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ABSTRACT

The main object of this paper is to prove that any system of

P = (P1; : : : ; P�) of � points with pairwise di�erent �rst coordinates

is universal for Hermite interpolation with respect to any elimination

term order � satisfying fX1g � fX2; : : : ; Xng. Furthermore a fast al-

gorithm for the computation of the minimal (with respect to �) term

basis for Hermite interpolation is presented.

1 Introduction

In general, Hermite interpolation means that we are looking for a polynomial

F 2 R which takes prescribed values and derivatives at given points. Let

P = (P1; : : : ; P�) be a system of � pairwise di�erent points (nodes) Pi 2 K n

and D = (D1; : : : ;D�) a system of � �nite Ferrers diagrams. Then we

require

@j�jF

@X�
(Pj) = bj;� (1)
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for � 2 Dj (j = 1; : : : ; �) and given data bj;� 2 K .1 All polynomials F

ful�lling condition (1) form a residue class modulo an ideal I(P;D) in the

polynomial ring R = K [X1 ; : : : ;Xn] with Krull�dim (R=I(P;D)) = 0. If

we consider only polynomials F which are in a certain sense minimal with

respect to a given term order � in R then F becomes unique and can be

computed e�ectively using, for example, Gr�obner basis algorithms (see e.g.

[BM82], [BW91], [MMM]). For n = 1 there are formulas for interpolating

polynomials due to Newton, Lagrange and Hermite. These formulas have

been applied in the theory of approximation (see e.g. [Fe23], [Le54], [Wi70]).

The examination of the interpolation formula's structure has led to rather

reach theories of polynomial interpolation for several variables and their ap-

plication to the theory of approximation (see e.g. [Si62], [Wi73], [Br97]).

In particular Newton's divided di�erences resulting in Kergin's interpola-

tion (see e.g. [Ke78], [Ke80], [Ha82]) has been heavily investigated some

years ago. It is a seemingly surprising fact that in many papers written by

specialists of interpolation theory there is no information on very nice re-

sults obtained in the same time by specialists of e�ective methods and vice

versa. In this paper we try to build a bridge between both groups. Espe-

cially, Theorem 3 connects classical and Gr�obner basis methods for Hermite

interpolation. A fast algorithm for the computation of the admissible Her-

mite term basis with respect to any elimination term order � satisfying

fX1g � fX2; : : : ;Xng follows from Theorem 2.

2 Preliminaries

Notations Let K be an arbitrary �eld of characteristic zero, X = fX1; : : : ;

Xng a �nite set of indeterminates and R := K [X] the polynomial ring in X

over K . The set of terms generated by X will be denoted by T (X). The

elements of T (X) are identi�ed with the n-tuples of natural numbers via

the exponent mapping exp : T (X) ! Nn de�ned by X� = X
�1

1
� � �X�n

n 7!

(�1; : : : ; �n) = �. For � = (�1; : : : ; �n) 2 Nn we will also use the denotation

� = (�1; e�). A total order � on T (X) is said to be admissible if it satis�es

the following two conditions

i) 1 � X� for each � 2 Nnnf0g

ii) X� � X� =) X�+
 � X�+
 , for all �; �; 
 2 Nn .

1We note that if all Ferrers diagrams are trivial, i.e. each of them consists of only one

point, then we are in the situation of Lagrange interpolation.
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By � � � () X� � X� any order � of T (X) induces an order on Nn

which, for simplicity, we denote also by �.

Let X be the disjoint union of Y and Z. Then an admissible term

order � is called an elimination order for Z if t � s for all t 2 T (Y ) and

s 2 T (X) n T (Y ). In this case we write Y � Z.

The support supp(f) of an element f 2 R is de�ned to be the set of all

terms appearing in f with non-zero coe�cient. For non-zero elements f the

maximal element lt�(f) of supp(f) with respect to � and the corresponding

coe�cient lc�(f) are called leading term and leading coe�cient, respectively,

of f (w.r.t. �). Furthermore, for any non-zero polynomial f the exponent

exp�(lt�(f)) of the leading term is called the leading exponent of f (w.r.t.

�) and denoted by exp�(f).

The notions of leading term and leading exponent are extended to subsets

F of polynomials by de�ning lt�(F ) := flt�(f)j0 6= f 2 Fg and exp�(F ) :=

fexp�(f)j0 6= f 2 Fg, respectively. Moreover, we introduce the notations

��(F ) := exp�(F ) + Nn and D�(F ) := Nn n ��(F ). An arbitrary subset

D � Nn will be called a Ferrers diagram if there exists an ideal I � R

such that D = D�(I). For any Ferrers diagram D there exist a uniquely

determined monomial ideal I such that D = D�(I) for any admissible order

�. If ft1; : : : ; tsg � T (X) generates this monomial ideal I then we say

that the system f�1 = exp(t1); : : : ; �s = exp(ts)g determines D. In the case

D 6= Nn , i.e. I is not the zero ideal, �(I) = Nn n D is the monoid ideal of

Nn generated by f�1; : : : ; �sg. Since, in general, it will be clear from the

context which order is meant we will omit the index � and we write e.g.

lt(f) instead of lt�(f).

About interpolation. In general, Hermite interpolation means that we

are looking for a polynomial F 2 R which takes prescribed values and deriva-

tives at given points. Let P = (P1; : : : ; P�) be a system of � points (nodes)

Pi 2 K n and D = (D1; : : : ;D�) a system of � Ferrers diagrams. Then we

require

@j�jF

@X�
(Pj) = bj;� (2)

for � 2 Dj , j = 1; : : : ; � and given data bj;� 2 K . There can be applied

Gr�obner basis techniques (c.f. [Bu65], [BWK], [CLO]) in order to solve this

problem for arbitrary given data P, D and bj;� (c.f. [BW91]). To each pair

(Pj ;Dj) we assign the ideal

Ij = I(Pj ;Dj) =

(
F 2 R

����� @j�jF@X�
(Pj) = 0 for all � 2 Dj

)
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which is generated by the set of all (X � Pj)
�, where � ranges over a de-

termining system of Dj . Using Gr�obner basis techniques we can compute

a generating set of the intersection ideal I(P;D) =
T�

j=1 Ij (see [BWK],

[CLO]). If the residue classes of the subset B � R form a K -vector space
basis of R=I(P;D) then if for a given data bj;� there exists a solution then

there exists also a uniquely determined linear combination F of B satisfying

the conditions (2) of the interpolating polynomial. From any Gr�obner basis

of I with respect to a �xed admissible term order � one can directly read

o� the set D = D�(I) obtaining a suitable basis B� = fX� j � 2 Dg.

Such a basis B� has the nice property that the support of the polynomial

F contains the smallest (with respect to �) terms among all possible in-

terpolating polynomials and that F can be obtained by Gr�obner reduction.

For example, if one is looking for an interpolating polynomial F of minimal

degree then one can use a total degree order as �.

In order to guaranty the existence of a solution for any data bj;� we have

to assume that all Ferrers diagrams Dj are �nite. In this case we have

d := dimK R=I(P;D) =

�X
j=1

#(Dj) (3)

and calculation of F needs only the solution of a �nite system of linear

equations in �nitely many indeterminates corresponding to the elements of

a vector space basis B.

Admissible interpolation systems From now we �x an admissible term

order�, a number � of nodes and a systemD = (D1; : : : ;D�) of �nite Ferrers

diagrams. Let d be as de�ned in (3) and

Fd = fD � Nn j #(D) = d and D is a Ferrers diagramg : (4)

The set V = f(P1; : : : ; P�) 2 (K n)� j Pi = Pj for some i 6= jg is an

algebraic subset of (K n)� of codimension n. Therefore, 
 = (K n)� n V

is open in the Zariski topology. We consider the mapping

�D;� : 
 �! Fd

de�ned by P 7! D�(I(P;D)).

Theorem 1 There exists a Zariski open set 
0 � 
 and DD;� 2 Fd such

that

�D;� (P) = DD;�

for any system of points P 2 
0.
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Proof: The assertion follows directly from the following

Lemma 1 There exists an algorithm based on Gr�obner bases for the com-

putation of an algebraic subset W $ (K n)� such that �D;� is constant on


 nW .

Proof: Let P = (P1; : : : ; P�) 2 
 be a system of pairwise di�erent points of

K n and D = (D1; : : : ;D�) a system of �nite Ferrers diagrams. The ideals

Ij = I(Pj ;Dj) are pairwise comaximal, hence

I =

�\
j=1

Ij =

�Y
j=1

Ij : (5)

Let Pj = (pj;1; : : : ; pj;n) and let�
�j;1 = (�j;1;1; : : : ; �j;1;n); : : : ; �j;kj = (�j;kj;1; : : : ; �j;kj ;n)

	
� Nn

be a �nite generating set of the monoid ideal �j = Nn n Dj , i.e. �j =Skj
i=1 (�j;i + Nn). Then the set

f(X1 � pj;1)
�1;j;i � : : : � (Xn � pj;n)

�n;j;i j 1 � i � kjg (6)

generates Ij. Using (6) and (5) we can construct a generating set FP;D of I.

We introduce new indeterminates P = fpj;i j 1 � j � �; 1 � i � ng

for the coordinates of the points and consider the ideal J generated by FP;D
in the ring K [P;X ]. Let < denote an arbitrary admissible term order on

T (P;X) such that <jT (X)=� and P � X. Using Buchberger's algorithm

we compute the reduced Gr�obner basis GP;D of J with respect to <. Let

C 2 K [P ] be the least common multiple of all coe�cients appearing in

the elements of GP;D considered under the natural isomorphism K [P;X] '

K [P ][X].

Let ' : K [P;X] ! K [X] be a homomorphism such that '(Xi) = Xi and

'(pj;i) 2 K for all 1 � j � � and 1 � i � n. By well-known facts on Gr�obner

bases under specializations we deduce that '(C) 6= 0 implies that '(GP;D)

is a Gr�obner basis of I with respect to � (see [CLO]). Hence, the zero set

of the ideal generated by C in K [P ] satis�es the conditions of the algebraic
set W . 2

This completes also the proof of Theorem 1. 2

De�nition 1 A system P of nodes is called admissible for Hermite inter-

polation with respect to � and D if

D�(I(P;D)) = �D;�(P) = DD;� :
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Furthermore, the Ferrers diagram DD;� is called the admissible Hermite

term basis with respect to � and D.

In the special case that all Ferrers diagrams Dj , j = 1; : : : ; �, consist only

of the zero vector of Nn we have Lagrange interpolation and the characteri-

zation of admissible nodes and term bases can be found from Theorem 3 in

[ASTW].

For a system of points P = (P1; : : : ; P�) 2 (K n)�, a system of �nite Fer-

rers diagrams D = (D1; : : : ;D�) and a permutation � of f1; : : : ; �g we intro-

duce the denotations P� =
�
P�(1); : : : ; P�(�)

�
and D� =

�
D�(1); : : : ;D�(�)

�
.

Remark: There exists a Zariski open set of systems P of nodes which for any

permutation � of f1; : : : ; �g are admissible for Hermite interpolation with

respect to � and D�. An algebraic set fW of (K n)� de�ning such an open

set 
 nfW can be obtained from the algebraic set W introduced in Lemma

1 by computing

fW = fP 2 (K n)� j P� 2W for some permutation �g :

De�nition 2 A system P of � points is called universal for Hermite inter-

polation with respect to � if it is admissible for Hermite interpolation with

respect to D and � for any system D of � �nite Ferres diagrams.

In general, it is a very hard requirement to be a universal system and it is

di�cult to formulate properties of the set formed by all universal systems of

� points with respect to a given admissible term order �. The only direct

consequence of Theorem 1 is that it is dense in the usual topology if K is

the �eld of real or complex numbers.

In the next section we will show that for particular admissible term orders

there exist Zariski open sets of universal systems for Hermite interpolation.

3 Hermite interpolation with respect to elimina-

tion orders

From now we assume that � is an elimination order satisfying fX1g �

fX2; : : : ;Xng. Furthermore, all Ferrers diagrams D1; : : : ;D� of the system

D have to be �nite.

Lemma 2 Let P = (P1; : : : ; P�) 2 
 be a system of points Pj with pairwise

di�erent �rst coordinates. If (lj ; e�) 2 ��(I(Pj ;Dj)) for j = 1; : : : ; � then

(l1 + � � � + l�;
e�) 2 ��(I(P;D)).
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Proof: Let Pj = (pj;1; : : : ; pj;n) and e� = (�2; : : : ; �n). Since pj;1 6= pk;1 for

j 6= k there exist univariate polynomials  i in X1 such that

 i(pj;1) = pj;i; i = 1; : : : ; � and j = 1; : : : ; n

dk i

dXk
1

(pj;1) = 0; i = 1; : : : ; �; j = 1; : : : ; n and k = 1; 2; : : : ; d ;

where d was de�ned in (3). The polynomial

F (X) := (X2� 2(X1))
�2 �: : : �(Xn� n(X1))

�n(X1�p1;1)
l1 �: : : �(X1�p�;1)

l�

(7)

belongs to the intersection ideal I(P;D) and satis�es exp�(F ) = (l1+ � � �+

l�;
e�). F 2 I(P;D) can be veri�ed by observing @j�jF

@X� (Pj) = 0 for all

j = 1; : : : ; � and � 2 Dj. exp�(F ) = � follows immediately from fX1g �

fX2; : : : ;Xng. 2

Theorem 2 For systems P = (P1; : : : ; P�) of points with pairwise di�erent

�rst coordinates we have

��(I(P;D)) =
n
(l1 + � � �+ l�;

e�) j (lj ; e�) 2 ��(Ij); j = 1; : : : ; �
o
: (8)

Proof: Let � =
n
(l1 + � � � + l�;

e�) j (lj ; e�) 2 ��(Ij); j = 1; : : : ; �
o
. From

Lemma 2 it follows � � ��(I(P;D)).

For each e� 2 Nn�1 and 1 � j � � letmj;e� denote the number of n-tuples

of the form (�1; e�) belonging to the Ferrers diagramDj = Nn n��(Ij). Since

all Ferrers diagrams Dj are �nite it follows that all numbers mj;e� are �nite

and almost all of them are zero. Furthermore, mj;e� is the minimal natural

number �1 with the property (�1; e�) 2 ��(Ij). Hence, (�1; e�) =2 � if and

only if �1 < m1;e� + � � � +m�;e�. Consequently,

#(D) =
X

e�2Nn�1

m1;e� + � � �+m�;e� =

�X
j=1

X
e�2Nn�1

mj;e� =

�X
j=1

dj = d ; (9)

where D = Nn n�. Since dimK (R=I) = d if follows #(D�(I(P;D))) = d =

#(D) and, therefore, ��(I(P;D)) = �. 2

As a direct consequence of the above theorem we obtain:

Corollary 1 Let � be an elimination order for fX2; : : : ;Xng. Then any

system P 2 (K n)� of points with pairwise di�erent �rst coordinates is uni-

versal for Hermite interpolation with respect to �.
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Furthermore, Theorem 2 provides a fast algorithm for the computation of

a (minimal) Gr�obner basis of the intersection ideal I(P;D) =
T�

j=1 I(Pj ;Dj)

with respect to � for a given system P of points with pairwise di�erent �rst

coordinates and a given system D of �nite Ferrers diagrams.

Let Bj denote the minimal generating set of the monoid ideal ��(Ij) =

Nn nDj , j = 1; : : : ; �. According to Lemma 2 the element �(�1; : : : ; ��) =�P�
j=1 �j;1;max1�j�� �j;2; : : : ;max1�j�� �j;�

�
belongs to ��(I(P;D)) for

any elements �1 = (�1;1; : : : ; �1;n) 2 B1; : : : ; �� = (��;1; : : : ; ��;n) 2 B�.

Moreover, using formula (7) there can be constructed a polynomial Fu 2 I

with the property exp�(Fu) = �(u) for an arbitrary given u 2 B1�� � ��B�.

Theorem 2 ensures that G = fFu j u 2 B1 � � � � � B�g is a Gr�obner

basis of I = I(P;D) with respect to �. It is easy to construct a minimal

subset U � B1�� � ��B� such that G
0 = f�(�1; : : : ; ��) j (�1; : : : ; ��) 2 Ug

generates the monoid ideal ��(I). From well-known facts on Gr�obner bases

it follows that G = fFu j u 2 Ug is a minimal Gr�obner basis of I with

respect to �.

The above algorithm can be divided in two steps. The �rst step is

purely combinatorial and computes a generating set of the monoid ideal

��(I) which of course also describes the Hermite term basis Nn n ��(I).

As a byproduct step 1 produces the information how the generating set of

��(I) can be lifted to a Gr�obner basis of I in a second step.

A di�erent approach for computing the Ferrers diagram Nn n��(I) us-

ing combinatorics in the special case that � is the lexicographical order

was developed by Cerlienco and Mureddu in [CM95]. The computation of

a Gr�obner basis with respect to any term order � can be performed also

using an algorithm due to Marinari, M�oller and Mora (see [MMM]). Both

algorithms have in common that they are passing through the whole Ferrers

diagram Nn n ��(I). In contrary, our method computes directly a gener-

ating set of ��(I) and a minimal Gr�obner basis of I. Since the minimal

generating set of � is much smaller than the Ferrers diagram Nn n� in most

interesting cases it can be expected that our algorithm should have a better

average computing time behaviour. Moreover, the algorithms of Cerlienco-

Mureddu and Marinari-M�oller-Mora work in the more general context of

arbitrary systems P of pairwise di�erent points. But from the point of view

of interpolation theory only systems P which are admissible for Hermite

interpolation are of interest since only admissibility will guarantee continu-

ity of the solution of the interpolation problem. The exploitation of the

admissibility of P results in a speed up of the algorithm.
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While the algorithms of Cerlienco-Mureddu and Marinari-M�oller-Mora

have polynomial complexity in n and dimK (R=I) (see [MMM]) our algorithm

is exponential in the number � of points. A comparison of both complexities

is impossible since there is no polynomial relationship between dimK (R=I)

and �.

The algorithm sketched above can be improved by removing such tuples

of the set B1�� � ��B� for which it can be proved that they will not contribute

to the minimal generating set of ��(I). For instance, if the same Ferrers

diagram Di = Dj is associated to the points Pi and Pj then only those tuples

of B1� � � � �B� with equal i-th and j-th component need to be considered.

Let us consider two special cases for the system D of Ferrers diagrams.

First we assume that for each 1 � i � � there exists mi 2 N such that Di =

f(�1; : : : ; �n) j 0 � �1; : : : ; �n < mig. Let fm1; : : : ;m�g = fk1; : : : ; krg,

where k1 > k2 > � � � > kr. Furthermore, let �j, j = 1; : : : ; r, be the number

of Ferrers diagrams Di, i = 1; : : : ; �, such that mi = kj . In particular,Pr
j=1 �j = �. By ej we denote the j-th unit vector of Nn . Then we can

write down the minimal generating set of ��(I) immediately in the form( 
rX

i=1

�iki

!
e1

)
[

( 
l�1X
i=1

�iki

!
e1 + klej

����� 2 � j � n; 1 � l � r

)
(10)

according to Theorem 2.

By (7) and (10) it follows that the ideal I is generated by polynomi-

als g1(X1);X
k1
2
� g2(X1;X2); : : : ;X

k1
n � gn(X1;Xn), where the degree of

the polynomials gj(X1;Xj) in Xj is less than k1 for all 2 � j � n, and

possibly additional polynomials depending only on X1 and one of the vari-

ables X2; : : : ;Xn and having degree less than k1 in the second variable.

This statement can be considered as a straight forward generalization of the

Shape Lemma (see [GM89, Proposition 1.6]).

From the practical point of view the most interesting case of interpolation

of Hermite type consists inDi = f(�1; : : : ; �n) j 0 �
Pn

j=1 �j < mig, where

mi 2 N, for all i = 1; : : : ; �. This is the second particular case which we

will discuss. W.l.o.g. assume m1 � mj for all 1 < j � �. Then the minimal

generating set of ��(I) consists of all tuples (�1; �2; : : : ; �n) 2 Nn such that

� := �2 + � � �+ �n � m1 and �1 =
P�

j=1(mj _��), where

a _�b :=

�
a� b : a > b

0 : otherwise
:

In both investigated special cases the complexity order cannot be im-

proved since it is just the number of elements belonging to the reduced
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Gr�obner basis of I. Application of (7) again yields a generalisation of the

Shape Lemma to a subclass of ideals of Krull dimension zero containing

more than only radical ideals.

4 Term bases for Hermite interpolation

The investigation of the case that � has not the elimination property

fXjg � X n fXjg for some 1 � j � n is much more delicate. In general,

we cannot read o� directly the admissible Hermite term basis DD;� with

respect to � and a given system D of �nite Ferrers diagrams. Lemma 1

provides a method for the computation of DD;� using Buchberger's algo-

rithm for the computation of Gr�obner bases. Though the worst case com-

plexity of Buchberger's algorithm is very high, in our particular case we are

in a better situation because only linear algebra is needed for the Gr�obner

basis calculation.

In contrary to Lemma 1 now we consider I(P;D) as an ideal of K (P )[X ]

rather than of K [P;X ], where P = fpj;i j 1 � j � �; 1 � i � ng are

the variables introduced for the coordinates of the points belonging to P.

The Gr�obner basis of I(P;D) � K (P )[X] with respect to � provides the

admissible Hermite term basis DD;� with respect to � and D. However,

in general it will not carry all information about admissibility of P. For

methods to compute the missing conditions we refer to [CLO].

For any � the ideal of K (P )[X ] generated by the leading terms of the

elements of the generating set FP;D of I(P;D) resulting from (5) and (6) is

zero-dimensional. Therefore, the Gr�obner basis calculation takes place in a

�nite dimensional K (P )-vector space and requires only linear algebra. But

also more e�cient methods for computing a Gr�obner basis of I(P;D) are

known, e.g. the algorithm of Marinari, M�oller and Mora mentioned already

in the previous section can be applied. Taking into account the presumed

admissibility of P there is a further possibility. Let �0 be an arbitrary

elimination order for fX2; : : : ;Xng. Since there exists a Zariski non empty

open set of systems P 2 
 which are admissible for Hermite interpolation

with respect to D and both orders � and �0 we can do the following: �rst we

compute a Gr�obner basis of I(P;D) with respect to �0 using the methods

presented in the previous section and second we apply the FGLM-algorithm

(see [FGLM]) for the transformation to a Gr�obner basis with respect to �.

A di�erent approach towards interpolation is to prescribe a set C � Nn ,

which in all interesting cases is a Ferrers diagram, and to ask for D such that

C becomes the Hermite term basis with respect to � and D. The following
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theorem provides a method for checking whether a given C is Hermite term

basis with respect to � and D. In general this method will be faster than

computing the Hermite term basis with respect to � and D and comparing it

with C. Moreover, the theorem allows to derive conditions on D for given C

and �. Before we present the theorem we need to introduce some notation.

Let P = (P1; : : : ; P�) a system of points, D = (D1; : : : ;D�) a system of �nite

Ferrers diagrams and d =
P�

i=1#(Di). To each pair 1 � j � � and � 2 Dj

we associate the functional g'j;� : K [X] ! K de�ned by

8F 2 K [X] : g'j;�(F ) = @j�jF

@X�
(Pj) :

Let t1; : : : ; td 2 T (X) be arbitrary terms considered as polynomial functions,

C = fexp(t1); : : : ; exp(td)g the set of their exponent vectors, and '1; : : : ; 'd
an arbitrary �xed enumeration of the functionals g'j;�, 1 � j � �; � 2 Dj .

Then by de�nition

det (C;D;P) := det('i(tk))i;k=1;:::;d :

The sets of terms and functionals are uniquely determined by C, D and

P. Furthermore, changing the enumerations of terms or functionals will

e�ect at most the sign of det (C;D;P). Therefore, writing det (C;D;P) 6=

0 without claiming the enumerations can be understand with respect to

arbitrary enumerations. Finally, by D�(I)
(d) we denote the set consisting

of the d smallest elements of D�(I) with respect to �.

Theorem 3 For any subideal I � I(D;P) we have

D� (I(D;P)) = D�(I)
(d) () det

�
D�(I)

(d)
;D;P

�
6= 0 : (11)

Proof: For any set C 2 Nn consisting of d elements we have det (C;D;P) 6= 0

if and only if ff 2 K [X ] j 8t 2 supp(f) : exp(t) 2 Cg \ I(P;D) = f0g.

(() AssumeD� (I(D;P)) = D�(I)
(d). From the theory of Gr�obner basis we

deduce that the terms X�, � 2 D�(I)
(d), are linearly independent modulo

the ideal I(D;P). Hence, it follows det
�
D�(I)

(d);D;P
�
6= 0.

()) Assume det
�
D�(I)

(d);D;P
�
6= 0.

Suppose that there exists � 2 D� (I(D;P)) n D�(I). From the theory

of Gr�obner bases it follows the existence of f 2 K [X ] such that X� � f 2 I

and exp�(f) � �. Hence, D� (I(D;P)) 3 exp� (X
� � f) = � from what we

deduce X� � f =2 I(D;P) in contradiction to I � I(D;P). Consequently,

D� (I(D;P)) � D�(I).

11



Now, assume the existence of � 2 D� (I(D;P)) n D�(I)
(d). Then from

D� (I(D;P)) � D�(I) it follows � � � for all � 2 D�(I)
(d). The inequal-

ity det
�
D�(I)

(d);D;P
�
6= 0 implies that the terms X� , � 2 D�(I)

(d), are

linearly independent modulo the ideal I(D;P). Since the K -vector space

dimension of R=I(P;D) is equal to d = #
�
D�(I)

(d)
�
it follows that the set

B =
�
X� + I(D;P) j � 2 D�(I)

(d)
	
is a vector space basis of R=I(P;D).

Hence, the residue class X�+I(D;P) is a linear combination of the elements

of B. Therefore, there exist c� 2 K , � 2 D�(I)
(d), such that f = X� +P

�2D�(I)(d)
c�X

� 2 I(D;P). It follows ��(I(D;P)) 3 exp�(f) = � in con-

tradiction to � 2 D�(I(D;P)) = Nn n��(I(D;P)). Hence, D� (I(D;P)) �

D�(I)
(d) and the trivial observation # (D� (I(D;P))) = d = #

�
D�(I)

(d)
�

completes the proof. 2

As an obvious consequence we have

Corollary 2 Let D = (D1; : : : ;D�) be a system of �nite Ferrers diagrams,

P = (P1; : : : ; P�) a system of points with indeterminate coordinates P =

fpj;i j 1 � j � �; 1 � i � ng, and C 2 Fd a Ferrers diagram consisting

of d =
P�

i=1#(Di) elements. Furthermore, �x an arbitrary enumeration of

C and the functionals 'j;�. Then DD;� = C if and only if the polynomial

det (C;D;P) in the indeterminates P is not identical zero.

The particular case that I is a radical ideal and Dj = f(0; : : : ; 0)g for all

1 � j � � was investigated in [ASTW] and corresponds to interpolation

of Lagrange type on algebraic sets. In that situation the question for ad-

missible systems of points has always a positive solution and, moreover,

any admissible system of � points can be extended to an admissible sys-

tem of � + 1 points. Note, if D is of Lagrange type then the determinants

det(D�(I)
(d);P) used in [ASTW, Theorem 3] and det

�
D�(I)

(d);D;P
�
in-

troduced in this paper refer to transposed matrices if the elements of P and

D�(I)
(d) are enumerated in the same way. Moreover, while D�(I)

(d) was a

subset of T (X) in [ASTW] now it consists of the corresponding exponent

vectors.

In the Hermite case the situation is much more delicate. For instance, if

� is an elimination order for fX2; : : : ;Xng, I \ K [X1 ] = f0g, and some Fer-

rers diagram Dj contains an element (�1; : : : ; �n) such that f�2; : : : ; �ng 6=

f0g then det
�
D�(I)

(d);D;P
�
is identical zero in the coordinates of P.

In the case that the term order � is degree compatible and I = f0g

Hakopian characterized some situations of the type that there exist non-

negative integers k1; : : : ; k�; k such that Dj consists of the exponent vectors
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of all terms of degree smaller or equal than kj and
P�

j=1

�
n+kj
kj

�
=
�
n+k
k

�
(see

[Ha82]).
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