
Fine-Grained Specification and Control of

Data Flows in Web-based User Interfaces

Matthias Book, Volker Gruhn, and Jan Richter

Chair of Applied Telematics/e-Business, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany

{book, gruhn}@ebus.informatik.uni-leipzig.de, jan.richter@saxess.ag

Abstract. When building process-intensive web applications, develop-
ers typically spend considerable effort on the exchange of specific data
entities between specific web pages and operations under specific condi-
tions, as called for by business requirements. Since the WWW infrastruc-
ture provides only very coarse data exchange mechanisms, we introduce
a notation for the design of fine-grained conditional data flows between
user interface components. These specifications can be interpreted by
a data flow controller that automatically provides the data entities to
the specified receivers at run-time, relieving developers of the need to
implement user interface data flows manually.

1 Introduction

Web-based user interfaces have become popular front-ends for information sys-
tems that require convenient access at any time from anywhere [1]. Especially
in business-to-business and intranet applications that are designed to support
elaborate business processes, these user interfaces can turn out to be quite com-
plex. Their complexity is typically twofold: Most obviously to the user, they
have intricate dialog structures that include nested dialog sequences, wizards,
context-sensitive links and other navigation patterns. More transparent for the
user, but all the more palpable for the developer, are the complex data flows be-
tween the interface and the business logic. No matter if these data flows mirror
major business process features or serve minor technical purposes, the devel-
oper must ensure that the right data is available for the right component at the
right time, all the while keeping an eye out for security issues, validity concerns,
performance considerations and persistence strategies.

Despite some progress over the past years, the WWW infrastructure itself
still provides only rudimentary data flow support: Originally, the only available
data flow mechanism was the transmission of parameter strings from clients to
servers in HTTP requests. Soon, web browsers became capable of receiving
short cookie strings from a server and sending them back to the same server
with every subsequent request. This in turn enabled servers to unambiguously
associate multiple requests with the same client, and keep individual state in-
formation for all clients in sessions. Since sessions usually expire after some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226136295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


time without user activity, persistence of selected data is typically ensured by
integration of databases or other storage technologies in the back-end.

These basic data flow mechanisms are technically sufficient to build any web-
based application: Requests provide a channel for data flows from client to server,
sessions provide a scope for data flows among server components, and if neces-
sary, cookies can provide an additional channel for client-server data exchange,
client-side state-keeping, and even simple client-side persistence. However, these
mechanisms are only convenient for a small subset of conceivable data flows: Re-
quests are ideal for sending data from a web page to those business operations
responsible for building the server’s response; and sessions are ideal for making
data accessible throughout the application. These alternatives mark two ends of
a spectrum – in our experience, however, most data flows described by business
processes lie somewhere in the middle: Often, data generated in a certain pro-
cess step is intended only for a clearly defined, but not necessarily immediately
following set of pages and/or operations. Thus, the respective data flows must
reach beyond a single request-response cycle, but do not require session-wide
data publication.

When mapping such process requirements to the technical level, developers
currently need to choose the lesser of two evils: Passing data along a chain of
requests toward its ultimate destination violates the principle of encapsulation,
as the intermediate pages and operations need to handle data that they are
not actually responsible for – an unclean and error-prone solution that requires
high implementation and maintenance effort. Alternatively, storing data in the
session for use at a later time relieves the intermediate steps from a lot of hassle,
but bears the danger of memory leaks if the data is not removed from the
session when it is no longer required. In addition, both approaches pose inherent
security risks as data is exposed to pages or operations that do not need to
know about it (and in the first case, even repeatedly sent over the network).
Even if other application components are considered “friendly”, this unnecessary
exposure multiplies the possible points of failure or attack.

Since neither the request nor the session scope provides satisfactory dialog
flow support, we propose a supplemental method for realizing data flows that
match the process requirements of application domains more closely, while at the
same time reducing the required implementation effort. In this paper, we will
first show how arbitrary point-to-point data flows can be specified in a graphical
notation (Sect. 2). We then show how this specification can be interpreted at
run-time by a data flow controller that provides just the specified data to each
page and operation (Sect. 3). We conclude with a discussion of related work
(Sect. 4) and an overview of further research opportunities (Sect. 5).

2 Data Flow Specification

In the introduction, we discussed data flows related to the user interface layer.
Obviously, data also flows along the control structures within the application
logic, may be exchanged with third-party, legacy or back-end systems, and can



be stored in and retrieved from persistent memory. However, since these data
flows are the responsibility of the application and persistence logic, established
specification methods (e.g. UML data flow diagrams, sequence diagrams etc.)
and implementation techniques (e.g. SOAP, EJB etc.) can be used for these
layers. Our work instead focuses on data flows between the presentation and ap-
plication logic, where suitable implementation techniques (apart from the coarse
request and session scopes) and specification methods have not yet been widely
established.

To specify user interface data flows on a more fine-grained level than the one
provided by the request or session scopes, we first need to define the concept of
a data flow more clearly. Given a data source A, a data sink B and a data entity
d, we define that the data flow of d from A to B is the provision to B of the d

available to A (i.e. B gets to know the d that is known to A). As we will soon
see, it is helpful to make data flows conditional, i.e. to execute them only if a
certain constraint is fulfilled.

In designing a notation that maps this abstract definition onto a technical
level, we need to answer a number of questions:

– What are concrete data sources and data sinks?
– Which constraints determine if a data flow is executed?
– How are sources and sinks related?
– What are concrete data entities?
– How is the “provision” of data entities realized?

The first three questions relate to the specification of data flows, and will
be answered in the following subsections. The last two questions relate to the
implementation of data flows, which will be discussed in Sect. 3.

2.1 Data Sources and Sinks

The data sources and data sinks used to model data flows should be entities
that represent the structure of web-based user interfaces. In our past work, we
have found it natural to distinguish between web pages and application logic
operations in order to model the navigation structure of web applications: In
the Dialog Flow Notation (DFN) [2], web pages are symbolized as dog-eared
sheets (the so-called masks), while application logic operations (actions) are
symbolized by circles. To specify all possible navigation paths, these elements are
connected by arrows symbolizing dialog events generated by masks or actions
when the user submits a request, or a business operation produces a result. In
the dialog graphs specified this way, masks and actions do not have to alternate
since it is conceivable for a mask to trigger a succession of several server-side
operations, and also conceivable for a mask to link directly to another mask
without the need for any intermediary business operations. The dialog graphs
are encapsulated in dialog modules that can call each other at run-time to
form hierarchically nested dialog structures.

We found that the DFN provides an ideal basis for specifying the data flows
within a web-based user interface: The masks, actions and modules can serve as



data sources and sinks, while the dialog events can be interpreted as constraints
that determine when a data flow is executed. In the following subsections, we
will show how the original DFN was extended to specify different kinds of data
flows. Our aim was to extend the notation in such a way that the data flows are
intuitively readable and conceptually integrated with the DFN semantics, but
do not add unnecessary optical clutter to the diagrams.

2.2 Data Flow Types

Depending on the types of the data sources and sinks, and their proximity within
the topology of the dialog graph, we distinguish several kinds of data flows:

Parallel data flows. The simplest type of data flow is running in parallel with
the dialog flow, i.e. a data flow from the generator of a dialog event to the receiver
of the same event. It is specified in the DFN by adding the label of the data entity
in square brackets to the event’s name (if the data flow shall comprise several
data entities, we separate them with commas). For example, in the login module
in Fig. 1, the name and passwd data entities entered by the user on the login

mask shall only be provided to the check name, passwd action upon generation
of the submit event. At first sight, this data flow may look equivalent to the
request scope, but it is actually more finely grained: While the request scope
always encompasses all intermediate actions up to the next mask, the parallel
data flow is restricted to the current dialog event’s receiver only. Therefore, the
passwd data in the example is only provided to the succeeding action, but not
accessible beyond it (as it would be in the request scope).

login

login

check 

name, 

passwd

submit 

[name, 

passwd]

invalid 

[error]

valid 

[name]check 

login 

status

not yet 

logged 

in

already logged in

mark 

user as 

logged 

in

create account
register 

[name]

 done

done

[name]

 cancelled

c
a

n
c
e

l

S S

[user] [user]

ok

Fig. 1. Login module performing user authentication

Request scopes and parallel data flows also differ in their starting points:
While a request can only be generated by a mask, a dialog event with associated
parallel dialog flow can also be generated by actions or modules. For example,



if the login credential check fails, the error data is provided by the check name,

passwd action to the login mask with the invalid event.
Finally, parallel data flows can be used more flexibly than request scopes since

developers can specify which data is provided with which events: Using only the
request scope, the developer may not be able to prevent that the credentials
entered by the user on the login mask are provided to subsequent elements both
for the submit and (unnecessarily) the cancel event. Using parallel data flows,
however, the developer can specify that the name and passwd data is provided
to the subsequent action with the submit event, just the name data is provided
to the create account module with the register event, but no data is provided
with the cancel event.1

Divergent data flows. As we have just seen, parallel data flows enable devel-
opers to specify which data entities shall be provided to the receivers of which
events. Often, however, the data generated by one element should not be pro-
vided to any of its immediate successors, but rather to some more distant element
in the dialog graph that is responsible for the actual data processing.

create account

address 

form

address 

valida-

tion

submit 

[address]

invalid

[error]

prefer-

ences 

form

valid prefs 

valida-

tion

submit 

[prefs]

invalid 

[error]

passwd 

form

valid passwd 

valida-

tion

submit

[passwd]

invalid 

[error]

create 

accountok

[name]

done

[p
re

fs
][address]

[name]
[user] valid

[passwd]

Fig. 2. Create account module employing a “wizard” navigation pattern for gathering
user input

As an example, consider the “wizard” navigation pattern of the create account

module in Fig. 2: Here, we prompt the user for his address, preferences and
password, validate each of the inputs, and finally create an account from all the
collected data. In order not to burden the various forms and validation actions
with forwarding the data of their predecessors, we would like to provide the data
gathered in each step directly to the final processing action. For the validation

1 Note that these restrictions cannot prevent the respective data from being transmit-
ted across the network in the request, as this would require client-side logic. However,
the data flow controller will ensure that any submitted data is only available to the
specified receivers on the server side.



actions, the outgoing dialog and data flows therefore diverge: For example, if the
address validation action produces a valid event, the dialog flow shall continue
to the next wizard step, i.e. the preferences form, but the address data shall be
provided directly to the create account action, bypassing the other steps of the
wizard. To specify that the data flow diverges from the dialog flow in this case,
we draw a dashed line to the element that the data shall be provided to, and
annotate it with the data entity’s label in square brackets.

Just like a parallel data flow is always tied to a dialog event, a divergent data
flow is also always associated with a particular dialog event and only executed
if that event is traversed. To specify this constraint in the DFN, the data flow
arrow must always begin in the same spot (marked by a black dot) as the event
arrow that it shall be associated with. To maintain consistency with parallel
data flows, which are always implicitly associated with an event, the DFN does
not allow the specification of divergent data flows without an associated event.

Inter-module data flows. Of course, data does not only flow among the dialog
elements within a module, but also between modules. Therefore, when a module
is called, it should be able to accept data provided to it, and when a module
terminates, it should be able to provide data to subsequent dialog elements.
To express this behavior in the DFN, compatible data flows must be specified
both in the exterior dialog graph that a module is embedded in, and in the
interior dialog graph of the module itself: In the exterior dialog graph, modules
can simply serve as sources and sinks of parallel and divergent dialog flows just
like masks and actions. In Fig. 1, for example, the create account sub-module is
provided name data with the incoming register event and provides name data
with its outgoing done event.

To specify which data entities a module can accept and provide, the initial
and terminal anchors of its interior dialog graph serve as data flow interfaces:
Parallel and divergent data flows can originate from the initial anchor (the
black disk marking the starting point of the dialog graph traversal) to specify to
which elements the incoming data shall be provided. Analogously, parallel and
divergent data flows can lead to the module’s terminal anchors (the circled
small black dots marking the end of the dialog graph’s traversal). They specify
which data entities the module will provide to its exterior dialog graph, and who
provides those data entities internally. In the definition of the create account

module in Fig. 2, for example, the incoming name data flows directly from the
initial anchor to the create account action, which will process it later together
with the other data collected by the wizard. The name data will then flow from
the create account action to the done terminal anchor, so it can be provided to
the module’s successor in the exterior dialog graph upon its termination.

Through these incoming and outgoing interfaces, data can be flexibly passed
from several sources outside a module to several sinks inside a module and vice
versa. Developers need to ensure that the data flows specified in the interior and
exterior dialog graphs match, as unmatched entities will otherwise be unavailable
to their sinks.



2.3 Shared Scope Access

Parallel and divergent data flows enable developers to define the propagation
of data entities on a very fine-grained level. However, their specification may
become cumbersome if the same data entities shall be provided to many elements,
as a profusion of explicit data flow arrows would be required. For this reason,
the DFN provides constructs to symbolize data exchange through various shared
scopes.

Module scope. Often, the same data entities should be provided to virtually
all elements within the same module. As we mentioned earlier, storing such data
entities in the session scope is not an optimum solution for this problem since
the developer would be responsible for removing them from the session before
the module is terminated. Instead, it would be preferable if all elements within
a module had a shared scope that is cleared out automatically once the module
terminates. Our Dialog Control Framework (DCF) described in Sect. 3 provides
the module scope for this purpose: It is comparable to the session scope in
that it is associated with the current user, but exists only during the traversal of
the current module. An empty module scope is instantiated whenever a module
is entered, and discarded again once a terminal anchor has been reached.

message details

message 

view

reply

cancelled

accept 

[text] store 

new

post

return

login

reply 

compo-

sition

done markup 

valida-

tion

submit

[text]

reject 

[error]

to thread view

[r
e
p

ly
]

ok

[m
e
ss

a
g
e
]

Fig. 3. Message details module for viewing and replying to messages in a discussion
forum

To specify in the DFN that a data entity should be provided through the
module scope, developers can simply draw a divergent data flow with the re-
spective entity label in square brackets from any dialog event to the module’s
contour. In the message details module in Fig. 3, for example, the incoming
message data is provided to all other elements through the module scope right
away.

Of course, data flows to the contour can also originate from any other source,
indicating that the respective data will be available throughout the module as
soon as the associated event is traversed. Since all data in the module scope



is implicitly available to all dialog elements, no explicit notation construct is
required to indicate that an element accesses data from the module scope. In
the message details module, for example, all masks and actions can access the
original message data in the module scope to display it, quote it in the text of
the reply, and reference it with the new post.

In the DCF implementation, module scopes are stacked to reflect the nested
module call structure: When a module calls a sub-module, a fresh module scope
for the sub-module is pushed onto the stack, rendering the calling module’s scope
temporarily inaccessible. When the sub-module terminates, its module scope is
removed from the stack, and the calling module’s scope becomes available again.

Session, application and cookie scope; storage access. The mechanisms
described so far are helpful in many situations where the data scopes provided
by the application server are too coarse for the data flow requirements at hand.
However, there are obviously also a number of situations where those more gen-
erous scopes are the perfect choice – information about the user’s login status, for
example, should be available throughout the application and is therefore ideally
stored in the session scope. Other data may best be globally provided through
the application or cookie scope, and business objects often need to be stored in
or retrieved from persistence storage by the application logic.

The data flows for these scenarios usually concern only the application (and
possibly persistence) layer, so the dialog control logic that couples the presen-
tation and application layer should not be involved in them. Consequently, the
DCF does not handle data flows through these larger scopes, but lets the busi-
ness logic interact directly with the application server or persistence layer API.
This restriction of responsibilities allows for a clean separation of concerns on
an architectural level, and allows developers to choose whichever scope and per-
sistence framework is suited best to their needs, instead of being bound to the
DCF’s data flow mechanisms throughout the application.

Due to the framework’s limitation to user interface management, the DFN
technically would not need to provide additional constructs related to the larger
scopes. Intuitively, however, developers will expect to be able to specify not only
fine-grained data flows through the user interface, but also data shared through
the more coarse scopes.

The DFN solves this dilemma by providing a compromise – developers cannot
specify the complete application logic’s internal data flows within the dialog
flow, but the DFN enables them to specify where the dialog flow interfaces with
the larger scopes: Data flow arrows leading to or from the letters S, A or C

enclosed by horizontal bars indicate that the respective data entities are stored
in or retrieved from the session, cookie or application scope, respectively. For
example, in Fig. 1, the check login status action retrieves user data from the
session scope, and the mark user as logged in action stores user data in the
session scope. In addition, data flow arrows leading to or from a “can” symbol
indicate that the respective data entity is stored in or retrieved from persistent
storage – for example, the user data constructed by the create account action in



Fig. 2 is sent to the back-end for storage. Note that in contrast to divergent data
flows, the data flows leading to those larger scopes cannot share their starting
point with an event, since the respective data handling operations are beyond
the control of the dialog controller that is only aware of dialog events.

Since the DCF does not provide mechanisms for handling these scopes, the
corresponding notation constructs have only illustrative character – the actual
data handling will have to be implemented manually by the developer. In con-
trast, the module scope and parallel, divergent and inter-module data flows are
executable specifications: The developer only needs to specify the desired behav-
ior, but does not need to implement it since the framework handles the respective
data flows automatically.

2.4 Summary

With the traditional scopes, the module scope and the new finely-grained data
flows, developers now have a full spectrum of data flow mechanisms at their dis-
posal, as Fig. 4 illustrates: While the application and session scopes are suitable
for publishing application-global and user-global data, parallel and divergent
data flows are ideally suited for data propagation between arbitrary dialog ele-
ments. Since multiple parallel and divergent data flows can be associated with
any dialog event, developers can control which data is propagated where under
which conditions very flexibly.

A
p

p
lic

at
io

n
 S

co
p

e

S
es

si
on

 S
co

pe
 (

ot
he

r 
us

er
)

S
es

si
o

n
 S

co
p

e 
(c

u
rr

en
t 

u
se

r)

M
o

d
u

le
 S

ta
ck

login

Module Scope (inactive)

Inter-Module Data Flow

create account

Parallel Data Flow

Divergent Data Flow

Module Scope (active)

create 
account

S S

Request Scope
Page 

Scope

Fig. 4. Scopes and data flows supported by the Dialog Flow Notation and Dialog
Control Framework



The page scope remains an important tool for data exchange between the
components involved in constructing a response (e.g. a JavaServer Page (JSP)
and its tag libraries). The request scope, however, has been rendered virtually
redundant since its visibility is determined by purely technical criteria that only
seldomly map exactly to business requirements for data propagation. This allows
us to retrofit it for conveniently accessing the new data flow mechanisms, as we
will show in the following section.

3 Data Flow Controller

Having introduced the new data flow constructs of the extended Dialog Flow
Notation, we will now show how their semantics are supported by the Dialog
Control Framework (DCF). Revisiting our initial questions from Sect. 2, we first
need to address the technical representation of data entities, and discuss how
the provision of those entities from sources to sinks is interpreted. After this,
we will give a brief overview of the technical implementation of the data flow
control mechanism within the DCF.

3.1 Data Entity Representation and Provision

In the previous sections, we identified data entities only by their label (e.g. “user

data”). In concrete applications, a data entity can be any object – in Java-based
applications, it will typically be an instance of a JavaBean holding various at-
tributes, which is stored in or retrieved from a data scope using its label as a
look-up key. In Java Enterprise Edition-compatible application servers, for exam-
ple, HttpSession instances provide the Object getAttribute(String name)

and void setAttribute(String name, Object value) methods for this pur-
pose. Just like the DFN relies on existing notations to specify the layout of dialog
masks (e.g. visual design sketches or XForms) or the control flow within actions
(e.g. UML activity or state diagrams), it does not provide its own constructs
for the specification of data entities’ internal structure. Instead, we recommend
using existing notations such as entity-relationship or UML class diagrams for
this purpose.

Since we assume that the data entities in our data flows are objects (i.e.
reference types), we have two alternatives for interpreting the flow of data from
a source to a sink: “providing a data entity” could mean

– forwarding the data entity itself from the source to the sink, or
– extending the data entity’s scope so it is not only available to the source,

but also to the sink.

While these alternatives may at first sight look like equivalent implementa-
tion variants, they exhibit different behavior if a source provides the same data
entity to several sinks, as illustrated in Fig. 5. In a situation like this, the first
approach (forwarding the data entity) intuitively implies that both B and C



receive identical copies of d from A, and that any changes B makes to d will not
affect C ’s copy of d. In contrast, the second approach (extending the entity’s
scope) implies that B and C can now both access the same instance of d that
is already known to A, so any changes that B makes to d will also affect the d

available to C. In short, the first approach requires a copy-by-value mechanism,
while the second can be implemented as copy-by-reference.

A B C
e

[d]

f

[d]

Fig. 5. Data flow with different copy-by-value and copy-by-reference behavior

The copy-by-value implementation has the advantage that side effects are
avoided. However, since we are dealing with objects that may have arbitrary
complexity, copying data entities is not trivial. We could simply require that
all data entities are cloneable and thereby put the responsibility on application
developers, however, this is hardly a satisfactory solution for a framework that
strives to make developers’ jobs easier. Furthermore, cloning comes at a high
performance and memory cost (especially since some clones may turn out to be
unnecessary if the respective data sinks happen never to be visited in the user’s
subsequent traversal of the dialog graph), and some data structures may not be
cleanly cloneable with justifiable effort. A restriction to flat copies or primitive
types is not a realistic option either, since it would limit application developers’
design freedom severely.

For these reasons, we prefer a copy-by-reference implementation of data flows.
While it may involve a bit more subtle semantics, its basic concept and the situ-
ations in which side effects may occur are well known to experienced developers.
This approach is much easier to implement for framework and application de-
velopers, and does not cause the performance and memory overhead of cloning.

The above considerations were confirmed by our initial prototype of a data
flow control extension for the DCF: Here, clones of JavaBeans were only flat
copies, so any nested references were not cloned, and the isolation between the
data entities available to the dialog elements was not perfect. We are therefore
currently switching to a data flow controller implementation that copies only ob-
ject references instead of whole instances, and thus realizes the scope extension.

3.2 Data Flow Controller Design

Having determined the operational semantics of data flows, we still need a way
to actually provide the specified data to the respective dialog elements in a
web application. At first sight, an obvious solution would be to equip every
mask and action instance with a look-up table that holds references to all data



entities available to that element. This individual “element scope” could then
be accessed by the application and presentation logic just like the session or
application scope, using setAttribute and getAttribute methods. A data flow
controller would ensure that object references are copied from one element scope
to another according to the data flow specifications.

While this approach seems straightforward, it proves cumbersome in practice
since the element scope itself cannot be easily made available to the presentation
logic: Servlets, JSPs and other web resources provide convenient mechanisms for
accessing the standard scopes (e.g. through the implicit application, session
and request objects of the Java EE Expression Language), but do not provide
as convenient means for accessing custom-built scopes.

In the data flow extension to the DCF, we therefore took a slightly different
approach: The data flow controller still manages look-up tables that contain the
object references available to each dialog element. However, these tables are not
directly accessible to the dialog elements. Rather, we project their contents into
the existing request scope that is already conveniently available to all masks and
actions.

«interface»

HttpServletRequest
HttpServletRequestWrapper

AugmentedRequest

+ getAttribute(String) : Object

+ setAttribute(String, Object) : void

Stack

ModuleStack

«interface»

HttpSession

Module
HashMap

ModuleScope

DialogElement
HashMap

ElementScope

DataFlowController

HashMap

EntityCache

*

1

1

DataFlow

*

*

1

Fig. 6. Data flow control logic of the Dialog Control Framework

As Fig. 6 shows, this can be achieved by wrapping the original HTTP request
into a wrapper object (here, AugmentedRequest) that looks and behaves just like
an HTTP request, since it passes most method calls directly to their counterparts
in the original HttpServletRequest. The only exceptions are the setAttribute
and getAttribute methods that are normally used to access the request scope,
but now rerouted to the DataFlowController. This central controller has (via
the current Module on top of the ModuleStack) access to the data flow model (a
graph of DialogElements linked with DataFlow edges), the current ModuleScope
and the current element’s ElementScope (two HashMaps containing the object
references associated with the data entity labels).



Whenever a mask or action calls the request’s getAttribute method with
some data entity label, the DataFlowController looks up the respective object
reference in the current ModuleScope and ElementScope (the element scope
takes precedence over the module scope in case both contain a reference with
the same label), and returns the found reference.

Populating the look-up tables requires slightly more effort: Whenever a dia-
log element calls the request’s setAttribute method, the DataFlowController
stores the respective data entity in the current element’s scope. It also looks
up any departing data flow edges in the module’s data flow model and caches
the entity’s object reference if it is associated with any outgoing event. Once an
event is generated by the current dialog element, the associated data references
from the EntityCache are stored in the element scopes of the respective data
flow receivers, and the cache is cleared.2 This way, the data flow controller en-
sures that every element can access through the request context all data entities
available to it according to the specification.

Besides giving the presentation and application logic convenient access the
element and module scopes, projecting the element scope into the request scope
has the additional benefit that the mechanism is transparent to other web ap-
plication frameworks: In our prototype implementation, we integrated the DCF
with JavaServer Faces (JSF) to make use of its UI component model and valida-
tion logic. Since JSF pages exchange data through the request scope, they can
work with the new module scope and data flows seamlessly.

4 Related Work

Many modeling languages for web-based applications have traditionally had a
strong focus on data-intensive web applications [3], allowing developers to spec-
ify how users navigate through complex data schemas. More recently, a number
of languages such as OOHDM [4], OO-H and UWE [5], and WebML [6] have also
incorporated aspects of business process modeling, thereby narrowing the gap
between process and navigation specifications that developers need to bridge.
The data focus of these modeling languages is reflected in the variety of con-
structs they provide for specifying relations between and manipulations of data
entities, most of which reside in the back-end of a web application.

However, apart from the transport links in WebML, which have similar se-
mantics as our divergent data flows, the above modeling languages do not seem
to provide explicit notation constructs for the fine-grained specification of inter-
element data scopes and provision: The navigational model and process flow
model in UWE, for example, specify how to navigate across and manipulate a
data space provided by the back-end, but does not show which data instances

2 The actual data flow controller is a bit more complex than the diagram and this brief
description suggest – among other things, it also moves incoming request parameters
into request attributes, and ensures that data references are also copied to other
scopes if they have not been set by calls to setAttribute, but received through
data flows from other elements.



are provided from one interface component to another. In OO-H, activity and
navigation access diagrams enable developers to specify which navigation nodes
will invoke which data-manipulation methods on data objects, but any scoping
of these instances is not explicitly modeled.

The extension to the Dialog Flow Notation we introduced here focuses on
the fine-grained specification of data scopes and data provisioning (i.e. which
data instances are made available to which dialog elements). These data flow
specifications do not have to be implemented manually, but are automatically
enforced by the Dialog Control Framework at run-time.

In contrast to the above notations, the DFN does not provide constructs
for specifying how the data that is provided to the various dialog elements is
manipulated. This is in keeping with our philosophy that the dialog flow is what
distinguishes web applications most from traditional applications – we therefore
focus the DFN on the typical and unique challenges of navigation and data flow
in web applications, and encourage developers to use other established notations
for modeling those aspects that go beyond this layer (e.g. by using activity or
state diagrams to specify how data entities are manipulated in actions).

Regarding run-time support for complex dialog flows, popular web applica-
tion frameworks have recently also adopted the notion of encapsulating dialog
sequences in so-called “flows” (in Spring Web Flow [7]) or “conversations” (in
the Shale Framework [8]), which have associated data scopes. However, these
frameworks do not provide mechanisms for the realization of parallel or diver-
gent data flows, and are lacking a corresponding notation that would provide
executable specifications for such data flows.

5 Conclusion

In this paper, we presented a data flow extension to the Dialog Flow Notation
(DFN) that enables web application developers to specify data flows between
arbitrary elements in a dialog graph, as well as between nested dialog modules.
Since all data flows are associated with events whose traversal is the condition
for data propagation, and the receiver of a data flow may be different from
the receiver of the associated dialog event, developers can build on the existing
DFN semantics to specify fine-grained conditional data propagation within a
web application’s user interface. A new module-wide data scope complements
the existing coarse scopes provided by common application servers.

To relieve developers of the tedious and error-prone effort of manually im-
plementing secure and correct data flows throughout a web-based user interface,
the data flow specifications created with this notation are executable: Using a
graphical editor, they can be transformed into machine-readable specifications
that are interpreted by our Dialog Control Framework (DCF), which manages
the dialog and data flow automatically. At run-time, the framework ensures that
data entities are always provided to their specified receivers, and that dialog
elements can only access those data entities that they are entitled to. Since the
new data flow mechanisms are transparently added to the existing request scope,



other web application frameworks relying on this scope can also benefit from the
specified data flows.

Our work aims to support the development process for web-based applica-
tions in both the design and the development phase: We expect it to be easier
for designers to communicate with clients and other non-technical stakeholders
in the software development process, since data flow information that was pre-
viously contained only in business process models can now be mapped to dialog
flow diagrams, thereby providing a smoother transition from requirements to
implementation. Given the specifications created in this way, we are confident
that developers can reduce implementation, testing and maintenance efforts since
they do not need to be concerned with the actual data flow implementation.

A prototype version of the enhanced Dialog Control Framework has already
demonstrated that the described concepts are technically feasible. In our ongo-
ing work, a first application for the data flow mechanism will be the DiaGen
extension to the DCF, which automatically breaks dialog masks into wizard-
style interaction sequences at run-time to cater to different device capabilities
[9] – the use of divergent data flows will greatly simplify the auto-generated data
propagation code in this context. Apart from this, we are striving to test our
hypotheses regarding the positive impact on the software development process
in real-life projects. We are also considering further refinements of the data flow
notation to provide interfaces to other modeling languages for the specification
of the application logic’s internal data handling. Another major upcoming re-
search effort based on the data flow engine will be the development of algorithms
for recognizing and handling backtracking, cloned browser windows and other
unexpected user activities in web applications.

References

1. Gaedke, M., Beigl, M., Gellersen, H., Segor, C.: Web content delivery to heteroge-
neous mobile platforms. Advances in Database Technologies, LNCS 1552 (1998)

2. Book, M., Gruhn, V.: Modeling web-based dialog flows for automatic dialog control.
In: 19th IEEE International Conference on Automated Software Engineering (ASE
2004), IEEE Computer Society Press (2004) 100–109

3. Fraternali, P.: Tools and approaches for developing data-intensive web applications:
A survey. ACM Computing Surveys 31(3) (Sep 1999) 227–263

4. Rossi, G., Schmid, H., Lyardet, F.: Engineering business processes in web applica-
tions: Modeling and navigation issues. In: Third International Workshop on Web-
Oriented Sfotware Technology. (2006) 81–89

5. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in
web application models. Journal of Web Engineering 3(1) (2004) 22–49

6. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web
applications. ACM Transactions on Software Engineering and Methodology 15(4)
(Oct 2006) 360–409

7. Vervaet, E., et al.: Spring web flow. http://www.springframework.org/go-webflow
8. Apache Software Foundation: Shale framework. http://shale.apache.org
9. Book, M., Gruhn, V., Lehmann, M.: Automatic dialog mask generation for device-

independent web applications. In: Proceedings of the 6th International Conference
on Web Engineering (ICWE 2006), ACM Press (2006) 209–216


