Central Dogma of Biology 

The DNA molecule carries and transfers the genetic information in all living 

organisms. It replicates its information through a process that involves many enzymes. 

The DNA is then transcribed into Ribonucleic acid (RNA) by specific enzymes called 

RNA polymerases through a process known as transcription. Some viruses use RNA 

instead of DNA as their genetic material. The final product is a messenger-RNA (m-

RNA). It is used as a template that directs the synthesis of protein by ribosomes. 
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Translation occurs at the ribosome where the m-RNA is used to specify the sequence of 

amino acids in the polypeptide chain [3]. Some proteins are synthesized in specific 

cells. This progression of events is often referred to as the Central Dogma of Molecular 

Biology [3]. A pictorial summary is given in Figure 1.2. 

  

 

Figure 1.2: A graphical representation detailing the steps involved in the Central 

Dogma of Molecular Biology [4] 

1.3 Biochemical Networks 

 

Genomic study has enabled scientists to relate genes and proteins by virtue of 

the similarity in their genomic sequences. Nonetheless, metabolites cannot simply be 

correlated with genes or proteins. Hitherto, the most effective way to do this association 

is to utilize reference databases that accumulate the acknowledged information about 
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metabolic reactions, i.e., their substrates, products and enzymes. These databases serve 

as the basis for identifying and validating drug targets depending on the knowledge of 

the biochemical pathways in which potential target molecules operate within cells. For 

this reason, the study of biochemical pathways is the focus of drug discovery research 

and is central to the approach of many genomic and pharmaceutical companies. 

Biochemical processes arbitrate the interaction of cells with their environment and are 

accountable for most of the information processing that occurs inside them. The three 

main categories of biochemical processes are described below. 

 

1.3.1 Metabolic Pathways 

 

Living cells extract, convert and accumulate energy from nutrients obtained 

from food sources by the process of metabolism [5]. Metabolism collectively refers to 

all the physical and chemical activity, which occurs in the cells of the organism that 

may either discharge energy from nutrients or utilizes energy to generate new 

substances like proteins for continual growth and functioning, essential to maintain life. 

Metabolic pathways are sequences of chemical reactions each catalyzed by an enzyme 

that enable the formation of certain product molecules from other small substrates [6]. 

A typical metabolic pathway is shown in Figure 1.3. Metabolites are usually small 

molecules while enzymes are proteins. 
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Figure 1.3: Glycolysis/gluconeogenesis pathway (carbon metabolism) [7] 

The glycolysis pathway converts glucose into pyruvate with the simultaneous 

production of a relatively small amount of Adenosine triphosphate (ATP). Glycolysis 

can be carried out even in the absence of oxygen and hence, is an essential pathway for 

those organisms that ferment sugars. For example, the glycolysis pathway is used by 

yeast to produce the alcohol found in beer. 
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1.3.1.1 Types of metabolic pathways 

 

A metabolic pathway may be defined as a series of chemical reactions resulting 

in either the formation of metabolic product (s) to be used or stored by the cell 

(metabolic sink) or the initiation of another metabolic pathway (then labeled as a flux 

causing step). They contribute to two kinds of processes: 

Catabolism is the oxidative degradation of molecules into simpler ones. Some 

of the commonly found catabolic pathways are glycogenolysis (conversion of glycogen 

into glucose), glycolysis (conversion of glucose into pyruvate and ATP) (refer to Figure 

1.3) and protein catabolism (hydrolysis of proteins into amino acids).  

Anabolism is the reductive synthesis of molecules to produce building blocks 

and compounds from simpler precursors. A few examples of anabolic pathways include 

glycogenesis (process of glycogen synthesis from glucose molecules) and 

gluconeogenesis (formation of glucose, especially by the liver, from non-carbohydrate 

sources such as amino acids).  

 

It is imperative to comprehend that the pathways, whether catabolic or anabolic 

in nature, are coordinated (with support from hormones) by the energy requirements 

(e.g., development and absorption) and physiological actions of an organism.  

 

1.3.1.2 Energy generation 

 

Metabolic pathways can be envisioned as a sequence of enzyme-catalyzed 

reactions. A cyclical process of energy conversion occurs in cells of living organisms 
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during metabolism. Chemical energy is manufactured from nutrients during catabolism 

and this energy, in turn, is used to produce new molecules during anabolism from the 

same type of nutrients, to maintain the structure and function of an organism. Both 

types of reactions are essential for thriving metabolism. Enzymes carry out the blending 

of an energy yielding reaction with an energy consuming one. Enzymes of metabolic 

pathways are able to capture this energy in small quantities and store it in the form of 

internal high-energy compounds drastically reducing the amount of energy lost as heat 

[8]. 

 

1.3.1.3 Reaction networks as graphs 

 

The complex web of reactions involves substrates reacting with one another in 

the presence of enzymes to yield products. Each reaction generates a product that may 

become the substrate for another reaction. The metabolic compounds involved in the 

mechanism of an organism can be characterized by association or network graphs. The 

compounds are the nodes and the interactions, which are reactions leading to another 

compound that may be either substrate or product, represent the resultant links. The 

discernment of this obscure world is facilitated by such a construction and is explored 

exhaustively in ensuing chapters. 

 

1.3.2 Gene Regulatory Pathways  

 

A biological organism does not build all the proteins that it is competent to 

produce at all times. As an alternative, it becomes accustomed to the environment and 

constructs only those genetic products that are essential for its continued and secure 

existence in a particular environment. Gene regulation allows the organism to sense its 

environment and respond appropriately by expressing the suitable set of genes needed 
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for that precise setting. A gene regulatory pathway can be called the on-off switch of a 

cell operating at the gene level. Gene regulatory networks (also genetic regulatory 

networks or GRN) are a collection of DNA segments in a cell that interact with one 

another and with other substances in the cell, thereby governing the rates at which 

genes in the network are transcribed into m-RNA. Transcription factors - proteins that 

promote or repress transcription either directly or indirectly - unite the regulatory DNA 

elements. They dynamically coordinate the level of expression for each gene in the 

genome by controlling the nature of that gene to be transcribed into RNA. Each RNA 

transcript then functions as the template for synthesis of a specific protein by the 

process of translation [9].  

 

A transcription factor regulatory network is shown in Figure 1.4. A GRN may 

include one or more input signaling pathways, regulatory proteins that incorporate the 

input signals, RNA, several target genes and proteins produced from those target genes. 

Besides, such networks frequently include vibrant feedback loops that offer further 

regulation of structural design and output [9]. 
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Figure 1.4: Gene regulatory network [10] 

1.3.3 Signal Transduction Pathways 

 

Signal transduction is the process of flow of signals by which an extra-cellular 

signal (typically a hormone or neurotransmitter) interrelates with a receptor at the cell 

surface. This interrelation causes a change in the functioning of the cell (e.g., activating 

glucose uptake or initiating cell division) by permitting signals in the form of small ion 

movement, in or out of the cell. These ion movements effect changes in the electrical 

potential of the cells that, in turn, proliferates the signal along the cell [11]. More 

composite signal transduction involves the coupling of ligand-receptor interactions to 

many intracellular events including phosphorylations by serine/threonine kinases.  
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Signals are transduced by modification of the protein activity or location by 

another protein. Protein phosphorylations cause a change in enzyme activities and 

protein conformations. The ultimate outcome is a shift in cellular activity and 

transformation of genes expressed within the responding cells [11]. Therefore, signal 

transduction networks can be expressed to be pathways of molecular interactions that 

provide communication between the cell membrane and intracellular end-points, 

leading to some modification in the cell. As an example, the Mitogen-Activated Protein 

Kinase (MAPK) pathway of Drosophila melanogaster is shown in Figure 1.5. 

 

 

Figure 1.5: A schematic sketch of the MAPK signaling pathway in Drosophila 

melanogaster [12] 

Metabolic, gene regulatory and signal transduction pathways are integrated and 

reliant on one another. For instance, gene regulation circuits are fed by external signals 
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transmitted by signal transduction pathways. The composite nature of these systems 

makes their precise understanding difficult. 

 

Although it is in its seminal stages, systems biology is becoming a major field 

drawing significant consideration from researchers and business enterprises. The study 

of pathway information is of singular interest to biotechnology and pharmaceutical 

companies because it represents a level of assessment that is steps ahead of 

conservative static studies. The definitive goal of systems biology is to be able to 

replicate such biological systems and then to envisage the effects of particular 

perturbations. In the innovative model of genomic-based drug discovery and 

development, it is likely that a few good tools applied to the right pathways will pilot to 

valuable discoveries. Consequently, systems analysis focused institutions emphasize 

cross-disciplinary training for aspiring investigators in order to ease their entry into the 

field. 

 

1.4 Proteins 

 

Proteins are, beyond doubt, the physical starting point of life. They are the most 

important biochemical agents in the body. Their name comes from the Greek word 

proteios, which means prime or chief that provides an allusion to their importance. 

 

1.4.1 Essence of Proteins 

 

Proteins are macromolecular compounds constructed from one or more un-

branched chains of amino acids to become polymers. The human body requires 20 
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types of amino acids to form the various proteins. A protein may contain 200 to 300 

amino acids but some are much smaller and a few very much larger. The biggest to date 

is titin, a protein found in skeletal and cardiac muscle that contains about 27,000 amino 

acids in a single chain [13]. 

 

1.4.1.1 Amino acids - the structural building blocks of proteins 

 

As mentioned earlier, proteins are composed of chains of amino acid sequences.  

A sequence of many such amino acids is referred to as a polypeptide. The complete 

product, either one or more chains of amino acids, is called a protein. Conjugated 

proteins, in addition, contain other kinds of molecules. For example, glycoproteins 

contain carbohydrates, nucleoproteins comprise nucleic acids and lipoproteins include 

lipids.  

 

There are 20 different α-amino acids pertinent to the building of mammalian 

proteins and each can be distinguished by the R-group substitution on the α-carbon 

atom (except in the case of glycine where the R-group is hydrogen). This carbon, as 

revealed in Figure 1.6, is the α-carbon. 

 Carboxylic end 

                 COO-       

Amino end 

         H3
+N           C         H 

 

     R         α -carbon 

  Side chain 

 

Figure 1.6: The general structural formula representation for an amino acid 
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The α-amino acids in peptides and proteins (excluding proline) consist of a 

carboxylic acid (-COOH) and an amino (-NH2) functional group attached to the same 

tetrahedral carbon atom. The carboxyl or amino group may be ionized to form NH3
+ or 

COO- as an upshot of a condensation reaction between the amino group of one amino 

acid and the carboxyl group of another [14].  

 

Each amino acid is different and therefore has its own unique properties. There 

are two classes of amino acids dependent on the nature of the R-group. Hydrophobic 

amino acids repel the aqueous environment and hence, dwell mainly in the interior of 

proteins. This class of amino acids does not ionize or participate in the formation of 

hydrogen bonds. Hydrophilic amino acids which are present on the exterior surfaces of 

proteins or in the reactive centers of enzymes tend to interact with the aqueous 

environment, frequently leading to the formation of hydrogen bonds [14]. 

 

Quite a few amino acids are found either in free or combined states (i.e., not 

associated with peptides or proteins). These non-protein associated amino acids perform 

specialized functions, apart from the development of peptides and proteins, such as the 

action of tyrosine as a neurotransmitter in the formation of thyroid hormones or 

glutamate.  

 

1.4.1.2 Protein structure 

 

There are four discrete aspects to the structure of a protein as explained in 

Figure 1.7.  
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Figure 1.7: The different structures of a protein molecule [15] 

Besides these levels of structure, proteins may shift between numerous parallel 

structures at the time of execution of their biological function. 
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1.4.2 Character istics of Proteins 

 

Proteins are involved in almost all biological activities of the cell. Every 

structural or enzymatic function in the living cell depends on proteins. They perform a 

wide variety of functions in the cell serving as enzymes, structural components or 

signaling molecules.  

 

1.4.2.1 Functions of proteins 

 

Proteins: 

� Give structure to hair, skin and bones down to the cellular level  

� Allow the transport of chemicals within and outside the cell. Proteins are 

interspersed throughout the cell membrane to attract important nutrients and 

permit their passage through the membrane 

� Act as hormones in the body, coordinating all bodily processes at the molecular 

level  

� Operate as antibodies in the support of the immune system. Antibodies attach 

themselves to foreign intruders (e.g., viruses) and incapacitate them so that they 

can be disposed  

� Are the transcription factors that trigger and disable genes to guide the 

differentiation of the cell and its subsequent responsiveness to signals reaching 

it 

� Act as enzymes, facilitating all chemical production in the body during the 

building of chemical compounds 
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1.4.2.2 Interaction of proteins 

 

Proteins are seldom known to function in isolation. All proteins in any cell are 

united through a widespread web of connections, where non-covalent interactions are 

endlessly generated and dissociated. A variety of forces that is accountable for these 

interactions includes electrostatic forces, van der Waal’s forces, hydrogen bonds and 

hydrophobic effects. It is extensively believed that the non-affinity towards water 

impels the interaction of protein pairs while hydrogen bonds and electrostatic 

interactions govern the specificity of the interface [16]. Proteins can adjust their 

structures according to the requirements and attach themselves to various molecules 

dependent on the task to be performed. Water is typically barred from the interfacial 

area [16]. However, among the various kinds of interactions like protein-protein, 

protein-DNA and protein-RNA, the protein-protein interactions mediate almost all 

biological processes central to life. Hence, their study is critical in identifying the 

fundamental concepts about interacting proteins. 

 

1.4.2.3 Protein-protein interactions 

 

An understanding of the interacting protein pairs offers insight into the function 

of important genes [17]. The description of the protein-protein interactions with the 

help of potent bioinformatics tools can be utilized to expose relevant pathways. The 

interpretation of these biological pathways involved in disease and drug response 

enhances the knowledge of the system under investigation. It enables researchers to 

categorize the genes and the proteins, which were not formerly related with disease or 

drug response, to aid in the development of fresh therapeutics.  
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Protein-protein interactions are highly significant as they provide functional 

information about one another. Biologically significant protein-protein interactions vary 

from the more general class of physical interactions. The principal difference is that 

both proteins must be in their suitable states (e.g., covalently modified state, 

conformational state, cellular location state, etc.) in a biological interaction [18]. This 

regulation of protein states through protein-protein interactions forms the basis for 

many dynamic biological processes that occur inside the cells [18]. As a result, the 

understanding of these interactions warrants information about the protein states. 

 

A decisive goal of studying protein-protein interaction is to establish, assign 

and/or typify the function of a protein [19].  The physical interaction between a new 

protein and another protein having a known function can serve as a cursor that the two 

proteins may have a common function [20]. In addition, physical interactions are 

undoubtedly of enormous utility during the study of single proteins or defined 

biological processes. However, they do not echo the vast amount of information that 

has been amassed in the biological literature. 

 

These protein-protein interactions, whether physical or biological, are 

represented in the form of maps called network graphs, where the proteins are the nodes 

and their ensuing interactions with other proteins are denoted by links connecting the 

two proteins. Mathematical standards can then be applied to study such networks. The 

principles of network theory are explained in Chapter 2. Protein interaction maps 

concentrate mainly on physical contacts without obvious chemical conversions. 

Understanding such protein-protein interactions is a crucial component of integrated 

biology. The availability of the genome sequences of hundreds of species, ranging from 

bacteria to human beings, poses two major challenges to biologists in the elucidation of 

this blueprint of life, namely 

� Recognizing the function of each gene product and 
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� Understanding phenotypes through the biological interactions of the gene 

products 

 

1.4.2.4 Detection, utility and complexity of protein-protein interactions 

 

Large scale and high throughput experimental techniques have been developed 

to address these questions by acquiring data on the whole genome, instead of just a few 

genes [21]. The main methods available to identify protein interactions are two-hybrid 

analysis, mass spectrometry and mutation studies. The classical view of protein function 

focuses on the action of a single protein molecule, its biochemical activity or molecular 

function. An expanded view defines the function of a protein in the context of its 

network of interactions. Each protein interacts with various partners that also interact 

with other proteins. Any protein would fail to implement its specified function unless it 

binds to other biomolecules [20]. Most of the cellular processes are coordinated by 

these specific protein-protein interactions. All these interactions connect the proteins 

into an extensive and intricate web. Every protein function in the context of this web of 

interacting molecules and its interactions with other molecules define how its 

biochemical  activities are exploited and regulated in related biological  processes. 

 

A large proportion of known protein-protein interactions have been detected by 

genome-scale two-hybrid assays. When researchers explore a gene and its function, it is 

a primary requisite to learn about the gene involved in the problem that is under 

investigation. In any case, once researchers have targeted the right gene, they are 

competent enough to duplicate and modify it. This alteration enables them to study its 

properties based on a deep-rooted understanding of its construction and working. This 

basic approach also applies to many single proteins. Biochemists can analyze a cell, 

extract the protein of interest, purify it using a succession of chromatography methods 
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and study its properties using well-established methods. In each of these cases, a single 

gene or a single protein remains stable and constant.  

 

Nevertheless, interacting protein pairs are a class apart. Protein-protein 

interactions are almost momentary by definition. Any protein-protein interaction has the 

central purpose of producing some type of regulatory change in response to ecological 

circumstances. For this reason, the associations between proteins involved in these 

interactions are not as well built as the bonds between bases in DNA or between amino 

acids in a single protein. Hence, the immense complexity involved in the generation of 

this vital information highlights the significance of these protein-protein interactions. 

 

The following chapter deals with the background information about the 

representation of interactions between metabolic compounds and protein pairs. A 

fundamental review of graphical network study is offered to develop a rigid 

understanding of the topic. 
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CHAPTER 2 

NETWORKS AND BIOLOGY 

 

This chapter demonstrates the transition from the biological world to the realm 

of networks. The concept of networks is important to this thesis work. Biology rejoins 

toward the latter part of the chapter by which time, the reader should have developed a 

strong integrating bond between the two interlinked fields. 

 

2.1 Visualization of Networks 

 

Please refer to glossary for the description of the various terms involved in the 

study of networks. 

 

Networks as graphs 

Networks play a vital role in more than a few facets of life. A network is an 

interconnected or interrelated chain, group or system. A network can be envisaged as a 

connection among people or objects. An example of an uncomplicated networking 

arrangement may be a set of computer terminals connected to one another. The 

computer systems are called as nodes and the wires connecting them are termed as links 

or connections. A link represents a pair wise relationship. A local area network (LAN) 

provides networking capability to a group of computers in close proximity to each 

other, such as in an office building, school or home. The smallest network can have 



 21 

exactly two computers and a large network can accommodate thousands of computer 

systems. 

 

A network is useful for sharing diverse resources like files, printers, games or 

other applications and may be connected to a multitude of other networks, thereby 

forming a vast chain of unified information systems. This network web can be depicted 

as a graph where the nodes are connected by the edges for the purpose of application of 

mathematical principles to evaluate their intrinsic characteristics. 

 

2.1.1 Simple I llustration of Networks 

 

A real-life instance of networking can be observed at a point-of-sale terminal in 

a certain section of a supermarket that forms part of a larger network comprising all the 

computers in the supermarket. This LAN, in turn, is linked as a component of a wider 

network, to the bank’s network because credit card authorization is to be obtained from 

it. This simple illustration may appear like a complex one. 

 

2.1.2 Complex Networks 

 

On a broader perspective, social ties - familial and professional, the World Wide 

Web, network of scientific papers connected by citations, electrical power grids, 

transportation systems and biological networks are examples of real-world complex 

networks. 
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To elaborate on a few of the above examples, in a social network, the people are 

the nodes and the relationship between one another form the links [22]. The power 

stations and the electrical cables connecting them operate as nodes and links, 

respectively in an electrical power grid system [22]. In a biological network, the 

compounds (metabolites) perform as nodes and the reactions that convert it to other 

compounds denote their links [23]. Thus, various complex systems that exist are also 

instances of networking. The following section explores the complex world of networks 

to study their diverse features and applications. 

 

2.2 Classification of Networks 

 

Networks that exist are of varied nature. Complex networks are modeled using 

realistic concerns. A brief description of each of the basic type of networks is given 

below. 

 

2.2.1 Regular  Network 

 

A regular network is one, where every node in the network is connected to the 

same number of nodes, i.e., it has the same number of links. The diagram shown in 

Figure 2.1 illustrates a crystal lattice structure.  
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Figure 2.1: Crystal lattice structure demonstrating a regular networking arrangement 

[24] 

Every node of this 3-dimensional design as indicated by small circles, is 

connected to the same number of nodes (six) or, in other words, has the same number of 

partners. Hence, a regular network is referred to as an ideal network. Some examples of 

this type of network include chains, grid structures and crystal lattices.  

 

2.2.2 Random Network 

 

The first venture into the dominion of networks was undertaken by Erdős and 

Rényi and developed later during the 1960’s [25, 26, 27]. They pioneered a new 

concept, known as random networking, and presented it to the scientific community. 

According to their model, a group of N nodes is joined by links with probability p that 

are positioned between the pairs of nodes selected homogeneously in a random fashion 

creating a network containing approximately p*N* (N-1)/2 links. Of the several versions 

of this model, the commonly used representation is denoted as Gn,p. In this model, each 

possible edge between two nodes occurs with an independent probability p and absent 

with the probability 1-p [28]. In other words, it is the collection of graphs of N vertices 
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where each graph emerges with a probability corresponding to its number of edges. 

Complex systems are modeled by connecting nodes with randomly placed links as 

shown in Figure 2.2. 

 

 

Figure 2.2: A random network where most nodes have identical number (three) of links 

2.2.2.1 Giant component of the network  

 

The original papers by Erdős and Rényi [25, 26, 27] have a multitude of 

interesting properties. A component can be defined as a subset of nodes in the graph 

that can be traversed by other nodes using a path through the network [28]. For very 

small degrees, a large number of nodes are disconnected from each other, as there are 

few edges in the graph. As the size of the graph becomes greater, the component size 

remains constant. The large component, which contains the majority of nodes in the 

graph, contains a set portion of the total number of nodes that scales linearly with the 

size of the whole graph above a threshold value. This large component is the giant 

component of the graph. The giant component in a random model is indicative of the 

behavior of real-world networks [28]. 
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An example of a random network might be the number of customers who visit a 

particular store in one day and the frequency with which they meet a person at the 

cosmetics, fresh vegetable or meat counters. The measurement of this frequency 

distribution of visits to the various counters follows a classical bell curve or a Poisson 

distribution [29], as shown in Figure 2.3. 
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Figure 2.3: The Poisson distribution of a random network 

2.2.2.2 Attr ibutes of a random network 

 

In a random network, very few nodes are well connected. Despite the randomly 

placed links, all nodes have “more or less”  the same number of links. The average 

number of links is representative of the majority of nodes. This explains the bell shape 

of the distribution [22]. The peak point of the curve is the average number of links 

characterizing most nodes in the network. Hence, this network is also referred to as a 

typical network. The homogeneous nature of a random network makes it tolerant to 
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disruptions. Alternatively, it is prone to random malfunction as every node is equally as 

essential as another is. The failure of one node may cause the network to break into 

small clusters, thereby causing the network to lose its significance [22]. Thus, in a 

random network, it is not possible to construct any form of valuable and adaptive 

system. Another facet of random networks is the possibility of very long path lengths 

between any two nodes. A node may have to traverse a multitude of intermediate nodes 

to get to its target node. This signifies that, in terms of communication flow, the 

network does not have an efficient pathway. Mathematicians had been following the 

random network theory as the base for all computations about systemic pathways and 

distribution modeling until the scale-free network model was proposed in 1998. 

 

2.2.3 Scale-free Network 

 

In 1998, Watts and Strogatz published a groundbreaking paper that proposed 

another type of network pattern in addition to the already existent models [30]. This 

new representation called scale-free network model, fell between the classes of regular 

and random networks. Their discovery caused researchers to reassess the established 

norm of network modeling. 

 

Watts and Strogatz rewired a regular network with a probability P = 0 to an 

intermediate level such that it did not reach a probability P = 1 as for a random 

network, where P is the probability of finding a random distribution [30]. This 

modification resulted in a middle ground with a probability between 0 and 1 (Figure 

2.4). This intermediary probability is the range of scale-free networking patterns. 
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Figure 2.4: A sketch indicating the probability values for the three types of networks 

[30] 

2.2.3.1 Character istics of scale-free networks 

 

A scale-free network (Figure 2.5) is entirely divergent from a regular and 

random network. In this type of network, a few nodes have a large number of links and 

tend to dominate the rest of the nodes having lesser number of links [30]. The nodes 

having a large number of links are called as hubs. 

Regular  
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Random 
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Scale-free 
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Figure 2.5: A scale-free network (the dark colored nodes are the hubs having a large 

number of links when compared to the other nodes) 

Due to the absence of any specific dimension that can be used to classify such 

networks, they are referred to as scale-free networks. The presence of many different 

scales, though not one being typical, has led to researchers also referring to these 

networks as scale-rich networks. A notable feature of these networks is that a node 

would require only a few steps to reach another node. In other words, it is very easy to 

travel from one node to another within the network. This small world nature of the 

networks has enabled scientists to design many real-world networks based on this 

model. 

 

The distribution of the nodes in a scale-free network declines with an increase in 

the number of links and is found to decay as a power law according to the relation: 

p(k) ~ k –
�

    (1) 

where “~”  denotes proportionality, p(k) signifies probability and “k”  represents 

a specific number of links [31]. The exponent γ is found to have a value of 2.1-2.4 for 
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three varied cases of the World Wide Web [32, 33], the metabolic networks [23] and 

the Internet [34]. Scale-free networks generally have an exponent value of 2.0 - 3.0. 

 

The allocation of nodes does not follow a Poisson distribution as for the random 

model; instead, it is characterized by a decreasing function (Figure 2.6a).  
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Figure 2.6a: Distribution model of a scale-free network on linear scale [30] 

The plot of the probability distribution, on a log-log scale, gives a linear 

correlation (shown in Figure 2.6b) establishing the fact that the distribution follows a 

power law [29]. 
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Figure 2.6b: Power law distribution of a scale-free network on logarithmic scale [30] 

The diminishing nature of the curve is for the reason that there are many nodes 

with a small number of connections and hence, the values close to 1.0 at the start of the 

curve. As the number of connections is increased, the nodes become very sparsely 

populated and the curve begins to fall as there are only a small number of well-

connected nodes in the network [30]. This theory has been proven and quite a few 

research efforts later, it can be concretely stated that most real world networks are part 

of the scale-free community.  

 

Although scale-free property is a ubiquitous phenomenon, it cannot be truly 

called a universal one. Some structures are better explained using a random network 

model. The power grid system of Western United States [35, 36] and the graph of 

company directors [37] seem to have degree distributions with a purely exponential tail. 
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2.2.3.2 Scale-freeness, an ingrained phenomenon 

 

The motivation of scale-free networks dates back to the renowned experiments 

demonstrating “six degrees of separation” , conducted in the 1960’s by the renowned 

psychologist Stanley Milgram [38, 39]. Six degrees of separation is the theory that 

anyone on earth can be connected to any other person through a chain of acquaintances 

that has no more than five intermediate human beings. Milgram proposed his theory 

encompassing only people in the United States of America. Nonetheless, the concept 

has recently taken the form of an online game where people all over the world try to 

direct a message from a source to its target by forwarding the electronic mail to persons 

whom they think have a better chance of acquaintance with the target. On average, the 

shortest chain is suggested to consist of only six persons. 

 

In 1929, the Hungarian writer Frigyes Karinthy in a short story called Chains 

first proposed this theory. She may not have known the enormity of her proposal at that 

time. Several decades later, this very notion has been extended to the World Wide Web 

[40]. The conclusion is that, despite the fact that there is perpetual growth in the number 

of web pages everyday, every page on an average is only nineteen links away from any 

other page on the web [40].  

 

2.2.3.3 Mechanism of the scale-free model 

 

The scale-free model is based on two critical principles. Erdős and Rényi [25, 

26, 27] had assumed that the full set of nodes in a network would be available before 

modeling. However, in reality, networks may possibly evolve with time. An example is 

the World Wide Web where a large number of new web pages are added almost 
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everyday and these newer nodes have to be taken into account at the time of modeling. 

The algorithm of the scale-free model is given below [40, 41]. 

 

Growth 

It has been found that new nodes show an inclination to attach to older nodes 

than contemporary nodes. Although there are varying theories as to the classification of 

the “old”  node, it is generally accepted that nodes tend to link to other nodes that have 

two or more times their own number of connections. Hence, the older nodes attain the 

remarkable ability to acquire new links and grow to become highly connected. These 

nodes become hubs of the network. This feature is a classic case of rich gets richer. 

Consequently, an evolving network may become a scale-free network.   

 

Preferential attachment 

Not all nodes in a network can be assumed equal. A verification of this 

discovery can be witnessed from the fact that new web pages are likely to carry links to 

older, well-established nodes like Yahoo and MSN than any relatively new, unknown 

web page. This partisan treatment meted out to the older nodes (in this example, the 

older nodes are well-established) also serves to produce a scale-free network pattern. 

For this reason, it can be seen that the hubs of the network avoid linking with the other 

hubs as they demonstrate a penchant to bond with the new nodes. Besides, nodes may 

age and stop receiving links. This saturation causes other mature nodes to become the 

dominant hubs of the network.  

 

Nevertheless, the networks used for study during this thesis work are non-

evolving as the data of the interactions is obtained from specific experimental results 

that are available in databases. These experimental results may be updated later but at 
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the time of investigation, the most up-to-date information available has been used to 

model the systems as a non-evolving network. 

 

2.2.4 Compar ison of Random and Scale-free Network 

 

A major advantage of the scale-free network over the random network is the 

shorter path length needed to get from one node to the other. Another inherent feature 

of the network is that it is unaffected by the random node failures [42]. The network 

may lose a few nodes due to random malfunction but the network as a whole is largely 

intact. Although this resistance to random errors is a positive feature, in the sense that 

an error in a single power station may not black out several cities, there is another face 

to the story. This network cannot withstand a premeditated attack on their hubs [42]. A 

synchronized attack on the highly linked nodes may destroy the network. Such a 

targeted attack on the World Wide Web may paralyze Internet traffic. As scandalous as 

the idea may sound, it is easier said than done. 

 

Cluster ing 

Apart from the aforementioned differences, the real-world scale-free network 

deviates from the random graph model in a clustered way. Real-world networks show 

strong clustering or network transitivity as shown by Watts and Strogatz [30] and Watts 

[43], whereas, the random network model does not. A network is clustered if the 

probability of two nodes being connected by an edge is higher when the nodes have a 

common neighbor, i.e., another node in the network to which both nodes are attached. 

This is measured by using a clustering coefficient, Cn that is the average probability that 

two neighbors of a specific node ‘n’  are also neighbors of one another [44]. In other 

words, the clustering coefficient is a measure of the interrelatedness of the neighbors of 

an entity. The mean clustering coefficient for the complete small world network is then 

defined to be the average of Cn over all nodes in the network. 
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The clustering coefficient fluctuates between a value of zero and one. An 

assessment near zero denotes that most of the nodes linked to any given node ‘n’  are 

not connected to each other, i.e., the system is better modeled using the random 

network theory. On the contrary, a value near one means that the neighbors of any 

given node ‘n’  will have a large propensity to be connected to one another. The 

cliquishness of the network decreases with probability and reaches a maximum value in 

a regular network. An entity must have at least two neighbors to compute the clustering 

coefficient. For the many real-world networks, the clustering coefficient is found to be a 

high value [30]. Nevertheless, for a random graph there is no dominant value of 

probability of two nodes being connected if they have a mutual neighbor than if they do 

not. This means that the clustering coefficient, C, for a random graph is C=p, where p is 

the probability distribution [30]. 

 

The following section incorporates the network theory with the natural science 

of living organisms. 

 

2.3 Scale-Free Nature in Biology 

 

The design governing the actual world networks has been a subject of intense 

scrutiny over the last few years. The graph of interactions in a metabolic network is an 

important tool to study the fundamental structure of a living being and its continued 

sustenance in response to most external stimuli. 
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2.3.1 Metabolic Networks 

 

The network architecture pursued by the metabolic network of microorganisms 

has been discovered to be of a scale-free nature [23, 45]. The topological properties that 

have been determined signify that most metabolic networks possess a heterogeneous 

arrangement of nodes [46]. Five researchers from the University of Notre Dame and 

Northwestern University Medical School tested 43 biological organisms chosen from 

eukarya, archaea and bacteria indicative of all the three domains of life [23]. In their 

depiction, a metabolic network is constructed of nodes representing the substrates that 

are linked to one another through connections that signify the metabolic reactions. The 

metabolic reactions are the actual steps that pave the way for the conversion of a 

specific substrate to its target node (the product of the reaction). Their primary 

objective was to unearth the topology governing these metabolic networks. They used a 

graph theoretic approach [47] for the representation of the biochemical reactions to 

show the probability that a given substrate taking part in a certain number of reactions 

followed a power law distribution. They provided tangible evidence to corroborate that 

the 43 organisms tested from the three domains of life adhered to this trend. This 

homogeny in architecture transpires irrespective of their individual structural blocks or 

species-specific reaction pathways and hence, a scale-free model could best describe 

the metabolic network architecture of biological organisms. 

 

2.3.1.1 Consistent scale-free behavior  

 

As referred to in the introductory note to networks, a salient feature of the small 

world network arrangement is the relatively small number of steps required to traverse 

from one node to another through the existing links. The biochemical pathway 

represents the links required for the conversion of one compound to another in a 

metabolic network. For non-biological networks, the average degree of connectivity of 
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any node is constant resulting in the increase of the average path length (diameter 

according to [23]), which is defined as the shortest pathway averaged over all pairs of 

nodes [40, 48]. Extension of this maxim to the metabolic network signifies that a 

complex bacterium should have a larger diameter than a simpler one. However, they 

found that the diameter of the metabolic network for the 43 organisms remained 

constant. They concluded that as the complexity of the organism increases, the 

substrates, in turn, link to more substrates to maintain a constant diameter. The total 

number of substrates in the organism also has a bearing on the network. As the number 

of substrates in the organism increases, some substrates attain more links, i.e., they 

participate in more number of reactions [23].  

 

2.3.1.2 Susceptibility to coordinated attacks 

 

Jeong et al. [23] further tested the true scale-free nature of the network by 

investigating the susceptibility of the system to a coordinated attack. During the 

removal of the most connected substrates from the network, they found that the 

diameter of the network increased and the network disintegrated into small clusters. 

Conversely, the network was found to be highly defiant - indicated by the minor 

variations in the diameter - against random errors simulated by the elimination of 

substrates in no specific order. The aforementioned work of Jeong et al. paved the way 

for contemporary associates of the research community to build upon their discovery. A 

number of research efforts have enhanced our knowledge of metabolic networks; 

nonetheless, the initial contribution of Jeong et al. shall remain as one of the most 

extraordinary exploits of systems biology. 
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2.3.2 Developments in Metabolic Network Analysis 

 

The year 2003 spawned a few modifications to the publication of Jeong et al. 

[23]. With newer genomes being sequenced with the passage of time, two researchers 

Ma and Zeng analyzed the metabolic network of 80 fully sequenced genomes. Rather 

unsurprisingly, they ascertained that the overall network design for all the organisms 

adhered to a scale-free nature [49].  

 

2.3.2.1 Role of current metabolites 

 

However, a striking difference between this effort and that undertaken by Jeong 

et al. in 2000 is that the latest effort showed some errors that went unnoticed in the 

prior work.  The effort of Jeong et al. [23] did not account for the role of the current 

metabolites during the calculation of the path lengths. Jeong et al. determined the 

diameter of the network for the 43 organisms as approximately the same value. They 

reported that most of the metabolites in the network could be converted to one another 

in about three steps. This result is astonishing because of the actual long pathways that 

are required for the production of many metabolites. Ma and Zeng noted that during 

their computation, Jeong and co-researchers had included numerous current metabolites 

as nodes of the network [49]. 

 

Due to this reason, an impractical calculation of the path length is generated in 

many cases. To refer to an example given by Ma and Zeng, let us consider Adenosine 

triphosphate (ATP) and Adenosine diphosphate (ADP) as nodes and include current 

metabolites as cofactors in the network. A cofactor is any substance that is required to 

be present, in addition to an enzyme, to catalyze a particular reaction. Jeong et al. [23] 

had calculated the number of reaction steps needed for the conversion of glucose to 
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pyruvate as two. This evaluation is biochemically unrealistic as it actually takes nine 

reaction steps for the conversion of glucose to pyruvate [49]. Similar discrepancies 

existed due to a variety of other current metabolites.  

 

2.3.2.2 Reconstruction by Ma and Zeng 

 

With the intention of rectifying these errors, Ma and Zeng reformed the 

metabolic network of 80 fully sequenced genomes. The identification of the current 

metabolites and their removal from the network also eliminated the connections 

concerning them. Reversibility of reactions was also accounted and using a graphical 

representation, they found that variations existed in the network structure of the three 

domains of organisms [49].  

 

Vitality of network scale 

Ma and Zeng discovered that the average path length increases with the network 

scale. Parasites, which are organisms that live off the host species leading a parallel life 

inside the host feeding off their own energy, contain lesser number of nodes (node 

number less than 300) and their metabolic network is not well linked consisting of 

many small clusters. This results in shorter average path length [49]. These results 

conformed to the view that parasites have lost a large number of genes during evolution 

in order to adapt to the changing environments [50]. For networks with a larger scale, 

an unambiguous relation cannot be deciphered because the average path length diverges 

greatly even for networks with a similar number of nodes in different organisms.  
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Significance of complexity 

They also found that eukaryota and archaea have a longer average path length 

than bacteria. Although all organisms have a similar fundamental structure, they 

demonstrate quantitative diversity in their metabolic network architecture as portrayed 

by the topological parameters of the network. This diversity echoes the various 

evolutionary cycles that each organism has undergone over time [49]. The differing 

topological parameters for the three domains indicate the mixed compactness and 

centrality of the metabolic pathways [51]. As suggested by Ma and Zeng, a better 

depiction can be derived by exploring the reactions and pathways to gain a concrete 

understanding of the biological significance of the basic structural variations that 

subsist in each organism.  

 

2.4 Protein-Protein Interaction Network of Microorganisms 

 

The study of protein evolution has piloted the ability to identify that some 

proteins may be related to others. After establishing the fact that scale-free topology is 

inherent in the metabolic network of biological organisms [23], Jeong and other 

researchers from the University of Notre Dame sought to utilize this principle to 

examine the protein-protein interaction network of microbiological organisms, 

specifically that of Saccharomyces cerevisiae.  

 

2.4.1 Direct and Indirect Interactions 

 

Proteins may have either direct or indirect interactions with one another. In a 

direct or physical interaction, two protein chains bind to each other. Indirect association 

refers to proteins being a member of the same functional module (e.g., transcription 
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initiation complex and ribosome). A protein of this nature may not directly bind to 

another protein. These interactions echo the dynamic state of the cell and their existence 

depends on the particular environment or developmental status of the cell. However, the 

coupling of existing and potential interactions together defines the protein-protein 

interaction network within the genome of a given organism.  

 

The assignment of gene function to newly sequenced genes as part of genome 

projects would not be feasible without the trappings to recognize the similarity in amino 

acid sequences. The ability to appreciate the nature of protein evolution allows the 

biotechnologist to develop novel and technologically useful proteins in vitro. The 

presence of some proteins with a large number of interactions may be due to a specific 

structural composition that is different from other less connected proteins [52]. This 

perception is central to the design of long-lasting immunizations and associated drug 

treatments for human diseases.  

 

2.4.2 Protein Interaction Map of Saccharomyces cerevisiae 

 

Jeong et al. [53] demonstrated the role of a protein as an element in a network of 

protein-protein interactions with their publication of the protein-protein interaction map 

of Saccharomyces cerevisiae. The proteins are the nodes and the interactions between 

them represent the links. The strength of each interaction is supposed to be one if a link 

exists and zero otherwise.  

 

Architecture of the protein-protein interaction network 

It was found that the protein-protein interaction network of Saccharomyces 

cerevisiae follows a heterogeneous scale-free architecture [54]. Two separate 



 41 

simulations were performed to verify the effects of random and coordinated attack on 

the interaction network. The computational removal of the well-connected yeast 

proteins caused the diameter, i.e., the average shortest distance between all pairs of 

proteins in the largest cluster of the network to increase steadily [53]. On the contrary, 

the removal of arbitrarily chosen yeast proteins did not affect the topological parameter 

of the network [53]. 

 

Corroboration of results 

This resistance against random exclusion has been shown to be in agreement 

with the results from mutagenesis experiments [53]. They recognized that the organism 

is able to withstand the eradication of an extensive number of sparsely connected 

proteins. They deduced that if topology is responsible for this tolerance, then the 

essentiality of the proteins should substantiate their finding. They correlated 

information from the interacting proteins with the phenotypic effects of their removal 

from the yeast proteome. The lethality of a protein depends on the number of 

connections it shares in the protein-protein interaction network. The proteins with a 

large number of connections are found to be highly essential and their removal disturbs 

the network topology, proving lethal to the network. Although there are several proteins 

with lesser number of links, their elimination did not produce such adverse 

consequences. Jeong et al. [53] concluded that the most connected proteins, which play 

a central role in the network design, are three times more essential than the proteins that 

interact with only a few other neighbors. 

 

2.5 Progression to Higher  Strata of Organisms 

 

The first foray made by Jeong and fellow researchers with the publication of the 

protein interaction map of Saccharomyces cerevisiae has sown the seeds for developing 
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newer research ventures using their breakthrough. This thesis work has been born of the 

inspiration acquired from the efforts over the last few years.  

 

2.5.1 Complex Biological Organisms 

 

All endeavors to study the network design of biological organisms have been 

restricted to simple species [53, 55]. A valid reasoning behind this predisposition is that 

the lesser the number of genes involved, the fewer are the complications to be 

encountered during the study. Research labs around the world furnish abundant datasets 

on a regular basis, but the specific analyses of these datasets are underdeveloped due to 

the compound environment of the biological interaction networks. The nature of 

research is multifaceted due to the fact that even the simplest unicellular organisms 

have more than a few hundreds of genes transforming them into a compound life form 

from the perspective of a data analyst. Nevertheless, the shift of focus to more complex 

beings would provide a better understanding of the structural properties prevailing in 

the higher echelons of nature’s offspring.  

 

With a vision to gain an advanced perception into the secrets of nature, the 

multi-cellular organism Drosophila melanogaster is selected as the test species for this 

research assignment. The preference of Drosophila melanogaster to other complex 

organisms for this venture has its justification. The following material describes the key 

factors that motivated the use of this organism as the test species for this study and 

describes the general characteristics of the organism that makes it a valuable research 

class. 
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2.5.1.1 Impor tance of Drosophila melanogaster 

 

The Drosophila melanogaster (black-bellied dew-lover), a dipteran (two-

winged) insect, is one of the most precious biological organisms [56]. It belongs to a 

species in the kingdom “Animalia”  of the domain “Eukarya” . It is a tiny, common fly 

found near unripe and perished fruits and is deemed as a pest in virtually all areas. In 

modern biological literature, it is often simply called Drosophila or fruit fly (common 

name). Charles Woodworth is credited with being the pioneer in breeding Drosophila in 

quantity and for suggesting that the organism might be used for genetic research [57]. 

In 1910, fruit flies helped Thomas Hunt Morgan accomplish studies on heredity that 

placed the small fly in the vanguard of genetic research and still serves as one of the 

most invaluable research specimens on earth. 

 

2.5.1.2 Habitat 

 

Drosophila melanogaster lives in a wide range of habitats. Its native habitat 

includes those in the tropical regions but the common fruit fly has been introduced to 

nearly all temperate regions of the world. The only aspect that limits their habitat is 

temperature and availability of water. As the meaning of the scientific name implies, it 

requires moist surroundings to flourish. The development of the fly is extremely 

dependent on temperature and the adult cannot withstand the colder temperatures of 

high elevations. Food supply is also limited in these locations and therefore, it cannot 

survive in cooler climates. In temperate regions where human activity has introduced 

them, the flies seek shelter in the colder winter months. The Drosophila can be found in 

fruit cellars or other available synthetic structures with a large supply of food [57]. 
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2.5.2 Research Significance of Drosophila   

 

The Drosophila is being used as a model organism in biological research for 

nearly a century due to its similarity with the human proteins, some of which may serve 

as potential drug targets. It lends itself well to behavioral studies. Scientists have 

discovered an identifiable match between the genetic code of fruit flies and over 60% of 

known human disease genes. Moreover, about 50% of fly protein sequences are 

believed to have mammalian analogues. Hence, Drosophila is being used as a genetic 

model for various human diseases including Parkinson’s and Huntington’s diseases. 

Some of the features that make the Drosophila a versatile research specimen, 

predominantly in genetics and evolutionary biology are given below [56, 58, 59]: 

� Flies are small in size (about 3 mm in length and 2 mm in width) and can be 

easily grown in the laboratory  

� They can be anesthetized easily with simple equipment 

� Flies have a short generation time and do well at room temperature with a high 

productivity (females can lay about 500 eggs in 10 days) (Figure 2.7) 

� The care and culture requires little equipment, is low in cost and uses less space 

even for large cultures 

� The study of these proteins may provide knowledge about the possible 

development of remedial measures for human diseases such as heart disease, 

cancer or diabetes mellitus 

� Drosophila are sexually dimorphic, making it easy to differentiate the sexes 

� The genetic transformation techniques have been available since 1987 

� Its genome has been sequenced in 1998 
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Figure 2.7: The complete life cycle of Drosophila melanogaster [60] 

2.5.3 Research Objectives 

 

The study of the protein-protein interactions in biological organisms involves a 

few drawbacks. Firstly, the biological network is enormously complicated. Secondly, 

the association between proteins is extremely transitory in nature. The ability to 

overcome these setback factors can generate a vivid description of the interacting 

protein partners contributing to productive research in drug therapy.  
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One of the major goals of this project is to study the network topology of the 

multi-cellular organism Drosophila melanogaster at varied levels of complexity. The 

priority is to gain an understanding of the protein interaction map of the organism [61], 

to study the network architecture inherent in it and to identify the essential proteins of 

the protein-protein interaction network [53]. A computation of the topological 

parameters of the network should assist in this goal. 

 

The field of metabolic engineering is a novel approach to perceive and use 

metabolic processes. Metabolic engineering seeks to channel resources to intentionally 

modify the metabolic pathways found in an organism in a fruitful way. This alteration 

would go a long way in facilitating the understanding and utilization of cellular 

pathways for chemical transformation and energy transduction. The new awareness 

would enable the ability to alter biological pathways to produce organic alternatives for 

less enviable chemical processes, allow for larger agricultural production and provide 

better understanding of the metabolic basis for some medical conditions that could 

support in the progress of discovering new remedies [62]. 

 

The second phase of this project involves the expansion of this principle to the 

metabolic network of the organism. The analysis of the network architecture and the 

identification of the vital metabolites of the network would provide a definitive 

description of the significance of metabolites to the interaction network. The study of 

variation in the topological parameters can offer an understanding about the degree of 

importance of the metabolite being eliminated. This thesis work shall also furnish a 

comprehensive resource detailing the various enzymes, genes and reactions involved in 

each metabolic pathway of the organism. 
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CHAPTER 3 

METHODOLOGY 

 

The sequencing of newer genomes has given rise to extensive biological data 

being available today and the burgeoning career of bioinformatics owes its gratitude to 

the field of genomics. The surge of interest to utilize this biological data available in 

public databases has impelled the demand for bioinformaticians in scientific research. 

Correspondingly, bioinformatics approach forms the foundation for the following 

methods. 

 

3.1 Analysis of the Protein-Protein Interaction Network of Drosophila 

melanogaster 

 

3.1.1 The Protein Interaction Map 

 

The latter part of 2003 saw the publication of the protein-protein interaction 

map of Drosophila melanogaster through a united effort of Curagen Corporation, 

Wayne State School of Medicine and Yale University School of Medicine. A brief 

outline of their work would prove beneficial in understanding the later stages of this 

thesis. 
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The two-hybrid analysis system was used to detect the protein-protein 

interactions of the organism. A concise general description of the two-hybrid system 

[63, 64, 65] is given below. 

 

The two-hybrid assay to be used consists of two fusion proteins. The objective 

is to segregate proteins that interact with a bait protein from any organism. The only 

requirement is that the complementary DNA (cDNA) library that is to act as the 

possible prey should be from the same or a closely related organism. The arrangement 

includes two plasmids, one containing the gene for the bait protein and the other 

holding the cDNA library. A plasmid is an autonomous, circular, self-replicating DNA 

molecule that carries only a few genes. Once inside the cell, each of these plasmids will 

express the genes as proteins. The system is built so that any protein encoded by the 

cDNA library that binds the bait will cause transcription of a reporter gene acting as a 

pointer to the potential protein-protein interaction. 

 

 

 

Figure 3.1: A detailed explanation of the two-hybrid system [66] 
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The cDNA of the protein of significance (P1) or bait is built to include a DNA 

binding domain (BD). Its potential binding partner (P2) or prey is fused to the coding 

sequence of an activation domain (AD) (Figure 3.1). If protein P1 interacts with protein 

P2, a whole and functional transcriptional-activating factor is reconstituted by the 

fusion of the AD and the BD. This reconstituted factor will stimulate transcription of a 

reporter gene or genes that is/are under the control of that transcription factor [67]. A 

reporter gene is one whose protein product may be identified and quantified with 

consummate ease. Thus, the quantity of the reporter gene formed can be used as a 

gauge to determine the interaction between the significant protein and its potential 

binding partner. 

 

Giot et al. [61] performed a statistical analysis on the protein-protein 

interactions detected using the two-hybrid system. 

 

Confidence scores 

Giot and co-researchers used the general linear model of the R statistics package 

[68] to produce a set of confidence values based on the probability of occurrence of 

each interaction [61]. Using this technique, they identified a set of interactions that 

included both high confidence and low confidence values. 

 

High confidence interactions 

The high confidence interactions are those interactions that have already been 

published and acknowledged as accurate. Interactions pertaining to two proteins from 

the same complex have also been integrated into the high confidence dataset [61]. 
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Low confidence interactions 

Low confidence interactions are those unlikely to appear in vivo. These 

interactions are obtained during the application of experimental techniques to the 

proteins but, in reality, they have a very remote possibility of occurrence [61]. 

 

Giot et al. [61] needed a demarcation value to distinguish between the high 

confidence and low confidence data. Using the generalized linear model of the R 

statistical package [68], they obtained a set of confidence scores in the range 0 and 1. 

The cut-off threshold between the high and low confidence interactions was set at 0.5 to 

classify the data into two categories. They confirmed the threshold by studying the 

Gene Ontology [69] annotations of interacting proteins. The confidence score has been 

established to have a powerful correlation with the depth in the hierarchy at which two 

proteins share an annotation. The correlation was found to rise for confidence values of 

0.5 and higher, thereby justifying the use of 0.5 as the threshold value [61]. The list of 

interactions with their confidence values is available on the web portal of Curagen 

Corporation [70]. 

 

3.1.2 Preliminary Steps  

 

The protein-protein interaction dataset has to be subjected to a preliminary 

modification procedure before it can be used for the calculation of the topological 

parameters. The protein-protein interaction dataset for Drosophila is compiled from the 

Drosophila Interaction Database of Curagen Corporation and collaborators from where 

41068 protein-protein interactions are retrieved. However, as mentioned earlier, the 

dataset includes high confidence and low confidence interactions in addition to several 

redundant and self-interactions. 
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Study of the data 

The high confidence (confidence scores higher than 0.5) protein-protein 

interaction pairs are selected for this work as they have a greater support for occurrence. 

A set of 4591 proteins involving 9334 high confidence interactions, exclusive of self-

interactions, is used for the protein-protein interaction network. This dataset contains 

both unidirectional and bi-directional links. A careful study of this dataset reveals that 

two specific proteins stand apart. Among the proteins that have a one-directional 

interaction, the two proteins namely CG4039 and CG12918 only have incoming edges. 

There are several other proteins with unidirectional links but all those proteins have 

outward-bound edges. 

 

Binary network 

The strength of each protein-protein interaction is unknown. The usage of the 

confidence scores as the weight of the interaction links does not supply any material 

denotation to them. Several statistical concepts and techniques were analyzed to offer a 

weight-based interaction study. Nevertheless, it has been decided that the provision of a 

weight-based system is not affordable at this time. Hence, quite a few futile attempts 

later, it has been decided that the study would be conducted by treating the system as a 

binary network. The weight of the edges linking the two proteins is assumed as one 

when an interaction exists. Conversely, in the absence of an interaction the influence is 

understood to be zero to produce a binary network.  
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3.1.3 Topology of the Protein-Protein Interaction Network 

 

The topological parameters of the interaction network offer an insight into the 

intrinsic architecture of the system. Topological parameters like degree, k, and 

probability distribution, p(k), of each node can be calculated for the protein-protein 

interaction dataset. The degree of connectivity ‘k’  in a network refers to the number of 

connections (interactions or edges) contained by a particular node in the network. The 

degree distribution p(k) gives the probability that a selected node has exactly ‘k’  links in 

the network. A plot of the probability distribution against the degree is used to 

determine the architecture of the network. A linear correlation on a log-log scale 

establishes that the distribution follows a power law. 

 

3.1.3.1 Path length of the network 

 

Analysis of the network involves the calculation of the number of steps required 

to traverse from one node to another in the protein-protein interaction network. The 

path length or pathway is defined as a means to quantify the number of links needed to 

navigate from one node to another within the network. This study would entail a better 

perception of the various path lengths available to a node and assist in the determination 

of the shortest path length between any pair of nodes. The evaluation of the shortest 

path length warrants the use of a mathematical algorithm.  

 

Shortest path length analysis 

A universal feature of most real-world compound networks is that nearly all 

pairs of nodes can be connected by only a few links. A major task in network analysis is 

to locate the potential connection path lengths between any two proteins in the 
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interaction network. There may be numerous pathways between two proteins, but the 

shortest pathway is of greatest interest for network assessment. In order to calculate the 

shortest distance between two given nodes, a graph search method called ‘breadth first 

search’  is utilized. 

 

3.1.3.2 Breadth first search algor ithm 

 

Principle 

The search is performed based on the following principle [47, 71]. In this 

algorithm, every edge is assumed to have homogeneous weight, i.e., every edge has 

identical influence. A list containing all nodes in the network is investigated, beginning 

with any node as the source, to resolve its connections in a series of layers. It is 

assumed that the search starts at a node ‘n’ , which is said to be unexplored at that time. 

After ‘n’  is visited, all unvisited nodes adjacent to ‘n’  are subsequently traversed. The 

exploration of the node ‘n’  is said to be complete when the algorithm has visited all the 

unexplored nodes adjacent to it. The node ‘n’  is marked as explored and is not visited 

again. The newly traversed nodes have not been investigated and are placed onto the 

end of the list of unexplored nodes. The first node on this list of unexplored nodes is the 

next to be explored. Examination continues until all nodes have been searched. If a 

node has a multitude of untouched neighbors, it would be equally acceptable to visit 

them in any order. One of the best methods to employ the search would be to visit them 

in the same order as the stored adjacency list of ‘n’ . The working of this algorithm 

results in the formation of a tree. 

 

I llustration of working of the algor ithm  

Consider graph G containing a set of nodes V linked by edges E (denoted as G 

{ V, E} ) as shown in Figure 3.2a.  
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Figure 3.2a & b: Explanation of breadth first search algorithm (graph and tree 

illustration) 

Considering a two-node set ‘g’  and ‘ f’  from the tree, each edge can be said to 

represent from a node visited earlier to the one traversed later (Figure 3.2b). Subsequent 
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successive edges upwards can only be terminated at ‘c’  (which being the source node in 

this example has no edge going upward from it). 

 

Therefore, every node in the tree T has a path to ‘c’ . A tree is just a connected 

and acyclic graph. This means that T is at least a connected sub graph of graph G. In 

any cycle, irrespective of the edges, one direction is upward and the other downward. 

Nevertheless, in T, each node has at most one upward edge so that T can have no 

cycles. Therefore, T, in reality, is a tree known as a breadth first search tree. T is also a 

spanning tree, i.e., if the graph is connected (every node has some path to the source 

‘c’ ) then every node will occur somewhere in T. This can be proved by induction on the 

length of the shortest path to ‘c’ . If a node ‘ f’  has a path length L, (i.e., f-g-…-c), then 

node ‘g’  would have a path length given by (L-1). When ‘g’  is visited, the edge f-g 

would have been traversed, and if ‘ f’  were not already in the tree, it would be added.  

 

The affirmation that the nodes are in this order can be obtained by induction on 

the layer number. By the induction hypothesis, breadth first search would register all 

nodes at layer (L-1) before those at layer L. Similarly, all those nodes at layer L are 

aligned before those at layer (L+1). Every edge of G can be classified into one of three 

groups. Some edges are in T themselves. Some may connect two nodes at the same 

layer of T. In addition, the remaining ones connect two nodes on two adjacent layers. It 

is not possible for an edge to skip a layer. Breadth first search of graph G corresponds 

to some kind of tree traversal on T. The traversal goes a layer at a time, left to right 

within a layer (where a layer is defined in terms of distance from the root of the tree). 

Therefore, the breadth first search tree is a shortest path tree starting from its root node. 

Every node has a path to the source with path length equal to its level (following the 

tree itself) and it is not possible for a path to pass over a layer. Hence, in actuality, this 

is the shortest path.  
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3.1.3.3 Determination of topological parameters 

 

The Boost Graph Library that contains the breadth first search algorithm is used 

for the calculation of the shortest path length for every pair of accessible proteins [72]. 

The shortest path length of the proteins is then employed to compute the average path 

length and diameter of the protein-protein interaction network.  

 

Average path length 

The average path length will provide a description of the number of pathways it 

would require, on average, for one protein to reach another accessible protein in the 

interaction network.  

 

Network diameter  

Another topological parameter of considerable interest is the network diameter. 

The diameter of the network is the length of the longest path length among the shortest 

path lengths computed from the graph search method [47]. This parameter presents 

information about the length of the longest pathway that is utilized in the interaction 

network.  

 

3.1.3.4 Robustness and susceptibility of the network 

 

An important task in probing the network is to test its true scale-free character. 

As the network architecture is of a scale-free nature, it has to be explored for its 

toughness against random failures and vulnerability to coordinated attacks [42]. The 
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proteins are ranked based on their degree in descending order. The top 3% of the highly 

connected proteins are removed sequentially to feign a targeted attack and the effect on 

average path length and diameter of the protein-protein interaction network is studied. 

On the other hand, 3% of the proteins are removed at random creating an unintended 

failure of nodes and the effect on the two topological parameters is calculated again. A 

graphical plot is used to demonstrate the effect of removal of proteins on the network 

topology. The molecular function of the hub proteins is retrieved from biological 

databases and used to identify any possible association to the distinguishing behavior 

exhibited due to the targeted elimination of those proteins. 

 

The description of the computation of the topological parameters and the study 

of the robust and susceptible nature of the network with their respective inferences is 

given in Chapter 4. 

 

3.2 Analysis of the Metabolic Network of Drosophila melanogaster 

 

This part of the project uses the same analytical techniques as that exercised for 

the protein-protein interaction network. Hence, it is assumed that it is dispensable to 

reiterate through the steps. Any new information that merits mention, to facilitate the 

understanding of the methodology of analysis of the metabolic network, is given in the 

following sections of the chapter. 
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3.2.1 Investigation of the Significance of the Metabolites 

 

KEGG database 

The public access to genomic databases serve to analyze, understand and 

portray the latent patterns entrenched in biological networks. The information retrieved 

from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database that is a 

privately owned portal based in Japan is recognized as the basis for this investigation 

[73, 74]. 

 

The KEGG database offers a wealth of genomic assets. The database provides 

gene files that deliver information about the gene involved in a specific organism and 

the corresponding enzyme denoted by its name and Enzyme Commission (EC) number. 

The set of files for Drosophila melanogaster are recovered in a rudimentary form. 

Separate files are retrieved for each metabolic pathway. The reaction files recovered 

from the KEGG database contain information about the reaction identifier (ID), the 

reaction involved and the enzyme catalyzing the reaction (denoted by EC number). The 

files available are based on the type of metabolic pathway. 

 

The major objectives of this work include: 

� Construction of a resource, based on the metabolic pathways involved in 

Drosophila using the information retrieved from KEGG  

� Analysis of the compounds that play an important role in the metabolism and to 

determine the network architecture 

� Study of the effect of removal of metabolites, in sequence and at random, on the 

topology of the network 
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3.2.1.1 Construction of a metabolic pathway based resource 

 

The compilation of the information from the reaction database presents a list of 

1017 reactions. The reaction represented by the compound indices such as C00001, 

C00024, C05345, etc., are used for the study as it provides easier management than the 

actual names of the compounds themselves. The gene files provide a set of 2969 genes. 

Incidentally, it should be noted that all the reactions that occur in this organism are 

reversible. The redundant genes that code for the same enzyme are removed. Using the 

EC numbers as a correlating factor, the genes and the reactions are listed classifying 

them according to their metabolic pathways. 

 

3.2.1.2 Identification of the role of metabolites 

 

One of the principal goals of this endeavor is to classify the significant 

compounds that are involved in the metabolic pathways of Drosophila melanogaster. It 

is of tremendous importance to gain an understanding of the compounds that are vital to 

the metabolic network. The knowledge about these compounds will lead to a better 

diagnosis on the obscure web of metabolic networks. To ensure the accomplishment of 

this objective, the substrates and the products involved in all reactions are isolated. 

Three separate lists are generated, namely - metabolites acting as substrate, metabolites 

acting as product and metabolites occurring as both substrate and product in the 

reaction. Computations performed on the datasets yield an insight into the fact that 

approximately one third of the metabolites are present in each category.  
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Graphical plots 

The outgoing links, represented by Cout, indicate the substrate metabolites. In 

contrast, the incoming links signifying the metabolites that occur as product in the 

reaction are designated by Cin. A study of the probability distribution of the occurrence 

of each metabolite will provide a comprehensive view of the metabolic network 

architecture.  

 

Probability distr ibution char ts 

The probability distribution of the metabolites is plotted as p(k) versus ‘k’  where 

p(k) is the probability of finding ‘k’  number of connections. Three different graphs are 

plotted using the incoming degree, the outgoing degree and a combination of all the 

degrees to examine the nature of distribution of metabolites in each category.  

 

Frequency distr ibution of compounds 

A frequency distribution histogram is used to substantiate the nature of the 

network architecture and to determine the impact of the compounds that play a part in 

the metabolism of the organism. 

 

3.2.2 Examination of the Metabolite-Metabolite Interaction 

 

An investigation of the interaction of the metabolites that may act as substrate or 

product or both can be utilized to figure out the topological parameters of the network. 

A sample of the reaction involved in the metabolism is  

C05125+C00011<=>C00068+C00022          (2) 



 61 

 

The connections (interactions) for this reaction are built as C05125-C00068, 

C05125-C00022, C00011-C00068, C00011-C00022, C00068-C05125, C00022-

C05125, C00068-C00011 and C00022-C00011. On a similar basis, a list of connections 

is organized for all the reactions. If the reaction contains more than a single mole of 

compound, e.g., 2C00001, the reaction is modified by substitution of the compound 

index as (C00001+C00001). The strength of each association is homogeneously 

maintained as one to produce a binary network. 

 

The downside of current metabolites 

The dataset generated above cannot be used per se, as the list of connections 

prepared contains a large number of current metabolites [49]. Current metabolites are 

those cofactors in biochemistry such as ATP, ADP and hydrogen ions (H+) that should 

be removed from the dataset before metabolic network analysis. Cofactors are normally 

used as carriers for transport of electrons and other functional groups to facilitate the 

catalysis of a reaction [75]. The current metabolites may be explained as being 

analogous to an external metabolite that takes part in more than a few reactions but does 

not occur in pseudo steady state in a sub-network [76]. A metabolite is external, if it is 

well buffered like water, ATP, etc. The fast-paced nature and high yield of metabolites 

during reactions has resulted in a pseudo steady state assumption that on longer time 

scales, the concentration of metabolites and the rate of reactions are stable. This 

condition guarantees that none of the metabolites are produced or consumed in the 

overall stoichiometry [77, 78]. 

 

The calculation of the least number of steps required to get from one compound 

to another (shortest path length) using this set of data would provide an inaccurate 

insight into the topology of the network [49]. The current metabolites should be 

removed before the calculation of the topological factors, as their inclusion would 
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generate fallacious parameters. Nevertheless, the deletion of the current metabolites and 

their possible connections cannot be done per se. Some of the current metabolites may 

be primary metabolites acting as either substrate or product. A primary metabolite is 

essential for regular growth and reproduction. Primary metabolites are those 

metabolites that occur as the first compound in the substrate or product sequence of a 

reaction. Such reactions warrant exclusion [49]. Consequently, those reactions in which 

the current metabolites are present as a primary substrate or product are permitted to be 

part of the network. The remaining connections that do not involve the current 

metabolites as primary metabolites (either as substrate or product) are deleted and the 

links between the substrates and products is reconstructed. This strategy and the 

removal of redundant connections cause the number of links to be reduced to 3326. 

This restructured dataset is used for the calculation of the shortest path lengths of the 

network.  

 

3.2.2.1 Computation of the topological factors 

 

The shortest path length of this metabolic network is calculated using a graph 

search algorithm. The breadth first search method is used for this purpose [47]. A 

detailed description of the principle and an illustration of this algorithm are provided in 

Section 3.1.3.2. The Boost Graph Library that includes the breadth first search 

algorithm is used for the computation of the shortest path length for every pair of 

reachable metabolites [72]. The shortest path length of the metabolites is employed to 

calculate the average path length and the diameter of the metabolite-metabolite 

interaction network.  
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3.2.2.2 Simulation of random and coordinated attack on the metabolic interaction 

network 

 

The metabolic network is examined for its tolerance to random failures and 

defenselessness against sequential errors [42]. This study will provide a better 

suggestion about the effects of synchronized and random attacks on the metabolic 

network. The metabolites are sorted based on their degree (inclusive of incoming and 

outgoing edges) in declining order. The top 5% of the most connected metabolites are 

removed successively to simulate a premeditated attack and 5% of the metabolites are 

removed in an unsystematic fashion imitating an accidental failure of nodes. The 

outcome on the average path length and the diameter is studied for both cases. A 

graphical plot is utilized to highlight the effects of eradication of metabolites on the 

overall topology of the network. 

 

3.2.3 Central Metabolism 

 

The core of metabolism lies in the production of energy. The central carbon 

metabolism plays a pivotal part through its important conduits of glycolysis, 

Tricarboxylic Acid (TCA) cycle and pentose phosphate pathways. These pathways 

portray a critical role in the metabolism of any organism by providing links to various 

reactions. The compounds involved in the central metabolism coordinate phosphate 

(energy), carbon, nitrogen, and redox metabolism. They enable the production of 

energy required for metabolism and aid in the production of other primary and 

secondary metabolites. The number of steps (reactions) required for compounds to 

reach another compound involved in the central metabolism serve as an indicator of the 

degree of possible conversion to metabolites of these key pathways. The degree of 

interconnectivity illustrates the synchronization of metabolism around these compounds 

and it is likely that metabolic regulation will revolve around the careful organization of 
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these metabolites. The shortest biodegradative pathway (least number of steps) can also 

present information about the number of steps needed for a compound to be 

biologically degraded [79]. Hence, this quantity is computed for the metabolic network 

using the breadth first search method. The results obtained during the various stages of 

this exploratory study are described in Chapter 4. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

The results are given in two sections; sections 4.1 and 4.2 provide the analytical 

results of the protein-protein interaction network and the metabolic interaction network 

of Drosophila melanogaster respectively. 

 

4.1 Protein-Protein Interaction Network 

 

A scale-free network is distinguished from the random network design by a 

power law distribution of connectivity instead of a Poisson distribution. The graphical 

plot involving the probability of allocation of nodes and their definite number of links 

should produce a decreasing function for a network that is scale-free. 

 

4.1.1 Probability-Degree plot for  the Protein-Protein Interaction Network 

 

The probability distribution plot of the number of proteins having a definite 

number (k) of interactions is an excellent indicator of the type of network design 

inherent in the protein-protein interaction network. As shown in Figure 4.1, using the 

high confidence interaction dataset, a plot of degree distribution p(k) versus the 

interactions ‘k’  on a log-log scale produces a linear correlation hinting that the degree 

distribution follows a power-law. 
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Figure 4.1: The probability distribution-degree plot for the protein-protein interaction 

network 

This result is closely in accordance with the plot shown by Giot et al. [61] for 

the protein interaction map. As the degree of the network increases, the probability of 

finding a protein with that specified number of interactions begins to fall to a low value. 

This confirms the salient feature of scale-free networks, i.e., there are several nodes 

with a low degree and a few dominant nodes (hubs) with a high degree. This result 

verifies that the protein-protein interaction network of Drosophila follows a scale-free 

architecture.  

 

To exercise some statistical information usage, there are 2549 proteins having a 

single interaction that constitute more than half (~55%) of the total proteins in the high 

confidence dataset. Only 1% of the proteins have ten or more interactions. These 

proteins having a higher number of interactions act as the hubs of the protein-protein 

interaction network. The exponent γ in the power-law distribution (y = 1.3511x-2.7763) is 
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found to be 2.78. This value is in agreement with those obtained (2.0-3.0) for other 

networks like the World Wide Web, citations of scientific articles and the Internet that 

follow a scale-free architecture [31]. The mean degree, i.e., the average number of 

interaction partners present per protein, of the high confidence dataset is found to be 

2.03. This signifies that on average, every protein that is part of the system interacts 

with two other proteins in the network. 

 

4.1.2 Topological Parameters 

 

The other topological parameters of interest are the average path length and the 

network diameter. The average path length for the network is calculated as 9.42 and the 

network diameter is found to be 27 for the high confidence interaction dataset. 

 

The relatively short path lengths typify a small world network. As the network 

architecture is of a scale-free nature, it has to be tested for its resistance against random 

failures and vulnerability to coordinated attacks. The proteins are ranked based on their 

degree in decreasing order for this study. The exclusion of a particular node by chance 

or by deliberate measure can give rise to contrasting consequences. The severity of 

these consequences depends entirely on the node that is removed. With the rationale of 

examining the network for its weakness against sequential attacks and its tolerance to 

random failures, a milieu simulating a targeted assault where the well-connected 

proteins (top 3%) are removed in sequential order of their degree is replicated. The 

second part of the simulation creates a random node failure by removing proteins in an 

arbitrary fashion. The upshot of these simulations is summarized in the following 

sections. 
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4.1.3 Alterations due to Simulated Errors on the Network Ar rangement 

 

The consequences of the removal of well-connected proteins and those in a 

random manner are illustrated as a plot of the corresponding topological parameter 

versus the number of proteins removed. The ensuing correlations in Figures 4.2 and 4.3 

for the 3% (~138 proteins) sequential removal of the most connected proteins, in 

descending order of their degree, emphasize the critical nature of the highly connected 

proteins. 
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Figure 4.2: Effect of sequential and random removal of proteins on the average path 

length of the network 
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Figure 4.3: Effect of sequential and random removal of proteins on the diameter of the 

network 

For the 138th protein eradicated, the average path length and diameter of the 

network are determined to be 20.93 and 54, respectively. In comparison with the 

original topological parameters (average path length = 9.42 and diameter = 27) of the 

arrangement, it can be observed that the average path length and the diameter of the 

network are doubled. This offers evidence of the vital character of the hub proteins. 

 

The elimination of hubs changes the topology of the network corroborating their 

direct relation to the topological parameters that prove lethal to the system. The boost in 

the average path length signifies that the shortest path length required by a particular 

protein to get to another protein has increased. This implies that it takes more number 

of steps to get from a specific protein to its target protein, thereby disturbing the 

efficient, innate path that had been utilized before the assault on the hubs of the 

network. The doubling of the diameter highlights the formation of small, secluded 

clusters of proteins that is very different from the original compact system design. An 
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interesting feature of the plots is a decrease in both topological parameter values on the 

removal of CG6998 (Gene ctp), a well-linked protein. Figure 4.3 illustrates that the 

diameter remains consistent for the exclusion of some proteins and then increases. This 

sequence replicates for the entire 3% exclusion. The removal of Gene ctp (when 

diameter increases to 49) causes the failure of the actual connecting path but the 

subsequent elimination of other hub proteins result in the mechanism being able to 

salvage a shorter path. This is a one-time occurrence and typically, the organism is not 

able to find a shorter recourse to its target protein, as exposed by the escalating nature 

of the parameter values, once the intrinsic path is lost. 

 

On the contrary, the simulation of a random node failure does not demonstrate 

any drastic alterations in the topological parameters of the network when 3% of the 

proteins are removed. The topological parameters show a minor variation and as the 

plot indicates, it does not affect the innate topology of the system. 

 

4.1.4 Graphical View of the Protein-Protein Interaction network highlighting the 

hubs 

 

A graphical representation of the protein-protein interaction arrangement should 

provide for a better interpretation of the system. Figure 4.4 shows a graphical view of 

the original network constructed using Pajek network analysis tool [80].  

 

The most connected proteins are represented by the nodes in red indicating the 

lethal nature of those proteins. The clustered environment is due to the large number of 

proteins (4591) that are represented on the image. The connecting lines denote the 

interaction (edge) between any two proteins. The removal of proteins causes the 

network to shrink but the mode of contraction shows the lethality of the hubs. The 
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sequential removal of hubs causes the network to be break into fragments of smaller 

clusters. On the contrary, the random removal does not lead to the fracturing of the 

network and the overall topology remains relatively intact. 

 

Figure 4.4: Graphical view of the original protein-protein interaction network 
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4.1.5 Study of the Molecular  Functions of the Hubs 

 

The top 3% (~138) of the highly connected proteins are examined to study their 

functions and their respective roles in biological pathways. Information retrieved from 

FlyBase provides the molecular function of these proteins [81]. It is found that 62 of 

these proteins have not been annotated yet. The study of the remaining 76 proteins with 

an annotation using KEGG Orthology [73, 74] reveals that eight proteins cannot be 

classified to a specific pathway. Analysis shows that 21 proteins play a part in 

metabolism, 10 proteins are involved in cellular processes, 17 proteins aid in 

environmental information processing and 20 proteins are responsible for genetic 

information processing. Among the proteins involved in metabolism, 13 proteins are 

components of the central metabolism pathways. Hence, it can be seen that the 

molecular functions of the annotated hubs are distributed over a wide array of processes 

essential for the functioning and sustenance of the organism. 

 

4.2 Metabolic Network Analysis 

 

The pathway-based resource is compiled using the information recovered from 

the KEGG database. The result is a list of the metabolic pathways with each pathway 

data enumerating the enzyme catalyzing the reaction (represented by EC number), gene 

that codes for the enzyme (denoted by gene name) and the reaction (designated by 

compound indices) that it is involved. It is found that there are 90 metabolic pathways 

involved in the metabolism of Drosophila melanogaster (please contact the author for 

additional information). 
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4.2.1 Determination of the Network Architecture 

 

The plot of the architecture of the metabolic network strongly resembles that of 

the protein-protein interaction network. The probability distribution of the compounds, 

acting as substrate (out degree) and as product (in degree) (Figure 4.5a & 4.5b) and of 

all compounds (Figure 4.5c), follows a power law distribution.  
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Figure 4.5a: Probability distribution of connectivity of product metabolites 
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Figure 4.5b: Probability distribution of connectivity of substrate metabolites 
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Figure 4.5c: Probability distribution of connectivity of all metabolites 
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It can be noticed that all the three plots follow a linear correlation on a log-log 

scale indicating that they follow a scale-free architecture. This signifies that, for all the 

three cases, there are some highly connected metabolites that link to other metabolites, 

which participate in only a few reactions as substrate, product or both. The majority of 

metabolites are present only in a few reactions, i.e., more than 54% metabolites play a 

role in one or two reactions. At a higher value of the number of connections, the 

probability decays to a small value and remains approximately constant, as it is most 

likely that only a single compound would be involved in that many reactions. This is 

because there are only 12 metabolites that have 100 or more occurrences in the reaction 

mechanism as substrate, product or both. These hub metabolites have a central 

responsibility to connect a number of compounds and enable the efficient conversion of 

one metabolite to another. From the computations, it is found that there are 597 

compounds that act as substrate and 611 compounds that occur as product. Of this mix, 

282 compounds play a part as both substrate and product. This tally shows that there are 

926 compounds involved in the metabolic network of Drosophila melanogaster. 

 

The frequency distribution (Figure 4.6) of the compounds that participate in the 

reaction mechanism, classified based on their links, further reinforces the fact that the 

metabolic network of Drosophila does indeed follow a scale-free topology. The plot 

shows that there are a high number of substrates and products taking part in five or 

fewer reactions. As the number of links increases, the compounds involved in that many 

reactions begins to diminish steadily.  
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Figure 4.6: Frequency of interaction of compounds involved in the metabolic pathways 

To make the graphs clear, the number of links greater than 30 is included in one 

bar. When the plot is stretched out for all values of links, the number of metabolites 

involved decline progressively, reach a value of one and remain constant. This 

emphasizes the fact that at higher degrees, there is only a solitary metabolite 

contributing to that many numbers of reactions. 

 

4.2.2 Determination of the Topology of the Metabolic Network without the 

Current Metabolites 

 

The new dataset, devoid of cofactor compounds, is used to plot the probability-

connectivity data of the metabolites. As revealed in Figure 4.7, the distribution still 

decays as power law, irrespective of the absence of the current metabolites. 
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Figure 4.7: The probability-connections distribution plot for the metabolic interaction 

network 

The results indicate that over 56% of the metabolites are involved in just one or 

two interactions while only about 2% metabolites participate in 30 or more interactions, 

a classic characteristic of scale-freeness. The exponent γ in the power-law distribution 

(y = 0.9755x-1.5545) is found to be 1.55. This value is lesser than those obtained for other 

networks like the World Wide Web and the Internet that follow a scale-free architecture 

[22]. Nevertheless, the intrinsic topology of the network remains unaltered. The mean 

degree of the network is established to be 3.59. This signifies that on average, every 

metabolite that is part of the arrangement interacts with approximately three or four 

other metabolites in the network. 

 

The average path length for this network is calculated as 5.29. Thus, on average, 

each metabolite can be converted to any other metabolite (that can be reached or 

converted) in five steps [49]. This shows that the metabolic network is highly compact 

as indicated by the small number of steps required to get from one metabolite to 
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another. This small world nature supports the fact that the metabolic interaction 

network of Drosophila follows a scale-free architecture. The diameter of the network is 

computed to be 18.  

 

4.2.3 Effect of Connectivity on the Metabolic Interaction Network 

 

The simulation of coordinated and random attacks shows that as the most 

connected metabolites are taken away from the network, the average path length and 

the diameter of the network are severely enhanced altering the inherent architecture of 

the network (Figures 4.8 and 4.9). 
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Figure 4.8: Effect of sequential and random exclusion of metabolites on the average 

path length of the metabolic network 
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After the removal of 5% of the hubs from the network, the average path length 

increases to 17.75. 
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Figure 4.9: Effect of sequential and random exclusion of metabolites on the diameter of 

the metabolic network 

The diameter increases to 55 after the elimination of 5% of the hubs from the 

network. It can be seen that the average path length and diameter suffer a more than 

three-fold augmentation after the 5% removal of the hub metabolites. The abnormal 

increase in the diameter from 34 to 55 on the elimination of L-Serine can be attributed 

to the fact that the organism loses its competent shortest pathway and a new set of 

pathways is organized. The longest pathway among the shortest pathways involved in 

the network, after the removal of L-Serine, is 55. This produces a radical change in the 

network design affecting the ability of the organism to produce a particular metabolite 

in a relatively small number of reactions.  
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Conversely, when the metabolites are eradicated in a random fashion, there 

scarcely is any change in the topological parameters. The elimination of a compound 

result in the search for a novel pathway, as the original pathway cannot be traversed. 

For a random compound, the organism is able to choose an alternate pathway without 

affecting the topology of the network, thereby providing development and survival 

stability. The novel pathway would lead to the target metabolite in more or less the 

same number of steps as the original pathway as proven by the steadfast nature of the 

topological parameters. Therefore, the critical nature of the hubs can be witnessed by 

the sweeping alterations that occur due to their simulated elimination. 

 

4.2.4 Visualization of the Metabolic Interaction Network 

 

Figure 4.10 shows the hubs (in red) that are essential to the network, the 

removal of which causes the collapse of its natural topology. The dense nature of the 

metabolites is when it is in its intrinsic state. The elimination of the hub metabolites 

causes this compact design to isolate into small groups, thereby disrupting the ability of 

the compounds to convert to one another in a small number of steps. The effective 

linking mechanism is lost and the system may be rendered meaningless. 
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Figure 4.10: The metabolic interaction network of Drosophila melanogaster after the 

elimination of current metabolites 

4.2.5 Distance of Metabolites to the Central Metabolism compounds 

 

Using the breadth first search algorithm [47], the compounds are sorted based 

on their distance to the central metabolism and the number of connections as shown in 

Figure 4.11.  
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Figure 4.11: Plot illustrating the correlation between the distance to the central 

metabolism and the number of connections for each compound 

The computation of the number of steps required to convert a specific 

compound to another compound that is involved in the central metabolism offers an 

insight into the biodegradable nature of that compound [79]. From the calculations and 

the subsequent plot, concrete observations can be made.  

 

Thirty metabolites are involved in the central metabolism pathways. There are 

only a few compounds having the same specific number of connections in the central 

metabolism and hence, the smaller radii of circles. There are a large number of 

compounds having ten or less number of connections with short distances to the central 

metabolism, i.e., one or two steps, as indicated by the spheres of larger radii. It is found 

that about 53% of the compounds can be converted to central metabolism compounds in 

one or two steps. This proves that the majority of the compounds have a high degree of 

biodegradability. About 16% metabolites cannot be linked to any compound of the 
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central metabolism pathways. The rest of the compounds are sparsely distributed over 

the higher number of steps of conversion with the longest link being nine steps. The 

plot can be viewed as a power law distribution since the number of compounds 

decrease with increase in the distance to the central metabolism pathway compounds. 

 

The distance of the hub metabolites to the central metabolism compounds is also 

analyzed. It is determined that among the top 5% of the hub metabolites used for the 

earlier study, 85% of the metabolites are either part of the central metabolism pathways 

or can be changed into one of them in a single step. This shows that the hub metabolites 

are closely linked to central metabolism. Consequently, this is unambiguous evidence 

that the central metabolism pathways are central to not only the function and 

maintenance of the metabolic processes but also the topological structure of the 

organism. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTION 

 

Protein-protein interaction network 

The high confidence protein-protein interaction dataset is used to find the 

network architecture and to determine other topological considerations. The dataset 

reveals an inherent scale-free architecture, thereby underlining the fact that the majority 

of complex biological networks have a scale-free topology. The shortest path length of 

all the accessible proteins and the average path length and diameter of the network are 

also determined. The far-reaching alteration in the network topology (two-fold increase 

of the topological parameter values) due to the exclusion of hubs of the network 

confirms their essence to the network. The analysis of the molecular function of the 

well-connected metabolites proves that an extensive range of biochemical processes is 

managed by the hubs. 

 

The protein-protein interaction network of Drosophila melanogaster renders a 

few moot points. A striking feature that deserves investigation is the ability of the 

organism to transfer to an alternate connection mechanism most times, when a non-hub 

protein is removed, to form new links and entail the smooth progress of the formation 

of biochemical products. Despite the fact that the highly connected proteins are 

removed, the organism is able to sustain its routine tasks, as it locates another protein 

that has a similar function to the protein that is being eradicated. This resilient nature of 

the organism needs further consideration. A physical denotation involving the strength 

of each interaction would provide a more comprehensive understanding of the network. 
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Metabolic interaction network 

The study of the intrinsic doctrines that characterize the metabolic network of 

Drososphila melanogaster provides a crucial understanding of the construction blocks 

of the organism. The evaluation of the metabolic network of Drosophila identifies that 

926 compounds are involved in the metabolic reactions as substrate, as product or as 

both. The graphical plots show that the probability distribution of these metabolites 

follows a scale-free design. The frequency distribution of these metabolites also 

indicates that only a few hubs exist in the network that participates in 30 or more 

reactions. 

 

The presence of current metabolites generates an artificially short pathway 

between any two metabolites and proves detrimental to the computation of the 

topological parameters. The elimination of these cofactor compounds helps to 

determine the realistic number of steps required for the conversion of one compound to 

another and generates pragmatic topological parameter values. The exclusion of the hub 

metabolites demonstrates the harmful effects on the system as it disturbs the existing 

topology of the network. Their removal is lethal to the overall topology of the system 

leading to the failure of the efficient innate pathways. Although the organism is able to 

find alternate pathways to form products, it requires greater number of intermediate 

steps.  

 

The average path length and the network diameter suffer a three-fold increase 

resulting from the top 5% exclusion of the hubs. This shows that a hub metabolite 

cannot be chosen as a target compound for therapeutic research as any interruption to 

the original pathway may cause the system to be secluded into diminutive groups 

causing a larger number of steps to be utilized for the production of the same 

compound. In some cases, the mechanism may not be able to find any avenues for an 

alternate pathway due to the formation of small clusters of metabolites causing the loss 
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of that specific product metabolite. A random metabolite with less participation in 

reactions could have a better efficacy to serve as a target metabolite and resist intrinsic 

errors. 

 

The investigation of the distance of metabolites to central metabolism pathways 

indicates that a large number of the metabolites can be converted to central metabolism 

compounds in a single or couple of steps. This biodegradability enables the organism to 

convert many metabolites to the central metabolism compounds, for the generation of 

energy with minimal consumption of nutrients, to supplement its needs. 

 

A weight-based interaction study can generate a better interpretation of the 

network. An understanding of the importance of each individual reaction can be offered 

because of such an analysis. The major hurdle in the assignment of weights to the 

interactions is the determination of the strength of each interaction. The influence of 

each interaction in the context of the web of interactions must also be considered. The 

binding forces that govern the interactive mechanism must be evaluated before a 

physical denotation can be provided to them. These factors require an advanced 

understanding about the interactive forces. 

 

An alternate view to this problem would be to utilize the hubs of the network. 

The hubs play a critical role in linking several other nodes, thereby enabling them to 

have shorter path lengths. The adverse consequence observed due to the exclusion of 

well-linked nodes underscores their importance to the use of shorter path lengths. A 

higher weight could be provided to the edges of nodes not interacting with a well-

connected node. For such nodes, the absence of any links to a hub causes a longer path 

length to a target node. On the other hand, the edges of nodes that link to a highly 

connected node can be provided with a lower weight. This approach will provide path 

lengths to a target node, based on weights. Nodes that have a link to a hub will produce 
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shorter weight-based path lengths to its target than when computed in their absence. An 

enhanced review could be available in the not so distant future. 
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APPENDIX A 

Datasets for  Protein-Protein Interaction Network 

 

Table 4.1: Data for  the probability - degree plot of proteins 

 

Degree ‘k’  
Number of proteins 

with ‘k’  interactions 
Probability, p(k) 

1 2549 0.5555 

2 955 0.2081 

3 484 0.1055 

4 252 0.0549 

5 137 0.0299 

6 72 0.0157 

7 54 0.0118 

8 22 0.0048 

9 15 0.0033 

10 16 0.0035 

11 15 0.0033 

12 7 0.0015 

13 2 0.0004 

14 2 0.0004 

15 1 0.0002 

16 1 0.0002 

17 1 0.0002 

18 2 0.0004 

20 1 0.0002 

42 1 0.0002 
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Table 4.2: Data for  the effect of removal of most connected and random proteins 

 

Effect due to removal of most 

connected proteins 

Effect due to removal of 

proteins at random 
Proteins 

removed 
Ave. path length Diameter  Ave. path length Diameter  

0 9.4210 27 9.4210 27 

1 9.7130 27 9.4275 27 

2 9.8014 27 9.4275 27 

3 9.8106 27 9.4267 27 

4 9.9013 27 9.4239 27 

5 9.9798 27 9.4326 27 

6 10.0325 27 9.4326 27 

7 10.0670 27 9.4327 27 

8 10.1429 27 9.4337 27 

9 10.1530 27 9.4358 27 

10 10.2149 27 9.4350 27 

11 10.2320 27 9.4107 26 

12 10.2693 27 9.4108 26 

13 10.3009 27 9.4084 26 

14 10.3043 27 9.4091 26 

15 10.3373 27 9.4093 26 

16 10.4461 27 9.4098 26 

17 10.4912 27 9.4098 26 

18 10.6458 27 9.4098 26 

19 10.6406 27 9.4098 26 

20 10.6863 27 9.4095 26 

21 10.7232 27 9.4095 26 

22 10.7461 27 9.4095 26 

23 10.7749 28 9.4110 26 
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24 10.7980 28 9.4110 26 

25 10.8398 28 9.4221 26 

26 10.9118 28 9.4255 26 

27 10.9226 28 9.4249 26 

28 10.9665 28 9.4250 26 

29 11.0039 28 9.3967 26 

30 11.1073 28 9.3967 26 

31 11.1430 29 9.3956 26 

32 11.1978 29 9.3956 26 

33 11.2014 29 9.3947 26 

34 11.2029 29 9.3886 26 

35 11.3233 29 9.3886 26 

36 11.3224 29 9.3886 26 

37 11.4097 29 9.3889 26 

38 11.4982 29 9.3897 26 

39 11.5519 29 9.3897 26 

40 11.5630 29 9.3897 26 

41 11.5725 29 9.3894 26 

42 11.6140 29 9.3879 26 

43 11.7990 30 9.3879 26 

44 11.8509 30 9.3879 26 

45 11.8708 30 9.3877 26 

46 11.8970 30 9.3877 26 

47 11.8753 30 9.3877 26 

48 11.9617 30 9.3881 26 

49 12.0045 30 9.3876 26 

50 12.0418 30 9.3865 26 

51 12.1578 33 9.3868 26 

52 12.2964 33 9.3918 26 

53 12.3133 33 9.3919 26 

54 12.3480 33 9.3922 26 
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55 12.3553 33 9.3922 26 

56 12.4987 33 9.3923 26 

57 12.5243 33 9.3923 26 

58 12.5634 33 9.3915 26 

59 12.6680 33 9.4008 26 

60 12.7972 33 9.4032 26 

61 12.9928 33 9.4031 26 

62 13.0759 33 9.4018 26 

63 13.0821 33 9.4018 26 

64 13.0462 33 9.4056 26 

65 13.2314 36 9.4058 26 

66 13.3839 36 9.4058 26 

67 13.5508 36 9.4054 26 

68 13.5801 36 9.4054 26 

69 13.6341 36 9.4054 26 

70 13.7852 36 9.4114 26 

71 13.8500 38 9.4109 26 

72 13.8802 38 9.4252 26 

73 13.9410 38 9.4252 26 

74 13.9763 38 9.4253 26 

75 14.0936 38 9.4255 26 

76 14.0967 38 9.4235 26 

77 14.1760 38 9.4243 26 

78 14.2230 38 9.4238 26 

79 14.2566 38 9.4442 26 

80 14.2678 38 9.4570 26 

81 14.2716 38 9.4431 26 

82 14.2834 38 9.4431 26 

83 14.2911 38 9.4428 26 

84 14.5738 38 9.4428 26 

85 14.9188 38 9.4388 26 
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86 15.3576 41 9.4388 26 

87 15.6914 45 9.4388 26 

88 15.8573 46 9.4399 26 

89 15.8336 46 9.4399 26 

90 16.1163 47 9.4400 26 

91 16.1166 47 9.4400 26 

92 16.3057 49 9.4400 26 

93 15.6318 41 9.4426 26 

94 15.6349 41 9.4426 26 

95 15.6872 41 9.4450 26 

96 15.8466 41 9.4459 26 

97 16.0872 41 9.4456 26 

98 16.0873 41 9.4457 26 

99 16.1242 41 9.4484 26 

100 16.2894 41 9.4484 26 

101 16.4279 41 9.4496 26 

102 16.4205 41 9.4496 26 

103 16.5212 41 9.4483 26 

104 16.5385 41 9.4441 26 

105 16.6393 41 9.4441 26 

106 16.5493 41 9.4428 26 

107 16.5848 41 9.4491 26 

108 16.6906 41 9.4346 26 

109 16.8295 41 9.4346 26 

110 16.8990 41 9.4362 26 

111 16.9005 41 9.4362 26 

112 16.8994 41 9.4387 26 

113 17.0092 41 9.4263 26 

114 17.2628 41 9.4255 26 

115 17.1620 41 9.4032 26 

116 17.3658 48 9.4034 26 
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117 17.7162 48 9.4034 26 

118 17.7163 48 9.4042 26 

119 18.1350 51 9.4042 26 

120 18.1253 51 9.4014 26 

121 18.1804 51 9.4062 26 

122 18.0899 51 9.4056 26 

123 18.1894 51 9.4144 26 

124 18.2038 51 9.4144 26 

125 18.3722 51 9.4634 27 

126 18.6617 51 9.4610 27 

127 18.7171 51 9.4586 27 

128 18.6890 51 9.4592 27 

129 19.0626 51 9.4591 27 

130 19.0636 51 9.4524 27 

131 19.1477 51 9.4524 27 

132 19.2083 51 9.4524 27 

133 19.2765 51 9.4523 27 

134 20.0621 51 9.4543 27 

135 20.0625 51 9.4543 27 

136 20.6910 54 9.4544 27 

137 20.7146 54 9.4539 27 

138 20.9273 54 9.4539 27 
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Datasets for  Metabolic Interaction Network 

 

Table 4.3: Data for  the frequency distr ibution plot 
 

Number of 
links 

Ci Co 

5 66 67 

10 24 26 

15 10 11 

20 4 4 

25 2 4 

30 1 1 

Greater than 
30 

16 10 

 

Table 4.4: Data for  the probability - connectivity plot of metabolites 
 

Connectivity ‘k’  

Number of 

metabolites with ‘k’  

interactions 

Probability, p(k) 

2 215 0.2322 

4 309 0.3337 

6 155 0.1674 

8 94 0.1015 

10 41 0.0443 

12 24 0.0259 

14 19 0.0205 

16 16 0.0173 
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18 7 0.0076 

20 5 0.0054 

22 7 0.0076 

24 4 0.0043 

26 4 0.0043 

28 6 0.0065 

30 2 0.0022 

32 4 0.0043 

36 1 0.0011 

38 1 0.0011 

40 1 0.0011 

44 1 0.0011 

52 1 0.0011 

56 2 0.0022 

64 1 0.0011 

72 1 0.0011 

84 1 0.0011 

114 1 0.0011 

142 1 0.0011 

144 1 0.0011 

206 1 0.0011 

 

Table 4.5: Data for  the effect of elimination of most connected and random 

metabolites 

 

Effect due to elimination of 

most connected metabolites 

Effect due to elimination of 

metabolites at random 
Metabolites 

Removed 
Ave. path length Diameter  Ave. path length Diameter  

0 5.2879 18 5.2879 18 

1 5.4373 18 5.2890 18 
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2 5.5511 18 5.2845 18 

3 6.3393 22 5.2849 18 

4 6.5751 22 5.2850 18 

5 6.8310 22 5.2841 18 

6 7.0441 22 5.2787 18 

7 7.2498 22 5.2787 18 

8 7.5698 22 5.2790 18 

9 7.8522 22 5.2710 18 

10 8.3312 23 5.2747 18 

11 8.6030 24 5.2778 18 

12 8.7825 24 5.2778 18 

13 8.8813 24 5.2769 18 

14 8.9842 24 5.2633 18 

15 9.1287 25 5.2647 18 

16 9.1158 25 5.2664 18 

17 9.1913 25 5.2722 18 

18 9.2411 25 5.2755 18 

19 10.1006 31 5.2724 18 

20 9.7518 31 5.2695 18 

21 9.8591 31 5.2742 18 

22 9.9081 31 5.2773 18 

23 10.0777 31 5.2859 18 

24 10.1254 31 5.2818 18 

25 10.5334 31 5.2765 18 

26 10.6257 31 5.2776 18 

27 10.8346 31 5.2655 18 

28 10.9240 31 5.2656 18 

29 11.0945 31 5.2605 18 

30 11.1710 31 5.2632 18 

31 11.2050 31 5.2666 18 

32 11.1982 31 5.2606 18 
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33 11.5987 31 5.2521 18 

34 11.5863 31 5.2545 18 

35 11.6177 31 5.2545 18 

36 11.7872 31 5.2571 18 

37 12.4558 34 5.2614 18 

38 12.5586 34 5.2553 18 

39 12.6639 34 5.2587 18 

40 16.1976 55 5.2571 18 

41 16.5625 55 5.2603 18 

42 16.6692 55 5.2688 18 

43 16.8993 55 5.2638 18 

44 17.1851 55 5.2669 18 

45 17.5962 55 5.2701 18 

46 17.7263 55 5.2723 18 

47 17.7456 55 5.2739 18 

 

Table 4.6: Correlation between the distance to central metabolism and the number 

of connections 

 

Distance 
Number of 

connections 

Number of 

compounds 

0 4 1 

0 6 1 

0 8 5 

0 10 3 

0 14 2 

0 16 3 

0 18 2 

0 20 1 

0 22 2 
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0 26 1 

0 44 1 

0 52 1 

0 56 1 

0 64 1 

0 72 1 

0 114 1 

0 142 1 

0 144 1 

0 206 1 

1 2 5 

1 4 55 

1 6 84 

1 8 38 

1 10 24 

1 12 17 

1 14 13 

1 16 10 

1 18 3 

1 20 4 

1 22 4 

1 24 3 

1 26 3 

1 28 5 

1 32 2 

1 36 1 

1 38 1 

1 40 1 

1 56 1 

1 84 1 

2 2 29 
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2 4 78 

2 6 38 

2 8 27 

2 10 12 

2 12 5 

2 14 4 

2 16 1 

2 18 2 

2 22 1 

2 24 1 

2 28 1 

2 30 1 

3 2 37 

3 4 60 

3 6 18 

3 8 7 

3 10 1 

3 12 1 

4 2 23 

4 4 31 

4 6 6 

4 32 1 

5 2 5 

5 4 22 

5 6 2 

5 8 2 

5 10 1 

5 12 1 

5 16 1 

6 2 4 

6 4 12 



 107 

6 6 1 

6 8 3 

7 4 5 

7 6 1 

7 32 1 

8 2 2 

8 4 8 

8 6 1 

8 8 4 

8 30 1 

9 2 1 

9 4 8 

-1 2 109 

-1 4 29 

-1 6 3 

-1 8 8 

-1 16 1 
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APPENDIX B 

Glossary 

Chapter  1 

 

1.1 Phenomena used to determine the existence of an organism 

 

Activity: A movement is the foremost indicator of the very existence of an organism. 

Although plants may not move about physically as other entities, they do have internal 

movement. 

 

Consumption: Exchanging matter with the outer world is a signature of life. Organisms 

exhibit breathing and ingest matter for sustenance. They show signs of metabolism to 

feed them and excretion to purge waste matter after utilizing the components required 

for their nourishment. 

 

Development: An increase, as in size, value or strength leading to the evolution from a 

simpler to a more complex form, is witnessed in all micro and macro living beings. All 

plants, animals, fungi and humans demonstrate evidence of growth. 

 

Reproduction: Life has the inexorable property to multiply itself. It is a means to pass 

life onto posterity. 

 

Stimulus Response: Organisms show some form of reaction to an external stimulus. 

Any change in the surrounding environment is dealt accordingly by the mechanism of 

the organism [82]. 
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1.2 Organic Components of the Cell 

 

Carbohydrate sugars are the main source of cellular energy and act as the structural 

components of cells.  

 

Lipids are bipolar molecules, the configuration of which is liable for many properties 

of the biological membrane. Some hormones are also derived from lipids. 

 

Nucleic acids are highly essential macromolecules that refer to a group of multi-faceted 

compounds found in all living cells and viruses. They are composed of purines, 

pyrimidines, carbohydrates and phosphoric acid. The nucleic acids that are present in 

the form of DNA and RNA direct the cellular function and heredity factors of the 

organism. 

 

Proteins are large, organized molecules composed of one or more amino acid chains. 

The order of the amino acids is determined by the base sequence of nucleotides (base 

pairs) in the gene that codes for a particular protein. Proteins are vital for the structure, 

function, and regulation of cells, tissues, and organs. Hormones, enzymes and 

antibodies are some of the proteins found in an organism. 

 

Chapter  2 

 

2.1 Network Theory 

 

Character istic or  Average Path length: The average path length is computed as the 

mean of the shortest path length for all pairs of nodes accessible within the network or 

graph. 

 

Cluster ing Coefficient:  A network is clustered if the probability of two nodes being 

connected by an edge is higher when the nodes have a common neighbor (that is, 
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another node in the network to which both are attached). The clustering coefficient is a 

measure of the interrelatedness of the neighbors of an entity. 

 

Degree: The number of edges connected to a node. 

 

Degree Distr ibution: The probability that a selected node has exactly ‘k’  links. 

 

Diameter : The diameter is the length of the longest geodesic path between any two 

nodes among the calculated shortest paths. 

 

Directed Graph: A directed graph is one in which the edges have a definite direction 

or in other words, go only in one way. 

 

Edge (Link): In communications systems and network topologies, a route between any 

two points or the connection between two nodes. 

 

Geodesic Path: The shortest path required by one node to reach another node in the 

network. 

 

Graph: A graph is the symbolic representation of a network. It implies an abstraction 

of the reality, so it can be simplified as a set of linked nodes. 

 

In-Degree:  The in-degree is the number of incoming edges or edges pointing towards 

the node. 

 

Node (Vertex): In network topology, a terminal of any branch of a network or an 

interconnection common to two or more branches of a network. 

 

Out-Degree: The out-degree is the number of outgoing edges or edges going away 

from the node. 
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Path length (Pathway): The path length or pathway is a measure of the number of links 

needed for a specific node to get to any other node in the network. 

 

Undirected Graph: In an undirected graph there is no specific direction for the edges. 

The edges may go in both ways. 

 

Un-weighted Graph: All the edges of the graph are equal. 

 

Weighted Graph: The edges of a weighted graph are not equal. Each edge has a 

specific strength allotted to it depending on the network that is being studied. 
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APPENDIX C 

 

4.1 &  4.2 Probability Distr ibution - sample calculation 

 

Consider a network of ten nodes namely, A, B, C, D, E, F, G, H, I and J each 

with 7, 1, 2, 3, 2, 4, 7, 2, 6 and 11 links respectively. 

N: the total number of nodes in the network = 10 

k: the number of links = 1, 2, 3…. 

p(k): probability of a node having ‘k’  links = (number of nodes having k links)/N 

Hence, for k =2, p(k2) = 3 (i.e., nodes C, E and H)/10 = 0.3. 

 


