
Automatic Dialog Mask Generation
for Device-Independent Web Applications

Matthias Book, Volker Gruhn, Matthias Lehmann
Chair of Applied Telematics/e-Business, Dept. of Computer Science, University of Leipzig

∗

Klostergasse 3, 04109 Leipzig, Germany

{book, gruhn}@ebus.informatik.uni-leipzig.de, matlehmann@web.de

ABSTRACT
When building web applications for use on different devices,
developers need to deal with a wide range of input/output
capabilities that affect how users interact with the applica-
tion: A dialog that can be completed in one step on a desk-
top client may have to be broken up into a number of steps
on a small-screen mobile device. Since it is time-consuming
to define all the possible dialog masks and dialog flow vari-
ants for different channels manually, it would be desirable
to automate the adaptation of dialog masks and flows.

To address this need, we introduce the DiaDef language
for the abstract, device-independent definition of the wid-
gets in a dialog, and the DiaGen framework that automat-
ically breaks this abstract dialog definition down into suffi-
ciently small dialog masks for the users’ mobile devices and
incorporates them into suitable micro dialog flows that are
generated at run-time in order to be handled by our Dialog
Control Framework.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and tech-
niques—user interfaces; H.5.4 [Information Interfaces
and Presentation (e.g., HCI)]: Hypertext/ Hyperme-
dia—navigation

General Terms
Design, Human Factors, Languages

Keywords
Device Independence, Dialog Control

1. INTRODUCTION
The increasing capabilities of mobile devices and the wid-

ening coverage of cellular and wireless networks allow users
to access web applications not only from their desktop PC,
but also from PDAs, mobile phones and similar devices to-
day. While their input/output capabilities are maturing in
technical characteristics such as display resolution and color

∗The Chair of Applied Telematics/e-Business at the Univer-
sity of Leipzig is endowed by Deutsche Telekom AG.

Copyright is held by the author/owner(s).
ICWE’06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

depth, or interface features such as auto-completion and
character recognition, their display size remains (and will
remain) small in order to remain portable.

The wide-ranging differences in display resolution pro-
vided by the mobile and stationary devices that can be used
to access web applications impact the way users interact
with those applications. Studies have shown that applica-
tions’ usability suffers when the data presented or requested
on a small screen is too complex [11, 17]. Consequently,
complex forms that can be displayed on one page on a desk-
top browser should be broken up into several simpler pages
on a mobile device. Users can then fill them in one after an-
other in order to accomplish the same result, as illustrated
in Fig. 1 using the example of a dialog that prompts the
user for his address.

In [4], we already presented the Dialog Flow Notation
(DFN) that can be used to specify such device-specific dialog
flows, and the Dialog Control Framework (DCF) that decou-
ples device-specific presentation layers from the device-inde-
pendent application logic layer by controlling the web appli-
cation’s dialog flow according to the DFN specifications. To
build a web application using this approach, developers had
to implement device-independent action classes that con-
tain the application logic, device-specific dialog masks (web
pages) that contain the user interface, and a dialog flow
specification indicating how the user interface and applica-
tion logic interact.

Even though the DCF enables reuse of the application
logic across all channels, developers still need to consider
the capabilities of all devices that users may possibly use to
access the application, and implement a number of different
presentation channels for different screen sizes. This entails
examining each large-screen dialog mask individually, decid-

Application

Server

Mobile

Client

Desktop

Client

A
d

d
re

s
s

F
o

rm

A
d

d
re

ss
D

a
ta

N
a

m
e

D
a

t a

N
a

m
e

F
o
rm

S
tre

e
t

F
o

r m S
tr

e
e
t

D
a

ta C
ity

F
o

rm C
it
y

D
a

t a

C
o

u
n
try

F
o

r m C
o

u
n
tr

y
D

a
t a

Figure 1: Dialog sequences on different devices.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226136278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ing if and where it may have to be broken up for small-screen
devices, implementing the respective mask fragments, and
specifying the dialog flow variants connecting those frag-
ments. This manual implementation of the user interface
for different devices (known as multiple-authoring with au-
tomated content selection [18]) consumes a lot of effort in
the development process for multi-channel web applications.

In this paper, we therefore present a single-authoring ap-
proach with automated content adaptation in the form of
dialog decomposition (pagination) and markup transforma-
tion. It comprises a language for the device-independent
specification of dialog masks and a framework for the auto-
matic generation of device-specific dialog masks and dialog
flows at run-time. These extensions to the DFN and DCF
allow developers to focus their efforts on implementing the
application logic and specifying the user interface, without
having to deal with their adaptation to a broad spectrum
of devices. In the following sections, we will first present
the dialog definition language DiaDef (Sect. 2) and then in-
troduce the dialog generation framework DiaGen (Sect. 3),
showing how it identifies the individual devices employed by
users, breaks up the abstract dialog specification into suit-
able device-specific masks, creates the micro dialog graph
connecting them, generates the concrete markup for a par-
ticular device and validates the incoming user input. After-
wards, we compare a plain DCF- and a DiaGen-based imple-
mentation of a small example dialog (Sect. 4) to evaluate the
development effort and performance of the two approaches.
We conclude with a comparison of DiaGen to related work
in the field (Sect. 5) and an overview of further research
opportunities (Sect. 6).

2. DIALOG DEFINITION LANGUAGE
Since different device capabilities require not only super-

ficial layout changes, but also adapted dialog flows, as Fig.
1 shows, approaches that rely on transcoding the markup of
an existing channel are not always sufficient. We therefore
base our approach on an abstract dialog definition language
that specifies only the functional and semantic properties of
a dialog, but not its presentation [23]. At the time of genera-
tion of actual dialog masks, external parameters such as the
device’s display resolution and the application context de-
termine how the dialog’s abstract properties are presented,
i.e. which widgets are used to implement certain functional
properties, how widgets are laid out and paginated to con-
vey semantic properties, and how constraints of the user’s
input are checked and enforced.

2.1 DiaDef Document Structure
While the abstract dialog definitions are specified by hu-

man developers, they must be processed by a framework and
therefore be expressed in a format that is accessible to both.
Thus, an XML-based language is the natural choice. After
examining a number of languages (see Sect. 5), we chose
XForms [9] as the basis of our DiaDef language since it pro-
vides language constructs for the realization of most of the
above requirements already. DiaDef uses only a subset of
the XForms standard (most notably ignoring all constructs
dealing with client-server data exchange, such as most at-
tributes of the submission element, since this is handled
by the Dialog Control Framework), but also extends it with
some specific constructs.

Each DiaDef document specifies the contents of one dialog

in a web application, where we define a “dialog” as a col-
lection of widgets that should all be displayed on the same
hypertext page if a sufficiently large display is available (typ-
ically, one DiaDef document will correspond to one HTML
page displayed on a desktop terminal, which may have to
be broken up for smaller devices). The language does not
allow the definition of hard, mandatory “page breaks” be-
tween widgets since this would introduce a dialog flow aspect
into the specification – however, dialog flow specification is
the sole responsibility of the Dialog Flow Notation [4], while
DiaDef is solely concerned with the contents of dialog masks
within that flow.

Since DiaDef documents can contain most language con-
structs of the XForms standard, we will only describe the
DiaDef-specific extensions here. A DiaDef document always
consists of two sections: A data section (in the dd:data

element) that specifies the data model and functional prop-
erties of the data that the user is prompted for in this dialog,
and an interface section (in the dd:interface element) that
contains the abstract widget specifications.

The properties of the dialog’s data model are expressed in
terms of the model element and its children from the XForms
Core module, i.e. an instance element containing model
items, and bind elements associating properties such as con-
straints with those items. Besides the usual XForms Model
Item properties, DiaDef also introduces the dd:priority

attribute which can be used to assign a numerical priority
value to any model item. The respective widget will then
only be included in a generated page if the device requesting
the page has been assigned a higher priority threshold in its
profile (see Sect. 3.1). Developers could use this construct
to assign optional fields a lesser priority, so they will not
consume space on small screens.

The interface section contains the abstract specification
of the widgets associated with the data model items, which
are expressed using elements of the XForms Form Model
module such as input, select1 etc. The nestable group

element of the XForms Group module can be used to spec-
ify semantic relatedness of widgets. If a dialog has to be
broken up onto multiple pages, the DiaGen framework will
attempt to keep grouped elements on the same page (the
joint presentation can also be enforced by setting the group

element’s new dd:dividable attribute to false). Usually,
the DiaGen framework will place the widgets on the hyper-
text page(s) in the order they are given in. However, in
order to relax this restriction, developers may set the group

element’s new dd:ordered attribute to false to allow the
framework to change the order of widgets, if that leads to

Create Account

Show

Terms

accept create

account

ok

cancel

done

cancel

Register

cancel

done

Figure 2: Macro dialog graph of Create Account

module with abstract Register dialog, as specified
by the developer.



5
. lo

o
k
u
p

1
5

. lo
o

k
u
p

Client

Device

Dialog

Controller

Mask

Servlet

4.

Event

6.

dispatch

14. ok Ev.

19. extract

Web App Dialog Flow M odel

Channel

Servlet

1.

Request

20. generate markup and send resp onse

Module

Stack

Channel

Dispatcher

Servlet

3.

forward

DiaDef

Document

Device

Profile

Dialog Model

Builder

7.

invoke

8
. p

a
rs

e

Dialog Model

22. lookup

2
1
.
d
isp

a
tc

h

2
5

. d
is

p
a

tc
h

2
6

.

u
p

d
a

te

DiaGen

Action

pre

Action

validate

Action

17
. f

or
w

a
rd

23
. u

pd
at

e

DiaGen

Module

16. push
m

odule

Dialog

Flow

Spec

initial

import

1
8

. lo
o

k
u
p

1
3

. a
d

d
 m

o
d

u
le

1
0

. lo
o

k
u
p

2
7

.
o

k
 E

v
e

n
t

2
4
.
o
k/e

rro
r

E
ve

n
t

2
. 

id
e

n
ti
fy

12
. c

re
at

e

9
. c

re
a

te

1
1

. c
re

a
te

Instance Data

Figure 3: Architecture of the combined Dialog Control (white) and Dialog Generation (gray) frameworks.

a more space-efficient layout. Using the dd:render-hint

element, developers can provide further information to the
framework on how large certain fields should be rendered.
In order to realize dynamic lists of widgets, the elements of
the XForms Repeat module can be used as usual.

Since DiaDef documents are essentially XForms documents
with a few extensions, we refrain from presenting a source
code example here for the sake of brevity. We will however
discuss the required implementation effort in Sect. 4.1.

2.2 Integration with the DFN
The integration of an abstract dialog specification such

as the above with the DFN is quite straightforward: In the
DFN’s dialog graph diagrams, abstract dialogs are symbol-
ized as sheets with a black dog ear (as opposed to concrete
dialog masks, which are distinguished by a white dog ear)
to convey their similarity to concrete masks: Abstract di-
alogs can be used in dialog graphs exactly the same way as
concrete masks, as illustrated in Fig. 2. In this example of
a Create Account module, Show Terms is a concrete mask
that will be displayed on all devices as one hypertext page1,
while Register is an abstract dialog that may be broken up
into several dialog masks on some devices. Independently of
the number of masks that it may be broken into, the Register
dialog will ultimately generate either a done or cancel event
that determines if the account will actually be created.

When the DCF encounters an abstract dialog at run-time,
the DiaGen framework will parse the respective DiaDef doc-
ument and generate the necessary concrete masks and micro
dialog graphs connecting them automatically, as described
in the following section. We call the dialog graphs that are
auto-generated by DiaGen to connect concrete dialog masks

1
The original DFN and DCF already allow the specification

of several device-dependent implementations for such concrete
pages, however no multi-page implementations.

micro dialog graphs in order to distinguish them from the
manually specified macro dialog graphs that the developer
embedded the abstract dialog in.

3. DIALOG GENERATION FRAMEWORK
The Dialog Generation Framework (DiaGen) is an exten-

sion of the Dialog Control Framework (DCF) [4]. It becomes
active when an abstract dialog is encountered in a user’s
traversal of the web application’s dialog flow. Fig. 3 shows
the complete architecture of the combined frameworks, with
the DiaGen components shaded gray. In the following sec-
tions, we will use this figure to describe several aspects of
the framework in detail – the identification of the device
requesting a mask (Sect. 3.1), the generation of a suitable
micro dialog graph (Sect. 3.2) and its traversal, which in-
cludes generating concrete dialog masks and validating the
user input according to the DiaDef specification (Sect. 3.3).

3.1 Device Identification
In order to handle requests coming in from various client

devices suitably, we first need to classify the device that sent
a request. The channel dispatcher servlet that receives each
incoming request (step 1 in Fig. 3) uses the Delivery Con-
text Library (DELI) [5] to retrieve information about the
client’s capabilities. For mobile devices, this can be achieved
by evaluating User Agent Profile (UAProf) information [19]
that is provided by the device in terms of the Compos-
ite Capability Preferences Profile (CC/PP) standard [15]
and describes device properties such as display resolution,
color depth, supported markup languages etc. If no UAProf
information is provided by a client device, DELI can use
the browser identification string transmitted in the HTTP
header to try to match the client to a device profile already
stored on the server (step 2). Using the property informa-
tion, the device is then classified as belonging to one of the



presentation channels supported by the web application (e.g.
rich HTML for desktop devices, light HTML for PDAs and
WML for mobile phones).

The request is then forwarded to the appropriate channel
servlet (3) that parses the parameters found in the HTTP
request2 and generates a device-independent dialog event
carrying these parameters, which is sent to the dialog con-
troller (4). The dialog controller looks the event up in the
application’s dialog flow model (5) that was initially built
from the dialog flow specification and takes appropriate ac-
tion, e.g. dispatching the event to an action, forwarding the
request to a mask, nesting or terminating dialog modules,
etc.

3.2 Micro Dialog Graph Generation
If the dialog flow model indicates that an event leads to

an abstract dialog, the DCF dispatches the event to the
DiaGen framework via the DiaGen action (step 6 in Fig.
3). This special action first invokes the dialog model builder
(step 7), which is responsible for transforming the abstract
dialog specification into concrete dialog elements that are
suitable for the channel that the request came in on. For
this purpose, the dialog model builder first parses the Dia-
Def document for this particular abstract dialog (8) and cre-
ates an instance data model (9), which will be used to store
the information that the user enters in the concrete dialog
masks temporarily while the whole dialog sequence is not
yet completed.

Next, the dialog model builder looks up the display prop-
erties of the current channel in the device profile identified
earlier by the channel dispatcher (10). This information is
used to create the dialog model (11), an object hierarchy that
contains instances representing all concrete dialog masks in
the micro dialog graph, as well as the widgets placed on
them. The dialog model is built by reading widget speci-
fications from the DiaDef document, choosing appropriate
widget implementations for the current channel and adding
them to a page while estimating how much screen space
they will occupy. DiaGen’s current layouter implementa-
tions only make a quite coarse estimate based on the number
of characters in a widget, which obviously still bears poten-
tial for optimization. When a page is “full” according to
the device properties and the cumulative estimated widget
size, a new page is added to the model and further widgets
are added to that page, honoring the semantic rules regard-
ing division, order and priority of widgets specified in the
DiaDef document. Furthermore, validator instances for the
various data types and constraints specified in the DiaDef
document are added to the model. The implementation of
this process in the DiaGen framework has been designed to
be highly customizable: Developers can extend the provided
layouter classes with their own layout algorithms and space
estimation heuristics, which may be optimized for particu-
lar applications, and define application-specific data types,
widgets and validators, while treating the rest of the DiaGen
framework as a black box.

Once the description of the individual dialog masks in the
dialog model is complete, the dialog model builder finally
generates the micro dialog graph connecting these masks
and their supporting actions for data storage and validation

2
The DCF already provides HTML- and WML-processing chan-

nel servlets; others can be added by application developers as
needed.

Create Account

Show

Terms

accept create

account

ok

cancel

done

cancel

DiaGen

Action
DiaGen Module

ok

done

cancel

Figure 4: Macro dialog graph of Create Account

module with abstract dialog resolved automatically
into DiaGen Action and DiaGen Module.

Input1

Help1

he
lp

Input2

preHelp1

validate1

next

prePrev1 previous
ok

he
lp

preHelp2

validate2

done
ok

o
k

c
a

n
c
e
l

cancel done

ok

ba
ck

Help2
ok

ba
ck

DiaGen Module

c
a

n
c
e
l

cancel

errorerror

Figure 5: Auto-generated micro dialog graph of Dia-

Gen Module with two concrete dialog masks.

(see Sect. 3.3) and encapsulates them in a DiaGen module
(12). The DiaGen module is built out of DCF dialog ele-
ment instances and can therefore be incorporated into the
application’s dialog flow model by the DiaGen action at the
exact point where the abstract dialog was originally speci-
fied (13). When the DiaGen action terminates, it returns an
ok event calling the DiaGen module to the DCF (14), which
now “sees” the macro dialog graph in Fig. 4, consisting only
of concrete dialog elements instead of the original abstract
dialog.

3.3 Micro Dialog Graph Traversal
The DiaGen module contains the micro dialog graph that

was generated from the abstract dialog specification for a
particular channel. Figure 5, for example, shows the micro
dialog graph for an abstract dialog that was broken into two
concrete dialog masks. Those Input masks are connected
with next and previous links according to the “wizard” in-
teraction pattern [24]. Each mask also provides a link to a
Help mask that may contain further information about the
widgets on the referring mask, as well as a cancel link to
terminate the wizard. The last mask in the wizard sequence
provides one or more application-specific links instead of the
next link (here, just the done link to complete the wizard
and continue traversal of the macro dialog graph).

When the dialog controller looks up the receiver of the ok
event from the DiaGen action (step 15 in Fig. 3), it now
finds the newly generated DiaGen module in the dialog flow
model and pushes it onto the stack of currently traversed
modules (step 16). The module’s initial event leads to the
first Input mask. Normally, the dialog controller forwards
the request to a JSP specified in the dialog flow model for



Figure 6: Concrete dialog masks for abstract Regis-

ter dialog on PC (top) and PDA channel (bottom).

each mask, however, since this dialog graph was generated
on-the-fly, no hard-coded mask implementation exists on the
server. Instead, the dialog flow model contains a reference
to the DiaGen framework’s mask servlet. When the DCF
forwards the request to this servlet along with the name of
the mask to display (17), the servlet looks up the respective
mask’s contents in the dialog model (18), reads any preset
values for the widgets from the instance data model (19)
and then generates a hypertext page containing the widgets
assigned to this mask, using the appropriate markup lan-
guage for this channel. The dialog step concludes with the
response being sent back to the client (20).

When the user submits the mask by clicking on the next
button, the request is handled by the DCF as usual, which
deals with the DiaGen module that is now on top of its
module stack just like with any other module. The event is
looked up in the dialog flow model and then dispatched to
the validate action (21). This action looks up the data types
and constraints defined in the dialog model for the preceding
mask (22), and checks whether all rules are satisfied. If
this is the case, the action stores the submitted data in the
instance data model (23) and returns an ok event to the
dialog controller (24). Otherwise, an error event is returned,
which prompts the dialog controller to lead the user back to
the same mask, where an error message is displayed.

In accordance with the “wizard” interaction pattern, if the
user clicks on the previous or help button of any mask, the
dialog controller dispatches the event to the prePrev or pre-
Help action according to the dialog flow model (25), which
simply stores the data entered into that mask so far in the in-
stance data model without validation (26) and then returns
an ok event, which prompts the DCF to continue traver-
sal of the micro dialog graph towards the previous Input or
appropriate Help mask, as shown in Fig. 5.

When the user ultimately completes the dialog graph, the
last validate action stores the contents of the instance data
model in its outgoing event, which leads to the termination
of the DiaGen module and the continuation of the macro
dialog graph that it was embedded in (such as the one in Fig.
4). With its removal from the stack by the dialog controller,
the DiaGen module is destroyed and will have to be rebuilt
when the same abstract dialog is encountered again. This
is necessary since the next request may be from a different
user on a different channel or the same user in a different
application context, which may influence the pagination and
layout of the auto-generated concrete dialog.

It is important to note that the complex control flow

that we just described is concealed by the DCF and Dia-
Gen framework. Application developers only need to spec-
ify the device-independent abstract dialogs in DiaDef doc-
uments and implement any application-specific widgets and
data types they wish to use, and the framework will take
care of the actual device-specific pagination and micro dia-
log flow control. The dynamic generation of dialog masks
and dialog graphs also remains transparent for users, who
will only be exposed to the familiar “wizard” interface in
situations where one dialog does not fit on a single page, as
illustrated in Fig. 6 showing concrete masks generated from
the abstract specification of the Register dialog.

4. EVALUATION
To evaluate the suitability of our approach for practical

use, we need to examine three aspects: The effort required
for developing dialogs, the performance of the framework,
and the usability of the generated user interface. In the
following subsections, we will address these aspects using
the familiar Register example, which we implemented for a
PC and a PDA channel, once using just the features of the
original Dialog Control Framework [4] and once using the
DiaGen extension presented in this paper. Both channels
employ HTML, but while the PC channel assumes a display
resolution of 1024x768 pixels, the PDA channel is restricted
to 250x200 pixels. To make both versions comparable, we
manually re-implemented the same layout and micro dia-
log flows in the DCF-based version that the DiaGen-based
version had auto-generated.

4.1 Development Effort
In order to build the Register dialog manually in the DCF-

based version, we had to implement one input JSP for the
PC channel and four input JSPs for the PDA channel, as
well as seven Java classes for validating and saving the user
input individually. Additionally, we had to spell out the di-
alog flow connecting these masks and actions in the Dialog
Flow Specification Language (DFSL) documents represent-
ing our DFN model [4]. In total, we had to write 573 lines
of code (LOC) or 20,114 bytes in 15 files. In contrast, for
the equivalent DiaGen-based implementation, we just had
to specify the characteristics of the Register dialog in a Di-
aDef document and reference this specification in the appli-
cation’s DFSL documents, which required a total 95 LOC
or 2,775 bytes in 3 files. No implementation of masks or
actions was necessary.

Comparing the total size of both implementations, we see
that the DiaGen implementation of the Register dialog is
about 85% smaller in terms of LOC or file size. Although
these are not the only factors determining the overall devel-
opment effort of an application, they do give an indication
of the amount of specification and coding work to be done.
Also, while the absolute LOC and file sizes measured in this
small example are obviously not representative for large-
scale applications, we hypothesize that the relation between
the DCF-based and DiaGen-based implementations can be
extrapolated to larger applications, which are composites of
similar dialog fragments and dialogs as those in our example.

4.2 Application Performance
The DiaGen framework facilitates the implementation sav-

ings discussed above by auto-generating the dialog flow, di-
alog masks and validation code that would otherwise have



Table 1: Average performance of DCF-based vs. DiaGen-based dialog flow implementation.
DCF-based DiaGen-based Difference Factor

Mask Device Ident Dialog Control Device Ident Dialog Control Dialog Control Dialog Control

PC Channel
Terms Mask 0.0 ms 4.6 ms 713.2 ms 5.4 ms 0.8 ms 1.2
Register Mask 0.0 ms 5.4 ms 709.1 ms 61.0 ms 55.6 ms 11.3
Summary Mask 0.0 ms 5.6 ms 675.3 ms 7.0 ms 1.4 ms 1.3

PDA Channel
Terms Mask 0.0 ms 4.5 ms 642.4 ms 4.8 ms 0.3 ms 1.1
Register Mask (1) 0.0 ms 4.3 ms 644.5 ms 42.0 ms 37.7 ms 9.8
Register Mask (2) 0.0 ms 4.6 ms 657.2 ms 19.7 ms 15.1 ms 4.3
Register Mask (3) 0.0 ms 4.6 ms 767.9 ms 16.4 ms 11.8 ms 3.6
Register Mask (4) 0.0 ms 4.7 ms 652.6 ms 17.2 ms 12.5 ms 3.7
Summary Mask 0.0 ms 5.9 ms 643.1 ms 6.3 ms 0.4 ms 1.1

to be hand-coded. As described in Sect. 3.2, much of this
auto-generation happens at run-time when requests come
in, since the dialog masks are tailored to the characteristics
of the individual devices employed by users. Since the logic
required to identify the device, generate the micro dialog
flow and populate its masks with widgets is quite complex,
the cost of these computations must be considered.

To evaluate the performance implications of the presented
approach, we compared the response time of the DCF-based
implementation of our example dialog flow to the DiaGen-
based implementation, using a dialog sequence comprising
the Show Terms mask, the actual Register dialog (with one
mask on the PC channel, and distributed across four masks
on the PDA channel), and a summary mask showing all
entered information. This dialog sequence was traversed 17
times for each implementation (DCF- and DiaGen-based) on
each channel (PC and PDA), with the server being restarted
prior to each of those four test runs. The timings of the
first two dialog sequence traversals in each test run were
discarded since they were massively distorted by the compi-
lation of the JSP pages and the initialization of the frame-
works, while the timings of the 15 remaining traversals in
each test run were averaged.3

Table 1 shows the averaged timings for requesting each
mask in the PC and PDA dialog sequence through the DCF-
based and the DiaGen-based implementation. The total
time for each request is composed of the time required to
identify the device (given in the Device Ident columns) and
the time required to generate the mask and control the mi-
cro dialog flow (given in the Dialog Control columns). The
first Device Ident column contains all zeroes since the origi-
nal DCF does not perform any device identification by itself.
Rather, it relies on developers to hard-code the references
to the desired channel servlets into their mask implementa-

3
All timings were taken with the frameworks deployed on Sun

Java Application Server 8.1 installed under Microsoft Windows
XP Professional SP2 on a PC equipped with 1 GB of RAM and
an Intel Pentium III processor running at 1.2 GHz. To achieve
accurate measurements, we employed a native timing library that
relies on the CPU clock cycle counter and CPU frequency to
provide sub-millisecond precision. When interpreting the results,
it should be noted that the operating system’s time slicing is
bound to introduce some jitter into the timings, and a production-
quality server platform would likely yield lower values. However,
for the purpose of this evaluation, we were less interested in the
absolute measurements and more in the relationship between the
timings of the DCF- and the DiaGen-based implementation.

tions. Since all masks were implemented as individual JSPs
in the DCF-based approach, they all took about the same
time to request (approximately 5 ms on our test platform).

For the DiaGen-based implementation of our example, we
observed much longer total response times of about 700 ms.
As the table shows, most of this time was incurred by the
device identification logic. Since this is largely contained
in the DELI framework [5], it is beyond the direct influ-
ence of DiaGen. However, we are confident that the device
identification time can still be optimized through suitable
configuration and adaptation of DELI.

Focusing on the actual DiaGen logic, we observe that it
increases the time required for dialog control notably, yet
not extremely: On both channels, building the first mask of
the Register dialog took roughly ten times longer than if it
was implemented directly as a JSP; and the dialog genera-
tion and control logic for the subsequent masks on the PDA
channel then took about four times as long as the delivery
of the corresponding hand-coded JSPs. This is due to the
fact that when the Register dialog was first requested, the
DiaGen framework had to figure out a suitable pagination
and generate the respective micro dialog flow, while on sub-
sequent requests, the mask servlet responsible for generat-
ing the concrete dialogs merely had to assemble the markup
according to the layout determined in the first step. Fi-
nally, note that dispatching the request to the non-DiaGen-
generated Terms and Summary masks took about the same
time as in the DCF-based implementation (once the device
had been identified by DELI).

Summing up the results, we can say that using DiaGen
instead of manually implementing the Register dialog in-
troduced a ten-fold increase in the dialog control time for
the first mask, and a four-fold increase for the subsequent
masks in that dialog. While these may sound like huge per-
formance penalties at first, the absolute increase in dialog
control time observed in this example was only about 56 ms
on the PC channel, as well as about 38 and then 15 ms on
the PDA channel, which is still acceptable since the time lag
introduced by the network is often higher. Of course, the
actual timings observed in a production environment will de-
pend heavily on the complexity of the dialog specifications,
the complexity of the layout algorithms, and the execution
speed of the underlying platform. In our ongoing research,
we are striving to gain performance data for DiaGen-based
systems running under production conditions.



4.3 Interface Usability
The last aspect of interest in the evaluation of the Dia-

Gen approach is the usability of the auto-generated dialogs,
which is mainly characterized by the dialog masks’ layout
and the structure of the micro dialog flow connecting them.

Since our current version of the DiaGen framework imple-
ments only rudimentary layout algorithms, the generated
dialog masks do not yet come close to the usability that
can be achieved by hand-coding JavaServer Pages. How-
ever, DiaGen was designed so that new layout algorithms
(encapsulated in their own Layouter classes) can be added
easily by registering them in a configuration file. The devel-
opment of more sophisticated layout algorithms is a topic
of our ongoing research, which will also include a formal us-
ability test of manually implemented vs. DiaGen-generated
masks as soon as those algorithms are sufficiently mature.

We do not foresee any usability problems stemming from
the structure of the underlying micro dialog flow connect-
ing the auto-generated masks, since it mirrors the “wizard”
interaction pattern [24] with back and forward navigation,
help and cancel options that users have long becomed accus-
tomed to from window-based applications. This hypothesis,
however, will still have to be examined in formal usability
tests using real-life applications.

5. RELATED WORK
A number of approaches currently strive to provide device-

independent access to web applications. Often, however,
they focus on adapting static content for different devices.
For example, the transcoding proxies Digestor [3], Wingman
[10] and PowerBrowser [6] transform existing web content for
display on mobile devices without having to change the orig-
inal documents. However, these approaches are not suitable
for interactive applications since any modification of their
dialog masks (most notably in the form of pagination) re-
quires an according modification of the underlying dialog
control logic, which is not possible with a proxy-based ap-
proach.

In contrast to these approaches that provide “a posteriori”
device independence, the Device Independence Web Appli-
cation Framework (DIWAF) [13] enables device-independent
authoring from the start. However, while it can deal with ba-
sic input forms, it is more geared towards static web content
than to highly interactive web applications. SUPPLE [12]
also generates user interfaces automatically based on device
properties and user behavior. However, since SUPPLE was
designed primarily for device control, important concepts for
web applications such as dialog control and input validation
are not supported. A strict separation of user interface and
application logic is the goal of the Sisl approach [2], which
takes care of collating the more or less finely grained input
coming from a wide spectrum of input devices that use the
same application logic. However, Sisl is not concerned with
the pagination of dialogs for those devices.

The Renderer-Independent Markup Language (RIML) [25]
is a language profile that extends XHTML and XForms with
semantic information about dialogs that is processed by a
pagination engine. While RIML provides more language
constructs for the specification of dialog contents (e.g. re-
garding layout and navigation) than DiaDef does at this
time, the combined DiaGen and DCF frameworks provide
more dialog control features (e.g. nested dialog modules,

abort and resume mechanisms) than current RIML imple-
mentations.

The Hypermedia Model Based on Statecharts (HMBS)
[8] allows the channel-dependent specification of navigation
patterns, however, it focuses especially on challenges such as
synchronization that are introduced by multimedia elements
embedded into hypertext. Schewe et al. [21] use a formal
approach for modeling interaction and media objects that
allows the specification of device-specific variants of media
objects depending on the presentation channels’ capabilities,
but do not provide means for the automatic pagination of
dialogs or generation of micro dialog flows.

Similar restrictions apply to other modeling approaches
such OOHDM [22], UWE [16] and WebML. The latter, for
example, is capable of modeling the layout and appearance
of web pages independently of the output device, and al-
lows developers to specify site views with different hypertext
structures for different devices, but still requires developers
to model those variants explicitly instead of generating them
automatically [7].

As a basis for DiaDef, we considered a number of candi-
dates: XHTML [1] is striving to move the Hypertext Markup
Language further away from document design and more to-
wards document semantics, however, it is not suitable as an
abstract dialog description language since it still focuses too
much on the presentation and too little on the functional-
ity of forms. The User Interface Markup Language (UIML)
[14] is a meta language that needs to be extended by a suit-
able vocabulary. However, since we would need an abstract
vocabulary for our abstract dialog definition, the additional
meta level would introduce unnecessary added complexity.
Also, UIML does not provide an explicit data model that
different user interface representations can share. Finally,
the Extensible Interface Markup Language (XIML) [20] de-
scribes user interfaces in terms of relations between task,
domain, user, presentation and dialog elements. However,
specifying extensible data types, constraints, and dynamic
widgets are more complicated to express in XIML than in
XForms, which we ultimately based DiaDef on.

We did not examine other languages such as AAIML,
AUIML, XAML and XUL in detail due to limited availabil-
ity of documentation or a focus on a different user interface
paradigm (e.g. window-based applications).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the DiaGen framework, an

extension to our Dialog Control Framework that allows web
application developers to specify device-independent dialogs
in the DiaDef language, and then breaks these abstract di-
alogs into one or more concrete dialog masks at run-time
depending on the device that the user is working with. The
dialog masks are incorporated into so-called micro dialog
graphs that allow wizard-style navigation between the masks,
ensure the validation of user input and provide context-
sensitive help pages. This way, developers do not have to
spend effort on the individual pagination and implementa-
tion of dialog masks for different devices, but can focus on
the implementation of the application logic and data model.

Our implementation of the DiaGen framework shows that
the core approach is feasible and extensible, and can be inte-
grated smoothly with a state machine-based dialog control
logic such as the one provided by the DCF. The initial eval-
uation of a small-scale example indicated that the approach



presented here can decrease the volume of user interface-
related code and specifications considerably, while incurring
an acceptable increase in the execution time of the dialog
control logic.

The usability of the auto-generated dialog masks depends
heavily on the availability of suitable profiles for associat-
ing devices with presentation channels, the accuracy of the
heuristics used to estimate the size of different widgets, and
the layout algorithms employed to render masks in different
markup languages. These areas still bear a lot of potential
for optimization and evaluation, which is a prime topic of
our ongoing research. Possible improvements include exten-
sions of the DiaDef language that allow developers to specify
more semantic information to support the layout algorithms;
and greater control over the generated micro dialog flow to
enable other interaction patterns than just wizard-style nav-
igation.

In parallel to our work on optimizing the pagination and
layout algorithms, we are striving to gain experience with
the use of the DiaGen framework in practice, both from
a developer and a user point of view. Such case studies
will enable us to evaluate the actual development effort and
interface usability of DiaGen-based web applications in a
more realistic setting.

7. REFERENCES
[1] M. Baker, M. Ishikawa, S. Matsui, P. Stark,

T. Wugofski, and T. Yamakami. XHTML Basic W3C
Recommendation.
http://www.w3.org/TR/xhtml-basic/, 2000.

[2] T. Ball, C. Colby, and P. Danielsen. Sisl: Several
interfaces, single logic. Intl Journal of Speech
Technology, 3(2):91–106, 2000.

[3] T. W. Bickmore and B. N. Schilit. Digestor:
Device-independent access to the world wide web.
Computer Networks and ISDN Systems,
29(8–13):1075–1082, 1997.

[4] M. Book and V. Gruhn. Modeling web-based dialog
flows for automatic dialog control. In 19th IEEE Intl
Conf on Automated Software Engineering (ASE 2004),
pages 100–109. IEEE Computer Society Press, 2004.

[5] M. H. Butler. DELI: A DElivery context LIbrary for
CC/PP and UAProf.
http://www.hpl.hp.com/techreports/2001/HPL-2001-
260.html, 2001.

[6] O. Buyukkokten, H. G. Molina, A. Paepcke, and
T. Winograd. Power browser: Efficient web browsing
for PDAs. In Proc Conf on Human Factors in
Computing Systems (CHI ’00), pages 430–437. ACM
Press, 2000.

[7] S. Ceri, F. Daniel, and M. Matera. Extending WebML
for modeling multi-channel context-aware web
applications. In Proc WISE – MMIS’03 Workshop
(Mobile Multi-channel Information Systems). IEEE
Press, 2003.

[8] M. C. F. de Oliveira, M. A. S. Turine, and P. C.
Masiero. A statechart-based model for hypermedia
applications. ACM Transactions on Information
Systems, 19(1):28–52, 2001.

[9] M. Dubinko, L. L. Klotz Jr., R. Merrick, and T. V.
Raman. XForms 1.0 W3C Recommendation.
http://www.w3.org/TR/xforms/, 2003.

[10] A. Fox, I. Goldberg, S. D. Gribble, and D. C. Lee.
Experience with Top Gun Wingman: A proxy-based
graphical web browser for the 3Com PalmPilot. In
Proc IFIP Intl Conf on Distributed Systems Platforms
and Open Distributed Processing (Middleware ’98),
pages 5–18. Springer Verlag, 1998.

[11] G. Buchanan, M. Farrant et al. Improving mobile
internet usability. In Proc 10th Intl World Wide Web
Conference, pages 673–680. ACM Press, 2001.

[12] K. Gajos and D. S. Weld. SUPPLE: automatically
generating user interfaces. In Proc 9th Intl Conf on
Intelligent User Interfaces, pages 93–100. ACM Press,
2004.

[13] F. Giannetti. Device Independence Web Application
Framework (DIWAF).
http://www.hpl.hp.com/techreports/2002/HPL-2002-
264.html, 2002.

[14] Harmonia, Inc. UIML v3.0 Draft Specification.
http://www.uiml.org/specs/uiml3/DraftSpec.htm,
2002.

[15] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto,
J. Hjelm, M. H. Butler, and L. Tran. Composite
Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 1.0 W3C Recommendation.
http://www.w3.org/TR/CCPP-struct-vocab/, 2004.

[16] N. Koch and A. Kraus. Towards a common
metamodel for the design of web applications. In Proc
3rd Intl Conf on Web Engineering (ICWE 2003),
LNCS 2722. Springer, 2003.

[17] M. Jones et al. Improving web interaction on small
displays. Computer Networks, 33:1129–1137, 1999.

[18] S. H. Maes. A ‘single authoring’ programming model:
The interaction logic. In Proc 2002 Symp on
Applications and the Internet (SAINT), pages 12–13.
IEEE Computer Society Press, 2002.

[19] Open Mobile Alliance. OMA User Agent Profile.
http://www.openmobilealliance.org/release program/
uap v20.html, 2003.

[20] A. Puerta and J. Eisenstein. XIML: A Universal
Language for User Interfaces.
http://www.ximl.org/documents/XimlWhitePaper.pdf,
2001.

[21] K.-D. Schewe and B. Thalheim. Modeling interaction
and media objects. Proc 5th Intl Conf on Applications
of Natural Language to Information Systems, LNCS,
1959:313–324, 2001.

[22] D. Schwabe and G. Rossi. The object-oriented
hypermedia design model. Comm ACM, 38(8):45–46,
Aug 1995.

[23] S. Trewin, G. Zimmermann, and G. Vanderheiden.
Abstract user interface representations: How well do
they support universal access? In Proc 2003 Conf on
Universal Usability, pages 77–84. ACM Press, 2003.

[24] M. van Welie and H. Traetteberg. Interaction patterns
in user interfaces. In 7th Pattern Languages of
Programs Conference (PLoP 2000). Washington
University, 2000.

[25] T. Ziegert, M. Lauff, and L. Heuser. Device
independent web applications — the author once –
display everywhere approach. In Proc 4th Intl Conf on
Web Engineering (ICWE 2004), LNCS 3140, pages
244–255. Springer Verlag, 2004.


