brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by Qucosa - Publikationsserver der Universitat Leipzig

Term Bases for Multivariate Interpolation
of Hermite Type'

J. Apel, J. Stiickrad, P. Tworzewski, T. Winiarski

IMUJ PREPRINT 1997 /26 KRAKOW

ABSTRACT

The main object of this paper is to prove that any system of
P = (P,...,P,) of u points with pairwise different first coordinates
is universal for Hermite interpolation with respect to any elimination
term order < satisfying {X1} <« {X»,...,X,}. Furthermore a fast al-
gorithm for the computation of the minimal (with respect to <) term
basis for Hermite interpolation is presented.

1 Introduction

In general, Hermite interpolation means that we are looking for a polynomial

F € R which takes prescribed values and derivatives at given points. Let

P = (P1,...,P,) be a system of i pairwise different points (nodes) P; € K"

and D = (Dy,...,D,) a system of p finite Ferrers diagrams. Then we
require "
«

S (P) = by (1)
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for « € D; (j = 1,...,u) and given data b;, € K. All polynomials F
fulfilling condition (1) form a residue class modulo an ideal I(P, D) in the
polynomial ring R = K[X,...,X,] with Krull-dim (R/I(P,D)) = 0. If
we consider only polynomials ' which are in a certain sense minimal with
respect to a given term order < in R then F becomes unique and can be
computed effectively using, for example, Grobner basis algorithms (see e.g.
[BMS82], [BWI1], [MMM]). For n = 1 there are formulas for interpolating
polynomials due to Newton, Lagrange and Hermite. These formulas have
been applied in the theory of approximation (see e.g. [Fe23], [Leb4], [Wi70]).
The examination of the interpolation formula’s structure has led to rather
reach theories of polynomial interpolation for several variables and their ap-
plication to the theory of approximation (see e.g. [Si62], [Wi73], [Br97]).
In particular Newton’s divided differences resulting in Kergin’s interpola-
tion (see e.g. [Ke78], [Ke80], [Ha82]) has been heavily investigated some
years ago. It is a seemingly surprising fact that in many papers written by
specialists of interpolation theory there is no information on very nice re-
sults obtained in the same time by specialists of effective methods and vice
versa. In this paper we try to build a bridge between both groups. Espe-
cially, Theorem 3 connects classical and Grébner basis methods for Hermite
interpolation. A fast algorithm for the computation of the admissible Her-
mite term basis with respect to any elimination term order < satisfying
{X1} < {Xq,...,X,} follows from Theorem 2.

2 Preliminaries

Notations Let K be an arbitrary field of characteristic zero, X = {X1, ...,
X, } a finite set of indeterminates and R := K[X] the polynomial ring in X
over K. The set of terms generated by X will be denoted by T'(X). The
elements of T(X) are identified with the n-tuples of natural numbers via
the exponent mapping exp : T(X) — N defined by X* = X' --- X2
(a1,...,a,) = a. For a = (a,...,0,) € N* we will also use the denotation
a = (ag,a). A total order < on T'(X) is said to be admissible if it satisfies
the following two conditions

i) 1 < X for each o € N*\{0}

i) X < X8 = Xt < XA+ for all o, B,y € N* .

!We note that if all Ferrers diagrams are trivial, i.e. each of them consists of only one
point, then we are in the situation of Lagrange interpolation.



By a < 3 < X® < X¥ any order < of T'(X) induces an order on N*
which, for simplicity, we denote also by <.

Let X be the disjoint union of ¥ and Z. Then an admissible term
order < is called an elimination order for Z if ¢t < s for all ¢ € T'(Y) and
seT(X)\T(Y). In this case we write ¥ < Z.

The support supp(f) of an element f € R is defined to be the set of all
terms appearing in f with non-zero coefficient. For non-zero elements f the
maximal element 1t (f) of supp(f) with respect to < and the corresponding
coefficient lc4(f) are called leading term and leading coefficient, respectively,
of f (w.r.t. <). Furthermore, for any non-zero polynomial f the exponent
exp_(lt<(f)) of the leading term is called the leading exponent of f (w.r.t.
<) and denoted by exp_(f).

The notions of leading term and leading exponent are extended to subsets
F of polynomials by defining 1t (F) := {lt<(f)|0 # f € F} and exp_(F) :=
{exp_(f)|0 # f € F}, respectively. Moreover, we introduce the notations
AL(F) = expL(F) + N" and DL (F) := N* \ AL(F). An arbitrary subset
D C N" will be called a Ferrers diagram if there exists an ideal I C R
such that D = D.(I). For any Ferrers diagram D there exist a uniquely
determined monomial ideal I such that D = D~ (I) for any admissible order
<. If {t1,...,ts} C T(X) generates this monomial ideal I then we say
that the system {aq = exp(t1),...,as = exp(ts)} determines D. In the case
D # N",ie. I is not the zero ideal, A(I) = N* \ D is the monoid ideal of
N" generated by {ai,...,as}. Since, in general, it will be clear from the
context which order is meant we will omit the index < and we write e.g.

1t(f) instead of 1t (f).

About interpolation. In general, Hermite interpolation means that we
are looking for a polynomial F' € R which takes prescribed values and deriva-
tives at given points. Let P = (P,...,P,) be a system of x points (nodes)
P; € K* and D = (D,...,D,) a system of u Ferrers diagrams. Then we
require "
o
e (P) =bja )
for « € Dj, j = 1,...,p and given data bj, € K There can be applied
Grobner basis techniques (c.f. [Bu65], [BWK], [CLO]) in order to solve this
problem for arbitrary given data P, D and b, (c.f. [BW91]). To each pair
(Pj, Dj) we assign the ideal

olelp
oX«

Ij:I(Pijj): {FER

(Pj) =0 for allaEDj}



which is generated by the set of all (X — P])ﬂ , where (3 ranges over a de-
termining system of D;. Using Grobner basis techniques we can compute
a generating set of the intersection ideal I(P,D) = 9‘:1 I; (see [BWK],
[CLOJ). If the residue classes of the subset B C R form a K-vector space
basis of R/I(P,D) then if for a given data b, there exists a solution then
there exists also a uniquely determined linear combination F' of B satisfying
the conditions (2) of the interpolating polynomial. From any Grobner basis
of I with respect to a fixed admissible term order < one can directly read
off the set D = DL (I) obtaining a suitable basis B, = {X? | 8 € D}.
Such a basis B- has the nice property that the support of the polynomial
F contains the smallest (with respect to <) terms among all possible in-
terpolating polynomials and that F' can be obtained by Grébner reduction.
For example, if one is looking for an interpolating polynomial F' of minimal
degree then one can use a total degree order as <.

In order to guaranty the existence of a solution for any data b; , we have
to assume that all Ferrers diagrams D; are finite. In this case we have

d:=dimg R/I(P,D) =Y _ #(D;) (3)

j=1

and calculation of F' needs only the solution of a finite system of linear
equations in finitely many indeterminates corresponding to the elements of
a vector space basis B.

Admissible interpolation systems From now we fix an admissible term
order <, a number £ of nodes and a system D = (Dy, ..., D,) of finite Ferrers
diagrams. Let d be as defined in (3) and

Sa={D CN"' | #(D)=dand D is a Ferrers diagram} . (4)

The set V = {(P,...,P,) € (K")* | P, =P for somei#j} is an
algebraic subset of (K")* of codimension n. Therefore, @ = (K")* \ V
is open in the Zariski topology. We consider the mapping

Pp,< : @ —Fq
defined by P — DL (I(P,D)).

Theorem 1 There exists a Zariski open set Q' C Q and Dp - € §q such
that
@D,< (P) = DD,<

for any system of points P € Q.



Proof: The assertion follows directly from the following

Lemma 1 There exists an algorithm based on Grébner bases for the com-

putation of an algebraic subset W ; (K™)* such that ®p < is constant on

Proof: Let P = (P,...,P,) € Q be a system of pairwise different points of
K" and D = (D,...,D,) a system of finite Ferrers diagrams. The ideals
I; = I(P;, Dj) are pairwise comaximal, hence

=5=1]%5- (5)
j=1 j=1
Let Pj = (pj1,.-.,pjn) and let
{ozj,l = (0{7’,1,1, . ,aj,l,n), ... ,aj,kj = (ozjyk].’l, ... ,ajyk].,n)} C N

be a finite generating set of the monoid ideal A; = N* \ D;, ie. A; =
Ufi1 (ej; + N"). Then the set

{(Xl —pj71)al’j’i .t (Xn —pjm)a”’j’i | 1< < kj} (6)

generates ;. Using (6) and (5) we can construct a generating set Fp p of I.

We introduce new indeterminates P = {p;; | 1 <j <p,1 <i<n}
for the coordinates of the points and consider the ideal J generated by Fp p
in the ring K[P, X]. Let C denote an arbitrary admissible term order on
T(P, X) such that C|px)==< and P < X. Using Buchberger’s algorithm
we compute the reduced Grobner basis Gp p of J with respect to C. Let
C € K[P] be the least common multiple of all coefficients appearing in
the elements of Gp p considered under the natural isomorphism K[P, X] ~

Let ¢ : K[P, X] — K[X] be a homomorphism such that ¢(X;) = X; and
¢(pji) € Kforalll <j <pandl <i<n. By well-known facts on Grobner
bases under specializations we deduce that ¢(C) # 0 implies that ¢(Gp p)
is a Grobner basis of I with respect to < (see [CLO]). Hence, the zero set
of the ideal generated by C in K[P] satisfies the conditions of the algebraic
set W. a
This completes also the proof of Theorem 1. |

Definition 1 A system P of nodes is called admissible for Hermite inter-
polation with respect to < and D if

DL(I(P,D)) = p <(P) = Dp«



Furthermore, the Ferrers diagram Dp - is called the admissible Hermite
term basis with respect to < and D.

In the special case that all Ferrers diagrams D;, 7 = 1,...,u, consist only
of the zero vector of N” we have Lagrange interpolation and the characteri-
zation of admissible nodes and term bases can be found from Theorem 3 in
[ASTW].

For a system of points P = (Py,..., P,) € (K")*, a system of finite Fer-
rers diagrams D = (D1,...,D,) and a permutation 7 of {1,..., 1} we intro-
duce the denotations P, = (Pﬂ(l), e ,Pﬂ(u)) and D, = (Dﬂ(l), e ,Dﬂ(ﬂ)).
Remark: There exists a Zariski open set of systems P of nodes which for any
permutation 7 of {1,...,u} are admissible for Hermite interpolation with
respect to < and Dy. An algebraic set W of (K™)# defining such an open
set 2\ W can be obtained from the algebraic set W introduced in Lemma
1 by computing

W ={P e (K")* | P; €W for some permutation 7} .

Definition 2 A system P of p points is called universal for Hermite inter-
polation with respect to < if it is admissible for Hermite interpolation with
respect to D and < for any system D of u finite Ferres diagrams.

In general, it is a very hard requirement to be a universal system and it is
difficult to formulate properties of the set formed by all universal systems of
1 points with respect to a given admissible term order <. The only direct
consequence of Theorem 1 is that it is dense in the usual topology if K is
the field of real or complex numbers.

In the next section we will show that for particular admissible term orders
there exist Zariski open sets of universal systems for Hermite interpolation.

3 Hermite interpolation with respect to elimina-
tion orders

From now we assume that < is an elimination order satisfying {X;} <
{Xs,..., Xy }. Furthermore, all Ferrers diagrams D1, ..., D, of the system
D have to be finite.

Lemma 2 Let P = (P1,...,P,) € Q be a system of points P; with pairwise
different first coordinates. If (1;,8) € AL(I(Pj,Dj)) for j =1,...,u then
(it 41y, B) € A<(I(P, D)

l.
).



Proof: Let P; = (pj1,...,pjn) and B = (B2,...,0y). Since pj1 # pi,1 for
j # k there exist univariate polynomials ¢; in X7 such that

Yi(pj1) = pjgi t=1,...,pandj=1,...,n
dFap; ) )
K{s(pj,l) =0, i=1,...,p,7=1,...;,nand k=1,2,...,d

where d was defined in (3). The polynomial

F(X) = (Xo—12(X1))2 . - (X —0n(X1))P" (X1 —pra) oo (X —ppa)e

(7)
belongs to the intersection ideal I(P, D) and satisfies exp_(F) = (I +--- +
lu,g). F € I(P,D) can be verified by observing %(Pj) = 0 for all
j=1,...,p and a € Dj. exp_(F) = 3 follows immediately from {X;} <
{XQ,...,Xn}. d

Theorem 2 For systems P = (P1,...,P,) of points with pairwise different
first coordinates we have

ALIPD) = {(l++1,B) | (5:8) € AcLy), j=1,0mf - (8)

Proof: Let A = {(h + - +lu,5) | (lj,E) eANL(I), = 1,...,u}. From
Lemma 2 it follows A C A_(I(P,D)).

Foreacha € N*~ ! and 1 < j < plet mj s denote the number of n-tuples
of the form (o, &) belonging to the Ferrers diagram D; = N*\ A_(J;). Since
all Ferrers diagrams D; are finite it follows that all numbers m; 5 are finite
and almost all of them are zero. Furthermore, m; 5 is the minimal natural
number «; with the property (o, a) € AL(I;). Hence, (o,a) ¢ A if and
only if oy <myg+--- +m,5. Consequently,

o 13
D)= 3wt dmg =3 Y mamhd L @
j=1

aeNn—1 J=1aeNn-1
where D = N \ A. Since dimg(R/I) = d if follows #(D<(I(P,D))) =d =
#(D) and, therefore, AL(I(P,D)) = A. O
As a direct consequence of the above theorem we obtain:
Corollary 1 Let < be an elimination order for {Xs,...,X,}. Then any

system P € (K™)* of points with pairwise different first coordinates is uni-
versal for Hermite interpolation with respect to <.



Furthermore, Theorem 2 provides a fast algorithm for the computation of
a (minimal) Grobner basis of the intersection ideal I(P, D) = 7:1 I(Pj,Dj)
with respect to < for a given system P of points with pairwise different first
coordinates and a given system D of finite Ferrers diagrams.

Let Bj denote the minimal generating set of the monoid ideal A_(I;)
N*\ Dj, j =1,...,pu. According to Lemma 2 the element §(c,...,®,)

Z?:l Qj1, MAX| <5<y O 2, - - -, MAX <5<y Oéj,u) belongs to A<(I(P, D)) for
any elements a1 = (11,...,010) € Bi,...,a, = (opu1,...,0un) € By.
Moreover, using formula (7) there can be constructed a polynomial F,, € T
with the property exp_ (F,) = B(u) for an arbitrary given u € By x--- x B,,.
Theorem 2 ensures that G = {F,, | uw € By x --- x By} is a Grébner
basis of I = I(P,D) with respect to <. It is easy to construct a minimal
subset U C By x---x By, such that G' = {B(a1,...,a,) | (a1,...,0,) €U}
generates the monoid ideal A(I). From well-known facts on Grobner bases
it follows that G = {F,, | u € U} is a minimal Grobner basis of I with
respect to <.

The above algorithm can be divided in two steps. The first step is
purely combinatorial and computes a generating set of the monoid ideal
A~(I) which of course also describes the Hermite term basis N* \ AL(I).
As a byproduct step 1 produces the information how the generating set of
A~(I) can be lifted to a Grobner basis of I in a second step.

A different approach for computing the Ferrers diagram N* \ A_(I) us-
ing combinatorics in the special case that < is the lexicographical order
was developed by Cerlienco and Mureddu in [CM95]. The computation of
a Grobner basis with respect to any term order < can be performed also
using an algorithm due to Marinari, Moller and Mora (see [MMM]). Both
algorithms have in common that they are passing through the whole Ferrers
diagram N" \ AL(I). In contrary, our method computes directly a gener-
ating set of AL(I) and a minimal Grobner basis of I. Since the minimal
generating set of A is much smaller than the Ferrers diagram N*\ A in most
interesting cases it can be expected that our algorithm should have a better
average computing time behaviour. Moreover, the algorithms of Cerlienco-
Mureddu and Marinari-Moller-Mora work in the more general context of
arbitrary systems P of pairwise different points. But from the point of view
of interpolation theory only systems P which are admissible for Hermite
interpolation are of interest since only admissibility will guarantee continu-
ity of the solution of the interpolation problem. The exploitation of the
admissibility of P results in a speed up of the algorithm.



While the algorithms of Cerlienco-Mureddu and Marinari-M6ller-Mora,
have polynomial complexity in n and dimg (R/I) (see [MMM]) our algorithm
is exponential in the number 4 of points. A comparison of both complexities
is impossible since there is no polynomial relationship between dimyk(R/I)
and p.

The algorithm sketched above can be improved by removing such tuples
of the set By x- - -x B, for which it can be proved that they will not contribute
to the minimal generating set of A_(I). For instance, if the same Ferrers
diagram D; = Dj is associated to the points F; and P; then only those tuples
of By x --- x B,, with equal i-th and j-th component need to be considered.

Let us consider two special cases for the system D of Ferrers diagrams.
First we assume that for each 1 <14 < p there exists m; € N such that D; =
{(ar,...;0n) | 0 < aq,...,an < m;}. Let {mq,...,m,} = {ki,...,k},
where k1 > ko > -+ > k,. Furthermore, let u;, j =1,...,r, be the number
of Ferrers diagrams D;, ¢ = 1,...,u, such that m; = k;. In particular,
Z;Zl pj = p. By ¢j we denote the j-th unit vector of N*. Then we can
write down the minimal generating set of AL (I) immediately in the form

(3o () oo

according to Theorem 2.

By (7) and (10) it follows that the ideal I is generated by polynomi-
als gl(Xl),Xgl — g2(X1, X2),..., X" — ¢,(X1,X,), where the degree of
the polynomials g;(X1,X;) in Xj is less than k; for all 2 < j < n, and
possibly additional polynomials depending only on X; and one of the vari-
ables Xjs,..., X, and having degree less than k; in the second variable.
This statement can be considered as a straight forward generalization of the
Shape Lemma (see [GM89, Proposition 1.6]).

From the practical point of view the most interesting case of interpolation
of Hermite type consists in D; = {(a1,...,an) | 0 <3770, aj <m;}, where
m; € N, for all 4 = 1,...,u. This is the second particular case which we
will discuss. W.l.o.g. assume m; > m,; for all 1 < j < p. Then the minimal
generating set of A_(I) consists of all tuples (31, 52, ..,0,) € N* such that

B:=pPs+ 40 <miand f; = Zé-‘zl(mjiﬁ), where

S a—>b : a>b
a=v= 0 . otherwise

2§j§n,1§l§r} (10)

In both investigated special cases the complexity order cannot be im-
proved since it is just the number of elements belonging to the reduced



Grobner basis of I. Application of (7) again yields a generalisation of the
Shape Lemma to a subclass of ideals of Krull dimension zero containing
more than only radical ideals.

4 Term bases for Hermite interpolation

The investigation of the case that < has not the elimination property
{X;} < X\ {X;} for some 1 < j < n is much more delicate. In general,
we cannot read off directly the admissible Hermite term basis Dp . with
respect to < and a given system D of finite Ferrers diagrams. Lemma 1
provides a method for the computation of Dp - using Buchberger’s algo-
rithm for the computation of Grobner bases. Though the worst case com-
plexity of Buchberger’s algorithm is very high, in our particular case we are
in a better situation because only linear algebra is needed for the Grobner
basis calculation.

In contrary to Lemma 1 now we consider I(P, D) as an ideal of K(P)[X]
rather than of K[P, X], where P = {p;; | 1 <j <p,1 <i<n} are
the variables introduced for the coordinates of the points belonging to P.
The Grobner basis of I(P,D) C K(P)[X] with respect to < provides the
admissible Hermite term basis Dp o with respect to < and D. However,
in general it will not carry all information about admissibility of P. For
methods to compute the missing conditions we refer to [CLO].

For any < the ideal of K(P)[X] generated by the leading terms of the
elements of the generating set Fp p of I(P, D) resulting from (5) and (6) is
zero-dimensional. Therefore, the Grobner basis calculation takes place in a
finite dimensional K(P)-vector space and requires only linear algebra. But
also more efficient methods for computing a Grébner basis of I(P,D) are
known, e.g. the algorithm of Marinari, Moller and Mora mentioned already
in the previous section can be applied. Taking into account the presumed
admissibility of P there is a further possibility. Let <’ be an arbitrary
elimination order for {Xs,...,X,}. Since there exists a Zariski non empty
open set of systems P € Q which are admissible for Hermite interpolation
with respect to D and both orders < and <" we can do the following: first we
compute a Grobner basis of I(P, D) with respect to <’ using the methods
presented in the previous section and second we apply the FGLM-algorithm
(see [FGLM]) for the transformation to a Grobner basis with respect to <.

A different approach towards interpolation is to prescribe a set C' C N,
which in all interesting cases is a Ferrers diagram, and to ask for D such that
C becomes the Hermite term basis with respect to < and D. The following

10



theorem provides a method for checking whether a given C' is Hermite term
basis with respect to < and D. In general this method will be faster than
computing the Hermite term basis with respect to < and D and comparing it
with C. Moreover, the theorem allows to derive conditions on D for given C'
and <. Before we present the theorem we need to introduce some notation.
Let P = (Pi,...,P,) asystem of points, D = (Dy,..., D,) a system of finite
Ferrers diagrams and d = Y ! | #(D;). To each pair 1 < j < p and a € D;
we associate the functional ¢;, : K[X] — K defined by

ol
= P;
oXxa ¥/

VF € K[X] : @ja(F

Let t1,...,tq € T(X) be arbitrary terms considered as polynomial functions,
C = {exp(t1),...,exp(tq)} the set of their exponent vectors, and @1, ..., @4
an arbitrary fixed enumeration of the functionals ¢;,, 1 < j < p,a € D;.
Then by definition

det (C, D, P) := det(p;(tr))ik=1,..d

The sets of terms and functionals are uniquely determined by C, D and
‘P. Furthermore, changing the enumerations of terms or functionals will
effect at most the sign of det (C,D,P). Therefore, writing det (C,D,P) #
0 without claiming the enumerations can be understand with respect to
arbitrary enumerations. Finally, by D_(I)¥ we denote the set consisting
of the d smallest elements of D (I) with respect to <.

Theorem 3 For any subideal I C I(D,P) we have
D (I(D,P)) = DD <= det (D<(1)®,D,P) £0.  (11)

Proof: For any set C' € N" consisting of d elements we have det (C, D, P) # 0
if and only if {f € K[X] | V¢ € supp(f) : exp(t) € C} NI(P,D) = {0}.
(<) Assume D_ (I(D,P)) = D (I)(¥). From the theory of Grobner basis we
deduce that the terms X, o € DL (I)(9), are linearly independent modulo
the ideal I(D,P). Hence, it follows det (D~ (I)(9), D, P) # 0.
(=) Assume det (D (I)9, D, P) # 0.

Suppose that there exists o € D (I(D,P)) \ D<(I). From the theory
of Grobner bases it follows the existence of f € K[X] such that X® — f e I
and exp_(f) < a. Hence, D, (I(D,P)) 3 exp_ (X — f) = o from what we
deduce X* — f ¢ I(D,P) in contradiction to I C I(D,P). Consequently,
D (I(D,P)) € D<().

11



Now, assume the existence of o € D (I(D,P)) \ D<(I)(¥. Then from
D (I(D,P)) € D<(I) it follows 3 < « for all 8 € D(I)9). The inequal-
ity det (D<(I)(d),D,P) # 0 implies that the terms X%, 3 € D_(I)¥), are
linearly independent modulo the ideal I(D,P). Since the K-vector space
dimension of R/I(P, D) is equal to d = # (D<(I)(?) it follows that the set
B={X’+1I(D,P) | B€ Dy (I)(d)} is a vector space basis of R/I(P,D).
Hence, the residue class X*+1(D,P) is a linear combination of the elements
of B. Therefore, there exist ¢z € K, 8 € D_ ()@ such that f = X* +
> gen (1)@ csXP € I(D,P). 1t follows AL (I(D,P))  exp(f) = a in con-
tradiction to o € D (I(D,P)) = N*\ AL(I(D,P)). Hence, D< (I(D,P)) C
D~ (I)'® and the trivial observation # (D~ (I(D,P))) = d = # (D<(I)¥)
completes the proof. a

As an obvious consequence we have

Corollary 2 Let D = (Dy,...,D,) be a system of finite Ferrers diagrams,
P = (Pi,...,P,) a system of points with indeterminate coordinates P =
{pji | 1<j<pl1<i<n}, and C € §4 a Ferrers diagram consisting
of d =Y #(D;) elements. Furthermore, fiz an arbitrary enumeration of
C' and the functionals @j . Then Dp o = C if and only if the polynomial
det (C,D,P) in the indeterminates P is not identical zero.

The particular case that I is a radical ideal and D; = {(0,...,0)} for all
1 < j < p was investigated in [ASTW] and corresponds to interpolation
of Lagrange type on algebraic sets. In that situation the question for ad-
missible systems of points has always a positive solution and, moreover,
any admissible system of p points can be extended to an admissible sys-
tem of 4 + 1 points. Note, if D is of Lagrange type then the determinants
det(D<(I)¥,P) used in [ASTW, Theorem 3] and det (D<(I)(9),D,P) in-
troduced in this paper refer to transposed matrices if the elements of P and
D_ ()% are enumerated in the same way. Moreover, while D_ (I)(® was a
subset of T'(X) in [ASTW] now it consists of the corresponding exponent
vectors.

In the Hermite case the situation is much more delicate. For instance, if
< is an elimination order for {Xo,..., Xy}, INK[X;] = {0}, and some Fer-
rers diagram D; contains an element (c,...,®,) such that {ag,...,a,} #
{0} then det (D (I),D,P) is identical zero in the coordinates of P.

In the case that the term order < is degree compatible and I = {0}
Hakopian characterized some situations of the type that there exist non-
negative integers ki, ..., k,, k such that D; consists of the exponent vectors

12



of all terms of degree smaller or equal than k; and Z;‘Zl (”+kj) = ("zk) (see

[Ha82]).

k;
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