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ABSTRACT

We present a method for determining the reduced Gr�obner basis

with respect to a given admissible term order of order type ! of the

intersection ideal of an in�nite sequence of polynomial ideals.

As an application we discuss the Lagrange type interpolation on

algebraic sets and the \approximation" of the ideal I of an algebraic

set by zero dimensional ideals, whose a�ne Hilbert functions converge

towards the a�ne Hilbert function of I .

1 Introduction

In�nite descending ideal sequences are used for the de�nition of algebraic

topologies (c.f. [ZS2]). The ideals will constitute a basis of neighbourhoods

of 0. In order to obtain a Hausdor� space the intersection of the ideal family

must be the zero-ideal. It is a well-known result (Theorem of Chevalley, c.f.

[ZS2]) for complete semi-local rings that the powers of the intersection of

all maximal ideals de�ne the weakest algebraic topology such that the ring

becomes a Hausdor� space. Furthermore, the Chevalley Theorem and the

Krull Theorem (c.f. [ZS1]) state that the intersection of a descending ideal

sequence is the zero ideal if and only if for each natural number r there

exists an ideal in the sequence which is contained in the r-th power of the

maximal ideal.

yThis research was partially supported by KBN Grant Nr. 2 P03A 061 08 and by

DAAD



In this paper we will discuss intersections of descending ideal sequences

in rings of polynomials, germs, and entire functions. Due to the lack of

completeness and for some rings also semi-locality we can not simply extend

the ideas of Krull and Chevalley. However, at least in the case of polynomial

functions we can give a satisfactory answer by means of Gr�obner bases (cf.

[B] and [BWK]).

Theorem 1 Let I1 � I2 � : : : be a descending sequence of ideals of the

polynomial ring R = K [X ]. Furthermore, for each � = 1; 2; : : : let G� be the

reduced Gr�obner basis of I� with respect to a �xed order � of order type !.

Then the set G =
T1
�=�G� is the reduced Gr�obner basis of the intersection

ideal I =
T1
�=1 I� with respect to �, for su�ciently large �. In particular,

lt

 
1\
i=1

Ii

!
=

1\
i=1

lt(Ii) :

In Section 2 we will observe that the restriction to order type ! is essential.

The situation becomes much more complicated in rings lying between the

polynomial ring and the ring of formal power series, e.g. the ring of entire

functions. We have the two trivial marginal cases that the intersection is zero

if we lift the ideals to the ring of formal power series or that the intersection

is non-zero if we contract the ideals to the polynomial ring, where, of course,

the decisions carry over.

The following example will illustrate that everything can happen in the

area between these both marginal cases.

Example 1 Let R;E;O0 be the rings of polynomials, entire functions and

germs of analytic functions at 0, respectively, and let S be the ring of formal

power series in the variables X and Y over the coe�cient �eld C . Further-

more, let (��) be a sequence of positive integers satisfying the inequalities

��+1 > ��� (� � 1) (1)

and let (c�) be an arbitrary sequence of non-zero complex numbers.

Consider the sequence

Q� =

0
@X �

��1X
�=1

c�Y
�� ; Y ��

1
AR; � = 1; 2; : : :

of polynomial ideals. Set f := X �
P1

�=1 c�Y
�� . If A denotes one of the

rings R;E;O0; or S, then :
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i) Q�A is primary ideal with associated prime mA = (X;Y )A and Q�+1A �

Q�A 6� mA
2 for all � = 1; 2; : : :,

ii) f 2 A implies that
T1
�=1Q�A = fA,

iii)
T1
�=1Q�A = (fS) \A,

iv)
T1
�=1Q�R = f0g,

v) f =2 O0 implies that
T1
�=1Q�O0 = (

T1
�=1Q�E)O0 = f0g.

The results of Theorem 1 on the intersection of in�nite ideal families in poly-

nomial rings will be applied to interpolation problems. The corresponding

main result is (for de�nitions c.f. Section 3):

Theorem 2 Let V � K
n be an in�nite algebraic set, I = I(V ) the ideal

of V , and � be an admissible term order of order type !. Furthermore,

let P1; P2; : : : be a sequence of points of V such that Pr = fP1; : : : ; Prg is

admissible for interpolation w.r.t. � for all r � 1. Then:

i) The sequence of a�ne Hilbert functions 1 of IPr is pointwise convergent

towards the a�ne Hilbert function of I.

ii) I =
T1
i=1 IPi .

iii) There exists r0 such that GI � GIPr
for all r � r0, where GI and GIPr

are the reduced Gr�obner bases (w.r.t. �) of I and IPr , respectively.

We note that the statement of this Theorem holds also for more general

orders. But it depends on V which generalizations are allowed, see our

remarks in Section 4.

The paper is organized as follows: In Section 2 we prove Theorem 1

and some related results. Moreover, we prove the statements of Example

1. In Section 3 we apply the results on intersections to the solution of

interpolation problems. In particular, we prove Theorem 2. Finally, we

discuss the relationship to the classical Lagrange interpolation and we give

an outlook on interpolation of entire functions in Section 4.

1For the de�nition of the a�ne (or cumulative) Hilbert function see [CLO], Def. 2,

p.428.
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2 Intersection of families of polynomial ideals

Notations. We use the following notations: R := K [X], S := K [[X]],

O0 := K fXg = ff 2 Sjf is convergent in some neighbourhood of 0g, and

E := ff 2 Sjf is convergent in K
ng, where X = (X1; : : : ;Xn) is a list

of indeterminates. Although, in the case of polynomial rings and rings of

formal power series the results will not depend on the �eld K , we will assume

K = C or K = R if we consider convergent power series. The set of terms

generated by X will be denoted by T (X). A total order � on T (X) is said

to be admissible if it satis�es the following two conditions

i) 1 � X� for each � 2 N
nnf0g

ii) X� � X� =) X�+ � X�+ , for all �; �;  2 N
n .

An admissible term order � is called of order type ! if for any term t 2 T (X)

the set fsjs � tg is �nite. The support supp(f) of an element f 2 S is de-

�ned to be the set of all terms appearing in f with non-zero coe�cient. If

the term t is maximal with respect to � amongst all elements of supp(f)

then t is called the leading term lt�(f) of f (w.r.t. �). The coe�cient of

lt�(f) is called the leading coe�cient of f (w.r.t. �) and denoted by lc�(f).

Clearly, 0 has no leading term. Power series with in�nite support need not

to have an leading term. The notion of leading term is extended to sub-

sets F � S by de�ning lt�(F ) := flt�(f)jf 2 F; f posses a leading termg.

Furthermore, we introduce the notations ��(F ) := (lt�F ) � T (X) and

D�(F ) := T (X)n��(F ) for the monoid ideal generated by all leading terms

of elements of F in the monoid of terms and its complement, respectively.

By the ring inclusions R � E � O0 � S the same de�nitions apply to the

corresponding rings. Since, in general, it will be clear from the context which

order is meant we will omit the index � and we write e.g. lt(f) instead of

lt�(f).

Gr�obner bases. Let F be a subset of an ideal I � R. Then F is called

a Gr�obner basis of I w.r.t. � i� �(F ) = �(I). If, in addition, supp(f) �

D(F n ffg) and lc(f) = 1 for all elements f 2 F , then F is called reduced

Gr�obner basis. The reduced Gr�obner basis of an ideal I w.r.t. � is uniquely

determined. Often, the monomial ideal In(F ) = lt(F )�R of initial monomials

of the elements of F is used instead of the monoid ideal �(F ). Actually,

such an approach allows to consider more general situations, e.g. polynomial

rings over integral domains. In our situation, i.e. over coe�cient �elds,

both considerations are equivalent. A well-known property of Gr�obner bases
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is that the residue classes of the elements of D(F ) form a vector space

basis of the quotient ring R=I. Hence, for each polynomial g 2 R there

exists a uniquely determined polynomial gI;red satisfying g � gI;red 2 F � R

and supp(gI;red) � D(F ). The polynomial gI;red can be considered as the

remainder of the division of g by I. It can be computed using a reduction

algorithm by Gr�obner bases. An obvious property which will be applied

in subsequent proofs is that lt(g) 2 D(I) implies lt(gI;red) = lt(g), and

hence, g =2 I. Lifting I to the ring E of entire functions an appropriate

division procedure can be applied also to arbitrary entire functions g 2

E (see [ASTW]) leading to a reduced form also denoted by gI�E;red. For

a comprehensive introduction to the theory of Gr�obner bases of ideals of

polynomial rings we refer to [BWK] and [CLO].

Intersections. We consider an in�nite sequence of ideals I� � R ; � =

1; 2; : : : ; and ask for an algorithm computing a generating set of I =
T1
�=1 I� .

Using the results of Gianni, Trager, Zacharias on the intersection of a �nite

number of polynomial ideals ([GTZ], see also [BWK], [CLO]) the problem

can be reduced to descending ideal sequences (I�)�=1;2;:::. In this situation

Theorem 1 shows how to obtain the reduced Gr�obner basis of I with respect

to an admissible term order of order type !.

Proof of Theorem 1. Set G(�) :=
T1
�=�G� for � = 1; 2; : : : and � :=T1

�=1�(I�). Trivially, G
(�) �R � I for all � � 1. Hence, it remains to prove

I � G(�) �R, for suitable �.

Consider the case � = ; and assume that there exists 0 6= f 2 I. From

� = ; we deduce the existence of �0 � 1 such that lt(f) =2 �(I�0). Hence,

fI�0 ;red 6= 0 and f =2 I�0 which contradicts f 2 I. Consequently, � = ;

implies I = f0g � G(�) �R for � = 1; 2; : : :.

Now, let us consider the case � 6= ;. Then � is a monoid ideal of

T (X). Let ft1; : : : ; tmg be its minimal basis. We will show that for any

i 2 f1; 2; : : : ;mg there exist a positive integer �i and a polynomial gi such

that lt(gi) = ti and gi 2 G(�) for � � �i.

Let us �x i. Each of the reduced Gr�obner bases G� (� = 1; 2; : : :)

will contain a polynomial gi;� 2 G� whose leading term divides ti 2 � �

�(I�). Since lt(gi;�) 2 �(I�) for all � � � we can additionally assume

that lt(gi;�) divides lt(gi;�). Because ti has only �nitely many divisors the

sequence (lt(gi;�))�=1;2;:::
will eventually stabilize. By the assumption that

ti belongs to the minimal basis of � we deduce that there exists �0i such

that lt(gi;�) = ti for all � � �0i. Let f�1;�2 = gi;�1 � gi;�2 be the dif-
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ference of two of the above polynomials, where �0i � �1 < �2. Assume,

f�1;�2 6= 0. We have f�1;�2 2 I�1 and, hence, lt(f�1;�2) 2 �(I�1). Fur-

thermore, it follows lt(f�1;�2) =2 supp(gi;�1), lt(f�1;�2) 2 supp(gi;�2) and

lt(f�1;�2) =2 �(I�2) from the assumption that G�1 and G�2 are reduced

Gr�obner bases. Taking into account also lt(f�1;�2) � ti we can summarize

lt(f�1;�2) 2 (�i\�(I�1))n�(I�2) � (�i\�(I�1))n�, where �i is de�ned as the

set ft 2 T (X) j t � tig of all terms smaller than ti (w.r.t. �). One easily ver-

i�es
T1
�=1(�i\�(I�))n� = ;. Each of the sets (�i\�(I�))n� is �nite since

�i is �nite due to the assumption that � is of order type !. Hence, there

exists �i � �0i such that (�i \�(I�))n� = ; for all � � �i. Consequently,

f�1;�2 = 0 for all �i � �1 < �2 and gi := gi;�i 2 G(�i) =
T1
�=�i

G� . Com-

bining the results for all i = 1; 2; : : : ;m we obtain fg1; : : : ; gmg �
T1
�=�G�

where � := max (�1; : : : ; �m). Finally, from

� = (lt(g1); : : : ; lt(gm)) � T (X) � �((g1; : : : ; gm) �R) � �(I) � �

and (g1; : : : ; gm) �R � I it follows that G = fg1; : : : ; gmg is a Gr�obner basis

of I. Since G is subset of some other reduced Gr�obner basis it is reduced,

too. 2

A trivial consequence of Theorem 1 is:

Corollary 1 Let R = K [X] be the polynomial ring in the variables X =

fX1; : : : ;Xng over the �eld K and let � be an admissible term order of

order type !. Then the intersection I =
T1
�=1 I� of a sequence of ideals

satisfying

I�+1 � I� � R (� = 1; 2; : : :)

is the zero ideal if and only if

1\
�=1

�(I�) = ; :

Remark: If K is one of the �elds R or C then we can use the following

alternative proof for Corollary 1 by applying only analytic arguments.

Proof: Assume � :=
T1
�=1�(I�) 6= ;. Since � is non-empty intersection of

monoid ideals it is a monoid ideal of T (X), too. Therefore, it possesses a

�nite and uniquely determined minimal basis ft1; : : : ; tmg. Using this basis

we try to construct a non-zero polynomial f belonging to the intersection

I =
T1
�=1 I� . We take polynomials f� 2 I� such that lt(f�) = t1 for � =

1; 2; : : :. The union
S1
�=1 suppf� of the supports of these polynomials is
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�nite. Hence, all polynomials f� belong to a �nite dimensional vector space

V over K . We may multiply the polynomials f� by suitable c� 2 K such

that kc�f�k = 1 with respect to the norm k � k de�ned by

k
X
�2Nn

d�X
�
k =

sX
�2Nn

jd�j2 :

The in�nite sequence c�f� belongs to a (compact) unit sphere in our �nite

dimensional vector space V , and, consequently, has at least one accumulation

point. Fixing a natural number �0 � 1 then any polynomial c�f� such that

� � �0 belongs to I�0 . Since polynomial ideals are closed in the topology

de�ned by the norm k � k any accumulation point f of the sequence belongs

to I�0 , too. Finally, f 2 I, kfk = 1 and, therefore, f 6= 0. 2

Proof of the statements contained in Example 1. Obviously, Q�+1 �

Q� . All ideals Q� have the same radical Rad I� = (X;Y )R (� � 1). Since

this radical is a maximal ideal mR in R we can deduce that all Q� are

primary ideals with associated prime ideal mR. From the given bases we can

immediately read o� that Q� 6� mR
2 for all � = 1; 2; : : :. The same remains

true if we lift the ideals of both sides to the ring E;O0; or S, respectively.

This proves property i).

The basic idea to verify the properties ii) and iii) is to consider isomorphic

images of the Q� . Note, that for any formal power series p 2 C [[Y ]] which

does not contain a constant term the mapping X 7! X + p and Y 7! Y

de�nes a homomorphism �p : S ! S. The mapping �p is invertible with

inverse ��p, hence it is an automorphism. One checks easily that p 2 A

implies that the restriction �pjA of �p to A is an automorphism of A.

In order to prove property ii) we set p :=
P1

�=1 c�Y
�� = X � f . Note,

with f 2 A we have also p 2 A. Hence, �pjA (Q�A) = (X;Y �� )A for all

� = 1; 2; : : : and

�pjA(

1\
�=1

Q�A) =

1\
�=1

(X;Y �� )A = XA :

Applying the inverse mapping yields property ii).

Now, we will prove property iii). Set p� :=
P��1

�=1 c�Y
�� for all � =

1; 2; : : :. Since p� 2 R � A we have

�p� jA(Q�A) = (X;Y �� )A = ((X;Y �� )S) \A = �p� (Q�S) \A

for all rings A under consideration.
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Applying the inverse mapping, computing the intersection, and using ii)

for A = S yields

1\
�=1

Q�A =

 
1\
�=1

Q�S

!
\A = (fS) \A

The properties ii) and iii) show that f 2 A will imply fA = (fS) \ A.

Now, we will consider the intersection ideal (fS)\A in some particular cases

when f =2 A.

Clearly, for any possible values of the coe�cients c� we have f =2 R. But

for each other ring A under consideration there exist suitable coe�cients

c� such that A is the smallest ring containing f among all considered rings

A, e.g. c� = 1
��!

implies f 2 EnR, c� = 1 yields f 2 O0nE, and �nally

f 2 SnO0 for c� = ��!.

It follows the proof of property iv). Assume that there exists a non-zero

polynomial g 2
T1
�=1Q� . Then g can be written in the form

g = hsX
s + � � �+ h1X + h0 ;

where hi (0 � i � s) are polynomials depending only on Y and hs 6= 0.

The given basesG� of the idealsQ� are Gr�obner bases with respect to the

lexicographical order de�ned by Y < X. Therefore, g lies in the intersection

of the Q� if and only if the reduction of g with respect to G� leads to the zero

polynomial for all � = 1; 2; : : :. Such a reduction consists of the substitution

of X by
P��1

�=1 c�Y
�� and the deletion of all powers of Y higher than �� .

Replacement of X in g yields a sum of products of polynomials in Y . The

degree of the products is bounded above by

max
1�i�s

(i���1 + deg hi) :

For su�ciently large � > �0 this maximum will be reached exactly in the

case i = s. By formula 1 it follows immediately that there exists a su�-

ciently large �1 such that s���1 + deg hs < �� for all � � �1. In conclusion

deg gQ� ;red = s���1 + deg hs for � � max (�0; �1) which contradicts the as-

sumption g 2
T1
�=1Q� .

Note, that we have

1\
�=1

�(Q�) = X � T (X;Y ) :

So, we observe as a by-product that the order type ! is essential in Theorem

1 and Corollary 1.
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Finally, we prove property v). Consider coe�cients c� such that f 2

SnO0. Furthermore, assume that there exists a non-zero element g 2 (fS)\

O0, Both, O0 and S, are unique factorization domains. Since f is irreducible

in S there exists an irreducible factor g0 of g inO0 which is divisible by f in S.

Since the constant term of X � f 2 C [Y ] is equal to zero, f(X � f; Y ) = 0,

and f (formally) divides g0, we have g0(X � f; Y ) = 0, i.e. X � f is a

(formal) solution of the analytic equation g0(X;Y ) = 0. According to Artin's

Theorem ([A], see also [T]) there exists also a convergent series solution

X(Y ) 2 C fY g of the equation g0(X;Y ) = 0. Since g0 is irreducible in O0 it

will follow X �X(Y ) = g0u for some unit u 2 O0. Consequently, f divides

X�X(Y ) in S. Hence, f = X�X(Y ) which contradicts f =2 O0. Therefore,

((fS) \E)O0 = (fS) \O0 = f0g. 2

3 Admissible interpolation systems

Notation. Let F = fF1; : : : ; F�g be a system of � functions and P =

fP1; : : : ; P�g be a system of � points then by de�nition:

det(F ;P) := det (Fi(Pj))i;j=1;:::;�
:

Writing det(F ;P) 6= 0 without explicitly claiming the enumeration of F and

P we will understand that according to an arbitrary enumeration, which

makes sense since the enumeration can inuence only the sign.

About interpolation. Interpolation means, that we are looking for a

function from a given class which takes prescribed values at given points.

Usually, we expect the class of functions and the set of points to be �xed

and the interpolation function to be uniquely determined by the prescribed

values. Interpolation by polynomials can be considered from two points of

view. Firstly, we �x a system P = fP1; : : : ; P�g and ask for an \optimal"

systemM � T (X) of � terms such that for any data b1; : : : ; b� 2 K there ex-

ists a unique polynomial F 2 Lin(M), where Lin(M) is the linear subspace

of K [X ] spanned by M , such that F (Pj) = bj for j = 1; : : : ; �. Secondly, an

\optimal" system M � T (X) is given and we are looking for \good" nodes

P. Note, that P and M give unique interpolation solutions if and only if

det(M;P) 6= 0.

The use of Gr�obner bases for solving interpolation problems is not new.

So, Becker and Weispfenning applied Gr�obner basis techniques in order to

solve the following problem: Find a minimal polynomial which takes pre-

scribed values and derivatives on points or parameterized hypersurfaces in
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K
n (see [BW]). It can happen that the problem is unsolvable, but the algo-

rithm will realize that.

The question under consideration in this paper is di�erent and can be

roughly described as follows: Assume that it is possible to determine the

value of the function at an arbitrary point. What is a good choice of a

sequence of points such that the successive interpolation functions will con-

verge towards the original function? In particular, polynomial functions

shall be reconstructed after �nitely many steps. In the multivariate case

the question is clearly non-trivial since a bad choice of points could lead,

for instance, to only univariate polynomials. In fact, we will deal with the

problem in a more general setting. We are considering not only functions

with domain K
n but also such de�ned on algebraic sets.

Interpolation via Gr�obner bases. Let V � K
n be an algebraic set. We

consider the corresponding vanishing ideal I = I(V ) in K[X] and �x an

admissible term order �. Since the residue classes X� + I corresponding to

X� 2 D(I) form a basis of K [X ]=I it is natural to consider for interpolation

only polynomials with supports in D(I).

Let P be a system of � pairwise di�erent points of V and let I(P) be

the corresponding polynomial ideal. Then dimK K [X]=I(P) = � and, hence,

D (I(P)) consists of exactly � elements of D(I). (Note, that I � I(P)

implies D (I(P)) � D(I).) Di�erent systems P 0 � V of � points can lead

to di�erent sets D (I(P 0)). But there is a unique set D � D(I) consisting

of � terms such that D (I(P)) = D for a non-empty Zariski open set in the

set of �-tuples of pairwise di�erent points of V , namely the set D(I)(�) of

the � smallest (w.r.t. �) terms of D(I). This is a direct consequence of the

following

Theorem 3 Let I = I(V ) � K [X1 ; : : : ;Xn] = K [X ] be the ideal de�ned by

the algebraic set V � K n . Furthermore, let P = fP1; : : : ; P�g be a system of

� pairwise di�erent points of V and I(P) � K [X] be the ideal corresponding

to P. Then for any admissible term order � we have:

D (I(P)) = D(I)(�) () det
�
D(I)(�);P

�
6= 0

Proof: (=)) D(I)(�) is basis of K [X]=I(P) by construction. Hence, the

determinant has to be unequal zero.

((=) The condition on the determinant implies that D(I)(�) is linearly

independent modulo I(P) and according to its cardinality it is a basis of

K [X ]=I(P). By construction D (I(P)) � D(I). Suppose there exists X� 2
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D (I(P)) nD(I)(�). Then X� + I(P) = l(X) + I(P), where l(X) is a linear

combination of the elements of D(I)(�). Hence, X� � l(X) is a polynomial

of I(P) having leading term X� which contradicts the choice of X�. 2

This observation justi�es

De�nition 1 Let V � K
n be an algebraic set, I = I(V ) the ideal of V , and

� be an admissible term order. A set P of � pairwise di�erent points of V

is called admissible for interpolation (w.r.t. �) if D (I(P)) = D(I)(�).

Lemma 1 Let V be an algebraic set and I be the ideal of V . Then for

any given sequence of pairwise di�erent terms t1; t2; : : : 2 D(I) there is a

sequence P1; P2; : : : 2 V such that

det(ft1; t2; : : : ; trg ; fP1; P2; : : : ; Prg) 6= 0 for all r � 1 :

Proof: We construct P1; P2; : : : ; Pr inductively on r.

r = 1 : Since t1 =2 I we have V 6� V (t1), i.e. there exists P1 2 V such

that t1(P1) 6= 0 and we are done in this case.

r > 1 : Assume that P1; : : : ; Pr�1 are already constructed then consider

the polynomial

F := det(ft1; t2; : : : ; trg ; fP1; P2; : : : ; Pr�1;Xg)

which has support contained in D(I). F is non-zero since the coe�cient of

tr is equal to

det(ft1; t2; : : : ; tr�1g ; fP1; P2; : : : ; Pr�1g) 6= 0 :

In conclusion, F =2 I. Hence, V 6� V (F ) and the existence of Pr 2 V such

that F (Pr) 6= 0 follows. 2

As an obvious consequence we have

Corollary 2 Each in�nite algebraic subset V of K n contains a sequence of

points P1; P2; : : : such that P1; : : : ; Pr is admissible for interpolation, for all

r � 1.

Applying the results on ideal intersections from the preceding section we

obtain our main theorem on interpolation as follows:
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Proof of Theorem 2. Fix d0 2 N and let T (d0) be the set of all terms of

total degree smaller or equal d0. Furthermore, let s be the maximal element

of T (d0) with respect to � and rd0 the number of terms contained in DI

which are smaller or equal than s w.r.t. �. Note, that rd0 is �nite since �

is of order type !.

Then

D(I)(rd0 ) \ T (d0) = D(I) \ T (d0):

Since Prd0 = fP1; : : : Prd0g is admissible for interpolation w.r.t. � we

have

D(I(Prd0 )) = D(I)(rd0 )

Hence,

D(I(Pr)) \ T
(d0) = D(I) \ T (d0) for r � rd0

Consequently, the a�ne Hilbert function of I(Pr) and I are equal at any

point d � d0 for r � rd0 .

ii) The inclusion I �
T1
i=1 IPi is trivial. Taking into account that the

initial ideals of both sides are equal according to i) the above inclusion has

to be equality.

iii) Follows by Theorem 1. 2

4 Concluding remarks.

Recall, that we were looking for \optimal" sets M of terms such that the

linear space spanned by M de�nes the space of interpolation functions and

we were looking for \good" nodes P such that P and M give unique inter-

polation solutions for any prescribed values at P.

A set M consisting of � terms is \optimal" in our theory if it consists

of the � smallest terms with respect to a �xed admissible term order which

are not contained in the monoid ideal generated by the leading terms of the

ideal de�ned by the algebraic set V which is the domain of the functions to

be interpolated. So, in the particular case of V = K n , a degree compatible

admissible term order � and � =
�
�+n
n

�
the set M will consist exactly of all

terms having degree smaller or equal �. This is the same notion of optimality

as applied in classical Lagrange interpolation.

By de�nition the systems P which are admissible for interpolation are

\good" nodes. In the non-trivial case of in�nite algebraic sets V we proved

that it is always possible to construct an in�nite sequence of points such

that each �nite initial segment is admissible for interpolation. Moreover,
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each system of nodes which is admissible for interpolation can be prolonged

by adding a new point.

So, actually we can �nd \optimal" M and \good" P for arbitrary ad-

missible term orders. But using e.g. a lexicographical order on V = K
n

all systems M will contain only powers of the smallest variable. Hence,

each interpolation polynomial will be univariate. So, using more and more

nodes will not provide better and better interpolation functions converging

towards the original one. In order to have a convergence property, we need

at least that enlarging M will exhaust D(I(V )). Each admissible order of

order type ! ensures such a behaviour since we can enumerate the elements

of the vector space basis according to � and then each set M containing

at least as many elements as the number of a given term will contain that

term, too. Note, that for particular V also some admissible orders which

are not of order type ! can have the property that the enlargement of M

exhausts the vector space basis. All statements formulated here for order

type ! easily carry over also to such orders.

Theorem 2 proves that interpolation with respect to an order of order

type ! has the property that interpolation of a polynomial function provides

a sequence of interpolation polynomials converging towards the original func-

tion.2 It would be nice to have a similar result also for entire functions. But

in this case, convergence would require more than only exhaustingM and P

admissible for interpolation. In fact, it is necessary to �nd in�nite sequences

of nodes such that each initial segment is admissible for interpolation and

such that, in addition, I(V ) �E =
T1
i=1 IPi �E. The latter is far from being

self-evident as Example 1 shows.
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