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Abstract

X-ray medical imaging provides invaluable medical information, while subjecting pa-

tients to hazardous ionizing radiation. The dosage that the patient is exposed to may

be reduced, at the cost of image resolution. A technology that promises lower dosage

for a given resolution is direct conversion digital imaging, typically based on amorphous

Selenium semiconductor. Sufficient exposure should be used for the first exposure to avoid

subsequent exposures; a challenge is then to reduce the necessary exposure for a suitable

image. To quantify how little radiation the detector can reliably discriminate, one needs

an analysis of the variance that 1/f and white noise contribute to the signal of such de-

tectors. An important consideration is that the dark current, which varies with time, is

subtracted from the photocurrent, to reduce the spurious spatial variance in the image. In

this thesis, the variance that 1/f noise contributes to integrating detectors is analysed, for

a very general integrating detector. Experiments were performed to verify the theoretical

results obtained for the 1/f noise variance contribution.
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Chapter 1

Introduction to X-ray Detection

This research is motivated by a problem in electronic x-ray imaging. X-ray imaging

exposes patients to hazardous radiation. By obtaining a sufficient exposure in an initial

imaging, subsequent exposures may be avoided. Certain technologies promise a lower

minimum exposure for reliable imaging than others. The problem that this thesis cond-

siders, is how to calculate the uncertainty contribution that 1/f noise adds to the total

uncertainty of a detector, which may be used with other parameters and considerations,

to calculate a minimum exposure for reliable imaging.

The results of this research are however applicable to a broad range of integrating

detectors. This also research sheds light on the statistical time-evolution of 1/f noise.

Previous workers had achieved somewhat similar results for model 1/f noise signals as is

achieved in this research for general 1/f noise, and thus there was always a question as

to whether these results are generally applicable to 1/f noise, or just to the model signals

used in previous work. The previous results were also less precise. My research shows

that the results are generally applicable to the broad category of so-called ‘second-order

stationary’ 1/f noise, which is defined in chapter 2. Before this variance can be discussed,

the context and thus the motivation of this research is necessary; this is discussed next.

1.1 X-ray Imaging Detection—Motivation for Research

X-ray medical imaging is integral to modern medicine. It yields a detailed image of bone

(or other tissue [1, 2]) without an overtly invasive procedure - a photographic plate is

exposed to x-radiation through a patient, with said patient’s bone, or contrast media in

other organs, casting a partial shadow on the plate, thus yielding a detail rich image.

Diagnostically valuable features, such as cracks and other abnormalities, may be visible
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in the image obtained.

Yet this procedure is covertly invasive. The patient is exposed to x-rays, which are

photons with energies between 1 keV and 100 keV; depending on the material irradiated,

the minimum energy required for ionization is typically between 1 and 10 eV, and as

such, x-rays are ionizing radiation [3]. Early x-ray workers had noticed skin burns and

cancers in themselves and their patients, arising from exposure to x-rays [4, 5]. Ionizing

radiation tracks, which are long, narrow regions of radiation-induced ionization, e.g. from

x-rays, may damage proteins and DNA, leading to birth defects and the above–mentioned

cancers; there is no dose that is ‘safe’ in the sense of being free of additional cancer risk

[6]. Cells can often, but not always, repair genetic damage, and induced damage to genetic

structures from a single ionization track are often irreparable [7]. Gofman and O’Connor

catalogued a cancer-risk-multiplier effect from radiation exposure [8]. It is consequently

desirable to reduce the average exposure of the general population, so as to reduce the

number of cancers per generation, as well as to increase the average age of cancer induction

[8]. It has been noted that acceptable per image and cumulative dosage drops with time

[9].

An x-ray tube emits a spectrum of x-rays, from the lowest energies to the tube potential;

lower energy photons more readily interact with soft tissues, and could supply detail of

blood vessels and the like (e.g. [10]). Usually, such detail is not of interest, or may be

obtained via contrast media (e.g. [11, 12]), and the low energy photons, which tend to burn

the skin, may be filtered out ([13, 14]). Beyond filtration, there are several methods to

reduce radiation exposure for an x-ray image, but almost without exception, they involve

loss of diagnostically valuable detail. The detail lost includes resolution, i.e. the smallest

detectable feature size grows, and distinction of density, i.e. the brightness difference

that may reliably be discriminated between neighboring regions is reduced [15]. The

light-sensitive portions of x-ray films are not very dense, and are consequently not very

sensitive to x-rays; to make the films more sensitive to x-rays, they are placed between

image intensifying phosphor screens, which emit visible light—to which the film is more

sensitive—upon being struck by x-rays; about 98% of a typical x-ray image’s density

is due to the screens’ action [16]. The phosphor screens tend to reduce the resolution

with the minimum radiation requirement, and tend to require finer control of radiation
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exposure[17]. Higher resolution screens are available, but require more exposure than low

exposure, or ‘fast’ screens, though less than raw film [18]. Unnecessary detail may thus

be sacrificed to reduce patient exposure.

Yet it would be useful to reduce the necessary exposure for a given amount of detail.

One technology that promises this is ‘direct conversion’ digital radiation detection. It has

high x-ray sensitivity at rather high resolutions [19]. This technology also has other advan-

tages over film, such as not requiring chemical development. The chemical developers used

for film present a disposal problem, and dumping the chemicals may lead to environmental

problems, e.g. the development of fungi that is resistant to the fungicide in the developer,

as may occur due to the reduced concentration of the fungicide when dumped. For a list

of typical developer ingredients, see [20]. In order to use ‘direct conversion’ detectors with

confidence, it is necessary to determine how little radiation the detectors can discriminate

reliably.

Several random electronic phenomena, or noise, occur in electronic equipment; an

analysis is needed to quantify how noise affects how little radiation a digital radiography

detector can discriminate reliably. The standard measures of these random phenomena are

general per unit of temporal frequency energy or power densities, rather than the contri-

bution they make to a detector’s uncertainty. One must relate these standard measures to

the extent of uncertainty that these random phenomenon produces in the detected quan-

tity of radiation. Most of the standard measures have somewhat engineerable magnitudes,

and are hence subject to manipulation. These random electronic phenomena are known

as noise.

Semiconductors are quite commonly used to detect and image infra-red, visible and

ultra-violet radiation, as one may readily divide the detection surface into small cells

that detect radiation independently of each other, when they are made of semiconductor

materials. These cells typically have a square surface for detecting incident radiation, and

are called picture elements (pixels). Various semiconductors are used to detect x-radiation;

all have Johnson noise, which is a voltage or current that arises from the resistance of the

cell, shot noise, which arises from individual electron motion, e.g. over a PN junction

in the cell or a non-Ohmic contact on the cell, 1/f noise, which is a poorly understood

variation in the resistance of the cell, and mains interference, from which the equipment is
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generally shielded. The noise analyses of the Johnson and shot noise contributions to the

detector variance are rather uncontroversial, and a somewhat accepted 1/f noise analysis

exists [21, 22]. Mains or electro-magnetic interference (EMI) was only considered in the

research reported in this thesis to the extent that it corrupted other noise measurements,

and aside from simple precautions taken to avoid EMI in experimental work, EMI was

ignored. All of the above interference and noise types are present in the electronics that

develop the incoming radiation into a readable electrical quantity, adding to the random

uncertainty in the detected photon count.

The above noise analyses are notable in two respects. Firstly, they are strictly in-

consistent - Johnson and shot noise are analyzed in a different manner than 1/f noise

is. However, analyzing Johnson and shot noise in the manner that 1/f noise is analyzed

would not provide a grossly different result than what is obtained for these noise types

with the standard analysis. Secondly, these analyses ignore measures taken in practical

detectors for eliminating temperature related and other undesireable effects, specifically

the subtraction of ‘dark-current’ (the spurious background measure) from the exposure

‘photo-current’ measure. In chapter 3, I consider the effect of this subtraction on these

noise types. I also extend this noise analysis to sampling systems that sample non-high-

pass filtered signals (unlike audio, which is bandlimited to about 20Hz-20KHz). Experi-

ments were performed to test the noise analysis developed in chapter 3; they are reported

in chapter four.

1.2 Imaging Technologies

In medical x-ray imaging, a portion of a patient’s body is irradiated from some direction,

by an x-ray source that is ideally a distant, uniform point source, typically achieved to

approximation by putting the anode face of an x-ray tube at a small angle relative to

the cathode [23]. The ‘anode’ is the electrode that absorbs the electrons emitted by the

‘cathode,’ and from whose surface the x-rays are emitted. Putting the anode at a small

angle relative to the cathode yields a smaller source surface area for the radiation, thus

making the image sharper. A detector is placed opposite the part of the body to be

imaged, relative to the radiation source; said part of the body casts an x-ray shadow on
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the detector. This setup imposes a minimum mottle, or spurious variation in the detected

picel-to-pixel density (image brightness) difference, beyond any mottle caused by random

variation in the detection technology, or by systematic irregularities in the x-ray source

[24].

Mottle may mask real features on an x-ray image, by adding a general haziness to

the image. X-ray imaging is used to study bone, or with contrast media, other organs;

fairly subtle features often distinguish separate pathologies, and entire textbooks (e.g.

[25, 26, 27]) are devoted to their interpretation. Stress fractures are particularly subtle

[28], and are as such one would expect them to be more subject to being obscured by

mottle.

I first explain this inherent (quantum) mottle, then the mottle or spurious variance of

specific detection technologies, ending with the mottle that is the focus of this research.

1.2.1 Inherent Photon Count Variation (Quantum Mottle)

To properly image a patient, said patient must be uniformly irradiated over the imaging

area, or corrections must be performed for systematically non-uniform exposure, but the

exposure is expected to be randomly non-uniform, as is shown below. Consider the irra-

diated detector without the patient. Let some area of the detector be uniformly exposed,

i.e. over time, the same average photon arrival rate is effective over the pixels in that area.

Photon emission, and hence arrival from the source, is a random process in a x-ray

tube. Over a long period of irradiation, two pixels in this area accumulate x-ray photons

at statistically identical rates, but over a short period of exposure, their photon counts

may differ substantially, relative to their average photon count. A standard approach is

that of Poisson [29] - let the arrival time of the nth photon at some pixel be tn. The

difference in the arrival times of two consecutive photons is τn, which is an exponentially

distributed random variable,

τn = tn+1 − tn (1.1)

∀n{f(τn) = e−λτn} (1.2)

and the arrival time difference of any one pair of photons is statistically independent of

the arrival time difference of any other photon pair.
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The variance of the photon count of such an arrival behavior has been shown to be

[30]

σ2
Poisson = λT (1.3)

where λ is the average arrival rate, and T is the observation period. The expected number

of photons that arrive is by definition

µ = λT (1.4)

where λ is the photon arrival rate. The variance of the difference in photon count between

two on-average equally yet statistically independently exposed pixels is

σ2

2 pixels = 2λT (1.5)

Thus two pixels subject to the same irradiation are expected to differ in photon count. The

significance of the difference is expressed by the signal-to-noise ratio (SNR). The SNR is

usually defined as the ration of the power of the signal or measured quantity to the variance

of said measured quantity. A higher SNR indicates lower importance of uncertainty, and

is thus a measure of the effect of mottle. For the two pixels,

SNR =
µ2

σ2
=
λT

2
(1.6)

This result shows that a higher quality image can be achieved with greater exposure - a

problem of course for the patient. A tradeoff is needed between patient exposure and safety

on the one hand, and image quality on the other. This SNR is for an ideal detector, that

gives perfectly accurate and precise photon counts; actual detectors will miscount photons,

adding to the denominator of the SNR, and systematically undercount photons, scaling

down the numerator. Some practical detectors are next considered in their technological

imperfection.

1.2.2 Geiger Counter

A Geiger-Mueller tube is a radiation detector that produces a consistent pulse of current

for each ionizing radiation that is absorbed to produce at least one ion pair inside the

tube, if the absorbed radiation is suitably separated temporally from the previous and
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next absorbed radiation [31]. Due to its size and complexity, it is not generally suitable

for imaging. The sensor is typically in the shape of a circular-cylindrical tube, with

the cylindrical wall being conductive, and concentric about an inner conductor[32]. The

volume of the sensor is filled with a non-electron-affine gas, e.g. a mixture of argon and

neon, and a slight quantity of halogen, e.g. bromide, as explained below[33]. Non-electron-

affine gasses gain energy when ionized, whereas electron-affine gasses, e.g. halogens, lose

energy with their first electron gain.

The tube may be operated in three modes, depending on the applied voltage[34]:

1. Ionization chamber mode. Each ionizing particle produces one or more ion pairs; the

integrated current is less than or equal to the number of ions produced, depending on

whether any recombinations occur. This mode occurs at the lowest applied voltages.

2. Proportional counter. Due to the shape of the sensor, the electric field strength is

highest near the central conductor. As the applied voltage is increased, an operating

region is reached where an electron gains such energy from the field as to release

a second electron upon impact with a gaseous atom, hence leading to a current

avalanche. The current avalanche ceases as space charge density, in the form of

positive ions, build up around the anode. No new pulse can form until the ions have

drifted to the cathode to a sufficient extent to restore the field around the central

conductor - this period is called the dead time; After the dead time, the pulses have

not regained their full height; it takes the recovery time for the pulses to regain their

full height[35]. The avalanche process multiplies the photocurrent.

3. Geiger-Mueller (GM). Raising the potential beyond the propotional counter mode

causes GM operation. Not only is the current multiplied, but the gaseous ions enter

excited states to an extent much greater than under the proportional counter mode.

If a photon is emitted in the course of deexcitation, it may be absorbed further from

the central conductor than it was emitted, and the resulting photoelectron is earlier in

the photomultiplication process than the ion-absorbed electron was, hence causing

further current multiplication. A space-charge layer again builds up, but such as

to cause each separate primary-ionization-induced pulse to have approximately the

same shape and charge.
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A post-pulse deionization/deexcitation may lead to a secondary pulse without an

additional absorption, leading to a spurious absorption count. These spurious pulses

are ‘quenched’ by two methods, often applied sumultaneously: A halogen is added to

the tube to absorb and ‘degrade’ the energy level of a deexcitation photon, to prevent

further ionization upon emission, and a quenching circuit is added to suppress current

spikes until the ions have had time to recombine and drift away from the anode, to

remove the space-charge layer.

One might assume that the number of pulses registered be necessarily equal to the

number of x-ray photons striking the tube, but many x-ray photons may pass through

the tube unabsorbed. One photon might arrive and be absorbed during the discharge

or dead time of another photon, in which case no new pulse will be formed or counted.

Background gamma radiation may also cause discharges, irrespective of the x-ray source.

Failure to absorb the photons reduces the photon count in a systematic way, scaling down

the measure of radiation, but also adds a variance to the detected photon count, as the

failure to absorb a photon is random. Absorption of irrelevant photons also increases

the uncertainty in the total photon count, but increases the total detected quantity. The

Geiger photon count thus has systematic errors, for which one may correct, and random

errors, which add to the true uncertainty; both reduce SNR.

1.2.3 Film

Film is the traditional imaging detector. X-ray photons are absorbed by light sensitive

salts in the film, and the film is chemically developed to produce a visible image. X-

ray photons may pass through the film unabsorbed, or be absorbed in the filler material

of the film; this reduces the detected photon count, as may be measured by separated

light-sensitive salts. A light-sensitive salt may with some finite probability absorb an

x-ray photon, without being separated (false negative), e.g. due to already having been

separated by a previous x-ray photon, or by chance not entering the (statistically favoured)

separated state. Similarly, a thermal variation or scattered x-ray photon may separate a

light-sensitive salt that does not correspond to a feature inside the patient (false positive).

These false readings add to the uncertainty in the detected photon count. Both the
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systematic failure to detect photons, and the spurious (mis)activations reduce the SNR of

the image.

The x-ray photons have extremely short wavelengths, leading to very high probability

of non-interaction with the light-sensitive molecules; a standard solution is to have a

fluorescent sheet next to the film, thus absorbing the short wavelength x-ray photons, and

emitting visible photons, that are more readily absorbed by the film, by virtue of their

longer wavelengths. Fluoresced photons have somewhat random directions; this reduces

the effective resolution of a film (or other imaging detector) as photons aimed at one pixel

give rise to photons striking other pixels, although the loss of resolution may be minimized

by bringing the film closer to the fluorescent screen, or by making the screen thinner [17].

1.2.4 Digital Radiography

Two major types of electronic imagers or detectors exist, namely direct and indirect con-

version types. In indirect conversion detectors, x-ray photons are absorbed by phosphors

to emit visible photons, that can be detected by a less dense, and hence less x-ray sensitive,

regular semiconductor detector pixel array. In direct detection detectors, the x-ray pho-

tons are detected by a pixel array with the detection elements consisting of semiconductor

material that is more sensitive to x-rays.

Once the incoming photon, scintillated or x-ray, is absorbed by the pixel detection

element, it produces one or more electron-hole pairs, thus increasing the conductivity of

the detection element. This increase in conductivity gives rise to a photo-current which

is an increase over the pre-absorbtion dark-current. This photocurrent is initially roughly

proportional to the number of absorbed photons, and then decays back to the dark current

after the exposure ends. In many practical systems, the photocurrent is very small, and is

accumulated for detection; the accumulation of the photocurrent affects the uncertainty

contribution from electronic noise sources. The accumulation of photocurrent is usually,

to excellent approximation, time integration. Thermal, random generation of electron-

hole pairs spuriously adds to the photocurrent, and recombination of electron-hole pairs

subtracts; together they add a variance to the detected photon count, hence reducing

SNR. Noise processes that add to the variance of the photocurrent include the diffusion of
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carriers across carrier-depleted boundaries (shot noise), thermal resistance noise (Johnson

noise), and slowly but randomly changing resistance (1/f noise).

1.3 The Standard Approach to Noise Analysis

The focus of this thesis is the contribution that 1/f noise makes to the uncertainty in

the photon count of an electronic radiation detector - uncertainty is understood here as

the variance in the measured photon count arising purely from material behavior inside

the detector rather than variance in the actual number of absorbed photons - hence some

introduction to electronic noise processes is needed. Dark current subtraction is excluded

here, and is considered in chapter three.

Noise sources are characterized by their variance contribution per unit frequency, or

power-spectral density (PSD). The PSD is usually represented as S, and is a function of

frequency,

S = S(f) (1.7)

An important discrimination of noise sources, which has determined the method in which

the detector variance contribution is calculated, is the ‘shape’ of the PSD. For material-

determined random electronic continuous time (noise) signals, three shapes represent al-

most all unmodified noise sources; they are

1. White noise, which has constant PSD. Examples of white noise include a. shot noise

[36], e.g. the arrival of individual x-ray photons in the previous section, and electrons

individually diffusing over a barrier,

S = Ie (1.8)

where I is the current and e is the fundamental charge, b. Johnson noise [36], which

arises from the thermal interactions of charge carriers (electrons and holes) with

resistive materials; the PSDs of the Johnson noise in the voltage and current are

SV = 4KTR (1.9)

SI = 4KTG (1.10)
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and c. excess avalanche noise, which occurs in e.g. reverse-biased ‘PIN’ (P-type,

Intrinsic, N-type) multiplier photo-detection diodes, when the field is sufficiently

strong to cause temporary current avalanches [37],

SI = M2Ie (1.11)

where M2 is the noise multiplier.

2. Telegraph-type noise or burst noise[38], where a (typically resistive [39]) system

switches between (typically two) states somewhat haphazardly, albeit with an ex-

pected switching time τ . The PSD of telegraph noise is Lorentzian [40],

S(ω) ∝
S0τ

1 + ω2τ 2
(1.12)

where S0 is a constant. Other, non-telegraph type noises also have this PSD shape,

e.g. Brownian motion [41], and ‘white’ noise sources usually have some maximum (if

very high) frequency, beyond which their PSDs also roll off as 1/ω2.

3. 1/f noise, so called because the PSD has the form

S(f) =
S0

f
(1.13)

1/f noise is generally understood as resistive variation, with the PSD of the resis-

tance noise characterized by a Hooge relation [42],

SR(f) =
R2αH
N · f

(1.14)

where

N = n · vol (1.15)

N is the number of carriers in the sample of interest, vol is the volume of the sample,

n is the carrier concentration of the sample, R is the sample’s ‘average’ resistance (a

problematic usage, as Keshner [21] pointed out, leading to changing αH), and αH is

the Hooge coefficient of the sample.

Other statements of the Hooge model exist, e.g. conductance flutuations have PSD

such that
SG(f)

G2
=
SR(f)

R2
(1.16)
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and under the application of constant current or voltage, the resulting voltage or

current noise is SV (f) or SI(f), such that

SV (f)

V 2
=
SI(f)

I2
=
SR(f)

R2
(1.17)

The frequency exponent of the PSD is not exactly one for all samples, so that

S(f) =
S0

fα
(1.18)

with 0.6 ≤ α ≤ 1.4 (depending on the sample and its temperature, [43]) is also

considered 1/f noise. S0 may again depend on V , I, R etc.

Non-Hooge models exist, especially for active devices - transistor noise also con-

tribute to uncertainty - and these models are quite successful for MOSFETs [44].

The origins of 1/f noise are poorly understood, and some notable theoretical treat-

ments are mentioned in chapter 2.
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The PSD shapes of these types of noise are plotted in figure 1.1.
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1.3.1 Total Noise Variance

The variance of a noise process is related to the bilateral PSD, as is shown below, by

σ2 =

∫
∞

−∞

S(f)df (1.19)

but for real noise sources, S(f) is real, even and positive, hence the variance may be

defined as

σ2 = 2

∫
∞

0

S(f)df (1.20)

As defined, S(f) is called the bilateral PSD, although a unilateral PSD can be defined,

such that

σ2 =

∫
∞

0

Smono(f)df (1.21)

For ideal white noise, these integrals diverges linearly in f as f → ∞, and for 1/f noise,

they diverge logarithmically both as f → 0± and f → ±∞ - only for telegraph-type noise

PSDs does the integral converge, as may be expected from the time domain behavior of

telegraph noise. In practice, there will be some maximum frequency above which both 1/f

and white noise sources will drop asymptotically as 1/ω2, due to some maximum speed

that characterises the process that gives rise to the noise signal. For 1/f noise, the lower

limit poses a challenge, namely that no lower cut-off is imposed by any obvious physical

considerations - and none have been found - measurements have been performed down to

10−8Hz [45], without any deviations from 1/f detected, on one source. Should a lower

cut-off exist, it might be material, preparation, operation and temperature dependent.

In practical radiation detectors, the signal is often small, and is hence collected, e.g.

on a capacitor, so as to develop a measurable quantity. The collection, or time integra-

tion, strongly affects the variance contribution of the noise. Below, I show the standard

calculation of the variance of integrated noise for different noise types.

1.3.2 Accounting for Integration

In the previous section, I showed the standard incoherent x-ray photon variance result,

namely that the variance in the number of photons that arrive at a statistically constant

rate, over some arbitrary period T , is equal to the expected number of photons, as in
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equation 1.3, hence giving the (power) SNR as

σ2 = SNR = λT = n (1.22)

The difference from equation 1.5 is due to the fact that no pixels are being compared here

- this is the per-pixel SNR, rather than the mottle. One may interpret this result as the

variance in and SNR of the integrated photon flux. Shot noise, like incoherent photon

arrival (e.g. medical x-rays), is also due to approximately Poisson-distributed events, in

particular the arrival of individual electrons by diffusion, or by electrons individually

arriving at an anode. One may thus expect that the SNR of a signal with shot-noise

calculated on the basis of PSD, will also produce equation 1.3. I next show that it does,

and use it as a foil to introduce necessary noise-related concepts and theorems, before

calculating the variance of 1/f noise.

For individual arrival, or Poisson-like processes, the arrival of a particle, e.g. an electron

or a photon, causes a reaction in the system into which it arrives. This reaction is the

relaxation of the system to the disturbance of the impulse-like arrival of a particle. It is

stereotypically an additive shift in the output, e.g. if the reaction to an arrival at time 0 is

h(t), then if two arrivals occur, one at time t0 and the other at time t1, then the response

of the system to the two arrivals is

y(t) = h(t− t0) + h(t− t1) (1.23)

Such a system is said to be linear time-invariant (LTI). This reaction function, h(t), is

called the ‘impulse response’. A closely related entity is the transfer function, H(f), which

is the Fourier transform of the impulse response,

h(t) = F
−1{H(f)} (1.24)

The transfer function relates the magnitude and phase of the Fourier transform of the

output at some sinusoidal frequency to the magnitude and phase of the Fourier transform

of the input at the same sinusoidal frequency.

A standard result for Poisson distributed disturbance-relaxation systems, such as those

that produce shot noise, is Carson’s theorem [46],

S(f) = λa2|H(f)|2 (1.25)
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where the PSD is S(f), the occurance rate is λ, the mean-squared magnitude is a2 and

the disturbance-relaxation transfer function is H(f). Each electron arrival is roughly an

impulse of current; the response of the system is dependent on the system’s structure.

To make the calculation independent of the structure of the system, one may treat the

system as an all-pass system, such that the impulse response is an impulse, or Dirac delta

function. One treats the arrivals as impulses, so that the system reaction can be calculated

on the basis of spectral methods described below. With these considerations, one has

h(t) ' δ(t) (1.26)

which is the Dirac delta function,

H(f) ' 1 (1.27)

a2 = e2 (1.28)

The average electron arrival rate is simply the DC current divided by the fundmental

charge, or

λ = I/e (1.29)

Thus by Carson’s theorem, the shot noise PSD is simply

S(f) ' Ie (1.30)

Already, the PSD is proportional to the current, but integrating the PSD yields infinite

variance (see equation 1.19) or zero SNR. While the average pulse width has been ignored,

and hence the high-frequency roll-off, also accounting for it would still yield much less than

the expected SNR. Time integration of the shot noise in the current must be accounted

for, and will provide a stronger limitation on the variance than the that provided by the

high-frequency roll-off.

Let the time length that a detector integrates for a detection be T . One may use a

mathematical device, namely a moving integrator, to represent the effect of time integra-

tion. The moving integrator takes some input signal, x(t), and creates an output, y(t),

which is an integral of x(t) over a period T , e.g.

y(t) =

∫ t

t−T

x(t′)dt′ (1.31)
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Thus an integration from time t0−T to t0 is y(t0). The integrator is a linear time-invariant

(LTI) filter, with impulse response

h(t) = u(t) − u(t− T ) (1.32)

where u(t) is the unit step function. This may be seen by convoluting the input signal

with the impulse response,

y(t) = x(t) ∗ h(t) =

∫
∞

−∞

x(t− τ) · h(τ) dτ (1.33)

which simplifies to equation 1.31. The transfer function of the moving integrator is

H(ω) = e−jωT/2T sinc
ωT

2
(1.34)

If the input of this device is the signal with shot-noise in a detector, and the detector takes

an image from time t0 −T to time t0, then y(t0) is the accumulated signal after detection.

This shot noise variance is what one would measure in the relevant electronics. Of course,

one does not know before-hand what will be measured, and in taking an image, one does

not know what portion of the photo-current is spurious, as noise is random.

In general, noise arises from statistical mechanics; an infinite number of noise signal

progressions can be defined, each of which accord with the statistical mechanics that give

rise to the noise. Each of these possible noise progression signals is a member of the

ensemble that defines the noise source. In connection to noise ensembles, it should be

noted that the Poisson arrival time approach is a mathematical model based - however

roughly - on a consequence of the statistical mechanics of that system; it is not derived

here from statistical mechanics.

One may mathematically define two major classes of noise on the basis of their ensemble

progressions, namely those that tend toward statistically identical behavior in the future

as in the past, and those that undergo gross structural or causal shifts in the course of the

noise progression, hence continuously or regularly diverging from previous behavior. To

illustrate, consider a white noise source. For some ensemble member, xi(t), defined up to

some time t0, an infinite number of sub-ensemble members can be defined, such that they

are identical with xi(t) up to t0, but have some probability distribution for their value at

t0 + dt, for infintesimal dt - such a noise process would be considered unchanging, if the
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variance of the distribution remains constant with time, but not if it changes with time.

Power spectral densities are better defined for processes that do not undergo such gross

changes.

A consequence of unchanging mechanics is that an ensemble member function, defined

up to some point, e.g. t0 above, with statistically uncharacteristic behavior for some period

up to t0, will tend with high probability to statistically more representative behavior after

t0. Processes with unchanging mechanics (or statistics [47]) are called stationary; if a

process’s first and second order statistics are stationary, then said process is said to be

wide-sense stationary (WSS).

The correlation of a noise process with a delayed version of itself, may be shown to

be related directly to the variance in question. The correlation may be calculated in two

ways ([48, 49]). The first, known as autocovariance, is the ensemble expectation of the

product of a noise signal at some specific time t1, with the same noise signal at some other

time t1 + τ ,

Φx(t1, t1 + τ) = E{xi(t1) · xi(t1 + τ)} (1.35)

where E denotes averaging over the ensemble of possible outcomes xi(t). If the noise

process is WSS, the autocovariance is only a function of the time difference τ . The second

type of computation, autocorrelation, is on the ensemble member that one happens to

measure,

Rx(τ ;T1, T2) =
1

T2 − T1

∫ T2

T1

x(t) · x(t+ τ) dt (1.36)

If T2−T1 is sufficiently large as to be representative of the given WSS process, the resulting

autocorrelation is said to be ergodic; for a WSS process, an ergodic autocorrelation is equal

to the process’s autocovariance [49]. For a zero-mean WSS process, Φ(0) is the variance

of the process [50]. For WSS noise, the autocovariance is the inverse Fourier transform of

the PSD, by the Wiener-Khintchine theorem [51],

Φ(τ) =
1

2π

∫
∞

−∞

ejωτS(ω) dω (1.37)

One may create a new noise process by filtering an existing noise process. If the PSD

of the existing noise process is Sin(f), and the filter is LTI with transfer function H(f),

then one may show, using the Wiener-Khintchine theroem, that the new noise process,
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that appears at the output of the filter, has the PSD Snew [52]

Snew(f) = Sin(f) · |H(f)|2 (1.38)

which is shown in outline in chapter 3. This relation allows one to calculate the PSD of

y(t) in equation 1.31,

Sy(f) = Sx(f) · T 2sinc2πTf (1.39)

The ensemble variance of y(t) for all time, and hence of the integration detector shot noise,

is

σ2
I = 2

∫
∞

0

Sy(f)df (1.40)

= S0T (1.41)

= IeT (1.42)

The variance of the integrated shot noise per electron is

σ2
n = IT/e = λT (1.43)

as per equation 1.22.

One may wish to perform the same operation for 1/f noise, so as to calculate the

variance contribution that 1/f noise makes,

σ2
1/f = 2

∫
∞

0

S0

f
T 2sinc2(πTf)df (1.44)

however this integral diverges logarithmically in the low frequency limit. Although experi-

ments have failed to detect a lower cut-off, experimental possibilty precludes the detection

of a sufficiently low lower cut-off, as thermal variations over the time-scale needed to mea-

sure that low (τ ∼ 1/f0) would obscure such a lower cut-off.. A lower cut-off will be

assumed here for convergence; the PSD is

S(f) =
2πS0√
ω2 + ω2

0

(1.45)

The integration transfer function Hintω may also be represented by

Hint(ω) = T 2sinc2(ωT/2) = 2

∫ T

0

(T − t) cos(ωt) dt (1.46)
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The variance is then

σ2
1/f =

2

2π

∫
∞

0

2πS0T
2sinc2(ωT/2)√
ω2 + ω2

0

(1.47)

By substituting equation 1.46 and reversing the order of integations, one obtains

σ2
1/f = 4

∫ T

0

(T − t)

∫ T

0

S0
cos(ωt)√
ω2 + ω2

0

dω dt (1.48)

= 4S0

∫ T

0

(T − t)K0(ω0t) dt (1.49)

Substituting the approximation,

K0(x) = −C − ln(x/2)... (1.50)

one obtains for the variance,

σ2
1/f ' 2S0(3/2 − C − ln πTf0) (1.51)

The above variance calculation is somewhat naive, as any measurement performed

in a detector will be with respect to some datum, e.g. dark current a minute before

the measurement, irrespective of whether or not said datum is explicitly subtracted. If

the datum is not subtracted, the pixel photon count is simply displaced from the true

detected photon count of said pixel, over the longer term, and no variance is introduced

due to this displacement; the displacement is then a different kind of uncertainty, and

will thus still give rise to mottle. In practice, the subtraction of the individual pixel

datum is preferable, as pixels may have gross diferences in their data, thus introducing

consistent mottle. Moreover, the individual pixel datum may shift over time, e.g. due to

thermal drifts, or 1/f noise. One may take a datum reading before or after an exposure,

or use the average of before and after, to correct pixel photon counts. After correction for

displacement, e.g. as caused by 1/f noise, second order uncertainty (variance) remains;

this variance is considered in chapter 3.

Other workers made accounts of this variance, especially as it relates to 1/f noise.

Without explicitly considering correction, and outside the context of detectors, Keshner

[21] investigated the variance that would be experienced as variance rather than as an

average over the course of a finite length observation of 1/f noise in the absense of a lower

cut-off. Keshner’s total variance still diverges, but an infinite observation time is needed
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to observe this infinite variance, and it diverges logarithmically with observation time.

Keshner found the variance to depend logarithmically on the length of the observation

window.

McDowell [22] et al. extended Keshner’s method to the case where the frequency expo-

nent is not exactly one, and the noise bearing signal is integrated, with specific application

to x-ray detectors. An implicit calibration is also present in their work, as they simply

give the variance contribution from 1/f noise as a function of ‘observation time,’ which

they state is on the order of the time length that the equipment might ever be used.

In another paper, McDowell [53] et al. considered the difference between two equal

length, unseparated integrations of the signal from an x-ray detector, but did not consider

this as a general method to limit the variance of the noise, but rather as a kind of noise

floor. While the methods in chapter 3 are on the surface comparable to their method, it

arises from a different understanding of the noise contribution. The methods in chapter 3

are also more general.

In chapter 3, I derive the transfer functions of various correction regimes, e.g. using

one or two dark-current data for subtraction from the photocurrent, and the variance

contribution of various noise types under said regimes. In the next chapter, I recount

some of the advances that have been made in the understanding of 1/f noise. Other

groups did consider subtraction; in the literature, it is sometimes called “Correlated Double

Sampling.” Several groups use transfer functions to represent subtraction [54, 55, 56,

57]. Chapter 3 is effectively an algebraic generalization and extension of their methods,

as numerical methods have been used in previous work [58], although one author has

considered a CDS circuit as a low-pass filter to obtain algebraic results [59]—in chapter 3,

CDS is considered as an integration, and very general results are obtained.
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Chapter 2

Literature Review

The intent of this research is to understand the contribution 1/f noise makes to the

variance in the quantity detected by an integrating detector. Such a project has two com-

ponents: firstly, to understand how a given noise frequency exponent (α in equation 1.18)

and reference-frequency, spectral-density magnitude (S0 in equation 1.18) contribute to

said variance, and secondly, what determines said spectral density exponent and reference

frequency magnitude. The first component is presented in chapter 3. The second compo-

nent requires an understanding of how 1/f noise arises; such understanding as it exists,

is highly incomplete. This chapter serves to introduce what is understood about how 1/f

noise arises and gains its magnitude and exponent. However, no general theory for the

noise magnitude or exponent hase been developed - most 1/f noise sources are without an

adequate model. This chapter serves to discuss the science of 1/f noise, and to critique a

few papers. It may be skipped without any loss of continuity.

This chapter will discuss two types of 1/f noise studies, namely theoretical discussions

of how 1/f noise may arise from understood phenomena, i.e. models, and experiments

to see which phenomena might affect 1/f noise. Investigations have been made on the

dependence of 1/f noise on sample size, carrier concentrations, relation to temperature

and applied potentials, material type, and so forth.

2.1 Models

Lorentzian (equation 1.12) fluctuations, unlike 1/f noise, can readily be described theoret-

ically; for an overview, see [60] and references therein. Subject to the constraint that 1/f

noise is a fluctuation in resistance, a natural approach is to show that resistive Lorentzians

acting together give rise to a 1/f spectrum.
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One conceptually simple model is a sum over a distribution of statistically independent

Lorentzian fluctuators, where the distribution declines in density as the inverse of the

characteristic times, τ , of the fluctuators, as per Surdin, cited in [61]. Their cumulative

PSD will be

S(ω) ∝

∫
∞

0

K

τ

τdτ

1 + ω2τ 2
=
πK

2ω
(2.1)

The resulting PSD is 1/f , but it requires τ to range from 0 to ∞ which is unphysical. In

practice, only a finite range of characteristic times is expected, which give rise to deviations

from 1/f , e.g.

S(τmin, τmax;ω) ∝

∫ τmax

τmin

K

τ

τdτ

1 + ω2τ 2
=
K

ω
[arctanωτmax − arctanωτmin] (2.2)

This is illustrated in figure 2.1, for τmin = 10−3s and τmax = 1s. The frequency span

over the PSD reasonably approximates 1/f noise, may be calculated as per equation 2.11

below. The resulting frequency span, where the local slope lies between 0.8 and 1.2, limits

asymptotically to

df = dτ − 1.11 (2.3)

where df is the number of decades of frequency span where the local slope is 1/f and dτ

is the number of decades separation between τmin and τmax,

dτ = log10

(
τmax
τmin

)
(2.4)

The relationship between df and dτ is illustrated in figure 2.2. Of course, Lorentzians

would be summed, not integrated; for an integral approximation to work, the characteristic

times must be closely spaced, over a range that corresponds to the frequencies over which

we observe 1/f noise.

An early model for 1/f noise in MOSFETs, which is a basis for subsequent models, is

that of McWhorter. McWhorter’s model explains 1/f noise as fluctuations in resistance

due to the trapping of charge carriers from the valence or conduction bands into localized

states, and detrapping or return of the carriers to transport states. The traps are assumed

to be distributed uniformly over distance into the oxide that separates the gate from the

channel. This energy barrier between a trap and the channel is a type of activation barrier,

which causes the switching, or trapping/detrapping time to be thermally activated, i.e.

τ = τ0e
Ea/kBT (2.5)
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Figure 2.1: The noise produced by a Surdin distribution, i.e. ∝ 1/τ , with τmin =
10−3s, τmax = 1s is 1/f only over a small range.

where τ0 is the (very small compared to the Lorentzian characteristic times) characteristic

attempt-to-escape time. As such, one may sum the resulting noise over the (flat) distri-

bution in energy if the individual traps fluctuate independently of one another. Then

S(ω) ∝

∫
∞

0

τ0e
Ea/kBT dEa

1 + ω2τ 2
0 e

2Ea/kBT
=
kBT

ω
(π/2 − arctanωτ0) (2.6)

in the approximation of an infinitely wide distribution. This flat distribution of activation

energies of fluctuators is a more probable and intuitive explanation of 1/f noise than an

inversely proportional distribution of characteristic times.

2.1.1 Dutta, Dimon and Horn

One interesting extension of McWhorter’s approach is that of Dutta et al.[62], who use a

non-flat distribution of activation energies that results in a PSD that varies in magnitude

and exponent with temperature, in agreement with experiments, on 800Å thick Silver

films. Their work contains a rather surprising conclusion, namely a very broad 1/f noise

spectrum (60 decades, for one sample), which does not appear to be supported by the
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theory that they present.

Their equation 1 has a typographical error - they give the PSD of a thermally activated

Lorentzian as

S(ω) ∝
τ0e

Ea/kBT

1 + ω2τ 2
0 e

Ea/kBT
(2.7)

instead of as

S(ω) ∝
τ0e

Ea/kBT

1 + ω2τ 2
0 e

2Ea/kBT
(2.8)

It is not obvious whether their summation in their equation 2 is based on their erro-

neous equation 1. They approximate the integral of equation 2.7 or equation 2.8 as (their

equation 3)

SV (ω, T ) ∝
kBT

ω
D(Ẽ) (2.9)

where D(E) is the distribution of fluctuators with activation energy

Ẽ = −kBT lnωτ0 (2.10)
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τ0 is the characteristic attempt rate, and α is the frequency exponent of the PSD,

α = −
∂ lnSV (ω, T )

∂ lnωτ0
(2.11)

Using their definition of α and their equation 3, they obtain their equation 4,

α(ω, T ) = 1 −
1

lnωτ0

[
∂ lnSV (ω, T )

∂lnT
− 1

]
(2.12)

It is worth pointing out that in equation 2.9,

α ' 1 +
∂D(Ẽ)

∂Ẽ

kBT

D(Ẽ)
(2.13)

For a flat but limited distribution of activation energies D(E), one obtains one addi-

tional decade of 1/f noise for every additional 2.3kBT of width in D(E). For a non-flat

distribution, |D′(E)kBT/D(E)| must remain close to zero for the noise to remain close to

1/f . Their distribution is sufficiently sharp, as per equation 2.13, yet narrow as to give

only 5-10 decades of 1/f noise, their claim of 60 decades notwithstanding.

Dutta et al. claim, “Finally, we note that the observed scale invariance of the noise

spectrum is reproduced in our model as an artifact: For ω � 1/τ0, Ẽ is extremely insen-

sitive to changes in ω.” This argument is faulty. Scale-invariance refers to noise having

equal power in arbitrarily separated (or overlapping) decades of frequency span, or other

frequency spans where the span is specified as a ratio between the maximum and minimum

frequencies, and thus requires α ' 1 over a large span of frequencies. Their claim rests on

Ẽ in equation 2.10 not changing much as ω becomes small. To test their claim, we may

specify ω as being x decades below τ−1
0 ,

ω = τ−1
0 10−x (2.14)

Ẽ = 2.3kBTx (2.15)

Going 60 decades down in frequency at 300K implies going 3.6eV up in Ẽ; their D(E) is

about 0.6eV wide. Ẽ is linear in terms of decades down in ω. In fact, Ẽ has a logarithmic

dependence on ω, and thus becomes more sensitive to ω as ω goes down, not less,

∂Ẽ

∂ω
∝

−1

ω
(2.16)

25



A Gaussian-like distribution of fluctuator activation energies, such as that used by

Dutta et al., will not tend to generate generally scale-invariant noise. This may be seen

by substituting a Gaussian distribution into equation 2.13,

α ' 1 − kBT
Ẽ − µ

σ2
(2.17)

This approximation suggests that α will tend toward positive or negative infinity - in

practice, it will tend to 0 in the low frequency limit, and toward 2 in the high frequency

limit; either way, it will not generate scale-invariance over any large frequency range.

However, a fat-tailed distribution, e.g. that of Cauchy, will tend to generate a nearly

scale-invariant 1/f noise down to very low frequencies, with the noise having features in

α(ω) around the frequency corresponding to the peak of the distribution of activation

energies. This may be seen by substituting a Cauchy-shaped distribution of fluctuator

activation energies into equation 2.13,

α ' 1 − kBT
2a(Ẽ −E0)

(Ẽ −E0)2 + a2
(2.18)

which clearly tends to 1 as the energy Ẽ tends above or below E0. E0 and a are parameters

of the Cauchy distribution; the peak of the distribution is at E0.

Fleetwood and Giordano in their 1985 paper [63] tested the predictions of Dutta et

al., using noise measurements on a very narrow (530Å diameter) Au60Pd40 wire, over a

wide range of temperatures (77K-430K). They use the interpretation that defects and

their motion constitute the Lorentzian fluctuators, and thus interpret the change in noise

densities at different frequencies in terms of the concentration of defects as defects being

annealed away. They found Dutta’s (et al.) model very successful, including its predictions

of how the noise exponent would change with the noise density at a particular frequency. It

is worth noting that Dutta’s (et al.) prediction suggests that at Ẽ(ω) = 0.6eV, α ' 1.75.

It may be useful to measure α at a variety of frequencies at each temperature, to obtain

a best-fit distribution of fluctuators and test the distribution of independent fluctuators

formalism, as both Dutta et al. and Fleetwoord and Giordano measure α at one frequency

over multiple temperatures.
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2.1.2 Other Models

Hooge [61] presented a detailed analysis to show that the strict McWhorter model for

MOSFETs predicts a noise level as a function of the Fermi level; this noise level agrees

with experiment only over a narrow range of Fermi levels. Other models also exist to

describe how a 1/f spectrum may arise.

Borovitskaya and Shur [64] published a model of 1/f noise inolving tail states of the

band edges of semiconductors, i.e. those states most close to the band gap, when the

Fermi-level is close to the band edge; their proposal produces 1/f if the tail states density

exponentially decays into the band-gap. Pfeiffer [65] provides a quantum-physical 1/f

noise model for crystalline intrinsic semiconductors, that ties the noise to lattice vibra-

tions in one-dimensional semiconductors, through the exchange of energy between lattice

vibrations and carrier motion. A Hamiltonian, which is the quantum operator equivalent

to the energy of a system, was devised for this model system of one-dimensional lattice

vibrations with carriers, that included the effect of the field on both the charge carriers

and the lattice ions. Using this Hamiltonian, noise was derived with a PSD that was

1/f below a critical frequency, and 1/f 2 above. Shklovskii [66] derived a variable range

hopping conduction model of 1/f noise, for amorphous semiconductors. Germanium and

n-type Gallium Arsenide are mentioned as materials to which his model may apply. The

model predicts a resistive noise PSD magnitude that drops exponentially as the cube of

the absolute temperature, and gives a moderate range of 1/f noise (2.5 – 7 decades are

mentioned).

Kaulakys et al. [67, 68] use ‘point process’ non-linear stochastic differential equations

dx

dts
= Γx2η−1 + xηξ(ts) (2.19)

to produce 1/f noise; ts is a normalized time, Γ and η are parameters of the differential

equation, and ξ(t) is a Gaussian white noise signal. The frequency exponent is

α = 2 −
2Γ + 1

2η − 2
(2.20)
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and the resulting noise signal has a probability density function with the dependence

p(x) ∼ x−λ (2.21)

λ = 2(η − Γ) (2.22)

with different possible exponents. No materials are specified, to which this model may

apply.

Alternatives are thus available to potentially explain 1/f noise where McWhorter or

Dutta et al. cannot.

After the publication of the paper of Dutta et al., obvious questions were empirical

proof of the existence of the individual Lorentzians, possible Lorentzian sources, and their

nature. Possibilities for nature of the Lorentzians included defect motions in the case of

metals, and carrier number and mobility fluctuations for semiconductors. Several theo-

retical and experimental papers were published on these questions; several experimental

papers are discussed next.

2.2 Experimental Studies

A consequence of models like those of McWhorter and Dutta et al. is that a large set of

Lorentzian fluctuators, with a high degree of statistical independence, and with an appro-

priate distribution of characteristic times, will yield 1/f type noise. Several experimental

studies attempt to isolate fluctuators.

In parameter of 1/f noise that is indirectly of great significance to chapter 3, is the

‘second spectra,’ or the ‘noise of the noise’. This is measured by taking say k ·N samples,

where k and N are integers, and N samples are necessary to estimate the power of noise in

a given decade of interest at the sampling rate used. One then calculates the power in the

decade of interest, for samples 1 to N , say using a Fourier sequence, and makes that power

result the first point in a data sequence. This operation is then repeated for samples 2 to

N + 1 to generate the second point of the data sequence, and so forth, to sample subset

[(k− 1)N + 1] to kN . A PSD is then calculated for the resulting set of power points; this

PSD is the second spectrum. The derivation of chapter 3 relies on the second spectrum

being ‘white’ or constant, but will not be greatly modified for α < 1. Kogan ascribes to
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Weissman the position that non-flat second spectra indicates a divergence from Gaussian

behavior, although both by definition and as is implied by Kogan, a non-white second

spectrum must be second-order non-stationary [69]. A result of my work in chapter 3 is

that a second-spectrum with α < 1 is second-order stationary.

Garfunkel et al. [70] studied small numbers of fluctuators in very small (nanometer-

scale), very cold (4K-30K) C-Cu and Si-Au amorphous conductor samples, as the cold

slows down the fluctuators, making individual fluctuators easier to identify. They found

both tunneling-type (two-level system) and thermally activated-type fluctuators. The

density of fluctuators based on noise measurements at 4K accounted for the deviation

of the heat capacity of the amorphous samples from expected trends. They found that

TLS fluctuators often were not entirely statistically independent, and proposed that the

fluctuators interacted. They found that anneals of 100K randomized spectral features,

in particular the average power in a given continuous decade of frequency. They also

measured second spectra over several octaves of first spectra; high frequency noise was

found to have 1/f second spectra tendencies.

Black et al. [71] studied the cross-correlation of 1/f noise on two closely spaced current

paths in metal films, to see if thermal fluctuations, which would quickly spread over a

small distance, cause 1/f noise. They found no correlations, and conclude that the noise

is produced very locally, and not due to resistivity increases from thermal fluctuations.

Bora and Raychaudhuri [72] studied the noise of metal films under electromigration

(EM) stressing, which is the drift or diffusion of impurities and defects in a film under

very high current densities and electric fields. They found a 1/f 3/2 noise that grew in

magnitude as the EM stressing persisted. Their system had both 1/f and 1/f 3/2 noise,

as schematically illustrated in figure 2.3. In their figure8a, they give the ratio of the 1/f

S0 to the 1/f 3/2 S0 at 1Hz as 2, whereas in their figure 13, they give the same ratio as 10.

It appears that the incomplete understanding is both in the 1/f and EM stressing noise:

both the 1/f and EM simulation S0 disagree with the experimental results.

For their 1983 paper [73], Fleetwood and Giordano measured noise in unstressed and

stressed films. They found that stressing a film tended to decrease the 10Hz noise mag-

nitude, while increasing the spectral exponent. The effects were reduced over time as the

strains inside the films relaxed, suggesting to the authors that 1/f noise results from strain
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Figure 2.3: At the lower frequencies, the EM-stress induced 1/f 3/2 noise is dom-
inant; at higher frequencies, 1/f noise takes over, and finally, white noise becomes
dominant at the highest frequencies.

relaxation; in light of the work of Bora and Raychaudhuri above, one might well ask if

that is not a separate process of 1/f noise, or at least a separate mode of the process that

gives rise to 1/f noise in metal films.

Pelz and Clarke [74] irradiated polycrystalline Cu films with 500keV electrons to in-

vestigate the effect of the irradiation on the 1/f noise of the samples; the samples were

held at 90K. They expected spatially uncorrelated Frenkel defects, or pairs of vacancies

with atoms in interstitial (off-lattice) positions. They found that annealing reduced the

additional 1/f noise more rapidly that it did the additional resistivity, and anneals at

temperatures as low as 108K would reduce the noise magnitude substantially. It appears

that this irradiation does not affect the exponent of the noise process.

Parman et al. [75] studied the second spectra of current 1/f noise in hydrogenated

amorphous silicon (a-Si:H), and found them to have a strong 1/f component. This they

suggest is indicative that some traps modulate others, and hence invalidates the assump-

tion of independent fluctuators. Bakker [76] suggests that 1/f noise in a–Si:H arises from
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both the disorder, and from a random, randomly varying ‘potential landscape,’ or non-

linear spatial variation in carrier potential. The ‘potential landscape’ due to amphoteric

deep traps, i.e. traps that can capture both electrons and holes, also known as charged

deep defects contribute to the noise. The random ‘potential landscape’ and fluctuations

in potential tend to localize electrons.

Fantini et al. [77] investigated the noise dependence of chalcogenide-based (GST is

Ge2Sb2Te5) phase-change memories, both at low forward bias and at avalanche-inducing

reverse bias. They found the current at low forward bias to be very much resistive,

but becoming more exponentially dependent at higher biases. For the amorphous phase,

the noise magnitude was slightly more than two orders of magnitude higher than for

the device-polycrystalline phase. They found that both the white and 1/f noise in the

avalanche mode had an effective multiplier M2, i.e.

SI = SI0(f)M2 + 2qIM2 (2.23)

where the first term on the right is the 1/f term.

2.2.1 MOSFETs

Vandamme et al. [44] suggest that for n-channel MOSFETs, the noise arises from carrier

concentration fluctuations, whereas for p–channel MOSFETs, mobility fluctuations make

the dominant noise contributions. They state that for carrier concentration fluctuations,

a Hooge parameter dependence

αH ∝
1

VGS − Vth
(2.24)

is expected, but that the same dependence is expected for carrier mobility fluctuations

when there are impurity-produced cavities in the inversion layer. They further give as

evidence that for p–channel MOSFETs,

SVeq
= SIsat

/g2
m ∝ VGS − Vth (2.25)

which suggests that αH is independent of VGS − Vth. Their suggestions are interesting, as

both mobility and number fluctuations may give rise to 1/f noise in crystalline semicon-

ductor devices, alongside other mechanisms. The number fluctuations they attribute to the
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capture of carriers near the gate (by diffused oxygen traps). Vandamme and Vandamme

[78] found that physical models with very separate algebraic dependences are needed to

account for 1/f noise in p and n–channel MOSFETS.

Aoki and Kato [79] performed noise measurements on 10keV x-ray irradiated and hot

carrier injected MOSFETs. They found that hot-hole injection and irradiation much more

quickly increased device noise than hot-electron injection. It is known (e.g. from [44] and

references therein) that increases in sample or device noise indicates poor crystal quality,

and is an indication of impeding failure.

As can be seen from the above overview, the 1/f understanding of MOSFETs is quite

sophisticated, if still in many physical respects incomplete.

2.3 Tensor Noise Models

As the Lorentzians that give rise to 1/f noise in passive devices may be defects or other

irregularities, it is plausible that the resistivity noise may be anisotropic, including in

isotropic media. I next critique two papers on such proposals for 1/f noise.

2.3.1 Tensors: Kogan and Nagaev

Kogan and Nagaev’s paper [80] shows how defects, whose resistivity is anisotropic, and

whose movement constitutes internal friction, may give rise to 1/f noise. The fluctuator

distribution is mainly flat, presumably in activation energy. They claim that a certain

degree of anisotropy is necessary to achieve 1/f noise. They produce a similar result for

so-called ‘two-level’ systems, where an electron may be somewhat trapped in one of two

spatially and energetically seperated traps, and may transition or tunnel between the two

levels or traps. Two-level systems are typically evident in very cold (T < 1K) samples.

They state that the state of the electron would alter the local resistivity.

Some notable features of their defect (internal friction) model include:

1. They give the 1/f noise due to internal friction as

S(f) ' n(Ẽ)[lσs(Ẽ)]2
kBT

V f
(2.26)
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where Ẽ is as per Dutta et al. above, l is the electron free path length, V is the volume

of the sample, and n(Ẽ) is the defect concentration. The background internal friction

is

QBG '
π

2
n(Ẽ)B(Ẽ) ∼ 10−4 10−3 (2.27)

for metals, and B(Ẽ) is on the order of the elastic modulus times the ‘atomic volume’

squared. It is not clear whether this atomic volume’ is that of a unit cell, or some

more nebulous ‘atomic volume’.

2. A given defect will have one of S orientations, where the physical meaning of s given

that 1 ≤ s ≤ S, is dependent on the crystal structure. The concentration of defects

of orientation s in some volume is ns, and the total concentration of defects is

nd =

S∑

s=1

ns (2.28)

3. The defects are assumed to be distributed rather diffusely, so as to determine the

average resistivity tensor by the concentration of the defects. In this manner, it

becomes meaningful to speak of terms like ∂ρij/∂ns.

4. They give a relationship that implies that one consequence of their model is

∀s(1 ≤ s ≤ S) =⇒
3∑

i=1

[
∂ρii
∂ns

−
1

S

S∑

z=1

∂ρii
∂nz

]
= Constant (2.29)

This is a necessary consequence of their unnumbered equation

Tr{δP} = 0 (2.30)

given their condition in the text that defects fluctuate by changing orientation, with-

out changing the total number of defects. They state this condition (equation 2.30)as

obvious, but supply no justification.

2.3.2 Tensors: Weissman, Black and Snow

For materials that are on average isotropic in resistivity, the fluctuations in resistivity

through the material need not be isotropic; Weissman et al. devised a statistical anisotropy

parameter S (not to be confused with the S above) , that describes the statistical properties
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of the resistivity noise tensor, for different types of aniostropic fluctuations[81]. They

then relate this paramter to the noise on the orthogonal-to-current arm of a Maltese–

cross–shaped sample [82]. Their derivation allows for a frequency-dependent statistical

anisotropy parameter.

Resistivity fluctuation is understood to arise from defects and number or mobility

fluctuations; their orientations may be random, or may be determined by the orientations

of the crystal in which they occur, e.g. point defects (see [80] above); the individual

fluctuations are expected to have Lorentzian spectra. The orientation of a fluctuation is

its primary axes, along which one may directly calculate the electric field vector from the

current density vector. To calculate e.g. the electric field vector arising from the current

density at a given point, one needs all the components of the current density along the axes

of the fluctuation tensor; one obtains then the electric field components along the same

axes. One seeks however the fluctuation of the electric field due to the current density,

along the axes of the sample.

To calculate the electric field vector from the current density along the sample axes,

one must rotate the tensor to the axes of interest, by taking components of the electric

field and current density along the tensor axes, as shown below. A uniform distribution of

fluctuation axis orientations is expected; in order to rotate the tensor, the rotations of the

axes to obtain all possible orientations must be defined. Allowing the coordinate system

to remain right handed, any orientation of the axes can be described uniquely as three

rotations, thereby avoiding explicit reference to the sample axes. The fluctuation tensor

axes are the set xn: firstly, one may define an x′n set of axes, where x̂′1 and x̂′2 lie in the

plane of x̂1 and x̂2, rotated by some angle φ, and x̂′3 = x̂3. Secondly, one may define an

x′′n set of axes, where x̂′′1 and x̂′′3 lie in the plane of x̂′1 and x̂′3, rotated by an angle θ− π/2.

This angle is chosen so that π/2 corresponds to the unrotated case, and to let θ vary from

0 to π; x̂′′2 = x̂′2. Finally, one may rotate x̂′′2 and x̂′′3 in their plane, by some angle ψ, to

obtain the x′′′n axes.

Relevant variances and correlations may be calculated by averaging over time, solid
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angle of x′′′1 axis rotation, and angle of x′′′2 –x′′′3 rotation,

〈ab〉t,φ,θ,ψ = lim
T→∞

1

T

∫ T/2

−T/2

1

2π

∫ 2π

0

1

2

∫ π

0

1

2π

∫ 2π

0

a(t, φ, θ, ψ) b(t, φ, θ, ψ) dψ sinθ dθ dφ dt

(2.31)

In the following, let the vectors be column vectors, so that row vectors are achieved

by transposition. The tensor rotation may be understood as follows. Let the resistivity

tensor in the axes that define its orientation be

δP =




δρ11 δρ12 δρ13

δρ21 δρ22 δρ23

δρ31 δρ32 δρ33


 (2.32)

Then

δ ~E = δP ~J + P δ ~J (2.33)

where Weissman et al. [81] consider the second term on the right to be zero, as the current

is held constant. To find the tensor along the x′n axes, we may use

~x′n = Rφ ~xn (2.34)

where

Rφ =




cosφ sinφ 0

− sin φ cos φ 0

0 0 1


 (2.35)

and

R−1
φ = R−φ (2.36)

Then

δ ~E ′ = Rφ δ ~E = Rφ δP ~J (2.37)

however

~J = R−1
φ

~J ′ (2.38)

so

δ ~E ′ = Rφ δP R
−1
φ
~J ′ (2.39)

Using the associative property of matrix multiplication, one may identify the rotated

tensor as

δP ′ = Rφ δP R
−1
φ (2.40)
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Next, one seeks the tensor after the θ − π/2 rotation,

Rθ =




sin θ 0 cos θ

0 1 0

− cos θ 0 sin θ


 (2.41)

R−1
θ =




sin θ 0 − cos θ

0 1 0

cos θ 0 sin θ


 (2.42)

δP ′′ = Rθ δP
′R−1

θ (2.43)

All orientations of x1 have been accounted for, but x2 and x3 must still be rotated,

Rψ =




1 0 0

0 cosψ sinψ

0 − sinψ cosψ


 (2.44)

R−1
ψ = R−ψ (2.45)

δP ′′′ = Rψ δP
′′R−1

ψ (2.46)

As the sample of Weissman et al. constrains the current along two of the three dimen-

sions, one may attempt to reproduce their results using 〈(δρ′′′11)
2〉t,φ,θ,ψ and 〈(δρ′′′12)

2〉t,φ,θ,ψ

as reference quantities, where 〈x〉t,φ,θ,ψ denote averaging over time and all orientations.

Other second order quantities will be linear combinations of these. As they assume that

the sample is isotropic on time average, the following relations, which simplify the above

quantities, are expected to hold:

〈δρ2
11〉t = 〈δρ2

22〉t = 〈δρ2
33〉t (2.47)

〈δρ11δρ22〉t = 〈δρ11δρ33〉t = 〈δρ33δρ22〉t (2.48)

〈δρ12δρ21〉t = 〈δρ13δρ31〉t = 〈δρ32δρ23〉t (2.49)

〈δρ2
12〉t = 〈δρ2

13〉t = 〈δρ2
21〉t = 〈δρ2

23〉t = 〈δρ2
31〉t = 〈δρ2

32〉t (2.50)

Using the above identities, one finds that

〈δ(ρ′′′11)
2〉t,φ,θ,ψ = 0.2(3〈δρ2

11〉t + 2〈δρ11δρ22〉t + 2〈δρ2
12〉t + 2〈δρ12δρ21〉t) (2.51)

〈δ(ρ′′′12)
2〉t,φ,θ,ψ = 0.2(〈δρ2

11〉t − 〈δρ11δρ22〉t + 4〈δρ2
12〉t − 〈δρ12δρ21〉t) (2.52)
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Next, Weissman et al. define their resistivity tensor fluctuation parameter as

S =
2〈det{δP}〉t
〈Sp{(δP )2}〉t

(2.53)

They give their rotation averaging result equations 8a-c respectively as

(8a) 〈δρ2
11〉t = γ(S + 3)/4 (2.54)

(8b) 〈δρ11δρ22〉t = γ(1 + 3S)/4 (2.55)

(8c) 〈δρ2
12〉t = γ(1 − S)/4 (2.56)

(8d) 〈δρ11δρ12〉t = 0 (2.57)

Substitution of their equations 8a-c into equation 2.53 for a 2x2 tensor suggests that they

used a 2x2 tensor to define S, with the assumption that

〈δρ2
12〉t = 〈δρ12δρ21〉t (2.58)

as a 3x3 tensor would have terms like 〈δρ2
11〉t in the denominator, and terms like 〈δρ11δρ22δρ33〉t

in the numerator. For a 2x2 resistivity fluctuation tensor,

S =
〈δρ11δρ22〉t − 〈δρ12δρ21〉t
〈δρ2

11〉t + 〈δρ12δρ21〉t
(2.59)

One may rotate the 2D resistivity tensor in the plane,

Rφ =


 cosφ sinφ

− sinφ cosφ


 (2.60)

R−1
φ = R−φ (2.61)

δP ′ = Rφ δP R
−1
φ (2.62)

∀φ[S(δP ′) = S(δP )] (2.63)

The last result, namely that S2x2 is insensitive to rotation, makes S a generally descriptive

parameter of the resistivity fluctuation tensor. One may rewrite the S-relationship as

S〈δρ2
11〉t + (S + 1)〈δρ12δρ21〉t − 〈δρ11δρ22〉t = 0 (2.64)

One might wonder whether their calculations are based on a 2x2 tensor; a simple

check may suffice: one takes the dependence of 〈(δρ′11)
2〉t,φ and 〈(δρ′12)

2〉t,φ, or any other
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such pair, on 〈δρ2
11〉t, 〈δρ11δρ22〉t and 〈δρ12δρ21〉t, and combine the resulting equations

with the S-relationship in equation 2.64; they are invariably underdetermined. Hence

one may conclude that Weissman et al. used 3D rotations in combination with the 2D

S-relationship.

Using equations 2.51 and 2.52 with the S-relationship, one may solve for 〈δρ2
11〉t,

〈δρ11δρ22〉t and 〈δρ12δρ21〉t in terms of 〈(δρ′′′11)
2〉t,φ,θ,ψ and 〈(δρ′′′12)

2〉t,φ,θ,ψ. Substituting

equations 8a-c of Weissman et alinto equations 2.51 and 2.52, one may solve for their

parameter γ in each case. One obtains different results for γ for each pair of the three

equations used. Solving any pair of the three resulting equations, with substitution of

their equations 8a–c as necessary, yields S = 1, namely the scalar fluctuation case, though

with S = 0 (dyadic - see below) or S = −1 (traceless) as possible alternate solutions.

S = 0 might be a special case, as the resulting equations involve division by S.

Their equation 8d cannot be justified at all—nothing in the rotation results depends

on terms like 〈δρ11δρ12〉t! As such, nothing can be said about them on the basis of the

rotation averages. A further problem with their work is that only ‘dyadic’ tensors, namely

those that are proporsional to k̂k̂T [83], where k̂ is a random direction, can have S = 0.

If another type of fluctuator exists that also has S = 0, then one cannot derive general

equations such as their equations 8a-c. One also suspects that similarly linear relationships

of 〈δρ2
11〉t et cetera in S, could be used to make S = −1 a general solution, to find the

traceless fluctuators which were not found - the closest found was an apparent S of -0.48

[84]. It is not at all clear why 〈δρ2
11〉t et cetera should be related to each other by the

ratios of polynomials that are order one in S.

Weissman’s insight as to the tensor nature of the fluctuations might be fruitfully

adapted to future research, but his equations seem problematic.

2.4 Conclusion

Several materials and devices add 1/f noise to a practical detector setup. The science

of the dependence of their 1/f noise levels S0 and exponents α has been discussed in

this chapter, and sufficient references have been given for the interested reader to initiate

further study. In the next chapter, I derive relationships for the variance from 1/f noise
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that is contributed to a detected quantity in a practical detector circuit. The results in

chapter 3 depend on S0 and α; they are assumed to be largely independent of frequency,

over a sufficient range of frequencies.
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Chapter 3

Noise Analysis of Imaging Detectors and

Sample Sequences

This chapter contains the main results of my research. I determine a formula for the

variance that is added to a typical x-ray image by 1/f noise and white noise, considering

that the integrated dark current of a detector element (see chapter 1) is subtracted from

the integrated photocurrent of said detector element. This subtraction of integrations is

equivalent to a band-pass filter, which limits the noise variance contribution. The mathe-

matical description that I use to calculate the noise variance contribution to the detected

radiation, namely a bandpass filter, is insensitive to whether the dark-current integration

precedes or follows the photocurrent integration, although in a practical detector, there

will be different outcomes in the two scenarios, due to e.g. trapping of carriers and struc-

tural changes in the semiconductor element due to the exposure to x-ray radiation. Next

I calculate the variance that white and 1/f noise contribute to sample sequences. These

calculations of the contributed variance of the noise depend on the filtration of noise; I

first show an outline of a derivation of the power-spectral density of a noise signal that

is produced by filtering second-order stationary noise with a linear time-invariant filter.

This is needed to calculate the above noise variance contributions.

3.1 Noise Filtration

A noise signal x(t), with power-spectral density (PSD) Sx(ω), is filtered with a linear

time-invariant filter of finite length, that has an impulse response h(t), to produce y(t) i.e.

y(t) = x(t) ∗ h(t) (3.1)
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where ‘∗’ is the convolution operator. If the filter impulse response h(t) is non-zero only

within the window τmin < t < τmax, one may show, along the lines that I use below, that

Sy(ω) = Sx(ω) · |H(ω)|2 (3.2)

where H(ω) is the Fourier transform of the impulse response h(t).

The Wiener-Khintchine theorem, introduced in chapter 1, states that the PSD is the

Fourier transform of the autocovariance function,

Sy(ω) =

∫
∞

−∞

Φy(τ
∗)e−jωτ

∗

dτ ∗ (3.3)

When the autocorrelation function Ry(τ
∗) of a wide-sense stationary (WSS, introduced

in chapter 1) noise signal is measured over a sufficient period, it becomes equal to the

autocovariance function Φy(τ
∗); it is then called ‘ergodic’.

If one measures y(t) over a finite period, e.g. from T1 to T2, one may calculate a ‘mea-

sured’ PSD from the resulting autocorrelation function; the integral should be symmetric,

to avoid an imaginary component in the PSD. Moreover, the Fourier transform should not

exhaust the available measurement, i.e. the range of τ ∗ should remain a fraction of the

data range of y(t), to avoid a potentially unrepresentative autocovariance at the extremes

of the integral. Let

Smeasy (ω) =

∫ (T2−T1)/M

(T1−T2)/M

Ry(τ
∗)e−jωτ

∗

dτ ∗ (3.4)

where M is a natural number.

For a given frequency ω, at which one seeks to measure Sy(ω), one needs

ω(T2 − T1) � 2πM (3.5)

to obtain an ergodic measurement of Sy(ω), i.e. the measurement period should be sev-

eral multiples of the inverse frequency. To minimize spurious pickup of nearby spectral

content, ω(T2 − T1)/(2π) should be an integer. One may partition the autocorrelation

function into component functions that are limited each to narrow frequency bands, for

the purpose of calculating the PSD, as the autocovariance function of ideal 1/f noise is

infinite over an infinite range. As one measures the autocorrelation function over a longer

period, lower-frequency components add more variance, because the measurement period

becomes more than the period of a given component, whereas over a shorter period, a
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lower frequency component merely contributes an apparent mean to the noise signal. To

measure a spectrally limited component of the autocorrelation function ergodically, one

may measure for a shorter time,

tmeas ∼ 2πN/ω (3.6)

than one might for the entire autocorrelation function. The PSD may then be written in

terms of a partial autocorrelation function in equation 3.4. The autocorrelation function

is measured roughly from T1 to T2, i.e.

Rmeas
y (τ) =

∫ T2−τ/2

T1−τ/2

y(t∗) · y(t∗ + τ ∗)

T2 − T1
dt∗ (3.7)

The limits are chosen to ensure that the autocorrelation function is even, i.e.

Ry(τ
∗) = Ry(−τ

∗) (3.8)

This condition guarantees that any PSD calculated on the basis of a measured Ry(τ)

will have a zero imaginary component. It is also structured to avoid having τ ∗ in the

denominator, which could make constant limits in the integral possible, while making free

changing of integration order problematic. Proving the filtration relationship, equation 3.2,

using the autocorrelation function in equation 3.7, is beyond the scope of this thesis —

only an outline is presented here. For that reason, a simplified autocorrelation function is

used, namely

Ry(τ) =

∫ T2

T1

y(t) · y(t+ τ)

T2 − T1
dt (3.9)

Substituting, we find

Smeasy (ω) =

∫ (T2−T1)/M

(T1−T2)/M

e−jωτ
∗

∫ T2

T1

y(t∗) · y(t∗ + τ ∗)

T2 − T1

dt∗ dτ ∗ (3.10)

The filtered noise signal y(t) is related to the input noise signal x(t) by the convolution

integral,

y(t) =

∫
∞

−∞

x(τ ′) · h(t− τ ′) dτ ′ (3.11)

Earlier, I stated that h(t) is non-zero only from τmin to τmax — this allows a simplification

of the convolution integral to

y(t) =

∫ τmax+t

τmin+t

x(τ ′) · h(t− τ ′) dτ ′ (3.12)
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My purpose here is to show an outline of a proof for equation 3.2, and as such, I simplify

the convolution further, to ease reversals of orders of integration, to

y(t) =

∫ T2

T1

x(τ ′) · h(t− τ ′) dτ ′ (3.13)

Then one may write the PSD as

Smeasy (ω) =

∫ (T2−T1)/M

(T1−T2)/M

e−jωτ
∗

∫ T2

T1

1

T2 − T1

[∫ T2

T1

x(τ ′) · h(t∗ − τ ′) dτ ′
]
·

[∫ T2

T1

x(τ ′′) · h(t∗ + τ ∗ − τ ′′) dτ ′′
]
dt∗ dτ ∗

(3.14)

Next, one must substitute τ = −τ ∗, to get

Smeasy (ω) =

∫ (T2−T1)/M

(T1−T2)/M

ejωτ
∫ T2

T1

1

T2 − T1

[∫ T2

T1

x(τ ′) · h(t∗ − τ ′) dτ ′
]
·

[∫ T2

T1

x(τ ′′) · h(t∗ − τ − τ ′′) dτ ′′
]
dt∗ dτ

(3.15)

Then one must substitute t = t∗ − τ , to get

Smeasy (ω) =

∫ (T2−T1)/M

(T1−T2)/M

ejωτ
∫ T2−τ

T1−τ

1

T2 − T1

[∫ T2

T1

x(τ ′) · h(t+ τ − τ ′) dτ ′
]
·

[∫ T2

T1

x(τ ′′) · h(t− τ ′′) dτ ′′
]
dt dτ

(3.16)

As the purpose here is to show an outline of a proof, and as that proof involves multiple

rearrangements of integrals, I neglect the −τ in the integral over t, i.e.

Smeasy (ω) =

∫ (T2−T1)/M

(T1−T2)/M

ejωτ
∫ T2

T1

1

T2 − T1

[∫ T2

T1

x(τ ′) · h(t+ τ − τ ′) dτ ′
]
·

[∫ T2

T1

x(τ ′′) · h(t− τ ′′) dτ ′′
]
dt dτ

(3.17)

Rearranging equation 3.17 multiple times yields

Smeasy (ω) =

∫ T2

T1

∫ T2

T1

∫ T2

T1

x(τ ′) · x(τ ′′) · h(t− τ ′′)

T2 − T1

∫ (T2−T1)/M

(T1−T2)/M

ejωτh(t+ τ − τ ′) dτ dτ ′′ dτ ′ dt

(3.18)

Substituting τα = τ + t− τ ′, where dτα = dτ , one obtains

Smeasy (ω) =

∫ T2

T1

∫ T2

T1

∫ T2

T1

x(τ ′) · x(τ ′′) · h(t− τ ′′)

T2 − T1

∫ (T2−T1)/M+t−τ ′

(T1−T2)/M+t−τ ′
ejωταh(τα) dτα·

ejω(τ ′−t) dτ ′′ dτ ′ dt

(3.19)
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To simplify this equation, one may treat the inner integral as simply H∗(ω), that is, as

the conjugate transfer function of the filter,

Smeasy (ω) =

∫ T2

T1

∫ T2

T1

∫ T2

T1

x(τ ′) · x(τ ′′) · h(t− τ ′′)

T2 − T1

H∗(ω)ejω(τ ′−t) dτ ′′ dτ ′ dt (3.20)

if one specifies τmin and τmax of the filter as being within the limits of the inner integral

generally. In a rigorous derivation, I expect that fragments of the autocorrelation integral

will be integrated over portions of the impulse response, summing to an equivalent transfer

function-autocorrelation product. Substituting τβ = τ ′′−τ ′, where dτβ = dτ ′′, one obtains

Smeasy (ω) =

∫ T2

T1

∫ T2

T1

∫ T2−τ ′

T1−τ ′

x(τ ′) · x(τβ + τ ′) · h(t− τ ′ − τβ)

T2 − T1

H∗(ω)ejω(τ ′−t) dτβ dτ
′ dt

(3.21)

Rearranging, one finds

Smeasy (ω) =

∫ T2

T1

∫ T2−τ ′

T1−τ ′

x(τ ′) · x(τβ + τ ′)

T2 − T1

∫ T2

T1

h(t−τ ′−τβ)e
jω(τ ′−t) dtH∗(ω) dτβ dτ

′ (3.22)

Substituting t′ = t− τβ − τ ′, where dt′ = dt, one obtains

Smeasy (ω) =

∫ T2

T1

∫ T2−τ ′

T1−τ ′

x(τ ′) · x(τβ + τ ′)

T2 − T1

∫ T2−τβ−τ
′

T1−τβ−τ ′
h(t′)e−jω(t′+τβ) dt′H∗(ω) dτβ dτ

′

(3.23)

To simplify this equation, one may treat the inner integral as simply H(ω), i.e. as the

transfer function of the filter, to obtain

Smeasy (ω) =

∫ T2

T1

∫ T2−τ ′

T1−τ ′

x(τ ′) · x(τβ + τ ′)

T2 − T1
H(ω)H∗(ω)e−jωτβ dτβ dτ

′ (3.24)

where H(ω)H∗(ω) = |H(ω)|2. Rearranging, one finds

Smeasy (ω) =

∫ 0

T1−T2

∫ T2

T1−τβ

x(τ ′) · x(τβ + τ ′)

T2 − T1
|H(ω)|2 e−jωτβ dτ ′ dτβ

+

∫ T2−T1

0

∫ T2−τβ

T1

x(τ ′) · x(τβ + τ ′)

T2 − T1
|H(ω)|2 e−jωτβ dτ ′ dτβ

(3.25)

One may simplify the inner integrals to obtain

Smeasy (ω) =

∫ 0

T1−T2

T2 − T1 + τβ
T2 − T1

Rx(τβ) |H(ω)|2 e−jωτβ dτβ

+

∫ T2−T1

0

T2 − T1 − τβ
T2 − T1

Rx(τβ) |H(ω)|2 e−jωτβ dτβ

(3.26)
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as the inner integrals in equation 3.25 are longer and shorter than T2 − T1, respectively.

One may simplify further to obtain

Sy(ω) =

∫ T2−T1

T1−T2

Rx(τβ)e
−jωτβ |H(ω)|2 dτβ

+

∫ 0

T1−T2

τβ
T2 − T1

Rx(τβ)e
−jωτβ |H(ω)|2 dτβ

−

∫ T2−T1

0

τβ
T2 − T1

Rx(τβ)e
−jωτβ |H(ω)|2 dτβ

(3.27)

The first integral simplifies to Sx(ω) |H(ω)|2, and using the even property of the autocor-

relation function, one finds

Sy(ω) = Sx(ω) |H(ω)|2 −

∫ T2−T1

0

2τβ · Rx(τβ)

T2 − T1
cos(ωτβ) |H(ω)|2 dτβ (3.28)

For white noise, the integral in equation 3.28 is zero, as the autocorrelation function

is a constant-scaled Dirac delta function. For 1/f noise, at the lower frequencies, we

have an x ln x dependence multiplied by a slow-changing cosine, which may render the

integral modest; at the frequency of interest, one might expect the integral to grow with

observation i.e. as T2 − T1; this does not seem to be the case, based on the experiments

reported in chapter 4, and the integral may be an artifact of the rather imprecise derivation

above. In the remainder of this chapter, equation 3.2 is used unmodified.

3.2 Transfer Functions and Variances

X-ray detectors’ operation involves a photo-current measurement, which is preceded or

followed by a dark-current measurement that is used as a reference; this procedure is

repeated for each image taken. Several configurations of the detector are possible: 1.

an integration of the dark-current, taken before or after an integration of the photo-

current, may be subtracted from the integration of the photo-current; 2. an average of

the integrations of the dark-current before and after the integration of the photo-current

may be subtracted from the photo-current integration; 3. where the currents are averaged

rather than integrated, an average of the dark-current may be subtracted from the photo-

current average, though the averaging period of the photo-current may be different from

the averaging period of the dark current.
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I generate transfer functions in the following sections, to represent the above configu-

rations of the detector, to develop a formula for the variance contribution of noise to the

x-ray detector under the different configurations. The operation of these filters is that if

equation 3.1 holds then y(t0) is the signal collected by the system after the subtraction of

the integrated dark current, at time t0. The ensemble variance that the noise contributes

is

var =
2

2π

∫
∞

0

S(ω) |H(ω)|2 dω (3.29)

This variance may be measured by repeatedly measuring the unexposed reading of a

detector, and taking the variance of the readings. The transfer functions H(ω) used in the

following subsection is essentially the Correlated Double Sampling (CDS) transfer function

of [54, 55, 56, 57, 58, 59].

3.2.1 Simple dark-current subtraction

The operation of a CDS-based detector is to subtract a ’dark’ reading from an ’exposure’

reading. Stated differently, a background reading is subtracted from the measurement.

This is illustrated in figure 3.1. The dark current integral (on the left) in the figure is

subtracted from the exposure current integral (on the right). In the sequence graphed,

no photocurrent is apparent. The integrals have length T , and are separated, middle-to-

middle by ∆T .

I represent the subtraction of the integrals by a frequency-domain transfer function,

Hsub and int, which I construct from two integrators separated in time. A single integration

over time T is given by the transfer function,

Hint(ω) = T sinc(ωT/2) (3.30)

which is a low-pass filter. The transfer function for subtraction of values separated by ∆T

is

Hsub(ω) = 1 − ejω∆T (3.31)

which is a high-pass filter. The total transfer function for the subtraction of a delayed

integration from another integration is thus

Hsub and int(ω) = T sinc(ωT/2) − e−jω∆TT sinc(ωT/2) (3.32)
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Figure 3.1: An example of 1/f noise versus time and correlated double sampling.
Above, the bars indicate the integration time T and the integral separation ∆T .
Lines marked with

∫
i(t) dt are the cumulative integrals over the periods marked T ,

which are then subtracted; left axis not shown.

which is a band-pass filter. Notice that the above transfer function is not causal; with

noise, causality does not impact the PSD in principle. The variance added to a pixel

reading is

var =
2

2π

∫
∞

0

S(ω)|Hsub and int(ω)|2 dω (3.33)

where the two in the numerator corrects the integral for a two-sided spectrum, which

would otherwise go from −∞ → ∞, and the 2π normalizes the angular frequency.

For subtraction of the dark current integration before or after the exposure integration,

the variance for a 1/fα noise input with α = 1 is

var ' 4S0T
2

[
ζ2 ln

√
|ζ2 − 1|

ζ
+ ln

√
|ζ2 − 1| + ζ ln

ζ + 1

|ζ − 1|

]
(3.34)

where ζ = ∆T/T , and S0 is the factor that produces the PSD in

S(f) =
S0

fα
(3.35)
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The more general expression of the variance for α 6= 1 is

var = 8S0(2π)α−1Γ(−α− 1) sin
απ

2
T α+1

(
1 + ζα+1 −

|ζ − 1|α+1

2
−

(ζ + 1)α+1

2

)
(3.36)

and for white noise, one obtains

var = 2SWT (3.37)

where SW is the white PSD and ∆T ≥ T , i.e. that the dark-current and photo-current

integrals do not overlap, which cannot happen in a real system.

Practical detectors suffer both 1/f and white noise; to see which noise type is more

significant in a given detector, equations 3.34 or 3.36 must be compared to equation 3.37.

I consider two cases, namely when the dark current integration is immediately followed

by the exposure current integration, i.e. when ζ = 1, and when the integrations are well

separated, i.e. ζ � 1. In the limit that ζ tends to 1, the variance in equation 3.34 becomes

var = 8S0T
2 ln 2 (3.38)

1/f noise dominates a detector’s SNR if

4S0T ln 2 > Sw (3.39)

The SNR of a detector dominated by 1/f noise scales as

SNR ∝
1

8S0 ln 2
(3.40)

Notice that the 1/f noise SNR does not improve with longer integration time; increasing

the integration time is a standard method used by engineers to improve SNR and fails

for 1/f noise. If the integrations are well separated, the variance in equation 3.34 is

approximately

var ' 4S0T
2 ln(∆T/T ) (3.41)

If the integrations are well separated, 1/f noise dominates the detector when

2S0T ln(∆T/T ) > Sw (3.42)

The SNR of a detector dominated by 1/f noise weakens with the logarithm of the sepa-

ration of the integrations,

SNR ∝
1

4S0 ln(∆T/T )
(3.43)
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3.2.2 Double measurement of dark current

One may use the average of the dark current integrations prior to and after the photocur-

rent integration to correct, or subtract from, the photocurrent integration in a practical

detector. When this is done, the resulting subtraction is represented by

Hsub(ω) = 1 − ejω∆T − e−jω∆T (3.44)

The variance is again calculated through equation 3.33. In this scenario, 1/fα noise with

α = 1 contributes a variance of

var =
S0T

2

2

[
4ζ ln

(ζ + 1)2 · (2ζ − 1)

(ζ − 1)2 · (2ζ + 1)
+ 4ζ2 ln

(
4
|ζ2 − 1|

|4ζ2 − 1|

)
+ ln

|ζ2 − 1|4

|4ζ2 − 1|

]
(3.45)

where ζ = ∆T/T as before. In the more general case where α 6= 1, the 1/f noise

contributes a variance of

var = (2π)α−1S0 sin
πα

2
Γ(−α− 1)T α+1

[
8ζα+1 − 2α+2ζα+1 + 6

−4|ζ − 1|α+1 − 4(ζ + 1)α+1 + |2ζ − 1|α+1 + (2ζ + 1)α+1
] (3.46)

White noise contributes

var = 1.5SWT (3.47)

If the integrals are unseparated, α = 1 1/f noise contributes

var =
S0T

2

2
ln

224

39
(3.48)

1/f noise dominates when

3S0T ln
224

39
> Sw (3.49)

in which case the SNR of the measured signal is proportional to

2

S0 ln 224

39

(3.50)

Increasing the integration time again does not improve the SNR if 1/f noise is dominant.

If the integrals are well separated, i.e. ζ � 1,

var ' S0T
2

(
3 ln

∆T

T
− ln 2

)
(3.51)
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1/f noise dominates when

2

3
S0T

(
3 ln

∆T

T
− ln 2

)
> Sw (3.52)

in which case the SNR of the measured signal is proportional to

SNR ∝
1

S0

(
3 ln ∆T

T
− ln 2

) (3.53)

3.2.3 Unequal subtractions

If one uses averages instead of integrals in the subtraction then one may use different

averaging times for the dark and photo-current averages. Let the averaging times be T

and γT where γ is simply a scaling factor, then the transfer function for averaging followed

by subtraction is

Hsub and avg = sinc(ωT ) − ejω∆T sinc(ωγT ) (3.54)

where ∆T is the time between the centers of the averaging periods. Notice that the effects

of subtraction and of averaging are no longer separable. The variances obtained are, for

1/fα noise with α = 1,

var =S0

[
2 ln

√
|4ζ2 − (1 + γ)2|

2
·

√
|4ζ2 − (1 − γ)2|

2γ
+ 2ζ ln

∣∣∣∣
(2ζ + 1)2 − γ2

(2ζ − 1)2 − γ2

∣∣∣∣

+
1

2γ

[
4ζ2 + 1 + γ2

]
ln

∣∣∣∣
4ζ2 − (1 + γ)2

4ζ − (1 − γ)2

∣∣∣∣ + 2
ζ

γ
ln

∣∣∣∣
(2ζ + γ)2 − 1

(2ζ − γ)2 − 1

∣∣∣∣
] (3.55)

For the more general case of α 6= 1, the variance contributed is

var =2S0(2πT )α−1Γ(−1 − α) sin
πα

2

(
2 + 2γα−1 + 2−αγ−1 ·

[
|2ζ − γ + 1|α+1

+|2ζ + γ − 1|α+1 − (2ζ + γ + 1)α+1 − |2ζ − γ − 1|α+1
]) (3.56)

The SNR scales as the inverse of the variance, and in both equations 3.55 and 3.56 the

dependence on the averaging periods is weak.

3.3 Sample Sequences

As with x-ray detectors, sampling systems are affected by noise and the contribution to

the variance from 1/f noise may become a concern. I calculate the 1/f noise variance

contribution next.
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3.3.1 N Samples

I next calculate the variance that 1/f noise adds to a sample sequence, where the noise

might be internal to the sampler—a distraction from the signal, or actual noise being

sampled for the purpose of studying the noise. This sampling of noise is illustrated in

figure 3.2, and the variance is that of the N samples. The noise is sampled by way of each

integration. Each integral has length T and is separated from the next integral by ∆T .

The sample is generated by a potentially weighted averaging,

xn =
1

T

∫ n∆T+T/2

n∆T−T/2

x(t′)w(n∆T − t′) dt′ (3.57)

where w(t) is the weighting function. A transfer function Havg is determined by a scaled

Fourier transform of the weighting function,

Havg(ω) =
1

T

∫ T/2

T/2

w(t)e−jωt dt (3.58)

Once Havg is known, the various samples xn are generated by shifts of Havg.

Hx(n;ω) = ejωn∆THavg(ω) (3.59)

In order to calculate the variance of the N samples that define the sample sequence,

their average is needed. The averaging may also be represented as a transfer function,

which contains the sum of the transfer functions for each of the samples.

Hx(ω) = Havg(ω)
1

N

N∑

n=1

ejωn∆T (3.60)

Note that there are now two averages at issue: firstly, the integral averaging that produces

a sample, and secondly, the summation averaging of the separate samples.

The noise variance of the sample sequence may be calculated as

var =
1

N

N∑

n=1

(xn − x)2 (3.61)

However, the quantity of interest is the ensemble expectation of the noise variance,

var = E

{
1

N

N∑

n=1

(xn − x)2

}
(3.62)
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Figure 3.2: An example of 1/f noise versus time and sampling of the 1/f noise
signal. Above, the bars indicate the integration time for each sample, T , and the
sample separation ∆T . Lines marked with

∫
i(t) dt are the cumulative integrals over

the periods marked T ; left axis not shown.

One may exchange the summation and ensemble expectation as follows,

var =
1

N

N∑

n=1

E
{
(xn − x)2

}
(3.63)

As the ensemble expectation of (xn − x) is zero, the ensemble expectation of (xn − x)2 is

simply the variance of (xn − x), which may be calculated in the frequency domain, as

E
{
(xn − x)2

}
=

2

2π

∫
∞

0

S(ω) |H∆(n;ω)|2 dω (3.64)

where

H∆(n;ω) = Havg(ω)ejωn∆T −Hx(ω) (3.65)

Then the ensemble expectation of the noise variance contribution is

var =
1

N

N∑

n=1

2

2π

∫
∞

0

S(ω) |H∆(n;ω)|2 dω (3.66)

One may reverse the order of summation and integration,

var =
2

2π

∫
∞

0

S(ω)
1

N

N∑

n=1

|H∆(n;ω)|2 dω (3.67)
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One may define a sample sequence transfer function

|Hseq(ω;N)|2 =
1

N

N∑

n=1

|H∆(n;ω)|2 (3.68)

= |Havg(ω)|2
4

N2

N∑

n=1

(N − n) sin2(nω∆T/2) (3.69)

The total variance of a length N noise sample sequence is then

var =
2

2π

∫
∞

0

S(ω)|Hseq|
2 dω (3.70)

As an example, consider unweighted averaging, i.e.

Havg(ω;N) = sinc(ωT/2) (3.71)

For a sample sequence of 1/fα noise with α = 1, the variance contributed is

var = 2S0

N∑

n=1

(N − n)

N2
×

[
ln

∣∣n2ζ2 − 1
∣∣ + n2ζ2 ln

|n2ζ2 − 1|

n2ζ2
+ 2nζ ln

nζ + 1

|nζ − 1|

]
(3.72)

where ζ = ∆T/T . For the more general case of α 6= 1, the noise contributes a variance of

var = 4(2πT )α−1S0Γ (−α − 1) sin
απ

2

N∑

n=1

(N − n)

N2

[
2 (nζ)α+1 + 2 − |nζ − 1|α+1 − (nζ + 1)α+1]

(3.73)

For a sample sequence of white noise,

var =
N − 1

N

SW
T

(3.74)

corresponding to the usual biased estimator of the variance.

The normalized variance of a length-N sample-sequence of 1/fα noise with α = 1 is

graphed in figure 3.3 for different N; unweighted averaging is used.

3.3.2 Infinite Number of Samples, or Apparent Variance

If one allows the number of samples to become infinite, while constraining the total time

that the samples occupy to be constant, the averaging integrals must overlap; this case is

a useful and simple limit, corresponding to the variance of a moving average over a finite

period. The variance is calculated in a manner similar to that for the finite sampling case.
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Figure 3.3: Normalized variance of N samples at different 1/ζ for α = 1

Variance is the expectation of the square of the difference of a random variable from its

mean,

var{x} = E
[
(x− E[x])2] (3.75)

In a practical noise measurement, one can only find an approximate (measured) mean,

and an approximate (measured) variance,

x̃(t1, t2) =
1

t2 − t1

∫ t2

t1

x(t′) dt′ (3.76)

ṽar(x; t1, t2) =
1

t2 − t1

∫ t2

t1

[x(t′) − x̃(t1, t2)]
2
dt′ (3.77)

One may calculate an ensemble expectation of the approximate variance,

E [ṽar(x; t1, t2)] = E

{
1

t2 − t1

∫ t2

t1

[x(t′) − x̃(t1, t2)]
2
dt′

}
(3.78)

By reversing the order of the averaging integral and ensemble expectation, one obtains

E [ṽar(x; t1, t2)] =
1

t2 − t1

∫ t2

t1

E
{

[x(t′) − x̃(t1, t2)]
2
}
dt′ (3.79)
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As E [x(t′) − x̃(t1, t2)] is expected to be zero, E
{
[x(t′) − x̃(t1, t2)]

2} is simply the en-

semble variance of [x(t′) − x̃(t1, t2)], which is

E
{

[x(t′) − x̃(t1, t2)]
2
}

=
2

2π

∫
∞

0

S(ω)
∣∣∣ejωt′ − sinc(ωTo/2)

∣∣∣
2

dω (3.80)

where To = t2 − t1, as the noise is assumed to be second order stationary, and hence

statistically invariant upon a time shift. Consequently,

E [ṽar(x;To)] =
1

To

∫ To/2

−To/2

2

2π

∫
∞

0

S(ω)
∣∣∣ejωt′ − sinc(ωTo/2)

∣∣∣
2

dω dt′ (3.81)

One may reverse the integrations to obtain

E [ṽar(x;To)] =
2

2π

∫
∞

0

S(ω)
1

To

∫ To/2

−To/2

∣∣∣ejωt′ − sinc(ωTo/2)
∣∣∣
2

dt′ dω (3.82)

=
2

2π

∫
∞

0

S(ω)
[
1 − sinc2(ωTo/2)

]
dω (3.83)

One may define an apparent variance transfer function

|Happ(ω;To)|
2 = 1 − sinc2(ωTo/2) (3.84)

The ensemble expectation of the variance of a sample sequence with an infinite number of

overlapping samples over a finite period is

E[ṽar(ω;T0)] =
2

2π

∫
∞

0

S(ω)|Happ(ω;T0)|
2 dω (3.85)

Most noise sources have an apparent PSD that diverges in the high frequency limit of

the variance integral (e.g. 3.83), so one may wish to restrict the high–frequency content,

e.g. by having samples of some finite length, which would then overlap,

E [ṽar(xsample;To)] =
2

2π

∫
∞

0

S(ω) |Happ(ω;To)|
2 · |Havg(ω)|2 dω (3.86)

Happ(ω;To) may also be derived as the limit as N → ∞ of (3.69), with N∆T = To, in

which the transfer function becomes a Riemann sum,

lim
N→∞

Hseq(ω;N) = |Havg(ω)|2
4

T 2
o

∫ To

0

(To − t′) sin2(ωt′/2) dt′ (3.87)

= |Havg(ω)|2 [1 − sinc2(ωTo/2)] (3.88)
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Finally, a more flippant, though still correct derivation can also be made. Let the

‘universe’ of interest be the noise sequence in the window To; the transfer function that

will pass all the noise power in the window is

Hall(ω;To) = 1 (3.89)

The transfer function that will pass only the average (apparent DC) power in the window

To is

HDC(ω;To) = sinc(ωTo/2) (3.90)

But the variance and the power of the DC must sum to the total power, including in the

window T0,

|Hvar(ω;To)|
2 + |HDC(ω;To)|

2 = |Hall(ω;To)|
2 (3.91)

Solving for the variance transfer function for the To window,

|Hvar(ω;To)|
2 = 1 − sinc2(ωTo/2) (3.92)

The variance that 1/fα noise with α = 1 contributes to an infinite sample sequence of

finite length with unweighted averaging in equation 3.86 is

var = S0

[
−7

6
+ ln

∣∣ζ2 − 1
∣∣ +

1

6
ζ−2 ln

∣∣ζ2 − 1
∣∣ − 1

6
ζ2 ln

ζ2

|ζ2 − 1|
−

2

3

(
ζ + ζ−1

)
ln

|ζ − 1|

ζ + 1

]

(3.93)

where ζ = T0/T . In the more general case of α 6= 1, the noise contributes

var =
4(2πT )α−1S0Γ (−1 − α) sin απ

2

[ζ2 (3 + α) (2 + α)]

[
2 − (ζ + 1)3+α − |ζ − 1|3+α + 2ζ3+α

+ (2 + α) (3 + α) ζ2
] (3.94)

For white noise, when the samples overlap, if To > T , the variance is

var = SWT
−1

(
1 + ζ−2 − ζ−1

)
(3.95)

The variance of infinitely sampled noise is graphed in figure 3.4; unweighted averaging is

used.
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3.4 Discussion

I derived in outline a proof for the noise filtration relationship stated in equation 3.2. I

have ignored the integral term for the remaining work, as it is always omitted, and may

be an artifact of the simplistic derivation; a more detailed proof, in progress at the time of

writing, suggests a heavy reliance on the second-order stationarity of noise, as fragments

of the autocorrelation integrals together sum to create the transfer functions, suggesting

that further reorderings of the integrations may be necessary.

I have derived transfer functions for various practical detectors, including samplers and

I have calculated the associated variances for various types of noise signals input to each

detector. All the transfer functions that I derived have the properties

∂

∂ω
|Hcor(ω)|2

∣∣∣∣
ω=0

= 0 (3.96)

and

|Hcor(0)|2 = 0 (3.97)

which suppress the low-frequency variance divergence of 1/f noise. In order to calculate
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these variances, I assumed that the noise is wide-sense stationary (WSS).

Each of the α = 1 variances had to be calculated indirectly. Two methods were used

for each calculation, namely imposing a low-frequency cut-off that restricts the variance,

i.e.

S(f) =
S0√
f 2 + f 2

0

(3.98)

and then taking the limit f0 → 0, and calculating the variance where α 6= 1 taking the

limit α→ 1. The two methods produce identical results.

A more generally useful result is that when 1/f noise dominates, SNR does not improve

with longer integration times, unlike when white noise dominates, where the SNR does

improve with longer integration times.
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Chapter 4

Measuring Noise Variance

I performed experiments to test the analysis of the variance contribution of noise to

detectors in chapter 3. I experimentally obtained noise sequences with white-like and

1/f -like power-spectral densities. I used the N -sample and infinite sample contributions

of variance transfer functions, and applied them to the measured power-spectral densi-

ties of the white-like and 1/f -like noise sequences obtained, to calculate their variance

contributions under different N , ∆T and T as per chapter 3.

4.1 Numerical Noise

One needs a noise source that produces a noise signal, that may be sampled readily,

to test the theoretical results of chapter 3. One may generate numerical noise, which

may be numerically integrated and subtracted, to simulate the operations whose variance

contributions are calculated in chapter 3. Similarly, one may numerically integrate N

times, with the integrations spread—start-to-start—by ∆T , and the integrations have a

period of T . The latter method was used in this chapter. This requires noise with 7-9

decades of white or 1/f tendency, in order to meaningfully test the relationships derived

in chapter 3: approximately 3 decades may be sacrificed to integration, which is a low-pass

filtration and thus producing realistic integration effects, and at least 2 decades could be

sacrificed to the subtraction, while leaving several decades of representative tendency in

the noise to generate the variance of interest.

To generate the noise numerically, one may either generate an appropriate frequency

domain random sequence, and convert it to the time domain, i.e. Rice’s method [85], or one

may generate a time domain signal directly by using an appropriate algorithm. The noise

output must be generated at equally spaced intervals, as variation in the sampling rate
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affects the PSD of the sample sequence for non-white (e.g. 1/f) noise. Sum-of-Markovian

type 1/f noise generation algorithms (that rely on Surdin, cited in [61]) generate a se-

quence of transition times, that do not generally align with sampling edges; simply forcing

transition times to sample edges may modify the PSD, and additional processing may

be required to maintain a 1/f spectrum - white spectrum will remain white, due to the

statistical independence of any two white noise samples.

Rice’s method involves the generation of ‘Gaussian’ noise, such that the orthogonal

components an and bn of the Fourier transform of a finite sequence of the noise are each

statistically independent Gaussian random variables, i.e. if x(t) is the noise signal,

x(t) =

N∑

n=1

an cosnω0t+ bn sinnω0t (4.1)

the variables an and bn are statistically independent, equal variance random variables,

an, bn ∼ N(0, σ2
n/2) (4.2)

and ω0 is the fundamental frequency, such that if one has N samples, and one generates

a sample sequence of sampling rate fs, then

ω0 =
2πfs
N

(4.3)

The variance is related to the PSD by

σ2
n =

1

2π

∫ (n+0.5)ω0

(n−0.5)ω0

S(ω)dω (4.4)

To generate seven or more decades of 1/f noise using this method, one needs to compute

an inverse (fast) Fourier transform (IFFT) of 107 or more points, as well as a random

number generator that can produce such a number of roughly independent pseudo-random

numbers. Greater accuracy is also needed—the information that is lost by adding 107 or

more 64-bit (IEEE754 binary64 “double”) floating point numbers, e.g. in the course of

an IFFT, may become significant, and one often needs an additional decade of noise to

avoid the correlations caused by the ‘circularity’ of the Rice method noise. Rice’s method

produces ‘circular’ noise, in that by making the sequence ‘circular’—such that the last

sample precedes the first. ‘Breaking’ the sequence at another sample pair into a new

linear sequence gives the same PSD as the original sample sequence. This may be seen
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as follows. In equation 4.2, as an and bn are independent, they may be resolved into rn

and φn, where an, bn are cartesian coordinates corresponding to the polar coordinates rn

and φn. By breaking the (circular) sequence at a different sample pair, φn is rotated—

corresponding to a delay or advance, with

H(ω) = ejω∆Tdelay (4.5)

but rn remains unchanged, so at the new phase angle, the components are a′n and b′n, with

a2
n + b2n = a′2n + b′2n (4.6)

thus leaving the PSD unchanged. A deeper problem emerges - a real noise sequence is

not circular, thus one may only use a fraction of a circular noise sequence to simulate real

noise.

If one seeks to generate 9 decade noise using 128-bit floating point numbers, to avoid

accuracy losses arising from addition steps, one would need 16 gigabytes of Random Access

Memory (RAM) for the inverse Fourier transform step alone, assuming an in-place inverse

fast Fourier transform (iFFT) algorithm. Hence it is not presently practical to test the

relationships of chapter 3 by Rice’s method.

With Rice’s method, one takes the desired Power Spectral Density (PSD), and calcu-

lates a time sequence - both the time domain signal and the PSD are required to test the

results of chapter 3. If a time-domain algorithm is used to generate the noise, somewhat

less memory is needed, as the PSD may be calculated based on an autocorrelation function

that is substantially shorter than the total sequence, depending on how low a frequency

one wishes to calculate the PSD to. Thus, if implemented, a Surdin-type noise genera-

tor may prove less demanding to implement than an equivalent Rice’s method generator,

including when PSD verification is included.

4.2 Electronic Noise

An obvious alternative to numerical noise generation is to sample amplified electronic

noise. In our laboratory, the general practice, aimed at measuring the PSD over a finite

frequency band, was to bandpass the noise and amplify it. The immediate problem with

61



this approach is that it is hard to get more than six decades of noise (0.1Hz to 100kHz),

as a 1/f noise signal that is filtered by a high-pass filter with a cut-off frequency below

0.1Hz tends to swamp the noise amplifier, and it is hard to get 1/f noise at or beyond

relatively low frequencies such as 100kHz. Another problem is that a huge sampling rate

(at least 200kHz) would be required to obtain these six decades.

To obtain more decades of noise with the desired PSD, at a lower sampling rate, mixing

methods were used. The mixing methods may be understood as follows. If one multiplies

two signals x(t) and y(t), with Fourier transforms X(f) and Y (f), their product

z(t) = x(t) × y(t) (4.7)

has a Fourier transform that is the convolution of the individual Fourier transforms,

Z(f) = X(f) ∗ Y (f) (4.8)

If y(t) is a complex exponential,

y(t) = ejωmT (4.9)

then the Fourier transform of z(t) is a sum of shifted Fourier transforms of x(t),

Z(f) = X(f − ωm/(2π)) (4.10)

As I work with real-valued functions, I use (co)sines,

y(t) = cos(ωmt) (4.11)

one obtains

Z(f) =
1

2
X (f − ωm/(2π)) +

1

2
X (f + ωm/(2π)) (4.12)

Likewise, if

w(t) = z(t) · y(t) (4.13)

then the Fourier transform of w(t) is also a sum of shifted Fourier transforms of x(t),

W (f) =
1

2
X(f) +

1

4
X (f − ωm/(2π)) +

1

4
X (f + ωm/(2π)) (4.14)

The PSD is not the Fourier transform of the noise signal, and thus a more careful derivation

is needed.
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To calculate the PSD that results from mixing noise, the effect of mixing may be

accounted for in the autocorrelation function. By the Wiener-Khintchine theorem (in-

troduced in chapter 1), the PSD of a noise signal may be related to its auto-covariance

function by

S(ω) =

∫
∞

−∞

e−jωτ φ(τ) dτ (4.15)

For a finite measurement, one may take the measured PSD as

Smeas(ω) =

∫ T

−T

e−jωτ φ(τ) dτ (4.16)

If the autocorrelation function (or some component of it, as per chapter 3) is measured

to ergativity in some period 2MT (where M > 2), then one may use the auto-correlation

function,

R(τ) =

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
dt (4.17)

to calculate the PSD,

Smeasx (ω) =

∫ T

−T

e−jωτ
∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
dt dτ (4.18)

The PSD of z(t) may be calculated as

Smeasz (ω) =

∫ T

−T

e−jωτ
∫ (M−1)T−τ/2

−(M−1)T−τ/2

z(t) · z(t+ τ)

2(M − 1)T
dt dτ (4.19)

=

∫ T

−T

e−jωτ
∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T

[
1

2
cosωm(2t+ τ) +

1

2
cosωmτ

]
dt dτ

(4.20)

Rearranging the above, one finds

Smeasz (ω) =

∫ T

−T

e−jωτ
ejωmτ + e−jωmτ

4

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
dt dτ

+

∫ T

−T

e−jωτ
ejωmτ

4

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
ejωm2t dt dτ

+

∫ T

−T

e−jωτ
e−jωmτ

4

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
e−jωm2t dt dτ

(4.21)

The last two terms are expected to be zero, as the x(t) · x(t + τ) is expected to be fairly

consistent over time, such as to make the integral over its product with a sinusoid be of

order 1/M . Letting the last two terms go to zero, one is left with

Smeasz (ω) =
1

4
Smeasx (ω − ωm) +

1

4
Smeasx (ω + ωm) (4.22)

63



which is the original PSD shifted up and down by ωm.

The PSD of the twice mixed signal w(t) may be calculated as

Smeasw (ω) =

∫ T

−T

e−jωτ
∫ (M−1)T−τ/2

−(M−1)T−τ/2

w(t) · w(t+ τ)

2(M − 1)T
dt dτ (4.23)

Substituting for w(t) one finds

Smeasw =

∫ T

−T

e−jωτ

4

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
[1 + cos 2ωm(t+ τ) + cos 2ωmt+

1

2
cos 2ωmτ +

1

2
cos 2ωm(2t+ τ)

]
dt dτ

(4.24)

Rearranging the above, one finds

Smeasw (ω) =

∫ T

−T

e−jωτ

4

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T

[
1 +

1

2
cos 2ωmt

]
dt dτ

+

∫ T

−T

e−jωτ

4

∫ (M−1)T−τ/2

−(M−1)T−τ/2

x(t) · x(t+ τ)

2(M − 1)T
[cos 2ωmt cos 2ωmτ + cos 2ωmt−

sin 2ωmt sin 2ωmτ +
1

2
cos 4ωmt cos 2ωmτ −

1

2
sin 4ωmt sin 2ωmτ

]
dt dτ

(4.25)

The last term is expected to be zero, as the x(t) · x(t + τ) is again expected to be fairly

consistent over time, such as to make the integral over its product with a sinusoid be of

order 1/M . Letting the last term go to zero, one is left with

Smeasw (ω) =
1

4
Smeasx (ω) +

1

16
Smeasx (ω + 2ωm) +

1

16
Smeasx (ω − 2ωm) (4.26)

which is the original PSD plus the original PSD shifted up and down by 2ωm.

White noise, that was flat at very low frequencies, was generated using a single mixing

step. White noise from a resistor was high-pass filtered by a capacitor, amplified and

bandpassed from 3Hz to 300kHz, then multiplied by a sinusoid of 150kHz, to bring the

noise down around DC with the circuitry of figure 4.1, to generate a noise signal with

the PSD in figure 4.2. Spectral peaks corresponding to true sinusoids, presumably due

to biases in the mixer and amplifier, corresponding to peaks in the PSD of the original

spectrum in figure 4.2, were suppressed with an infinite impulse response (IIR) filter. The

IIR filter has the poles and zeros as illustrated in figure 4.3; the poles and zeros have angles

that correspond to the spectral peaks of the unfiltered white noise, given the sampling rate;
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the zeros lie on the unit circle, and the poles have a radius of 0.995. Three closely spaced

pole-zero pairs were used to suppress each spectral peak in the white noise, to produce a

noise signal with the spectrum in figure 4.4.

As 1/f noise is usually a variation in resistance, one may mix the 1/f noise to 1/|f±fm|

bilateral noise by applying a sinusoidal voltage or current to a carbon composition resistor,

which has a high level of 1/f noise, that serves as the noise source. By doing this, I also

generated a problematically large sinusoid, which I cancelled as follows. A voltage divider

was set up, including the noise source resistor and a low noise, wirewound potentiometer,

and 180◦ out-of-phase sinusoids were applied to the ends of the voltage divider, as per

figure 4.5. Let the difference between the resistances of the nominal 1MΩ resistors be ∆R.

Then the voltage in the middle of the divider at the input of the amplifier is

V (t) =
VIN(t)

2MΩ
∆R(t) (4.27)

which has the 1/|f ± fm| spectrum. The remaining sinusoid was suppressed by adjusting

the variable resistor to approximately the resistance of the noise source, thus leaving the

1/|f − f0| noise. Upon amplification, the signal was band-passed and mixed down to DC.

1/f noise was generated in this manner. 1/f noise has a tendency to ‘wander’ (i.e. the

short-term average varies over time—see e.g. Keshner [21]), so that after adjusting the

variable resistor at the beginning of a noise recording, a day’s worth of 1/f noise is available

before the dynamic range of the amplifier (that amplifies the 1/|f − f0| noise) is reached.

White noise was recorded for 12 hours at a sampling rate of 2kHz, and 1/f noise for 24

hours at 1kHz, to generate 86.4M samples, using Labview. Two problems with Labview

are that the program can only record batches of up to 1 million samples at a time, and

that the time elapsed between one batch of samples and another is not consistent.

Figure 4.6 had several problematic features around 30-100 mHz. A simulation, where

20 to 26 samples were randomly skipped after every 1000 samples of 1/f noise, failed

to reproduce the problematic spectral features in figure 4.6. Another possible source of

these errors is possible drift-correcting circuitry in the mixer chip used. Such circuitry

would treat the shift in the short term average as a drift to correct, and will as such,

suppress this shift. By suppressing this shift at semi-regular intervals (e.g. 10-30s), the

natural progression of the 1/f noise is semi-systematically disturbed by a relatively large
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amount; my suspicion is that this gives rise to the features in the spectrum. These features

do not occur in the white noise, presumably as non-overlapping samples of white noise

are statistically independent, and thus as long as subsequent samples remain statistically

independent, one expects that the spectrum will remain white, irrespective of variations

in the sampling rate.
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Figure 4.1: White Noise Generator
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Figure 4.2: The Power-Spectral Density of the Unfiltered White Noise Signal
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Figure 4.4: The Power-Spectral Density of the Filtered White Noise Signal
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Figure 4.6: The Power-Spectral Density of the 1/f , Structured Signal
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4.3 Results

In the following section, I discuss each configuration of measurement, as specified by ∆T

and T , for the white and 1/f -like noise sequences’ variance at different N .

The results of chapter 3 were tested by using odd-N sample sequences, by integrating

the generated noises’ PSD in equations 3.70 and 3.86, but using an integrating rather than

an averaging transfer function, and by calculating an equivalent variance in the work of

McDowell et al., according to the equation

varMcDowell =
2

2π

∫
∞

1/(N∆T+T )

Sx(ω) |Hint(ω)| dω (4.28)

In the following graphs, white and 1/f noise sample sequences’ average variances are

graphed. Also graphed are the predictions of these average variances, calculated by inte-

grating the product of the N-sample and infinite sample transfer functions with the PSD

of the noise signal over frequency. The prediction of McDowell et al. of these average

variances in equation 4.28 are also graphed.

Figure 4.7 represents the variance of a sample sequence of white noise, with ∆T = 10s

and T = 0.01s. The dependent axis has the units of the square of the voltage integration

with time, as may be expected for a variance of the integral. The independent axis has units

of the number of samples, and is a logarthmically scaled axis. The ‘measured’ variance

is that calculated by numerically integrating portions of the noise sequence, and by then

taking the variance of N such ∆T spaced integrations. The N -sample, infinite-sample

and McDowell projections were calculated by integrating the product of the ‘white’ noise

sequence PSD’s product with the appropriate transfer functions for N or infinite number

of samples, or by performing McDowell’s integral in equation 4.28. For a smaller number

of samples (N < 35), the N-sample projection yields a truer variance estimate than that of

the infinite sample and McDowell projections, whereas for N > 35 the reverse holds. All

three methods converge in their estimate of the variance as the number of samples grow,

and they underestimate in the large sample limit by about 1.5%. The truer estimates of

the McDowell and infinite sample methods at larger numbers of samples may be due to this

estimate. At all numbers of samples, the McDowell and infinite sample projections provide

identical results. The following graphs also have a linear dependent axis for variance, and
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a logarithmic independent axis for the number of samples.

Figure 4.8 represents the variance of a sample sequence of white noise, with ∆T = 10s

and T = 0.02s. For a smaller number of samples (N < 45), the N-sample projection yields

a truer variance estimate than provided by the infinite sample and McDowell projections,

whereas for N > 45 the reverse holds. All three methods of calculating the expected

variance converge in their estimate of the variance as the number of samples grow, and

they underestimate in the large sample limit by about 1%.

Figure 4.9 represents the variance of a sample sequence of white noise, with ∆T = 1s

and T = 0.01s. For a smaller number of samples (N < 25), the N-sample projection yields

a truer variance estimate than provided by the infinite sample and McDowell projections,

whereas for N > 25 the reverse holds. All three methods of calculating the expected

variance converge in their estimate of the variance as the number of samples grow, and

they underestimate in the large sample limit by about 1.5%.

Figure 4.10 represents the variance of a sample sequence of white noise, with ∆T = 1s

and T = 0.02. For a smaller number of samples (N < 45), the N-sample projection yields

a truer variance estimate than provided by the infinite sample and McDowell projections,

whereas for N > 45 the reverse holds. All three methods of calculating the expected

variance converge in their estimate of the variance as the number of samples grow, and

they underestimate in the large sample limit by about 1%.

Figure 4.11 represents the variance of a sample sequence of white noise, with ∆T = 0.1s

and T = 0.01s. For a smaller number of samples (N < 31), the N-sample projection yields

a truer variance estimate than provided by the infinite sample and McDowell projections,

whereas for N > 31 the reverse holds. All three methods of calculating the expected

variance converge in their estimate of the variance as the number of samples grow, and

they underestimate in the large sample limit by about 1.5%.

Figure 4.12 represents the variance of a sample sequence of white noise, with ∆T = 0.1s

and T = 0.02s. For a smaller number of samples (N < 51), the N-sample projection yields

a truer variance estimate than provided by the McDowell projection, and for N < 67 the

N -sample projection provides a truer estimate of the variance than provided by the infinite

sample projection. All three methods of calculating the expected variance converge in

their estimate of the variance as the number of samples grow, and they underestimate
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in the large sample limit by about 1%. Above 100 samples, the McDowell and infinite

sample projections provide identical results; at the smaller numbers of samples, McDowell’s

projection is truer than the infinite sample projection.

6.0 x 10-8

6.5 x 10-8

7.0 x 10-8

7.5 x 10-8

8.0 x 10-8

8.5 x 10-8

9.0 x 10-8

9.5 x 10-8

1.0 x 10-7

100 101 102 103

A
ve

ra
ge

 V
ar

ia
nc

e 
(V

2 s
2 )

Number of Samples (N)

Measured
Infinite Sample Projection

N-Sample Projection
McDowell-Kerchner Projection

Figure 4.7: White Noise Sample Sequence Variance, ∆T = 10s, T = 0.01s
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Figure 4.8: White Noise Sample Sequence Variance, ∆T = 10s, T = 0.02s
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Figure 4.9: White Noise Sample Sequence Variance, ∆T = 1s, T = 0.01s
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Figure 4.10: White Noise Sample Sequence Variance, ∆T = 1s, T = 0.02s
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Figure 4.11: White Noise Sample Sequence Variance, ∆T = 0.1s, T = 0.01s
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Figure 4.12: White Noise Sample Sequence Variance, ∆T = 0.1s, T = 0.02s

The above variance graphs show excellent agreement (error on the order of 1%) of

the PSD-based N -sample variance prediction with the measured variance of the white

noise. The number of samples at which the variances were measured and calculated

were spaced logarithmically, to illustrate the broad consistency of the agreement. The

small but consistent error might arise from the averagings and numerical integrations that

are required for calculating the ‘measured’ variances, and from a finite precision used in

calculating the PSD. This error is not a source of concern.
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Figure 4.13 represents the variance of a sample sequence of 1/f -like noise, with ∆T =

10s and T = 0.01s. The dependent axis has the units of the square of the voltage integra-

tion with time, as may be expected for a variance of the integral. The independent axis

has units of the number of samples, and is a logarthmically scaled axis. The ‘measured’

variance is that calculated by numerically integrating portions of the noise sequence, and

by then taking the variance of N such ∆T spaced integrations. The N -sample, infinite-

sample and McDowell projections were calculated by integrating the product of the ‘1/f ’

noise sequence PSD’s product with the appropriate transfer functions for N or infinite

number of samples, or by performing McDowell’s integral in equation 4.28. For a smaller

number of samples and for very large numbers of samples (exausting the data-set), the

N -sample and infinite sample projections yield a truer variance estimate than provided by

the McDowell projection. At an intermediate number of samples, McDowell’s projection

provides a truer estimate of the contributed variance. At higher numbers of samples, the

N -sample and infinite sample projections converge in their estimate of the variance as the

number of samples grow, and they first overestimate then underestimate the variance as

the number of samples grow; the maximum error between the N-sample and measured

variance is about 9%. The staircase shape of the McDowell projection is an artifact of the

discretized PSD that is calculated from the sequence data.

Figure 4.14 represents the variance of a sample sequence of 1/f -like noise, with ∆T =

10s and T = 0.02s. Again, for a smaller number of samples and for very large numbers

of samples (exausting the data-set), the N -sample and infinite sample projections yield a

truer variance estimate than provided by the McDowell projection, and at an intermediate

number of samples, McDowell’s projection provides a truer estimate of the contributed

variance. Also, at higher numbers of samples, theN -sample and infinite sample projections

converge in their estimate of the variance as the number of samples grow, and they first

overestimate then underestimate the variance as the number of samples grow; this remains

true for subsequent graphs. The maximum error between the N-sample projection and

actual variance is about 8%. The staircase shape of the McDowell projection is an artifact

of the discretized PSD that is calculated from the sequence data; this is also true for

subsequent graphs.

Figure 4.15 represents the variance of a sample sequence of 1/f -like noise, with ∆T = 1s
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Figure 4.13: 1/f Noise Sample Sequence Variance, ∆T = 10s, T = 0.01s

and T = 0.01s. The maximum error between the N-sample projection and the actual

variance is about 8%. The sudden increase in the variance around 15 samples in this

graph and the following graph, and around 150 samples in the next two graphs, is due to

the spikes in the PSD around 30–100 mHz, in figure 4.6.

Figure 4.16 represents the variance of a sample sequence of 1/f -like noise, with ∆T = 1s

and T = 0.02s. The maximum error between the N-sample projection and actual variance

is about 8%.

Figure 4.17 represents the variance of a sample sequence of 1/f -like noise, with ∆T =

0.1s and T = 0.01s. The maximum error between the N-sample projection and actual

variance is about 8%.

Figure 4.18 represents the variance of a sample sequence of 1/f -like noise, with ∆T =

0.1s and T = 0.02s. The maximum error between the N-sample projection and the actual

variance is about 10%.
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Figure 4.14: 1/f Noise Sample Sequence Variance, ∆T = 10s, T = 0.02s
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Figure 4.15: 1/f Noise Sample Sequence Variance, ∆T = 1s, T = 0.01s

78



0.0 x 100

2.0 x 10-7

4.0 x 10-7

6.0 x 10-7

8.0 x 10-7

1.0 x 10-6

1.2 x 10-6

1.4 x 10-6

1.6 x 10-6

100 101 102 103 104

A
ve

ra
ge

 V
ar

ia
nc

e 
(V

2 s
2 )

Number of Samples (N)

Measured
Infinite Sample Projection

N-Sample Projection
McDowell-Kerchner Projection

Figure 4.16: 1/f Noise Sample Sequence Variance, ∆T = 1s, T = 0.02s
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Figure 4.17: 1/f Noise Sample Sequence Variance, ∆T = 0.1s, T = 0.01s
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Figure 4.18: 1/f Noise Sample Sequence Variance, ∆T = 0.1s, T = 0.02s

The above variance graphs show good agreement (maximum error on the order of

10%) of the PSD-based N -sample variance prediction, with the measured variance of the

noise samples. The number of samples at which the variances were measured and calcu-

lated were spaced logarithmically, to illustrate the broad tendency of the agreement—at

lower numbers of samples, the agreement between the N -sample, PSD-based calculation

and the measured variance is excellent, but as N · ∆T approaches the length of the 1/f

noise sequence, the error grows. This error may be ascribed to the incomplete ergodicity

of the 1/f noise signal at low frequencies included by so long a measurement, or equiv-

alently, that the PSD of such a short signal—compared to the frequencies included by

the measurement—is not representative of the sequence variance, given the length of the

sequence.

The above measurements agree with the expectation developed in chapter 3, and may

as such be considered as evidence of the validity of chapter 3’s results.
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Chapter 5

Summary and Future Research

Ionizing radiation was shown to be a general hazard. Gofman [86] showed that the

differential harm per unit radiation increased at lower doses. Early X-ray workers found

that erythemas, cancers and other ills resulted from repeated x-ray exposure. Gofman and

O’Connor [8] suggested that radiation exposure be minimized to the minimum needed

for an image, and that patients be informed of the additional risk of cancer for each

exposure. X-ray imaging does provide medically useful information, so exposing a patient

to insufficient radiation to form a useful image is to expose the patient unnecessarily; to

minimize radiation exposure in the process of producing a medically useful image, sufficient

radiation must be used during the first exposure, thus avoiding further exposures. A

technological challenge is then to reduce the exposure necessary to achieve a given quality

of image.

For a given exposure, higher quality, or higher signal-to-noise ratio (SNR) images,

i.e. images that have lower pixel-to-pixel variance (mottle) for a given irradiation and

resolution, may in principle be obtained using electronic imaging detectors, especially of

the direct-conversion type, than with film or film with an intensifying screen. Indirect

conversion detectors also exist, but use intensifying screens, often with a similar loss of

resolution, and invariably with increased mottle, due to interpixel interference, as the

intensifying screens cause radiation that would be incident on one pixel to give rise to

radiation that is incident on nearby pixels. Mottle in electronic detectors arises from

electronic noise, such as white, 1/f and kTC noise [87]. The mottle added by white and

kTC noise is finite, but the mottle added by 1/f noise may in principle be limited only by

the analog-to-digital converter, as the noise variance diverges in the low frequency limit.

To reduce the mottle added by white noise, the signal from each detector element may
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by averaged over a longer period. To reduce the mottle from 1/f noise, a measurement of

the detector dark current may be subtracted from the exposure photocurrent. In chapter 3,

it was shown that no SNR improvement is to be had by increasing the averaging time,

for idealized 1/f noise. For 1/fα noise, with α > 1, the SNR may worsen somewhat with

longer integration times, and for α < 1, an often negligible improvement in SNR may be

had.

The method of calculating variance developed in chapter 3 calculates the ensemble

variance of various noise sources (e.g. white, 1/f) in the frequency domain, through the

use of linear, time-invariant (LTI) moving model-filters, such that if h(t) is the constructed

filter’s impulse response and H(ω) is its Fourier transform, if x(t) is the noise source of

interest, and is second-order stationary, if Sx(ω) is the power-spectral density (PSD) of

x(t), if

y(t) = x(t) ∗ h(t) (5.1)

is the noise signal produced by the filtration, and if y(t0) is the noise output of the detector

after a detection at time t0, then the ensemble variance contributed by the noise to the

detector, is the ensemble variance of y(t0),

var{y(t0} =
1

π

∫
∞

0

Sx(ω) |H(ω)|2 dω (5.2)

A side project was also undertaken to calculate the variance of sample sequences of noise.

Composite filters were generated for the variance of sample sequences, by averaging over

power-transfer functions for individual samples, e.g. averaging over |H(ω, n)|2 or |H(ω, t)|2.

The general technique of chapter 3 was verified in chapter 4. Sample sequence results

were used, as their functioning presupposed the functioning of the subtraction transfer

functions, while being more adaptable. White and 1/f -like noise were sampled at 1−2kHz

for about a day; the PSD of each was calculated, and the average variance of sample

sequences of various lengths were calculated for the noise sample sequences taken, both

directly from the noise sample sequences and on the basis of their PSDs. Only where the

ergodicity of the variance was weak, i.e. where the sample sequence length was within one

order of magnitude of the length of the data set, did the PSD-calculated variance of the

1/f -like noise diverge substantially from the directly calculated variance. As such, the

variance calculation method of chapter 3 may be considered verified.
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5.1 Future Research

In chapter 2, it was shown that 1/f noise is still poorly understood. One avenue of future

research into 1/f noise is to measure the frequency exponent of the PSD at multiple

frequencies, to properly evaluate the Dutta et alia [62] relationships, as a check on their

validity, and to calculate realistic distributions of fluctuators. Another avenue considers

the tensor nature of 1/f noise—one may devise a formulation for Weissman et al.’s Q

parameter (in [81]), selected for traceless fluctuations, instead of their scalar-fluctuator

selected Q; this way, it might be found that some noise sources do indeed have traceless

fluctuations.

Material research, especially into suppressing 1/f noise in the frequency decades passed

by the detection process, is another potentially profitable avenue, involving the material

origin of 1/f noise. A calculation of the expected variance, possibly within error bounds,

of non-white second spectra 1/f noise would also be valuable, as the relationships derived

in chapter 3 are for second-order stationary 1/f noise, i.e. noise that has a memory-less

variation of power per unit frequency at any given frequency.

As detectors’ semiconductor elements need not have second-order stationary noise, it

may also be useful to sample their dark current repeatedly over long periods, to measure

the resulting variance contribution, without relying on a power-spectral density formalism.

The 1/f -induced variance of multiple types of detectors, not all limited to x-ray detec-

tors, can be described by the mathematical relationships and methods of chapter 3. As

such, faulty variance calculations and engineering approaches may be avoided in future.
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