
An Instant Message-Driven User Interface Framework
for Thin Client Applications

Matthias Book, Volker Gruhn, Gerald Mücke
Deutsche Telekom Chair of Applied Telematics / e-Business, University of Leipzig

Klostergasse 3, 04109 Leipzig, Germany; Tel. +49-341-97-32337, Fax +49-341-97-32339
{book, gruhn}@ebus.informatik.uni-leipzig.de, gerald@xuhia.org

Abstract

Today, thin client applications often rely on the in-
frastructure of the WWW to deliver their user interfaces
(UIs) to clients. While this approach does not require the
deployment of application logic on the client, web-based
UIs typically do not provide the same level of usability as
window-based UIs. We therefore present a UI framework
that combines the flexibility of a thin presentation logic with
the usability of a full-featured UI: Our approach uses an
XMPP-based instant messaging infrastructure to exchange
XUL interface descriptions and events between the applica-
tion logic on the server and a generic UI rendering engine
on the client.

1. Introduction

Many information systems are implemented as thin
client applications today for reasons such as reduced in-
frastructure cost, reduced deployment and maintenance ef-
fort, and increased user flexibility. Often, these thin client
applications take the form of web-based applications whose
hypertext user interface (UI) can be easily rendered by web
browsers, while all application logic remains on a central
server [1].

However, for complex applications, web-based UIs typ-
ically cannot offer the same level of usability that window-
based applications do, since they do not provide intrinsic
support for complex widgets (e.g. tree views, type-ahead
combo boxes etc.) or interaction patterns (e.g. direct manip-
ulation of objects, multiple window panes, context menus
etc.) [8]. While some of these constructs can be simu-
lated in HTML, they are not natively supported by web
browsers and thus require additional presentation logic (e.g.
JavaScript embedded in web pages) or may work in unusual
ways (e.g. using single instead of double mouse clicks).
This increases the development effort unnecessarily while

leaving users with an unsatisfactory user experience.
Besides the limitations of HTML, the underlying

request-response communication pattern imposed by HTTP
restricts web-based UIs further, since any interaction must
be initiated by the user – the server cannot update the UI
on its own by “pushing” data to the client [12]. Recently, a
combination of web technologies collectively termed Ajax
(Asynchronous JavaScript and XML) [2] is being touted
as the solution to these problems. The approach uses
JavaScript to manipulate one web page’s Document Ob-
ject Model (DOM) at run-time according to XML-based up-
date instructions requested from the server. However, while
Ajax provides a smoother user experience, largely due to
the elimination of page jumps, it still relies on the same web
technologies and therefore requires quite a bit of implemen-
tation and communication overhead in order to simulate a
more sophisticated user interface.

While the implementation overhead may be ameliorated
through the use of suitable frameworks, the communication
overhead can be a critical factor when the thin client appli-
cation shall be used on mobile networks, which are often
characterized by low bandwith and high transmission costs.

In order to retain the usability of window-based appli-
cations without giving up the flexibility of a thin client ar-
chitecture, we present a user interface framework that com-
bines their benefits in this paper. Our framework enables
developers to build thin client applications with window-
based UIs, where clients communicate with the server using
an instant messaging (IM) protocol. By exchanging user
interface descriptions and events over public IM networks,
clients and servers can communicate very flexibly, and the
use of a powerful user interface description language al-
lows developers to let sophisticated GUIs be rendered on
the clients without the high implementation effort required
for reconstructing such GUIs in a web browser.

In the following sections, we introduce the infrastructure
and features of our IM framework, give an overview of the
related work and conclude with an outlook on further re-
search opportunities.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226136284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Instant Messaging Infrastructure

For highly interactive thin client UIs, a more flexible
communication scheme than HTTP’s one-sided, synchro-
nous pull mechanism would be desirable. Ideally, both the
client and the server should be able to transmit data any-
time on their own initiative (i.e. push messages), and with-
out having to wait for a response (i.e. asynchronously).
These messages should require low bandwidth in order to
save costs on mobile networks, and be delivered quickly in
order to avoid the sluggish response often experienced in
web-based applications. Existing IM protocols such as the
Extensible Messaging and Presence Protocol (XMPP) [10]
fulfill these requirements: Typically employed for chat net-
works, they are tailored to the asynchronous, nearly instan-
taneous transmission of small messages between peers, and
thus provide an ideal medium for communicating UI events
(i.e. user gestures and interface reactions) between a thin
client and its application server.

In order to keep the client as thin as possible, we do not
want to deploy any application-specific code on the client,
but only require the presence of an IM client for handling
communications, and a generic GUI engine for rendering
the interface. Much like a web browser interpreting and
rendering HTML code, this GUI engine interprets and ren-
ders a window-based interface described in the XML User
Interface Language (XUL) [6] or a comparable format.

Figure 1 gives a coarse overview of this instant messag-
ing infrastructure for thin client applications: The mobile or
stationary client devices are running an IM client that shows
the typical “buddy list” of other users on the IM network.
In addition to showing online users, however, it also shows
the applications that are currently accessible via the IM net-
work. When the user selects an application from the list,
the GUI engine will download and render the respective UI
description markup. While the user works with the applica-
tion, all client-server interactions are transmitted as instant
messages to the application server, which is connected to
the central IM server just like any other peer. Since both
thin clients and application servers are equal peers on the
IM network, they can communicate freely over the IM in-
frastructure and use its special features, e.g. peers’ presence
information, as described in the following section.

3. Framework Features

To support the development of applications that can be
accessed by IM-based thin clients, we developed a frame-
work that encapsulates the technical aspects of the IM-
based communication and provides high-level services like
session management to the application. Our framework im-
plementation is independent of a concrete user interface de-
scription language and IM transport protocol, but develop-

Figure 1. IM-based thin client infrastructure

ers will typically want to use the popular XUL language and
the standardized XMPP transport protocol when developing
applications.

In order to reduce bandwidth usage, the framework
transmits the complete UI description (i.e. the specifica-
tion of all windows and their widgets) to each client only
once. Since the UI structure typically remains static over
time, the client can cache and re-use this description the
next time the user works with the same application, without
having to receive it again. After the UI description has been
transmitted, the GUI engine can render the interface and
let the user work with the application. From now on, only
user and application events need to be transmitted over the
IM network. Each event is encapsulated in a single instant
message that contains all required parameters (e.g. type of
the user gesture, entered or selected data, etc.), and is sent
to the application server through the IM network. If neces-
sary, the application server may then react by sending back
an instant message that contains instructions for updating
the view rendered on the client. The application server may
also send such an event on his own initiative (e.g. triggered
by the expiry of a timer, the completion of a time-intensive
transaction, the fulfilment of a certain condition etc.) to
modify the UI without previous user interaction. Based on
instructions for modifying the DOM of the UI description,
the GUI engine can then display or hide certain windows,
enable or gray out certain widgets, fill content areas with
application data etc.



In contrast to web-based applications, an IM-based thin
client infrastructure offers a number of special characteris-
tics that application developers can benefit from:

• Single Sign On: A major advantage of IM-based vs.
web-based thin client infrastructures is that all users
must authenticate themselves to the IM server in order
to use the IM network. Consequently, IM-based appli-
cations do not need to implement their own authenti-
cation mechanisms, but can rely on the IM server to
take care of checking the users’ credentials. This is
also convenient for users, since they need to provide
their credentials only once to the IM server as the sin-
gle sign-on point, and can then access all applications
without having to enter their credentials again.

• Session Management: Since all users on the network
must log in to the IM server, there are no anonymous
messages – each instant message is unambiguously as-
sociated with a certain sender and receiver. Therefore,
IM-based applications do not have to implement the
cumbersome session identification and expiry mech-
anisms known from web-based applications, but can
simply associate all data with users by their name.
In addition, our framework contains additional session
management logic to distinguish “sub-sessions” that
are spawned when the same user simultaneously works
with several instances of the same application, i.e.
when he has openend several windows of the same ap-
plication (a situation that is virtually impossible to de-
tect or handle in web-based applications, where users
may clone browser windows).
Our framework can also handle persistent sessions:
Since the user’s application data and UI state are main-
tained on the server, users can close the thin client win-
dow and open it again at a later time in order to resume
working where they left off. This way, users can sus-
pend work with the thin client application (both volun-
tarily and involuntarily, e.g. due to a network outage)
without loss of data.

• Presence Information: An additional feature that is
unique to IM networks is the use of so-called presence
information (PI) to convey status information about
clients and applications. In peer-to-peer chat applica-
tions, the PI typically conveys user information such as
“online”, “offline”, “away”, “do not disturb” etc., but
can also be used for application-specific status infor-
mation: Using the PI mechanism, application servers
can publish information about their program version
or server load. Transparently for the users, the client
can then update its UI description if an application’s PI
indicates that a new version has been deployed. Or, if
multiple instances of the same application are available

Figure 2. Framework architecture

on the IM network, clients can connect to the applica-
tion instance that publishes the lowest server load in its
PI. In combination with positioning systems like GPS,
clients could publish their current geographical coordi-
nates in the PI to enable applications to provide them
with location-based content and services [7].

Our framework comprises a set of components that im-
plement the client-server communication and serve as an
interface between the IM transport protocol and the appli-
cation or client logic, as shown in Fig. 2. The framework is
connected to the transport layer using a suitable third-party
transport API, such as the open-source Smack API for the
XMPP protocol [3]. Since our framework only serves as
a middleware for the presentation logic, it does not require
exclusive access to the transport API. Rather, if the appli-
cation or client need to communicate other domain-specific
data over the IM network (e.g. chat messages), they can
access the transport API directly to do this, without hav-
ing to go through our framework. In order to allow thin
clients’ UIs to remain responsive while data is exchanged
with the application server, all messages are prioritized ac-
cording to their type (e.g. UI updates vs. PI information) by
the dispatcher/scheduler and processed asynchronously by
the packet handler. While the packet processing component
is the same for clients and application servers, the frontend
works differently depending on whether the framework is
deployed in a client or application server context. On the



client side, it serves as an API for the GUI rendering en-
gine, while on the application side, it serves as an API for
the application logic.

4. Related Work

Providing a complex GUI on a thin client has been a
challenge for many years. Among the first proposed solu-
tions was the X Window System [11], a network-transparent
window manager following the client-server paradigm. In
comparison to our approach, the X protocol offers more
graphical flexibility since it works on a lower level, how-
ever, the low-level implementation also requires more con-
stant and high-bandwidth network connectivity than our
framework does, where the user can perform basic inter-
actions with the user interface (e.g. sizing windows, filling
form fields) without having to communicate with the server.

Originally derived from the X Window System, Virtual
Network Computing (VNC) [9] is another approach that
works on the frame buffer level to transmit any graphical in-
terface to a graphics-enabled client and communicate key-
strokes and mouse gestures back to the server. However,
even though the VNC protocol implements a number of
compression algorithms, the transmission of pure pixel data
is quite data-intensive, so a high-bandwidth connection is
necessary for fluent work.

The Remote Java Foundation Classes (RJFC) approach
[4] is an extension to the existing JFC model, where all
communication between the interface and application logic
is performed by Remote Method Invocation (RMI), which
keeps the bandwidth requirements low. However, the UI
cannot be adapted as flexibly to different client devices’
capabilities as with the user interface description language
employed in our approach, and firewalls typically preclude
RMI communication over wide-area networks.

In the area of web-based solutions, the Ajax approach al-
ready mentioned in the introduction [2] and Macromedia’s
Flex framework [5] both strive to enhance the user expe-
rience beyond simple page-to-page navigation. However,
both approaches rely on HTTP as the underlying protocol
and thus are also limited to its request-response communi-
cation scheme, which does not allow the server to initiate
interactions on its own.

5. Conclusion

In this paper, we presented a framework for developing
thin client applications using a public IM infrastructure to
transmit UI descriptions and events between the server-side
application logic and a generic client-side GUI rendering
engine. We propose that this approach can reduce the de-
velopment effort for window-based thin client applications

since it does not require simulating complex GUI features in
HTML or deploying presentation logic on the client, and of-
fers additional features such as inherent single-sign on, sub-
session management and presence information that would
otherwise have to be implemented manually.

Our initial performance tests on a public IM network
yielded response times between 160 and 175 ms, which
were considered noticable, but not disturbing by testers. In
our ongoing work, we are striving to perform more formal
response time tests in various network environments, and
gain more insights into the impact of the framework on the
software development process. From these factors, we can
then deduce the suitability of our instant message-driven
user interface framework for developing thin client appli-
cations with complex window-based user interfaces.

References

[1] M. Gaedke, M. Beigl, H.-W. Gellersen, and C. Segor. Web
content delivery to heterogeneous mobile platforms. In ER
Workshops, pages 205–217, 1998.

[2] J. Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/publications/essays/archives/
000385.php, Feb 2005.

[3] Jive Software. Smack API.
http://www.jivesoftware.org/smack

[4] S. Lok, S. Feiner, W. Chiong, and Y. Hirsch. A graphical
user interface toolkit approach to thin-client computing. In
Proceedings of the 11th Intl Conf on the World Wide Web
(WWW 2002), pages 718–725. ACM Press, 2002.

[5] Macromedia Inc. Macromedia Flex: The presentation tier
solution for delivering enterprise rich internet applications.
http://www.macromedia.com/software/flex/whitepapers/
pdf/flex15 tech wp.pdf, 2004.

[6] Mozilla.org. XUL.
http://developer.mozilla.org/en/docs/XUL

[7] A. J. H. Peddemors, M. M. Lankhorst, and J. de Heer. Pres-
ence, location, and instant messaging in a context-aware
application framework. In MDM ’03: Proceedings of the
4th International Conference on Mobile Data Management,
pages 325–330. Springer-Verlag, 2003.

[8] J. Rice, A. Farquhar, P. Piernot, and T. Gruber. Using the
web instead of a window system. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI
‘96), pages 103–110, 1996.

[9] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
2(1):33–38, 1999.

[10] P. Saint-Andre. Extensible messaging and presence proto-
col (XMPP): Core. http://www.ietf.org/rfc/rfc3920.txt, Oct.
2004.

[11] X.Org Foundation. X window system. http://www.x.org.
[12] W. Zhao, D. Kearney, and G. Gioiosa. Architectures for

web based applications. In 4th Australasian Workshop on
Software and Systems Architectures (AWSA 2002), 2002.


