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Abstract 
Objectives: The overall aim of this thesis was to investigate the precision error, annual 

changes, and monitoring time intervals of muscle and fat outcomes measured by peripheral 

quantitative computed tomography (pQCT), as well as explore the strength of their 

associations with fall status in older adults.  

 

Methods: Participants aged >60 years old (N=190) were recruited from the Saskatoon 

Cohort of the Canadian Multicentre Osteoporosis Study (CaMOs). The precision error (Root 

Mean Squared Co-efficient of Variation, CV%RMS) of soft-tissue outcomes from previously 

reported pQCT image analysis protocols (n=6) were calculated and compared using repeat 

forearm and lower leg scans collected from a random sub-sample of women (n=35). 

Prospective scans were collected with 1 and/or 2 years of follow-up (n=97) to estimate 

annual changes and monitoring time intervals for pQCT-derived muscle and fat outcomes in 

women. Imaging data and responses from a retrospective fall status questionnaire were 

analyzed to investigate the associations of muscle density, functional mobility, and health-

related factors to fall status for both men and women (n=183). 

 

Results: Precision errors of muscle and fat outcomes ranged from 0.7 to 6.4% in older 

women, however not all protocols were equally precise. Muscle cross-sectional area 

decreased by 0.8 to 1.2% per year, with greater losses in the lower limb. Biological changes 

in muscle area and density may be detected with 80 and 95% certainty within monitoring 

time intervals of 4 to 9 years. The odds of having reported a fall increased by 17% for every 

unit decrease in muscle density (mean 70.2, SD  2.6mg/cm3) after adjusting for age, sex, 



 

 iii 

body mass index, general health status, diabetes, the number of comorbidities, and 

functional mobility. 

 

Discussion: This dissertation demonstrated the potential for pQCT to study changes in 

muscle and fat outcomes in older adults. Both muscle area and density can be precisely 

measured. Observed annual changes in soft-tissue outcomes were small in older adults; 

highlighting the importance of precise measurements to detect changes beyond 

measurement error. Together with the estimated monitoring time intervals, these findings 

can assist the planning of prospective investigations of musculoskeletal health in aging. 

Furthermore, based on the observed independent association between muscle density and 

fall status, monitoring muscle density may further complement the study of musculoskeletal 

health and fall risk in community-dwelling older adults.  

 



 

 iv 

Preface & Contributions of Authors 
Sections of this thesis have been published or submitted for publication in refereed journals 

as multi-authored papers. In this section, the roles of each author are defined.  

Published/Submitted Papers: 

1.! Frank-Wilson AW, Johnston JD, Olszynski WP, Kontulainen SA. Measurement of 

muscle and fat in postmenopausal women: precision of previously reported pQCT 

imaging methods. Bone. 2015.75:49-54.  

 

Author’s contribution: AFW and SK had full access to all the data in the study and 

take responsibility for the integrity of the data and the accuracy of the data 

analysis. Conception and Design of the study: AFW, SK, JJ, WO. Data acquisition: 

AFW, SK, WO. Data analysis: AFW, SK. Interpretation: AFW, SK, JJ. Drafting: AFW, 

SK. Critical revision and final approval: All authors. This research is discussed in 

Chapter 4 of this thesis. 

 

2.! Frank-Wilson AW, Johnston JD, Davison KS, Olszynski WP, Kontulainen SA. 

Monitoring pQCT-derived muscle and fat outcomes in older women. Journal of 

Cachexia, Sarcopenia and Muscle. Submitted 2015 July 27. 

 

Author’s contribution: AFW and SK had full access to all the data in the study and 

take responsibility for the integrity of the data and the accuracy of the data 

analysis. Conception and Design of the study: AFW, SK, JJ, WO. Data acquisition: 

AFW, SK, WO. Data analysis: AFW, JJ, SK. Interpretation: AFW, SK, JJ, KD. Drafting: 



 

 v 

AFW, SK. Critical revision and final approval: All authors. This research is 

discussed in Chapter 5 of this thesis. 

 

3.! Frank-Wilson AW, Farthing JP, Chilibeck PD, Arnold CM, Davison KS, Olszynski WP, 

Kontulainen SA. Lower Leg Muscle Density is Independently Associated With Fall 

Status in Community-Dwelling Older Adults. Osteoporosis International, Submitted 

2015 August 22. 

 

Author’s contribution: AFW and SK had full access to all the data in the study and 

take responsibility for the integrity of the data and the accuracy of the data 

analysis. Conception and Design of the study: AFW, SK, JF, PC, CA, WO. Data 

acquisition: AFW, SK, WO. Data analysis: AFW, SK. Interpretation: AFW, SK, JF, PC, 

CA, KD. Drafting: AFW, SK. Critical revision and final approval: All authors. This 

research is discussed in Chapter 6 of this thesis 



 

 vi 

Acknowledgements 
This dissertation is a culmination of countless hours of reading, problem solving, 

discussions, meetings, team work, e-mail exchanges, data collection, analyses, 

presentations and writing. It has been a collective effort and several individuals merit 

acknowledgement for their role in my thesis projects/publications and my development as a 

researcher. 

Among those involved, my supervisor Dr. Saija Kontulainen has been, (and continues 

to be) an incredibly positive, hard working, and supportive mentor. She has been a tireless 

advocate for me, and all of her student’s successes. Her leadership and guidance have left 

an indelible mark upon me. Saija has taught me the excitement of inquiry no matter how big 

or small the question, the importance of perseverance and thrift, how to strategize for long-

term success, and of course to remember to have fun and laugh. 

The time and energy invested in me by Drs. Jon Farthing, Phil Chilibeck, and J.D. 

Johnston are also noteworthy; their frequent encouragement, thoughtful recommendation, 

availability for discussion, and enthusiastic work ethic are appreciated and admired. I also 

value the augmentation of my research through the clinical perspectives of Drs. Cathy 

Arnold, Soo Kim, and Saskatoon CaMOs co-directors Wojciech Olszynski and Shawn Davison.  

This research could not have been possible without benevolence and altruism of the 

CaMOs participants. I would like to recognize Saskatoon CaMOs Coordinator Jola Thingvold, 

as well as Chantal Kawalilak, Megan Labas, Emma Burke, Jackie Wang, Peter Yee, Preston 

O’Brien, and Christopher Bespflug for their assistance with the recruitment and data 

collection. I would also like to acknowledge Claudie Berger for her assistance with the 

medical history data, and the CaMOs Research Group for their approval of my projects. 



 

 vii 

Dedication 
For my loving and supportive wife, Alannah, and our perceptive and playful dog Ellamenno; 

both of whom have helped me de-stress throughout my studies and bring me great joy.  

 



 

 viii 

Table of Contents 
Permission to Use         i 
Abstract          ii 
Preface & Contributions of Authors       iv 
Acknowledgements         vi 
Dedication          vii 
Table of Contents         viii 
List of Tables          x 
List of Figures          xi 
List of Appendices         xii 
Glossary of Terms         xiii 
 
 
 

1! INTRODUCTION 1!

2! REVIEW OF LITERATURE 10!
2.1! Imaging Muscle & Fat 11!
2.2! Sarcopenia 21!
2.3! Myosteatosis 25!
2.4! Neuromuscular Aging 28!
2.5! Falls 31!
2.6! Summary of Literature Review 35!

3! OBJECTIVES & HYPOTHESES 37!
3.1! Study One: Comparing the Precision of Reported Protocols 38!
3.2! Study Two: Estimating Annual Changes and Longitudinal Sensitivity 38!
3.3! Study Three: The Association Between Muscle Density and Falls 38!

4! STUDY ONE: MEASUREMENT OF MUSCLE AND FAT IN POSTMENOPAUSAL WOMEN: 
PRECISION OF PREVIOUSLY REPORTED PQCT IMAGING METHODS 39!
4.1! Synopsis 40!
4.2! Introduction 40!
4.3! Methods 42!
4.4! Results 48!
4.5! Discussion 50!

  



 

 ix 

5! STUDY TWO: MONITORING PQCT-DERIVED MUSCLE AND FAT OUTCOMES IN OLDER 
WOMEN 55!
5.1! Synopsis 56!
5.2! Introduction 56!
5.3! Methods 57!
5.4! Results 62!
5.5! Discussion 64!

6! STUDY THREE: LOWER LEG MUSCLE DENSITY IS INDEPENDENTLY ASSOCIATED WITH 
FALL STATUS IN COMMUNITY-DWELLING OLDER ADULTS 72!
6.1! Synopsis 73!
6.2! Introduction 73!
6.3! Methods 75!
6.4! Results 78!
6.5! Discussion 84!

7! DISCUSSION 89!
7.1 Summary 90 
7.2 Strengths and Limitations 94 
7.3 Conclusions 95 
7.4 Future Directions 96 

REFERENCES 98!
 



 

 x 

List of Tables 
Table 1: Summary of Reported pQCT Muscle and Fat Image Analysis Protocols ...................... 7!

Table 2: Summary of Image Analysis Settings ........................................................................... 45!

Table 3: Lower Leg Precision ...................................................................................................... 49!

Table 4: Forearm Precision ......................................................................................................... 50!

Table 5: Baseline and Annual Follow-Up Participant Characteristics ....................................... 64!

Table 6: Estimated Annual Changes & Monitoring Time Intervals ........................................... 65!

Table 7: Descriptive Statistics ..................................................................................................... 80!

Table 8: Bivariate Associations with Fall Status ........................................................................ 81!

Table 9: Multivariable Associations ............................................................................................ 83!

Appendix Table 1: Stratec XCT Image Analysis Loop Settings ............................................... 124!



 

 xi 

List of Figures 
Figure 1: Positioning a participant for pQCT scanning of the forearm (A1) 

and lower leg (A2). Scans provide quantitative axial images of 
fat, muscle, and bone tissues at both the forearm (B1) and 
lower leg (B2) allowing for the study of how the size and 
composition of these tissues change and relate to human 
health. ........................................................................................................... 5 

Figure 2: Illustration of different muscle-related adipose tissue depots. 
Reprinted with permission from Komolka et al. [122] ......................... 15 

Figure 3 : Representative CT images of the midthigh showing in black the 
outline of the region of interest encompassing the thigh 
muscle bundle used for area and attenuation measurements. 
Reprinted with permission from Lang et al. [30] .................................. 19 

Figure 4: An unprocessed DICOM image of a pQCT lower leg scan (left) 
after a Stratec analysis (top) and subsequent filtering; BoneJ 
analysis (bottom). ...................................................................................... 46 

Figure 5: Visual inspection rating scale for femur (upper row) and tibia 
(lower row). Each score reflects the level of movement: 1 none, 
very minimal; 2 minimal; 3 moderate; 4 severe; 5 extreme. 
Reprinted with permission from Blew et al. [107] ................................ 61 

Figure 6: Flow chart of the image analysis process. ............................................... 63 

Figure 7: Typical lower leg grayscale image collected using a Stratec 
XCT2000 peripheral quantitative computed tomography 
scanner ....................................................................................................... 68 

Figure 8: Participant flow-chart detailing recruitment, bivariate, and 
multivariable analyses for models 1-3. .................................................. 79 

Figure 9: Receiver operating characteristic plot for multivariate models 
discriminating fallers (1) from non-fallers (0). ....................................... 82 

 



 

 xii 

List of Appendices 
Appendix A.!.........................................................................................................! 

Copies of Human Biomedical Research Ethics Approval ................................ 114!

Appendix B.!.........................................................................................................! 
Measurement of Muscle and Fat in Postmenopausal Women: Precision of 
Previously Reported pQCT Imaging Methods. As Published in the Journal 
Bone. ................................................................................................................... 118!

Appendix C.!.........................................................................................................! 
Calculations for Muscle and Fat Outcomes from Study One .......................... 122!

Appendix D.!.........................................................................................................! 
Example: Calculating of Relative (CV%RMS) and Absolute (SDRMS) Precision 
Error .................................................................................................................... 133!

Appendix E.!.........................................................................................................! 
Copyright Permissions for the Reprint and Use of Published Figures ............ 135 

 
 



 

 xiii 

Glossary of Terms 
aBMD%–%areal%Bone%Mineral%Density%(g/cm2)%

AFW%:%Andrew%Frank:Wilson%

AUC%–%Area%Under%Curve%

BMD%–%(volumetric)%Bone%Mineral%Density%(mg/cm3)%

BMI%–%Body%Mass%Index%(kg/m2)%

CaMOs%–%Canadian%Multicentre%Osteoporosis%Study%

CI%–%Confidence%Interval%

CRT_A%:%Cortical%Area%(mm2)%

CRT_DEN%:%Cortical%Density%(mg/cm3)%

CRTSUB_A%:%Cortical%and%Subcortical%Area%(mm2)%

CRTSUB_DEN%:%Cortical%and%Subcortical%Density%(mg/cm3)%

CT%–%Computed%Tomography%

CV%RMS%:%Root%Mean%Squared%Coefficient%of%Variation%

DICOM%:%Digital%Imaging%and%Communications%in%Medicine%(Image%Format)%

dSAT%–%Deep%Subcutaneous%Adipose%Tissue%

DXA%–%Dual%energy%X:ray%Absorptiometry%

EMCL%–%Extra:myocellular%Lipid%

EWGSOP%:%European%Working%Group%for%Sarcopenia%in%Older%People%

FNIH%:%Foundation%of%the%National%Institutes%of%Health%

Health%ABC%–%Health,%Aging,%&%Body%Composition%Study%

H1%:%Proton%

HU%–%Hounsfield%Unit%

IL6%–%Interleukin:6%

IMAT%–%Inter:muscular%Adipose%Tissue%

IMF%–%Intramuscular%Fat%

IMCL%–%Intra:myocellular%Lipid%

InCHIANTI%:%Invecchiare%in%Chianti%(“Aging%in%the%Chianti%Area”)%Study%



 

 xiv 

IntraFatA%:%IMAT%Area%(cm2)%

ISCD%–%International%Society%for%Clinical%Densitometry%

IWG%:%International%Working%Group%on%Sarcopenia%

LSC%–%Least%Significant%Change%(%)%

MRI%–%Magnetic%Resonance%Imaging%

MRS%–%Magnetic%Resonance%Spectroscopy%

MTI%–%Monitoring%Time%Interval%(years)%

MuA%:%Muscle%Area%(cm2)%

MuD%:%Muscle%Density%(mg/cm3)%

OR%–%Odds%Ratio%

pQCT%–%Peripheral%Quantitative%Computed%Tomography%

ProFaNE%:%Prevention%of%Falls%Network%Europe%

QCT%–%Quantitative%Computed%Tomography%

ROC%Curve%–%Receiver%Operator%Characteristic%Curve%

SAT%–%Subcutaneous%Adipose%Tissue%

SD%–%Standard%Deviation%

SDRMS%–%Root%Mean%Squared%Standard%Deviation%

SF:36%:%Short%Form%36%Health%Status%Questionnaire%

SubCutFatA%:%SAT%Area%(cm2)%

TNFα%–%Tumour%Necrosis%Factor%Alpha%

TOT_A%:%Total%Area%(mm2)%

TOT_CNT%:%Total%Content%(mg/mm)%

TRAB_A%:%Trabecular%Area%(mm2)%

TUG%–%Timed%Up%and%Go%test%

%%



 

 1 

1! Introduction 
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The proportion of Canadians above age 60 is expected to increase 30% by 2031, almost 

exclusively from a doubling of those beyond age 70 [1]. This historically unprecedented 

demographic shift is not exclusive to high-income countries. Global projections estimate that 

the population of adults older than 60 will reach 2 billion by the middle of this century [2]. 

Thus, the 21st century will be defined by an older global society and factors that impact 

aging human health. The aging process is characterized by a diminished capacity to regulate 

the internal environment of the body [3]. No one is immune from the effects of aging, even 

the most fit masters athletes demonstrate physical decline [4]. Brooks et al. [3] observed 

that while mean life expectancy increased over the last century, the maximum lifespan has 

not changed. Thus, much focus has shifted towards identifying modifiable factors that can 

delay the onset of chronic disease and disability to enhance “successful aging”; the physical, 

psychological, and social success with which adults age [5]. While age affects every 

physiological system in the body, changes in body composition and neuromuscular function 

are of great interest. Age-related redistributions of fat, declines in muscle mass and physical 

function translate into reduced functional capacity to perform activities of daily living, which 

eventually lead to heightened risk of injury and a loss of independence [6].  

Declines in muscle mass and strength among older adults have undergone 

tremendous study since Irwin Rosenberg coined the term “sarcopenia” to describe this 

geriatric phenomenon [7,8]. Initial operational definitions exclusively focused their attention 

on measuring muscle mass using Dual energy X-ray Absorptiometry (DXA) [9]. As this realm 

of health research matured, the importance of also measuring fat [10,11], strength [12], and 

physical function gained traction [13-15]. Although there are several variations in how 

sarcopenia is defined [7], many of these definitions are prospectively associated with 

increased likelihood of mobility impairments [16,17], falls  [18-20], and fracture risk [21,22]. 
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Furthermore, evidence suggests a connection between muscle adiposity and physical 

function [23-25]. Both heightened adiposity and reduced physical function have been 

identified as major components of the risk of disability development in older adults [26,27]. 

Adiposity refers to the presence of adipose tissue, which exists throughout the body in 

various regions and quantities. Of these regions, the adiposity of muscle or “myosteatosis” is 

of particular interest due to reported increases with age, regardless of changes in body 

weight and the quantity of subcutaneous adipose [28]; as well as associations with 

hospitalization [29], and hip fracture incidence [30,31].  

Sarcopenia and muscle adiposity are also of special interest to the field of Kinesiology. 

Resistance exercise has long been a recommended treatment for adults with low muscle 

mass [32]. Accumulating evidence in exercise physiology suggests that cardiovascular and 

resistance exercise may be promising countermeasures for reducing muscle adiposity in 

older adults. Cardiovascular exercise has been demonstrated to be effective for the 

reduction of non-myogenic satellite cells, as well the adiposity of older rat gastrocnemii [33], 

and there is recent evidence of a similar adiposity reduction in older humans [34]. 

Furthermore RCTs of aerobic, strength, flexibility and balance exercise regimens maintained 

muscular strength, improved physical function, and prevented or reversed decreases in 

muscle tissue attenuation (a surrogate of adiposity) in the elderly [35,36]. Progressive 

resistance training has also demonstrated positive effects in a small group of elderly men 

and women; significant concomitant changes were observed in thigh muscle attenuation and 

muscle strength with detraining, as well as increases with retraining [37], suggesting a 

connection between muscular fitness and adiposity. Observational data also supports the 

existence of a relationship between muscle function and adiposity, and the specificity of 

adipose depot location. Thigh muscle attenuation, a computed tomography (CT) measure of 
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muscle adiposity predicted isokinetic quadriceps muscle torque, independent of age, race 

and the size of inter-muscular and subcutaneous fat depots [23]. Persons in the lowest 

quartile of muscle attenuation were reported to be 50 – 80% more likely to develop mobility 

impairments, independent of baseline muscle size, strength, and total body fat mass [24]. 

Although the pathophysiology of changes in body composition and neuromuscular function 

observed with age are not fully understood [32], medical imaging provides a non-invasive 

avenue for their study in vivo [38].  

Research concerning soft tissues and the age related changes that occur in human 

muscular and/or functional performance is particularly intriguing [39]. There are several 

imaging methods available to study muscle and adipose tissue depots in vivo [38,40]. 

Among these tools, pQCT is a desirable technology for assessing limb muscle area, density, 

and subcutaneous adipose tissue (SAT) area (Figure 1). When compared to alternative 

radiographic tools, such as DXA and CT, pQCT exposes participants to substantially lower 

effective doses of radiation [41,42]. Originally designed for measures of trabecular bone 

density [43], pQCT is also becoming a popular research tool for the measurement of soft 

tissues in aging research [27,44-56]. Particularly interesting are the findings of the InChianti 

study, which demonstrated pQCT-derived muscle density’s association with motoneuron 

axonal degeneration [46], frailty [45], and incident disability [27]. Significant differences 

were recently reported in pQCT-derived lower leg muscle density when comparing female 

fallers to non-fallers [53], and wrist fracture patients with healthy controls [54]. Falls are a 

major public health concern for the elderly, responsible for over 90% of hip fractures, and 

65% of hospitalizations [57,58]. Given the significance of falls, and the overlapping evidence 

suggesting a potential connection to muscle adiposity [26,29-31,53], further investigation
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Figure 1: Positioning a participant for pQCT scanning of the forearm (A1) and lower leg (A2). Scans provide 
quantitative axial images of fat, muscle, and bone tissues at both the forearm (B1) and lower leg (B2) allowing 
for the study of how the size and composition of these tissues change and relate to human health. 

of the association between pQCT-derived lower leg muscle density and fall status is 

warranted. However, there are multiple image analysis protocols reported (Table 1) and no 

consensus on how to best analyze pQCT scans for the derivation of soft-tissue outcomes, 

including muscle density. This makes it difficult to compare results between studies, as 
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values are dependent on how the images are segmented into fat, muscle and bone. 

Furthermore, there is a lack of precision error data (derived using International Society for 

Clinical Densitometry (ISCD) guidelines) for pQCT-derived soft-tissue outcomes, as well as 

estimates of the longitudinal sensitivity of these outcomes in aging adults. The magnitude of 

biological change necessary to exceed the precision error of the instrument, as well as the 

length of time to observe these changes are important data for the efficient design of 

prospective studies.  

Therefore the aim of this dissertation was to investigate the precision of pQCT image 

analysis protocols for muscle and fat outcomes in older adults, estimate the annual changes, 

and monitoring time intervals [59] for these outcomes, and explore their associations with 

fall status in a sample of community-dwelling older adults. To achieve this aim, three sub-

studies were conducted utilizing data collected from the Saskatoon cohort of the CaMOs. 

Study one utilized a subset of repeat scans collected from older women to compare 

previously reported image analysis protocols for muscle and fat outcomes. Study two pooled 

imaging data collected one and two years apart to estimate annual changes and monitoring 

time intervals for muscle and fat outcomes in older adult women. Finally, study three 

explored the associations between muscle, fat, health related factors and functional mobility 

to fall status. 
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 Table 1: Summary of Reported pQCT Muscle and Fat Image Analysis Protocols 
Ref First    Age Range or   Contour Density Ranges 

 
  

 [#] Author Year Mean (SD)  Software Modes Fat Muscle ROI Filters Precision 
[44] Cesari 2004 74.8 (6.8) BonAlyse N/A  15 to 179    
[60] Bechtold 2005 15.3 (2.5) Stratec XCT  <20 20 to 79    
[45] Cesari 2006 74.8 (6.8) BonAlyse N/A  15 to 179    
[46] Lauretani 2006 21-96 BonAlyse N/A  15 to 179    
[61] Fricke 2008 54.4 (4.1) Stratec XCT  <20 20 to 59    
[62] Fricke 2008 5-19 Stratec XCT  

<20 20 to 59   Yes 
[63] Fricke 2008 5-19 Stratec XCT  

<20 20 to 59   Yes 
[64] Frotzler 2008 41.9 (7.5) Stratec XCT       
[47] Miljkovic-

Gacic 2008 40-91 Stratec XCT       

[48] Miljkovic-
Gacic 2008 18-103 Stratec XCT      Yes 

[65] Schweizer 2008 7.3 (2.7) Stratec XCT  1 to 29 30 to 69   Yes 
[66] Cesari 2009 74.5 (7) BonAlyse N/A  15 to 179    
[67] Coupaud 2009 40 (C.S.) Stratec XCT  <36 36 to 279    
[68] Coupaud 2009 35-41.2 Stratec XCT  <36 36 to 279    
[69] Dubner 2009 5-22 Stratec XCT      Yes 
[70] Ducher 2009 8.4 (0.4) Stratec XCT CM3/PM1 -39 to 39 40 to 279   Yes 
[71] Ducher 2009 7-10 Stratec XCT  -39 to 39 40 to 279   Yes 
[72] Eser 2009 18-44 Stratec XCT CM3/PM1 -39 to 39 40 to 279    
[73] Fricke 2009 5-19 Stratec XCT  

<20 20 to 59   Yes 
[74] Fricke 2009 5-19 Stratec XCT  

<20 20 to 59   Yes 
[75] Frotzler 2009 38.6 (8.1) Stratec XCT       
[76] Martin 2009 4-12 Stratec XCT  <30 30 to 69   Yes 
[77] Sergi 2009 24-57       Yes 
[78] Sherk 2009 18-30 Stratec XCT CM3/PM1 -100 to 39 40 to 710  F03F05 Yes 
[79] Wetzsteon 2009 5-21 Stratec XCT      Yes 
[80] Wetzsteon 2009 9-12 Stratec XCT      Yes 
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[81] Bechtold 2010 12.2 (2.7) Stratec XCT  <30 30 to 59    
[82] Bechtold 2010 6-21 Stratec XCT      Yes 
[83] Eser 2010 20-90 Stratec XCT  -39 to 39 40 to 279    
[84] Leonard 2010 5-35 Stratec XCT  <40 40 to 710   Yes 
[49] MacIntyre 2010 52-87 Stratec XCT CM3/PM1 <40 40 to 279    
[85] Sherk 2010 18-64 Stratec XCT     

F03F06U
01  

[86] Swinford 2010 26.6 (8.7) Stratec XCT CM3/PM2 -100 to 39 40 to 710 Box 7x7 ISCD 
[50] Farr 2011 10.7 (1.1) Stratec XCT BDI -100 to 39 40 to 149 Box BDI Yes 
[87] Micklesfield 2011 13 (0.2) Stratec XCT CM3 <40 40 to 179    
[88] Sherk 2011 24-49 Stratec XCT  -100 to 39 40 to 710  Multiple Yes 
[89] Sukumar 2011 25-71 Stratec XCT CM1/PM1      
[90] Szabo 2011 42 (16) Stratec XCT  -100 to 39 40 to 710 Matrix  Yes 
[91] Talla 2011 68 (11) Stratec XCT  -39 to 39 40 to 279   Yes 
[92] Wetzsteon 2011 5-35 Stratec XCT      Yes 

[93] Butner 2012 38.6 (4.7) Stratec XCT CM3/PM1 <40 40 to 279 Box F03F05 
F05/F07 ISCD 

[51] Farr 2012 10.7 (1.1) Stratec XCT BDI -100 to 39 40 to 149 Box BDI ISCD 

[94] Loenneke 2012 22 (3) Stratec XCT     
F03F06U

01 Yes 

[95] Mostoufi-
Moab 2012 5.1-25.5 Stratec XCT      Yes 

[96] Putzker 2012 19.7 (0.5) Stratec XCT       
[97] Sayers 2012 15.5 (0.3) Stratec XCT     

F03F05 
F05/F07 Yes 

[98] Van-
Caenegem 2012 38 (8) Stratec XCT  <60 60 to 279    

[52] Baker 2013 21-78 Stratec XCT BDI -100 to 39 40 to 149 Box BDI Yes 

[99] Deere 2013 17.8 (0.4) Stratec XCT     
F03F05 
F05/F07  

[100] Farr 2013 10.7 (1.1) Stratec XCT BDI -100 to 39 40 to 149 Box BDI Yes 
[101] Laing 2013 18-19 Stratec XCT CM3/PM1  34 to 279 Manual   Yes 
[102] Loenneke 2013 23 (3) Stratec XCT      Yes 
[103] Mueller 2013 43.8 (5.5) Stratec XCT   35 to 710   Yes 
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[104] Rantalainen 2013 23 (5) BoneJ N/A -40 to 40 41 to 199 Matrix 7x7 
median Yes 

[105] Rittweger 2013 31 (6) Stratec XCT N/A N/A N/A Manual  None Yes 
[106] Vandewalle 2013 10-19 Stratec XCT  <40 40 to 279    
[107] Veilleux 2013 6-60 Stratec XCT   40 to 279    
[108] Blew 2014 9-13 Stratec XCT BDI -100 to 39 40 to 149  BDI Yes 
[109] Stagi 2014 23.1 (6.2) Stratec XCT       

Abbreviations: SD = Standard Deviation; ROI = Region of Interest; BDI = utilized Bone Diagnostics Incorporated protocols; ISCD = derived using 
International Society for Clinical Densitometry guidelines; CM1/3 = Stratec XCT Contour Mode 1/3; PM1/2 = Stratec XCT Peel Mode 1/2; C.S. = 
Case Study. 
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2! Review of Literature 
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To establish a conceptual framework for investigating the precision and annual changes of 

pQCT-derived muscle and fat outcomes as well as their relationship with fall status, a 

discussion of the following topics is necessary: In vivo imaging of muscle and fat, sarcopenia, 

myosteatosis, neuromuscular aging, and falls in older adults. The aim of this chapter is to 

summarize these relevant topics and concepts to provide the framework upon which the 

purpose of this dissertation was established. 

2.1!  Imaging Muscle & Fat  
Longitudinal research has demonstrated that after age 45, adults lose approximately 12 to 

17% of thigh muscle strength per decade, a change that is partly related to the loss of 

muscle mass [110]. Objective, imaging based measurements of muscle and adipose tissues 

are central to the study of sarcopenia and aging because they do not vary with arthritic pain 

or patient motivation. Furthermore, precise imaging outcomes are sensitive to subtle 

changes in soft-tissues that can help us better understand pathology, even before these 

changes manifest in clinical outcomes [111,112]. Although DXA measures of appendicular 

lean mass are commonly used to quantify muscle as a primary technique among definitions 

of sarcopenia, there is no expert consensus on methodology for routine assessment of 

skeletal muscle [113]. Furthermore, the need for data obtained from more sophisticated 

imaging techniques that are able to discern secular changes in soft-tissues has been a 

recent subject of much methodological discussion in muscle aging and sarcopenia research 

[38,40,112,114]. Although there are promising advanced MRI methods under development 

to provide in vivo measures of mitochondrial energetics [38,115], muscle creatine [38], and 

muscle fibre orientation [38,116], they are largely out of the scope of this dissertation. To 

reflect the evidence discussed in this literature review, this section will focus primarily on 

methodological aspects of the precision and monitoring of muscle and fat outcomes, as well 
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as soft-tissue measures derived from DXA, clinical CT, anatomical and proton spectroscopic 

MRI outcomes, and pQCT methods.  

2.1.1! Precision and Monitoring of Imaging Outcomes 
Understanding the precision error of a measurement tool is necessary to know if apparent 

changes in an outcome are real, or simply a reflection of noise due to analytical and 

biological variation [117]. Furthermore, a technique’s longitudinal sensitivity (ability to 

monitor changes) is limited by its precision error [59]. Longitudinal evaluation seeks to 

determine three things: 1) Meaningful and clinically relevant changes; 2) The time interval 

that allows accurate assessment of treatment response or disease progression; and 3) The 

technique best suited to detect changes quickly and accurately [59].  

Precision errors calculated with less than 27 degrees of freedom, or the use of 

arithmetic means (compared to root mean squared averages) may underestimate the true 

imprecision by up to 41% and 25% respectively [118]. An accurate (defined as 90% certainty 

of being within 30% of the actual error value) assessment of the precision error of an 

imaging technique requires the calculation of the root of the mean squared differences from 

measurement pairs with at least 27 degrees of freedom (i.e. 27 participants measured 

twice) [118]. These recommendations have since been adopted by the ISCD [41,119], which 

now hosts a convenient web-based precision calculation tool, and recommends repeat 

measures from at least 30 individuals [120]. Precision errors may be expressed as absolute 

values (root mean square standard deviation; SDRMS) or as a percentage of the sample mean 

CV%RMS [118]. See Appendix D for a worked example of the calculation of these values.  

To characterize longitudinal sensitivity, the responsiveness of the outcome to change 

needs to also be taken into account [59]. Precision error, together with median annual 

changes, can be used to estimate monitoring time intervals (MTIs) between measurement 
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occasions. MTIs provide a time estimate (in years) to reliably (with 80% and 95% certainty) 

detect changes in disease progression or treatment effect. The calculation of these intervals 

allow for follow-up measures to be efficiently performed within the optimal window for 

capturing true biological change in imaging outcomes, and minimize both the radiation 

exposure to participants as well as the costs associated with repeated scanning in 

prospective studies [59]. To calculate these estimates of longitudinal sensitivity, we must 

first derive Least Significant Change (LSC) values which are described as the “criterion for 

the smallest change between two measurement results that can be considered statistically 

significant with 80 or 95% confidence” [59]. A change less than an 80% LSC is not 

considered clinically relevant, and a change less than the 95% LSC is not statistically proven 

[59]. The LSCs are calculated similarly by multiplying the precision error by √2 times the 

critical Z-value for the desired level of confidence (1.28 and 1.96) [59,117]. To obtain MTIs 

the LSC values are divided by an outcome’s median response (per unit of time) [59].  

Because precision error can vary with the unique characteristics of each participant, it 

should be specific to the population under study [118]. Technique precision derived from a 

young, healthy convenience sample may not be appropriate when assessing values derived 

from an aged or diseased population. Furthermore, precision values should be determined 

from measures collected on separate days but close enough together to negate possible 

biological changes. Same-day image collection has been known to underestimate precision 

errors for muscle and adipose tissue area due to enhanced technician recall when 

repositioning participants, and/or failure to capture between-day fluctuations in the precision 

error of the scanner [86]. Sample heterogeneity can also affect longitudinal estimates of an 

outcomes median response, therefore MTIs for populations with different characteristics, i.e. 

healthy normal, diabetic, etc., should be calculated separately [59].  
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2.1.2! Fat and Adipose Tissue Outcomes 
In the study of body composition and metabolism, “fat” and “adipose tissue” are distinct 

[121].  At the molecular level fat is usually lipid in the form of triglycerides, and although 

adipose tissue contains ~80% fat, it also has water, protein and mineral components, and 

secretes adipokines that interact with surrounding tissues [121]. The terminology used to 

describe various adipose-tissue outcomes varies with the technique utilized, as well as the 

field of study. Komolka et al. [122] provides an excellent overview of the terminology used 

for various types of adipose tissue and fat in human, rodent, and livestock literature and 

provides a visual example of each (Figure 2). In the human limb the following depots are 

studied using direct and surrogate imaging measures: SAT, inter-muscular adipose tissue 

(IMAT), intramuscular fat (IMF); consisting of adipocytes within muscle, extramyocellular 

lipids (EMCL) and intramyocellular lipids (IMCL). DXA measures separate fat mass from lean 

mass for the total body, which can also be analyzed into sub-regions for estimates of central 

fat mass, and limb fat and lean mass, but cannot provide information about intra-tissue fat 

(IMAT, EMCL, IMCL) [40,112,114]. Both SAT and IMAT areas can be estimated using MRI 

and CT techniques [123]. While only MRI proton (H1)-spectroscopy can directly measure 

IMCL and EMCL in vivo, CT muscle attenuation serves as a surrogate measure of IMCL and 

EMCL not accounted for by measures of IMAT [124,125]. CT Tools such as pQCT are 

calibrated differently and report tissue properties in density values rather than attenuation. 

Outcomes reported in this dissertation include commonly reported pQCT-derived soft-tissue 

measures: muscle, SAT, and IMAT cross-sectional areas (cm2), as well as muscle density 

(mg/cm3). 

 



 

 15 

 

Figure 2: Illustration of different muscle-related adipose tissue depots. (A) Deep subcutaneous adipose tissue 
(dSAT) covering M. serratus dorsalis, inter-muscular adipose tissue (IMAT) between M. intercostalis interni and 
M. longissimus dorsi, and intramuscular fat (IMF) within M. longissimus dorsi in cattle. (B) Cellular structure of 
IMF in M. longissimus dorsi (cattle, Eosin stained). (C) Intramyocellular lipids (IMCL, red dots, Oil-red O stained) 
in a muscle cell (M. longissimus dorsi, mouse). Reprinted with permission from Komolka et al.  [122] and The 
Journal of Genomics. 

Muscle area is related to contraction torques [126], SAT and IMAT area quantify the 

adipose in subcutaneous and inter-muscular depots, and muscle density provides an 

analogue of muscle attenuation, estimating both adipose [55] and fat [127]. These 

outcomes reflect the unique limitations of the pQCT scanner. Unlike CT (Figure 3) and MRI, 

pQCT does not have a high enough contrast to separate the individual muscles of the 

forearm and lower leg (Figures 4 & 5), both muscle area and density are measures that 

quantify all soft tissues (including muscle, IMAT, EMCL, IMCL) between the inner edge of the 

SAT and the outer edge of the bones.  
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2.1.3! Dual energy X-ray Absorptiometry 
DXA-derived lean and fat mass (g/cm2) parameters are some of the most commonly utilized 

measures in modern body composition research. The DXA scanner uses a projection imaging 

technique with two different energy beams to differentiate soft tissues from bone [128]. 

Thus, the tissue densities are not true volumetric densities, but are areal bone mineral 

densities (aBMD), with an area based unit “g/cm2” calculated by dividing the bone mineral 

content by bone area [41,128]. DXA can also separate mineral free soft tissue (lean mass) 

from fat mass, and appendicular lean mass has become a central component of the 

operational definitions of sarcopenia [7]. Be that as it may, the accuracy of DXA lean and fat 

mass measures are not well established, and have been shown to vary inconsistently with 

body type [129,130]. In obese adults, DXA underestimates fat mass when compared with 

computed tomography, and this bias has been shown to increase in heavier participants 

[130]. 

The advantages of DXA are the ability to quantify whole body fat and lean mass, and 

the comparatively low radiation doses associated with the technique. Limitations include an 

inability to provide tissue-specific lean and fat mass, (e.g., subcutaneous from visceral or 

muscle adipose), as well as the increased errors in lean and fat mass estimates that can 

occur if a patient is excessively under or overweight [128,131]. Furthermore, it may prove 

impossible to properly position a participant for a scan if they are kyphotic and cannot lay flat 

on the scanner table [128]. Newer scanner models have demonstrated better precision 

(CV%RMS of 1.2 to 1.6%) for determining the lean mass arm and leg sub-regions in younger 

and mixed-age, healthy samples [132,133]; however, poorer appendicular lean mass 

precision (CV%RMS of 2.7 to 10.9%) has been reported for older scanner models and aging 

cohorts [134].    
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2.1.4! Magnetic Resonance Imaging & Spectroscopy 
Magnetic resonance techniques are among the cutting edge of body composition imaging. 

Although new techniques are being developed that will provide muscle health and function 

data beyond anatomical tissue sizes and volumes [38], the principal use of magnetic 

resonance imaging (MRI) in musculoskeletal research has been to characterize the quantity 

and distribution of fat and muscle tissue [38,135]. Unlike DXA and CT methods, MRI does 

not utilize ionizing radiation, which allows for the measurement of muscle and fat properties 

throughout the entire body and across the human life span (from fetus to cadaver). Whole 

body 3D composition scans are able to monitor changes in the various depots of fat, allowing 

for the study of the redistribution of fat and its pathophysiological implications [136]. MRI 

scans can also provide a quantitative assessment of myocellular lipid via magnetic 

resonance spectroscopy (MRS) analyses with the use a radio-frequency coil tuned to H1 

[135]. In addition to quantifying IMCL, this technique can also identify triglycerides existing 

within and outside of the muscle fibres (EMCL) [125]. Conventional MRI often only measures 

the cross-sectional areas or volumes of large stores of inter-muscular adipose tissue 

[38,135]. The ability of MRI to measure muscle and adipose cross-sectional areas has been 

validated with cadaveric specimens with a precision (CV%) of ~2% [123], and muscle lipid 

content via H1-spectroscopy has been cross-validated with CT attenuation [125]. Substantial 

cost, limited availability, and poor standardization of imaging protocols are the primary 

limitations of this technique.  

2.1.5! Computed Tomography 
Similar to MRI, computed tomographic imaging is also capable of providing 3D images of the 

soft-tissues of the body. CT can provide estimates of muscle size as well subcutaneous, 

visceral, inter-muscular fat depots [123]. Furthermore, muscle attenuation (Figure 3) 
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provides an imaging-based analogue of IMCL and EMCL content [124,125]. The ability of CT 

to assess muscle size and adiposity has also been cross validated with both MRI and 

magnetic resonance spectroscopy [123,125]. Goodpaster, Kelley, et al. [124] demonstrated 

that muscle attenuation values have a near perfect linear association with lipid content in 

vitro. Furthermore in vivo muscle attenuation values were negatively associated with muscle 

biopsy lipid and triglyceride content [124,125].  

The methodological variability (CV%) of muscle attenuation was found to be less than 

1% for both the mid-calf and mid-thigh [124], but this CV% was calculated from repeat 

measures of only 6 volunteers and likely underestimates the true precision error of these CT 

measurements. The Health, Aging and Body Composition (Health ABC) study has generated a 

wealth of data demonstrating the value of CT muscle imaging in aging research [29,30,137-

142]. Muscle attenuation and adipose tissue area are associated with a number of different 

functional [23,24,26], clinical [30,31] and public health [29], outcomes in older adults.  

Although clinical CT scanners allow for imaging in any part of the body, the technology 

has limited feasibility for large-scale use. Clinical scanners are expensive, and while the 

radiation dose associated with their use varies with the scan protocol, it is among the 

highest of all radiological imaging techniques [143]. For these reasons, a smaller-scale CT 

cousin “pQCT” has also become a popular tool in musculoskeletal health research.  

2.1.6! Peripheral Quantitative Computed Tomography 
Peripheral Quantitative Computed Tomography technically refers to any QCT scan of 

the periphery of the body. Despite that, a set of devices dedicated to this function have 

usurped this terminology in the literature [41]. The acronym “pQCT” most often refers to a 

class of small step-and-scan QCT tools [143,144]. These scanners collect axial tomographic  
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Figure 3 : Representative CT images of the midthigh showing in black the outline of the region of interest 
encompassing the thigh muscle bundle used for area and attenuation measurements. (a) Axial image showing 
extensive fatty infiltration of the muscle and having a thigh muscle lean tissue attenuation coefficient of 26 HU. 
(b) Axial image with a thigh muscle lean tissue attenuation coefficient of 38.6 HU. Reprinted with creative 
commons licensing from Lang et al. [30]. 

slices with a thickness of 2.1 to 2.5mm, through 15-30 translations of 12 degrees around a 

limb [144,145]. Scanners are factory calibrated to the European Forearm Phantom, which 

consisted of a water equivalent soft tissue simulating material [42,146,147]. Thus, contrary 
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to CT attenuation values (HU), pQCT quantifies all tissues in terms of volumetric bone 

mineral density (BMD, mg/cm3), measured in milligrams of hydroxyapatite per cubic 

centimeter and calibrated with fat equal to 0 mg/cm3 and a resin based water-equivalent 

material as 60 mg/cm3 [143,146,147]. Relative to clinical CT devices, pQCT scanners are 

more compact, cost-effective, and expose participants to substantially lower effective doses 

of radiation [143]. With the exception of Single Photon Absorptiometry, pQCT emits the 

lowest effective dose of all densitometric techniques [42,143]. Similar to a full body CT 

scanner, pQCT is also able to image fat, muscle, and bone to determine tissue content, 

density, and area. However, pQCT is limited to scanning the arms and legs, and does not 

provide enough contrast to distinguish individual muscles. Thus, pQCT derived lower leg and 

arm muscle density and cross sectional area provide global measures of appendicular 

muscle. Furthermore, scanner resolution restricts the ability to measure thin structures due 

to partial volume effects [148].  

Along with relatively low radiation doses, pQCT provides the advantages of being able 

to separate appendicular SAT from muscle, as well as provide precise measures of muscle 

size, density and SAT area. The precision error (CVRMS%) of these measurements range from 

0.7 to 6.5% in the forearms and lower legs of older women [149]. Measures of pQCT-derived 

muscle and SAT area have been demonstrated to be similar to those obtained using MRI; 

although, pQCT image analysis protocols and filtering methods can influence the agreement 

between these two techniques [88]. Research in lemmings demonstrated pQCT-derived liver 

attenuation values accounted for 96% of the variance in chemically extracted liver lipid 

content [127]. In a cross-validation study, MRI-derived IMAT accounted for 50% of the 

variance in pQCT-derived muscle density [55], the remaining unexplained variance may be 

accounted for by other muscle tissue properties, and stores of EMCL, and IMCL that exist 



 

 21 

below the resolution of the MRI scanner. Measures of pQCT-derived IMAT are not well 

described in the published literature [48,93]. Some evidence suggests large precision errors 

for pQCT-derived IMAT [93], yet there currently is no context (i.e., annual change data) within 

which these precision errors can be evaluated. Fat and muscle methods are an area of 

development for pQCT, and methodological heterogeneity currently limits the comparison 

and pooling of results. Various threshold values, software suites, and image filters (Table 1) 

have been applied to derive muscle and fat measures [45,52,53,88,93,104,149-151], but 

there is no consensus on how to best define these tissues and few methodological 

comparisons exist [149,151]. 

2.2! Sarcopenia 
The term sarcopenia is derived from the Greek sarx, meaning “flesh”, and penia “loss”. The 

term was originally coined in 1988 by Irwin Rosenberg who noted that lean body mass 

underwent the most dramatic and significant decline with age, negatively affecting 

metabolism, ambulation, mobility, and independence [152]. A decade later, Baumgartner et 

al. [9] analyzed data from the New Mexico Elder Health Survey and the Rosetta Study to 

establish the first operational definition of sarcopenia. Sarcopenia was defined as a DXA-

derived appendicular skeletal muscle mass index (appendicular muscle mass/height2) less 

than two standard deviations below the mean value for young adults from the Rosetta Study 

[9]. Recognizing both the physiological importance of fat mass in muscle loss [10] and that 

progressive strength loss was outpacing declines in lean mass [153,154], alternative 

definitions have since been proposed. A “sarcopenic obesity” phenotype was defined 

[155,156], to account for the synergistically greater functional decline experienced by 

persons with both sarcopenia and obesity [32]. Be that as it may, there are still difficulties 

with how we define sarcopenia and sarcopenic obesity. When eight different definitions of 
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sarcopenic obesity were compared using data from the National Health and Nutrition 

Examination Survey, the variability among them produced up to a 26-fold difference in 

prevalence [156]. Although no medical consensus currently exists for sarcopenia or 

sarcopenic obesity, the most recent criteria for sarcopenia adjusts lean mass and grip 

strength values for body mass index (BMI) to account for the effect of obesity [15]. Despite 

the variability in how sarcopenia is defined, nearly two decades of research has been 

produced to help us better understand the mechanisms and relationships of age-related 

declines in muscle mass and function [32]. 

2.2.1! Moving Towards a Consensus Definition for Sarcopenia   
Recent efforts have focused their attention on arriving at a consensus for an operational 

definition of sarcopenia [157,158]. In the past five years, six consensus statements have 

been produced with different criteria for the definition of sarcopenia [13-15,159-161]. While 

there is variation among the consensus statements, all of them acknowledge that a 

definition of sarcopenia should include both low muscle mass (defined 3 different ways) and 

a variety of cut-points for poor function measured as gait speed, grip strength, or 6 min walk 

[7]. Among these 6 definitions, the Foundation of National Institutes of Health (FNIH) 

definition is unique as it is the first data-driven criteria for sarcopenia and does not rely on a 

distribution of lean body mass values from young adults [157]. The FNIH analysis defined 

sarcopenia for men and women as hand grip strength below 26 and 16kg, in the presence of 

a DXA-derived appendicular lean mass over BMI ratio of <0.789 and <0.512 [15,157]. A 3-

year likelihood of incident mobility impairment was predicted by both FNIH criteria for low 

grip strength (OR 2.31 [95% CI 1.34 to 3.99]; OR 1.99 [95% CI 1.23 to 3.21]) and low 

appendicular muscle mass adjusted for BMI (OR 1.58 [95% CI 1.12 to 2.25]; OR 1.81 [95% 

CI 1.14 to 2.87]) for men and women respectively [16] 
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2.2.2! Epidemiology 
Data on the prevalence of sarcopenia are dependent on the definition used, and its 

appropriateness for the population described. Estimates based on the European Working 

Group on Sarcopenia in Older People (EWGSOP) criteria range between 5 and 8% in England, 

22 and 23% in Japan, and 33% of nursing home residents [7]. The International Working 

Group on Sarcopenia (IWG) criteria demonstrated a lower prevalence than the EWGSOP 

when compared in a population-based cohort of elderly Taiwanese [162]. The FNIH definition 

was found to be more restrictive than EWGSOP and the IWG, with only 1.3% of men and 

2.3% of women being defined as having sarcopenia [163].  

A recent British analysis compared the EWGSOP and FNIH sarcopenia criteria’s ability 

to determine slowness and difficulties walking on the Timed Up and Go (TUG) test. Low lean 

mass determined using the FNIH criteria was associated with higher odds of mobility 

impairment, yet EWGSOP lean mass was not [17]. Using the EWGSOP criteria, a cohort of 

sarcopenic Italians had a 3-fold increased risk of falls over a period of 2 years [19]. Similarly, 

sarcopenia was shown to increase the odds of being a faller in a cohort of elderly Japanese 

men and women [20]. Sarcopenia has also been demonstrated to have a relationship with 

fall-induced injuries. Sarcopenia predicts incident fractures [21], and improves fracture risk 

prediction when combined with the Fracture Risk Assessment tool [22] in elderly Chinese 

men. 

2.2.3! Mechanisms & Therapies 
Sarcopenia has multiple contributing factors closely tied to age-related changes in 

physiologic function. Identified factors include: mitochondrial dysfunction, neuronal 

degeneration, weight loss, malabsorption, declines in vascular function, low testosterone, 

growth hormone, insulin growth factor 1,  and vitamin D, increased cortisol, and pro-
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inflammatory cytokines such as interleukin-1/6, and tumor necrosis factor alpha, and 

decreased physical activity [7,32,164]. Sarcopenia accelerates with diabetes and insulin 

resistance, due to decreased protein synthesis and increased protein degradation [32].  

Resistance training has proven to be an effective treatment to stimulate protein 

synthesis, increase muscle mass and strength [32,154,161].  The safety and effectiveness 

for resistance exercise has been demonstrated, even in old and frail individuals living in 

nursing home care [165]. Aerobic exercise may also benefit aging skeletal muscle by 

improving insulin sensitivity via the stimulation of GLUT-4 mediated glucose transportation 

[32,166]. Nutritional interventions, particularly leucine-enriched amino acid 

supplementation, have demonstrated potential [7], but larger RCTs are needed to confirm 

these findings [32]. Anabolic hormone therapies have not proven successful and can carry 

safety risks [7,166]. Clinical trials are currently underway for antibodies that modulate 

myostatin, and ghrelin agonists that could increase food intake and release growth hormone 

[7,157]. Nevertheless, the lack of a medical consensus on a definition has created a barrier 

for investment and clinical development of therapies for sarcopenia. The U.S. Food and Drug 

Administration requires proposed therapies to treat diseases or conditions recognized by the 

medical community [158].   

2.2.4! Challenges 
More research is needed comparing definitions of sarcopenia for the medical community to 

definitively determine which criteria has the best predictive ability and arrive at a medical 

consensus [7,157]. The timely and correct identification of sarcopenia or persons who are at 

risk of becoming sarcopenic may play an important role in the success of therapeutic 

interventions. There is a need for earlier detection and intervention in adults exhibiting 

trends in muscle loss. Although DXA-derived appendicular lean mass measurements are a 
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primary component of the majority of sarcopenia definitions, the utility of these DXA 

outcomes for monitoring changes across serial measures of appendicular lean mass is not 

well described. There is also a growing recognition that tools that can better evaluate and 

differentiate more specific body composition features (e.g., muscle area, muscle 

density/attenuation, SAT, IMAT) are necessary for the research and development of 

therapies targeting muscle and physical performance [40,112,114]. 

2.3! Myosteatosis 
Adipose tissue undergoes changes in distribution and function with age. The increased 

infiltration of muscle tissue with adipose and fat has been referred to as “myosteatosis” 

[37,167]. There are several mechanisms that may contribute to myosteatosis. Metabolic 

hypotheses speculate that increases in ectopic fat storage in both visceral and muscular 

sites are a reflection of the diminished ability of subcutaneous fat depots to expand and 

regulate fatty acids in the blood stream [168,169]. This is characterized by a decline in 

subcutaneous fat storage (a depot which is dependent on adipocyte proliferation) and a shift 

towards visceral and ectopic adipose tissue storage (hypertrophy dependent adipocytes) in 

muscle and other organs [169]. Over time, these changes have deleterious effects on 

metabolic homeostasis, and are also often observed earlier in life in obese and diabetic 

populations [170]. Although multiple factors contribute to this phenomenon, the progression 

of fat redistribution in old age is believed to begin with increased expression of pro-

inflammatory cytokines (tumor necrosis factor-α [TNFα] and Interleukin-6 [IL6]) and the 

emergence of senescent pre-adipocytes; two factors which reduce the differentiation of 

active pre-adipocytes into lipid-storing adipocytes [171]. Supporting this relationship, Beasley 

et al. noted that inter-muscular adipose tissue of the thigh was significantly related to 
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inflammation in older adults, and a trend towards lower pro-inflammatory marker 

concentrations was also observed with increased subcutaneous fat [139].   

Data also suggest that myosteatosis may have origins in the aging of muscle tissue. 

Prospective results from the Health Aging and Body Composition Study indicated five year 

increases in inter-muscular adipose tissue area regardless of changes in body weight or 

subcutaneous adipose, suggesting myosteatosis is a consistent characteristic of aging 

muscle [28]. Altered mitochondrial activity and oxidative stress are suspected to contribute 

to increased myosteatosis in the elderly [164,172]. Johannsen et al. reported that muscle 

fibre ATP and O2 consumption did not differ between young and elderly groups; however, the 

elderly demonstrated a trend towards greater oxidative stress, reduced mitochondrial 

respiratory efficiency, and greater muscle adiposity [172]. Both myocytes and neurons 

contain large quantities of mitochondria and are susceptible to oxidative damage.  

The increased failure of motoneurons to reinnervate muscle fibres undergoing 

remodeling [173] may also promote the replacement of muscle with adipose.  

Muscle fibres orphaned by the neuromuscular regeneration process either atrophy or are 

reinnervated by neighbouring motor units [174]. Muscle fibre atrophy can signal the 

fibro/adipocyte progenitors that assist in muscle fibre regeneration to differentiate into 

fibroblasts and adipocytes [175]. There is cellular evidence which suggests that muscle 

precursor cells increase their expression of adipocytic phenotypes with age [176-179]. Data 

from the InCHIANTI study linked α-motoneuron degeneration to muscle adiposity; after 

adjusting for confounding variables, older men and women who had peroneal nerve 

compound muscle action potentials below the clinically relevant threshold of 4mV were 

between 1.9 and 2.4 times greater odds of having a lower leg muscle density more than an 

SD lower than young adult values [46].  



 

 27 

 Beyond the loss of contractile fibres with age, the chronic and gradual accumulation 

of adipocytes [139,180] and the pathophysiological effects of their pro-inflammatory 

cytokines [181-183] may precede declines in muscular function in aging [182]. Pro-

inflammatory cytokines can promote peripheral insulin resistance [183], muscle catabolism 

[142,181], decrease the production of myofilament proteins [181,182], increase oxidative 

stress, and reduce contractility and strength [142,181].  A heightened inflammatory state 

lowers the anabolic response to resistance exercise, making it more difficult for older adults 

to maintain and build muscle [181,182]. This was recently demonstrated in a study of older 

adult fallers. Participants with higher baseline levels of muscle adipose demonstrated 

blunted muscle quality improvement from 3-months of training in resistance, endurance and 

balance exercises [184].  

Although the mechanisms of myosteatosis are still being elucidated, cross-sectional 

evidence has linked muscle adiposity with muscle strength [23,49], six meter walk and chair 

stand performance [25,185], ascending and descending stairs and the TUG test [185], 

diabetes [47,48], insulin resistance [167], obesity [39], frailty [45], falls [53], wrist and hip 

fracture [30,31,54]. Prospective evidence links muscle adiposity with physical function and 

mobility limitations [24,141,186], incident non-spine fractures [187,188], hospitalization 

[29], disability [26,27], as well as all-cause and cardiovascular mortality [66,189]. Lastly, 

randomized controlled trials in older adults have demonstrated that imaging-based 

measures of muscle adiposity can be decreased with structured exercise [35,36] and 

resistance training [37]. These effects coincided with improved strength [37], and were 

independently related to improved physical function [36]; suggesting measures of muscle 

adiposity have potential as a relevant marker for healthy and successful aging. 
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2.4! Neuromuscular Aging 
Muscle strength has three major components: neural-motor, contractile, and elastic; all of 

which combine to maximize dynamic muscle strength [190]. The neural coordination of the 

contractile and elastic properties of muscle is necessary to achieve efficiency in human 

movement and maximize force production [191]. The integrated control of human movement 

is guided by the central nervous system (CNS). Reflex inhibition can influence the excitability 

of the CNS, which can affect net joint torque [192]. This is particularly an issue for older 

adults with chronic, painful conditions. For example, the arthritic swelling of joint capsules 

are believed to put pressure on the Golgi tendon organs and afferent pain receptors in 

synovial membranes, leading to arthrogenous muscle inhibition [192,193]. Aches and pains 

can also cause neural inhibition of contraction [3,190,193]. Studies of the role of motor unit 

recruitment in maximal voluntary contraction torque with age are equivocal and depend on 

the muscle group [193-196]. Several studies of the knee extensors have demonstrated no 

differences between young and old adults as well as significant impairments in central 

activation with age [195]. A recent longitudinal analysis of 16 healthy older adults found that 

a reduction in neuromuscular activation was significantly associated with declines in muscle 

power [196]. This healthy older cohort was also contrasted with a group of older mobility 

limited adults who demonstrated no change in neuromuscular activation despite losses in 

power, contraction velocity, and muscle area [197]. Interestingly, both healthy and mobility 

impaired groups demonstrated a significant relationship between declines in contraction 

velocity and increases in IMAT [197]. 

Changes in the peripheral nervous system and muscle tissues are also considered to 

be a culprit of age-induced deficits in strength and power. Alpha-motoneurons are the 

efferent nerves that originate in the brainstem or spinal cord and innervate muscle fibres to 
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facilitate the propagation of action potentials to the muscles [191]. Action potentials 

terminating at the end of a motoneuron set in motion a cascade of electrochemical signaling 

within the muscle fibre that results in contraction. An alpha-motoneuron and the fibres it 

innervates are known as “motor units”. With age, a pattern of motor unit remodeling 

becomes apparent [3,164,174,191]. In young healthy muscle, a regenerative cycle of 

denervation, motoneuron axon terminal sprouting and re-innervation occurs without any 

apparent difficulty. Cross-sectional research indicates that into the seventh decade of life the 

normal turnover of synaptic junctions changes and an increase in the loss of alpha-

motoneurons occurs [192,198]. As a result of muscle fibre denervation, neighbouring 

motoneuron axons sprout new terminals in an attempt to assimilate orphaned fibres into 

their motor unit [164]. Myoplasticity allows these orphaned fibres to adapt their contractile 

properties to more closely match those of the adopting motor unit [174]. With age, a pattern 

emerges where a larger number of fibres exist in each motor unit, and the location of these 

innervated fibres, which were previously intermixed throughout the muscle, are now 

clustered closer together. As a consequence of the amalgamation of muscle fibres into fewer 

motor units, force steadiness and fine motor control is also reduced [199]. Among the fibre 

types, fast twitch muscles appear to naturally undergo more neuromuscular junction 

remodeling cycles than slower phenotypes [200]. There also appears to be a preferential 

loss of fast twitch motor units [164]. This is either due to a greater susceptibility of fast 

twitch motoneurons to atrophy, or a reduced ability to sprout new axon terminals and re-

innervate their type II fibres; giving slow twitch motoneurons the upper hand in the 

remodeling process [164].  

The exact mechanisms of denervation are not completely understood. Early cadaveric 

studies highlighted the reduced number and size of alpha-motoneurons in the ventral root of 
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the spinal cord leading to the initial hypothesis that declines in muscle mass and strength 

may be driven by alpha-motoneuron atrophy [201]. Current evidence suggests that 

motoneuron death may not account for all age related deficits. Edstrom, Altun, et al. [173] 

note that lost muscle fibres often appear halted part way through their typical regenerative 

process. Due to their inability to replicate throughout the lifespan, neurons depend on 

maintenance proteins for structural integrity and plasticity. The accumulation of oxidative 

damage over time can impair the proteins that facilitate neuronal plasticity, compromising a 

motoneuron’s ability to sprout new axon terminals and re-innervate muscle fibres [173].  

Oxidative damage to the mitochondrial DNA, and oxidative stress-induced inefficiencies 

in cellular respiration are also hypothesized to be factors in the accumulation of muscle lipid 

[167,172], and inter-muscular fat observed with age. The production of incomplete, or 

inactive enzymes are also observed, and may be a symptom of dysfunctional protein 

production due to age-related genetic damage [3]. This is particularly common to the 

mitochondria, which are more often exposed to reactive nitrogen & oxygen species 

generated through respiration [202]. In muscle, decreases in glycolytic enzymes, and 

mitochondrial mass impact the production of ATP across all fibre types [3].  

Changes in the elastic properties and composition of muscle also play a role in muscle 

performance with age. In the aging lower leg, increased tendon compliance impairs the 

ability of the musculature to rapidly transmit force onto the skeleton [203], and may reduce 

the efficiency of force production [204]. Evidence suggests that muscle power declines at a 

greater rate than strength, with a reported annual loss of 3.5% (compared to 1-2% isometric 

strength) between the ages of 65 and 89 [205]. The age-related leftward shift in the force-

velocity curve of muscle contraction reduces both peak power, and the optimal velocity for 

power production [192]. Thus, deficits in power are more pronounced as the velocity 
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requirements of a task increase [206]. The serious implications of changes in muscle power 

are especially pronounced in tasks which require high velocities of movement, such as 

preventing a fall and recovering one’s balance from a trip [207-209]. As such, muscle power 

has a profound impact on mobility, functional status, and fall risk in older adults. Deficits in 

whole muscle power exist between old and young groups when normalized to whole muscle 

cross sectional area [210]. Decreased muscle attenuation can account for differences in 

strength not attributed to muscle cross-sectional area in older adults [23]. This is suggestive 

of a role of muscular adipose in the specific force of whole muscle in older adults; yet there 

is little research directly investigating this possibility. An MRI study by Hilton, Tuttle, et al. 

[211] demonstrated a significant correlation between IMAT volume and dorsiflexor and 

plantar flexor isokinetic strength and power. Functional comparisons have noted differences 

in the amount of inter-muscular adipose tissues and muscle densities between healthy older 

subjects and older adults with mobility deficits [25,211,212], as well as fallers [53] and 

fracture patients [30,31,54,187,188].   

2.5! Falls 
In Canada approximately 30% of community-dwelling elders (≥65 y of age [WHO 1984]) fall 

each year, and 12% experience multiple falls [213]. Studies in other industrialized 

populations have reported the prevalence of falling to be 28 – 35% of persons over 65, with 

an increase to 32 - 42% of persons 75 and older [214]. Women are more likely to experience 

a fall, and even well-functioning older persons are not immune to fall events [215-217]. The 

experience of a fall can be a cruel event; with consequences that can include serious injury, 

hospitalization, fear, a loss of independence, and fatality [218]. Almost one quarter of fall 

events result in serious injury, half of fallers report developing a fear of falling, and a quarter 

of fallers restrict their activities (shopping, household chores, physical activity) due to this 
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fear [219,220]. Falls are the leading cause of non-fatal emergency room visits [58], and the 

primary cause of hip fractures [57]. In America, falls are estimated to account for 0.53 

million osteoporotic fractures annually [216]. A systematic review of falls and their 

associated costs in the western world estimated the societal burden of falls to account for 

1.5% of all health care costs, with the average cost of a single fall ranging from $1,059 to 

$10,913 USD [221]. These costs can reach as high as $42,840 in severe fall-related injuries 

[221,222]. There is concern that these costs will rise at a greater rate than the growth of the 

elderly population. Age-adjusted data suggests that the rate of fall-induced injury in older 

persons is increasing [223], with an annual increase of 1.3% for men and 0.7% for women 

over the last 27 years [224]. While the case has been made that falls are prevalent and 

costly (for both the victims and society), how fall data are ascertained is fundamental in our 

understanding of these events.  

2.5.1! Definition and Ascertainment of Falls 
How a fall event is defined and interpreted can influence the occurrence of falling reported 

by older adults. Many studies have defined falls differently, some with broad definitions and 

others with definitions intrinsically or environmentally narrowed to exclude falls that occur 

due to specific events (syncope, violence, car accidents, sports, etc.) [214]. In 2005 Hauer et 

al. noted that there were approximately 40 different variations of the definition of a fall in the 

literature; few of which could be combined [225]. The Prevention of Falls Network Europe 

(ProFaNE) sought to address this problem by publishing a fall definition consensus [226]. 

According to the ProFaNE consensus statement, a fall is broadly defined as “any event where 

any part of your body unexpectedly contacted the ground or another lower surface”. 

Utilization of this consensus definition is important for the assembly of comparable fall data, 

which can be pooled to further enhance fall research and health policy [225]. Many fall 
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studies have acquired fall data retrospectively [215,225,227,228], primarily for the 

convenience of collecting fall data in a very short span of time. Prospective methodologies 

are more resource intensive and may include daily record keeping of falls on a falls calendar, 

with weekly or monthly telephone follow-ups [225]. While the reliability of a retrospective 

recall in an elderly population is often a concern, data from a prospective fall monitoring 

study demonstrated that only 13% of elderly men and women failed to recall a fall event in 

the previous 12 months [229], whereas short-term recall was worse (32% and 26%) at 3 and 

6 months respectively. It should be noted that the effect of participation in this prospective 

study was not controlled for, and these recall percentages likely reflect an overestimation of 

recall ability.  

2.5.2! Fall Risk Factors & Muscle Weakness  
Risk factors are variables that may increase the likelihood of experiencing a harmful event 

[230]. The identification and monitoring of these factors is an important aspect of fall 

prevention research [217]. Fall risk factors include muscle weakness, a previous history of 

falls, gait deficits, balance deficits, use of an assistive device, visual deficits, arthritis, 

impaired activities of daily living, depression, cognitive impairment, vitamin D deficiency, 

polypharmacy, and age [218,231,232]. Due to the multifactorial nature of falls it is both 

unlikely and unreasonable to assume that any single physical performance test or biomarker 

will be shown to have excellent predictive accuracy [233]. There presently is no gold 

standard screening test for the prediction of falls in community-dwelling older adults [234]. 

The TUG test (measured as the time required to rise, walk three meters, turn and return to a 

seated position in a chair), was previously recommended for use as the primary falls risk 

screening tool in the joint statement from the American Geriatrics Society and the British 

Geriatrics Society (2001) [232]. Meta-analyses have recently demonstrated the TUG to have 
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poor univariate predictive ability for falls in high-functioning, healthy older people [235,236], 

and it was not recommended as the primary screening tool in the 2011 statement update 

[231].  

 A meta-analysis reported by the American Geriatrics Society and British Geriatrics 

Society provides insight into the relative importance of fall risk factors [218,232]. Muscle 

weakness was the single most important univariate risk factor; elderly persons with muscle 

weakness were 4.4 times more likely to fall than their fit peers [218,232]. History of falls, 

gait and balance deficits produced a mean relative risks of 3.0, 2.9 and 2.9, with other risk 

factors ranging between 2.6 and 1.7 [218,232]. Weakness, gait, and balance appear to be 

inter-related [207,237]. Lower limb muscle weakness is apparent in persons who display 

poor balance, abnormal gait, and reduced mobility [237,238]. A more rigorous meta-analysis 

of only prospectively ascertained falls and muscle weakness in community-dwelling adults 

reported a combined OR of 1.66 [95% CI 1.20 to 2.29] for the association between lower 

extremity weakness and falls [239].  

2.5.3! Fall Prevention 
Almost one in five falls (17%) are believed to be caused by muscle weakness or gait and 

balance disorders, which are second only to environmental hazards (31%) as the primary 

cause of falls [218]. Previously deemed ineffective [240], recent evidence now supports the 

efficacy of home safety assessments and modifications, particularly when delivered by an 

occupational therapist [241]. Carefully managed exercise programs, which target muscle 

weakness, are also an efficacious avenue to reduce the overall risk of falls. Several group 

and individual exercise interventions have reduced falls and fall risk [242] and improved 

lower body and postural strength, balance, flexibility and endurance in the community-

dwelling elderly [241]. Furthermore, a meta-analysis of 59 randomized controlled trials 
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determined that multi-component group and home-based exercise interventions were 

effective in reducing the number of fallers, and the rate of falling [241]. This is also reflected 

in the current clinical guidelines for falls prevention, which recommend that all multifactorial 

interventions for community-dwelling older people have an exercise component that includes 

balance, gait, and strength training [231]. 

2.6! Summary of Literature Review 
The study of factors that influence human health in aging is of paramount importance as the 

world undergoes an unprecedented demographic shift towards an aged society. Changes in 

body composition and neuromuscular health are known to influence the risk of deleterious 

outcomes in old age. Among these changes, sarcopenia, “the loss of muscle mass and 

function”, and myosteatosis “the increased infiltration of muscle with adipose” are two 

phenomenon that share common etiology, and causal relationships with mobility limitations, 

fractures, and falls. Furthermore, muscle mass and adiposity appear to be modifiable targets 

for exercise interventions in older adults. Improved muscle mass and adipose profiles predict 

improvements in the physical function of older adults. The in vivo study of anatomical 

changes in muscle mass and adiposity is partially facilitated by biomedical imaging tools. 

Among these tools clinical CT and MRI offer high-contrast axial images of soft-tissue 

compartments; however, these tools often have limited availability and, in the case of CT, 

have a high effective radiation dose. Commonly utilized DXA imaging provides low-dose 

estimates of total body and appendicular measures of bone, lean and fat mass. Unlike axial 

CT and MRI, DXA cannot measure adipose infiltrating muscle for an assessment of muscle 

adiposity. Peripheral quantitative computed tomography scanners fill a musculoskeletal 

imaging niche between clinical CT, MRI and DXA. Although limited to the extremities, pQCT 

scanners capture axial images and can quantify muscle size & adiposity, as well as SAT in 
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three dimensions with a low radiation dose comparable to DXA scans. There are a variety of 

protocols for the derivation of soft-tissue outcomes from pQCT scans, yet no data currently 

exists comparing the precision error of these methodological variations in older adults.  

Furthermore, the longitudinal sensitivity of pQCT to changes in the soft-tissues of older 

adults has also not been assessed. Determining the most precise image analysis protocols 

for soft-tissue outcomes will facilitate more efficient longitudinal research and optimize the 

estimated observation time required before changes in these tissues can be detected. 

Together this data can extend the utility of pQCT for the study of changes in muscle and fat 

in older adults. Finally, preliminary evidence suggests that low pQCT-derived leg muscle 

density may be a biomarker for fall risk; a clinically relevant event that can precipitate 

serious injury, chronic disability, and loss of independence. The strength of the association 

between muscle density as a bivariate and multivariate predictor of fall status has not yet 

been described. Methodological and exploratory analyses may be able to resolve some of the 

uncertainty that exists around pQCT-derived soft-tissue outcomes, and extend the 

capabilities of this tool for measuring and monitoring muscle and adipose tissues as 

indicators of healthy aging.  



 

 37 

3! Objectives & Hypotheses 
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3.1! Study One: Comparing the Precision of Reported Protocols 
The objective of study one was to survey the literature and compare the precision of 

previously reported image analysis protocols for quantifying muscle area and density, as well 

as IMAT and SAT area in the commonly imaged lower leg and forearm using repeated pQCT 

images from older, community-dwelling postmenopausal women. The hypothesis was that 

the precision errors would differ across reported pQCT soft-tissue image analysis protocols.   

3.2! Study Two: Estimating Annual Changes and Longitudinal Sensitivity 
The objectives of study two were to assess: 1) the annual changes in pQCT-derived muscle 

area and density as well as IMAT and SAT at both the forearm and lower leg; and 2) estimate 

MTIs for each of the aforementioned muscle and adipose tissue outcomes in older 

community-dwelling women. The hypothesis was that annual changes would be observed in 

pQCT-derived soft-tissue outcomes when monitored over time.  

3.3! Study Three: The Association Between Muscle Density and Falls 
The primary objective of this study was to explore the relationships of muscle density, 

functional mobility, and health-related factors to fall status. The primary hypothesis was that 

muscle density would be independently associated with fall status after controlling for age, 

sex, BMI, general health status, diabetes, the number of comorbidities, and functional 

mobility. The secondary objective was to determine the independent and combined 

relationship of muscle density and functional mobility to fall status after adjusting for health-

related factors. The secondary hypothesis was that models which include both muscle 

density and TUG test time will have a better fit with the data than models that include them 

separately.  
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4! Study One: Measurement of Muscle 
and Fat in Postmenopausal Women: 
Precision of Previously Reported pQCT 
Imaging Methods 
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4.1! Synopsis 
This chapter outlines the methodological details of reported pQCT image analysis protocols 

utilized to derive muscle and fat outcomes in the literature. This chapter also presents a 

comparison of the precision errors inherent to variations in these protocols when analyzing a 

common set of repeat images collected from a random sub-sample of older adult women.  

This chapter has been published as an original investigation article in a peer-reviewed 

journal [149]. With the exception of some minor wording and/or format changes that were 

necessary for the conversion to graduate thesis format, it is presented in its published form. 

The introduction section below may repeat key aspects of the literature review directly 

pertinent to the purpose of the study. 

4.2! Introduction 
For nearly 20 years, pQCT has been used to precisely measure and study volumetric density 

and distribution of bone mineral tissue [41,243]. In more recent years, pQCT has also been 

used to quantify muscle area [126,244], muscle density [45,46,49-51,93,105,245,246], 

subcutaneous adipose tissue (SAT) area [70,72,131], and inter-muscular adipose tissue 

(IMAT) area [48,93]; all valuable measures for the study of musculoskeletal health. These 

measures are important given increased interest in the study of soft-tissues as a factor in 

bone development and health [50,52,100], as well as for studying the development of 

diabetes [47,93,246], sarcopenia [46,114], falls [53], and frailty [45].  

Although pQCT is proving to be a useful tool for measurement of muscle and fat, there 

is limited information regarding precision (i.e., repeatability) of muscle and fat measures in 

older adults. To date, precision errors for pQCT-derived muscle area, density, IMAT and SAT 

area have been reported for children (ages 7-12y) [50,70], young (26.6, SD 8.7y) [86] and 

premenopausal women (38.6, SD 4.7y) [93]. Prior to a recent muscle area and density paper 
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by Wong et al. [151], only lower leg muscle area and SAT precision values had been reported 

for postmenopausal women [90]. Both lower leg IMAT and forearm soft-tissue data have yet 

to be reported for older adults—a population with unique soft-tissue morphometry and a 

clinically relevant risk of muscle loss [114,164] and fat infiltration [28,51].  

In addition to limited muscle and fat precision information, previous studies reporting 

precision errors used different image analysis protocols. Employed protocols have included 

manufacturer recommendations (Stratec Medizintechnik GmbH, Pforzheim, German) 

[247,248], customized manufacturer’s protocols [52,105,249,250], or third-party software 

(e.g. BonAlyse, BoneJ) [45,46,251,252], each with specific segmentation approaches 

capable of influencing precision (e.g., contour detection algorithms, noise reduction filters, 

grayscale intensity thresholds). It is currently unknown which previously reported analysis 

protocols are most appropriate for precisely characterizing muscle area, density, and fat area 

in older adults. This is important because the most precise analysis techniques are required 

for detection of small effect sizes in soft-tissue outcomes. For example, an annual increase 

of 6.5% in CT-derived IMAT was reported in weight-stable older adult women [28]. According 

to the 95% LSC criterion [59], a precision error less than 2.3% (6.5%/2.77) would be 

necessary for detecting a true change or difference with 95% confidence. A precision error 

greater than 2.3% would imply that, due to analysis imprecision, observed (statistically 

significant) changes or differences may not truly exist. As such, identification of the most 

appropriate analysis protocols is of paramount importance for the measurement of soft 

tissues with pQCT. 

Using repeated pQCT images from older, community-dwelling postmenopausal women, 

the objective of this study was to compare the precision of previously reported image 
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analysis protocols for quantifying muscle area and density, as well as IMAT and SAT area in 

both the commonly imaged lower leg and forearm. 

4.3! Methods 

4.3.1! Participants 
Female participants aged 60 years and above were recruited from the Saskatoon cohort of 

the CaMOs; a longitudinal study of the associated factors and burden of osteoporotic 

fractures in a random, population-based sample of Canadian community-dwelling men and 

women. The CaMOs sample was assembled in 1995-1996, and consists of Canadians living 

within a 50km radius of each study centre. Households within each geographic area were 

contacted using a random list of telephone numbers, and one member (>25 y of age, non-

institutionalized) was recruited from each household [253]. A randomly selected sub-sample 

of thirty-five women volunteered for this pQCT precision study (mean age: 73.7, SD 7.2) 

years, height: 159.8 (5.6) cm, weight: 71.9 (12.5) kg, BMI: 28.1 (4.7) kg/m2, SF-36 General 

Health Status score: 80.7 (14.7)). None of the aforementioned characteristics of this sub-

sample were statistically different (P>0.05) from their respondent CaMOs peers (N=115). 

4.3.2! Data Acquisition 
One investigator (AFW) performed repeated pQCT imaging of the forearm and lower legs 

scans an average of 9.7 (3.6) days apart. The non-dominant (self-reported) forearm and 

ipsilateral lower leg were scanned using a Stratec XCT 2000 pQCT scanner (Stratec 

Medizintechnik GmbH, Pforzheim, Germany). A scout scan was performed over both the wrist 

and ankle joint. The scanner reference line was positioned at the most proximal aspect of 

the distal tibia endplate and the medial tip of the distal radius endplate. Images were 

acquired at 66 % of the tibia length and 65 % of the radius length proximal to the reference 

line as previously reported [254]. All images were collected at a scan speed of 20mm/s with 
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a voxel size of 400µm x 400µm x 2.4mm. Stratec XCT scanners are factory calibrated 

against the European Forearm Phantom for a single energy. As such, each scanner 

measures fat, water/lean tissue, and cortical bone with hydroxyapatite equivalent volumetric 

densities of 0 mg/cm3, 60 mg/cm3, and 1200 mg/cm3, respectively [146]. Image quality 

was visually assessed following data acquisition. The scan was rejected and repeated if the 

cortical shell was irregular due to movement artifacts. Using this criterion, one participant’s 

lower leg was rescanned to achieve an acceptable image. The University of Saskatchewan 

Biomedical Research Ethics Board reviewed and approved this research. All participants 

provided written informed consent.  

4.3.3! Image Analysis Selection 
A search of the literature was conducted using Web of ScienceTM 5.13.2 (Thompson Reuters, 

Philadelphia, PA, USA) for journal articles published as recent as March 2014 containing the 

topic terms: (peripheral quantitative computed tomography OR pQCT) AND (muscle OR fat OR 

adipos*) NOT (mice OR rats OR rabbits OR porcine). The resulting 317 abstracts were 

searched for articles that used pQCT to study muscle or fat in humans, which were then 

retrieved for a review of their methodology. We focused this analysis on unrestricted 

software resources: Stratec XCT (supplied with every scanner), and the freely available 

BoneJ, a software plugin for the open source ImageJ image analysis software 

[150,252,255]. These software resources were used in 93% of the retrieved abstracts. Six (I-

VI) protocols were identified that were reported with reproducible details for application. 

These protocols were not exclusive, but they were described in sufficient detail to be 

replicated and applied to a set of 35 repeat scans in women aged 60-90 y. Five protocols 

relied on Stratec XCT (manufacturer’s software) and one used the pQCT Density Distribution 

tool in BoneJ:  



 

 44 

I)! Modified Stratec recommendation A – Muscle Smooth Filter 3 (with added -40 fat 

threshold) [49,70,71,93,247] 

II)! Stratec recommendation A – Muscle Smooth Filter 2 [247] 

III)! Stratec recommendation B - Muscle Smooth Filter 2 (with manual bone regions of 

interest (ROI)) [53,126,248,250,256-258] 

IV)! Bone Diagnostic Incorporated [50-52,100,249,259] 

V)! Manual Segmentation [105] 

VI)! BoneJ [104,251,252,255] 

 

As automated contour detection algorithms do not always succeed in correctly 

identifying tissue boundaries, all image analyses were visually inspected for errors using the 

CALCBD/CORTBD functions in Stratec XCT and the visual result saved by BoneJ.  

4.3.4! Stratec XCT Protocols 
The details of the placement of ROIs, contour modes, thresholds, filters employed, and 

outcomes produced for each of the analysis protocols are summarized in Table 2. A variety 

of median filters with NxN mask sizes of 3x3, 5x5, and 7x7 are combined by Stratec XCT to 

reduce noise and aid contour detection. According to the Stratec XCT manuals, Contour 

Mode 1 acts by removing all image voxels below a set density threshold, whereas Contour 

Mode 3 is an iterative algorithm that searches for a gradient of difference between voxels to 

define the existence of an edge. Each set of voxels are proofed for this gradient step until 

returning to the starting voxel [147,248]. While the ROIs, thresholds, contour detection 

algorithms and filters vary across the Stratec protocols (I-V), they all calculate soft-tissue 

values in a similar fashion by identifying tissue boundaries and then subtracting area and 

content values to isolate the tissue (muscle, fat or bone) of interest. The derivation of 
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Table 2: Summary of Image Analysis Settings  
Protocol Outcomes Region of Interest Voxels (mg/cm3) Algorithm(s) Median Filters 

XCT I Subcutaneous 
Fat Entire Image Matrix -40 to 39 Contour Mode 3 3x3, 5x5, 5x5 

 Muscle Entire Image Matrix 40 to 279 Contour Mode 3 3x3, 5x5, 5x5 

 Bone Entire Image Matrix ≥280 Contour Mode 1 3x3, 5x5, 5x5 
      

XCT II Muscle Entire Image Matrix 40 to 279 Contour Mode 3 3x3, 5x5 

 Bone Entire Image Matrix ≥280 Contour Mode 1 3x3, 5x5 
      

XCT III Muscle Entire Image Matrix 40 to 279 Contour Mode 1 3x3, 5x5 

 Bone Manual Trace T/R ≥280 Contour Mode 1 None 

 Bone Manual trace F/U ≥280 Contour Mode 1 None 
    

 
 

XCT IV Subcutaneous 
Fat Entire Image Matrix -100 to 39 

Contour Modes: 3, 31, 
1 

Peel Modes: 2, 2, 2 
3x3, 5x5, 5x5 

 Muscle Entire Image Matrix 40 to 149 
Contour Mode 31 

Peel Mode 2 
Separation Mode 4 

3x3, 5x5, 5x5 

 IMAT Entire Image Matrix 39 to -100 
Contour Mode 3 

Peel Mode 2 
Separation Mode 4 

None 

 Bone Entire Image Matrix >710 Separation Mode 4 3x3, 5x5, 5x5 
    

 
 

XCT V Muscle Manual trace N/A N/A None 

 Bone Manual Trace T/R N/A N/A None 

 Bone Manual trace F/U N/A N/A None 
    

 
 

BoneJ VI Subcutaneous 
Fat Entire Image Matrix -40 to 40 Gradient Free 

Boundary Tracking 7x7 

 Muscle Entire Image Matrix 41 to 139 Gradient Free 
Boundary Tracking 7x7 

 IMAT Entire Image Matrix 40 to -40 Gradient Fee 
Boundary Tracking 7x7 

T/R = Tibia/Radius; F/U =Fibula/ T/R = Tibia/Radius; F/U =Fibula/Ulna; Manual Trace indicates that the region 
of interest was traced around the tissue by a technician prior to analysis, this is in contrast to protocols that use 
the entire image matrix and rely exclusively on a threshold-driven analysis to segment tissues. 
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muscle and fat area and density requires post-analysis calculation by the user. The exact 

calculations used for each protocol are provided in Appendix C. Muscle area (Figure 4: light 

gray area including internal dark gray spots) and content (used to define density) were 

derived by the area and content of all tissues greater than the muscle threshold (40 

mg/cm3), less tissues higher than the bone threshold (Figure 4: white/red areas). To 

determine muscle density (mg/cm3), muscle content (mg/cm) was divided by muscle area 

(cm2) (note that muscle area and density measures include IMAT). IMAT area was calculated 

as the area of tissue within the muscle area below the muscle threshold (Figure 4: dark gray 

spots). SAT area (Figure 4: dark gray border) was determined by the total limb area, minus 

the area of all tissues deeper than the SAT-muscle boundary.  

 

 
Figure 4: An unprocessed DICOM image of a pQCT lower leg scan (left) after a Stratec analysis (top) and 
subsequent filtering; BoneJ analysis (bottom). The portioned BoneJ image illustrates muscle area (red + green), 
inter-muscular adipose tissue (IMAT) (green) and subcutaneous adipose tissue (SAT) (purple). 

4.3.5! BoneJ Protocols 
The source code for the pQCT density distribution plugin for BoneJ (Version 1.3.11) is freely 

available online [252,255]. BoneJ’s soft-tissue analysis uses a 7x7 median filter to reduce 
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noise. The image is binarized according to the tissue thresholds selected. Starting in the top 

left corner of the image matrix, a gradient-free boundary tracking algorithm [260] searches 

for and traces the edge of the tissues of interest until it returns to its origin. For muscle (41 

to 139mg/cm3), the traced object with the largest area is retained along with any smaller 

objects that are greater than 1% of total limb size (Figure 4: crimson area). These muscle 

objects are then eroded by one pixel. For SAT (-40 to 40mg/cm3), the traced object with the 

largest area is retained and then eroded by three pixels to remove the skin (Figure 4: purple 

area). IMAT was identified by searching within the muscle objects for pixels in the fat density 

range (-40 to 40mg/cm3) (Figure 4: green area).  Muscle area and density, as well as IMAT 

and SAT area, were all provided automatically in the BoneJ analysis output.  

4.3.6! Statistical Methods 
Mean and standard deviations of the repeat measurement averages are reported for each 

outcome. Precision error was calculated as absolute values (SDRMS) and as a percentage of 

the sample mean (CV%RMS) [118]. The 95% LSC, a “criterion for the smallest change in 

measurement results that can be considered statistically significant with 95% confidence”, 

calculated by multiplying CV%RMS by 2.77 [59].  

Individual log-transformed CV% from repeat measures were utilized to compare the 

precision of image analysis protocols for each outcome. The data were checked for normality 

and outliers using skewness and kurtosis Z-scores as well as histograms and boxplots. Failed 

analyses were excluded from the precision error determination and comparison. All 

statistical comparisons were performed using shareware statistical software (R, version 

3.0.2, Foundation for Statistical Computing, Vienna, Austria, www.R-Project.org). Only two 

protocols (IV, VI) calculated IMAT area; therefore, they were compared using either paired t-

tests or a Wilcoxon Signed-Rank test if normality was violated. Outcomes produced by three 
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or more analysis protocols were compared using multilevel linear models and post-hoc Tukey 

contrasts (R-Packages “nlme” [261] and “multicomp” [262]). Both omnibus chi-squared and 

post-hoc P-values are reported. 

4.4! Results 

4.4.1! Image Analysis Failures  
While attempting to measure muscle and fat, protocols I and II accounted for all failures (3-

9% and 6-14%, respectively) (Tables 3 and 4).  

4.4.2! Precision Error Comparison   
In the lower leg (Table 3), there were no significant precision differences for muscle area 

across the six protocols (χ2 (4) = 5.82, P=0.325). Statistically significant differences existed 

in the precision of muscle density across the six protocols (χ2 (5) = 64.86, P<0.0001). Post-

hoc analysis revealed that protocol I (CV%RMS = 3.2%) was less precise (P<0.001) than all 

other protocols (CV%RMS = 0.7 to 1.9%) and protocol III (CV%RMS = 1.9%) was less precise 

than both protocol IV (CV%RMS = 0.7%, P<0.01) and VI (CV%RMS = 0.7%, P<0.05). For IMAT 

area, a paired t-test revealed that the precision error (CV%RMS = 3.3%) of protocol IV was 

lower (P<0.001) than protocol VI (CV%RMS = 28.0%). Three protocols reported SAT area (I, IV, 

VI), with precision differences observed across the protocols ( χ2 (2) = 9.04, P<0.011). Post 

hoc analysis revealed that protocol IV (CV%RMS = 3.1%) was significantly less precise 

(P<0.01) than protocol VI (CV%RMS = 2.4%).  

In the forearm (Table 4), precision of muscle area differed significantly across the six 

protocols (χ2 (4) = 37.55, P<0.0001). Post-hoc analysis revealed that protocol IV (CV%RMS = 

5.3%) was significantly less precise (P<0.01) than all other protocols (CV%RMS = 2.1 to 3.2%). 

The precision of muscle density differed across the six protocols (χ2 (5) = 29.33, P<0.0001). 

Post-hoc analysis revealed that protocol I (CV%RMS = 3.2%) was significantly less precise 
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(P<0.001) than protocols III, IV, V, and VI (CV%RMS = 1.4 to 1.6%). For IMAT area, a Wilcoxon 

Signed-Rank Test revealed that the precision error of protocol IV (CV%RMS = 7.0%) was 

significantly lower (P<0.001) than VI (CV%RMS = 42.2%). The precision of SAT area differed 

significantly across protocols I, IV, VI (χ2 (2) = 6.92, P<0.0315). Post-hoc analysis revealed 

that protocol IV (CV%RMS = 6.5%) was significantly less precise (P<0.05) than protocol VI 

(CV%RMS = 5.2%).  All other differences among analysis protocols did not reach statistical 

significance. 

Table 3: Lower Leg Precision 

Protocol 
N-

Pairs Mean SD CV%RMS SDRMS 
95% LSC 

(CV%*2.77)  
Contrasts 
P<0.05 

Muscle Area (cm2) !! !! !! !! !! !
I 32 58.3 8.5 3.3 1.9 9.2 N.S. 

II 30 57.5 8.1 3.7 2.1 10.3 N.S. 
III 35 62.9 10.6 3.5 2.2 9.8 N.S. 
IV 35 56.1 8.3 2.6 1.5 7.2 N.S. 
V 35 52.3 7.8 3.3 1.8 9.3 N.S. 

VI 35 59.4 8.7 2.5 1.5 6.9 N.S. 
Muscle Density (mg/cm3) !! !! !! !! !

I 32 70.7 3.4 3.2 2.3 8.9 II, III, IV, V, VI 
II 30 71.0 2.9 1.2 0.9 3.4 I 

III 35 67.6 3.4 1.9 1.3 5.3 I, IV, VI 
IV 35 71.6 2.4 0.7 0.5 2.0 I, III 
V 35 70.2 3.1 0.8 0.6 2.3 I 

VI 35 70.0 2.8 0.7 0.5 1.8 I, III 
IMAT Area (cm2) !! !! !! !! !! !

IV 35 16.4 2.7 3.3 0.5 9.2 VI 
VI 35 1.4 1.1 28.0 0.4 77.5 IV 

SAT Area (cm2) !! !! !! !! !! !
I 32 34.5 11.9 3.2 1.1 8.9 N.S. 

IV 35 31.0 11.3 3.1 1.0 8.6 VI 
VI 35 33.4 11.5 2.4 0.8 6.6 IV 

SD = Standard Deviation; CV%RMS = Root-Mean-Squared Coefficient of Variation; SDRMS = Root-Mean-
Squared Standard Deviation; LSC = Least Significant Change; P<0.05 = Tukey Contrasts; Least Significant 
Difference; IMAT = Inter-muscular Adipose Tissue; SAT = Sub-cutaneous Adipose Tissue; N.S. = Not 
Significant. 
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Table 4: Forearm Precision 

Protocol 
N-

Pairs Mean SD CV%RMS SDRMS 
95% LSC 

(CV%*2.77) 
Contrasts 
P<0.05 

Muscle Area (cm2)! !! !! !! !! !
I 34 24.0 4.1 3.2 0.8 8.7 IV 

II 33 24.0 4.0 2.7 0.6 7.5 IV 
III 35 25.6 4.4 2.1 0.5 5.9 IV 
IV 35 21.9 4.1 5.3 1.2 14.6 I, II, III, V, VI 
V 35 21.3 3.5 2.9 0.6 8.0 IV 

VI 35 24.4 4.1 2.7 0.7 7.6 IV 
Muscle Density (mg/cm3) !! !! !! !

I 34 74.2 2.6 3.2 2.4 9.0 III, IV, V, VI 
II 33 74.5 2.2 1.9 1.4 5.3 N.S. 

III 35 72.0 2.6 1.4 1.0 3.9 I 
IV 35 76.1 1.6 1.4 1.1 3.8 I 
V 35 73.5 2.2 1.6 1.2 4.5 I 

VI 35 72.3 1.9 1.5 1.1 4.1 I 
IMAT Area (cm2) !! !! !! !! !! !

IV 35 4.9 0.9 7.0 0.3 19.5 VI 
VI 35 1.0 0.5 42.2 0.4 116.8 IV 

SAT Area (cm2) !! !! !! !! !
I 34 14.4 6.3 6.4 0.9 17.6 N.S. 

IV 35 12.1 6.0 6.5 0.8 18.0 VI 
VI 35 14.1 6.2 5.2 0.7 14.4 IV 

SD = Standard Deviation; CV%RMS = Root-Mean-Squared Coefficient of Variation; SDRMS = Root-Mean-
Squared Standard Deviation; LSC = Least Significant Change; P<0.05 = Tukey Contrasts; IMAT = Inter-
muscular Adipose Tissue; SAT = Sub-cutaneous Adipose Tissue; N.S. = Not Significant. 

 
4.5! Discussion 

To date, a variety of image analysis protocols have been used to derive soft-tissue outcomes 

from pQCT images of the lower leg and forearm. This study is the first to report and directly 

compare the precision error values of previously reported image analysis methods to derive 

soft-tissue outcomes for both the lower leg and forearm. This study found that most 

protocols produced similar precision error values (apart from IMAT area) with subtle 

differences among the various outcomes.  

In the lower leg and forearm, most protocols (with the exception of IV in the forearm) 

provided comparable CV%RMS precision errors ranging between 2.1 and 3.7% for muscle
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area. These values are higher than those previously reported for children and college 

students (CV%RMS 1.4%) [51,70,86]. It may be that the discrepancy between these data and 

that of younger individuals is reflective of age-related morphological differences in 

musculature. One of these differences may be the amount of adipose within the muscle 

tissue, which pQCT-derived muscle area does not characterize. 

To estimate the relative amount of muscle adipose, pQCT-derived muscle density is a 

hydroxyapatite-calibrated analogue of X-ray attenuation, which is validated to estimate 

muscle lipids and triglycerides [124,125]. Muscle density combines all soft tissues between 

the inner edge of the subcutaneous fat and the outer edge of the bones as a composite 

index of IMAT and myocellular adipose [52]. Most protocols provided similar muscle density 

precision errors within a small range (0.7 to 1.9%) in the lower leg and forearm. Protocols IV, 

V and VI demonstrated precision values below 1% in the lower leg; the latter agreeing with 

that reported for children (0.9%) using protocol IV [51]. Both protocols IV and VI were also an 

improvement (P < 0.05) over protocol III (1.9%). In both limbs the largest error (P < 0.001) 

occurred with protocol I (3.2%). This contrasts with other protocol I results for the lower legs 

of middle aged (0.8%) [93], and older women (1.8%) [151] as well as the forearms of 

children (1.2%) [70]. This discrepancy, as well as the occurrence of failed analyses [151], 

suggests that investigators need to be cautious when using protocol I for deriving muscle 

density from pQCT scans in postmenopausal women.  

Another metric for muscle adiposity is inter-muscular adipose tissue (IMAT) area. A few 

pQCT studies have reported IMAT area or IMAT as a percentage of total muscle area [48,93]. 

Measuring the IMAT depot is challenging due to its small size relative to the pQCT voxels. The 

two protocols used to determine lower leg and forearm IMAT (IV and VI) used different image 

processing methods to help quantify IMAT area. Protocol IV quantifies the area of voxels 
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below 40mg/cm3 in an unfiltered muscle image, whereas protocol VI does this after pre-

processing the muscle with a 7x7 median filter. Precision error for the two protocols ranged 

between 3.3 and 42.2%.  Protocol IV was much more precise (3.3% and 7.0%) in the lower 

leg and forearm (P < 0.001), yet mean IMAT values were twelve and five times larger 

(respectively). Protocol VI results were similar to lower leg and forearm IMAT precision errors 

of 15.1% and 40.4% reported using a different filtering protocol in a sample of 

premenopausal women [93]. These results and the limited literature available [48,93] 

suggest that IMAT analysis protocols need further development and validation, with muscle 

density used in lieu of IMAT to quantify inter-muscular adipose tissue content.  

Several recent papers report using pQCT to quantify SAT area in the lower leg 

[52,70,72,83,86,91,104]; however, only three studies reported precision estimates for this 

outcome [70,86,90]. Lower leg and forearm precision ranged from 2.4 to 6.4% for SAT area. 

These lower leg results were comparable to children (3.2%) [70] and college students (2.7%) 

[86]. However, forearm SAT precision error was nearly twice that of the lower leg and the 

reported error (2.5%) for children [70]. This may be a reflection of both the increased risk of 

minor movement in the upper limb [70] which may be greater in older individuals [151] as 

well as differences in data acquisition protocols (e.g. time between repeated scans, 

differences in voxel size).  

Although observed differences in the precision errors across the pQCT protocols were 

small, a precision error of a mere 1% can affect the 95% LSC by a factor of 2.77. These small 

differences are important for quantifying modest musculoskeletal changes. For example, 

exercise interventions in older adults have reported between-group differences in muscle 

density (5.4%) [37] and IMAT (18%) [35] changes over 24 and 52 weeks respectively. Given 

the 95% LSC values below 5.4%, lower leg and forearm images analyzed using any method, 
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apart from method I, could reliably quantify changes in muscle density. Furthermore, with a 

95% LSC below 18%, method IV would be needed to reliably quantify a similar change in 

IMAT at the lower leg.  

This study has specific strengths related to sample population, sample size and 

scanning methodology. First, we have provided the first statistical comparison of precision 

errors across several pQCT analysis protocols for soft tissue outcomes clinically relevant for 

postmenopausal women [45,46,53]. Contrasted with results from younger participants 

[51,70,86], these data suggest that precision errors may be higher for forearm muscle area 

and SAT area in postmenopausal women. Other pQCT-derived soft-tissue precision studies 

have only reported lower leg precision values [86,90,151]. Second, this study met 

conservative recommendations (minimum of 27 degrees of freedom) for a precision error 

estimate within 30% of the mean error with an upper 90% confidence interval [118]. Failure 

to meet these recommendations can result in underestimation of precision errors [118]. In 

cases where the results included all 35 participants, precision error estimates can be trusted 

with a narrow 95% confidence interval [118]. Third, we collected images a mean of 9.7 days 

apart to avoid underestimating the precision error of soft tissues [86]. This is important 

because same day image collection can underestimate muscle and fat area precision errors 

due to enhanced technician recall when repositioning participants, or failure to capture 

between-day fluctuations in the precision error of the scanner [86].  

This study has specific limitations related to age-specificity and accuracy. 

First, these results are only applicable to older postmenopausal women (mean age: 73.7, SD 

7.2y). Second, the validity of pQCT measures of muscle and fat cross sectional area have 

been demonstrated against MRI [88]. QCT measures of muscle density and IMAT have been 

validated [124,125]; but these measures have not been directly validated with pQCT. 
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Comparison of pQCT-derived soft-tissue outcomes with MRI and MRS is a logical next step 

for the most precise image analysis protocols identified by this analysis. 

The results indicate that pQCT-derived muscle area, density, and SAT area can be 

determined in older adults with a CV%RMS ranging between 2.1 to 3.7%, 0.7 to 1.9%, and 2.4 

to 6.4% respectively. Precision for IMAT area varied considerably from 3 to 42%. While 

precision results were similar across most protocols, we have observed some subtle 

differences in methodology that can be used to aid both prospective and intervention studies 

of pQCT-derived soft-tissue outcomes in older adults. 
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5! Study Two:  
Monitoring pQCT-derived Muscle and Fat 
Outcomes in Older Women 
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5.1! Synopsis 
This chapter describes estimates of the annual changes in muscle and fat outcomes 

measured using pQCT, using data collected over 1 and 2 year intervals in older adult women. 

Precision error and annual change estimates were utilized to estimate prospective 

monitoring time intervals for pQCT-derived muscle and fat outcomes.   

5.2! Introduction 
The loss of muscle mass and function with age (termed “sarcopenia”) has been a vigorous 

area of aging research for over 20 years [8]. Sarcopenia increases the risk of physical 

disability, reduced quality of life, and can lead to death [13]. The etiology of sarcopenia is 

complex, and is primarily characterized by chronic loss of muscle tissue and function in older 

adults [166]. The ectopic accumulation of adipose tissue within muscle is thought to play a 

role in the chronic catabolic state observed with aging [164,184,263], and can be quantified 

in vivo with the use of clinical imaging techniques such as MRI and CT [164]. Clinical CT and 

MRI offer high-contrast images of soft-tissue compartments; but these tools often have 

limited availability and, in the case of CT, may have a high effective radiation dose [40]. 

Peripheral quantitative computed tomography scanners fill a musculoskeletal imaging niche 

between clinical CT and MRI [40]. Images of the upper and lower extremities can be acquired 

using pQCT scanners to quantify muscle size and adiposity [55,127], as well as 

subcutaneous adipose tissue (SAT) area [143]. Depot-specific adipose data are important 

because aging, sarcopenic obesity, and cachexia are each associated with different adipose 

redistribution patterns [113,166,169].  

In addition to providing insight into the composition of appendicular skeletal muscle, 

pQCT also has the capability to assess these measures with a high degree of precision 

[55,149,254]—a requisite for efficient longitudinal and intervention studies targeting muscle 
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and adipose tissues. Importantly, measurement precision, together with median annual 

changes, can be used to estimate MTIs between pQCT measurement occasions. MTIs 

provide a time estimate (in years) with 80% and 95% certainty, respectively, to detect 

progressive changes in pQCT-derived muscle and fat outcomes. MTIs with 80% certainty 

would be useful when the clinical benefits of the early detection of a trend in soft-tissue 

changes outweigh the need for statistical significance. These estimates allow follow-up 

measures to be performed within the optimal window for capturing clinically relevant and 

true biological changes, as well as minimizing participant radiation exposure and costs 

associated with repeated scanning in prospective studies. The ability of pQCT to detect 

changes in muscle or adiposity (in terms of both annual changes and MTIs) has not yet been 

reported in older adults. The purpose of this two-year prospective study was to: 1) assess the 

annual changes in pQCT-derived muscle area and density as well as IMAT and SAT at both 

the forearm and lower leg; and 2) estimate MTIs for each of the aforementioned muscle and 

adipose tissue outcomes in a cohort of older community-dwelling women. 

5.3! Methods 

5.3.1! Participants 
Female participants aged >60 years old were recruited from the Saskatoon cohort of the 

CaMOs. The CaMOs sample is described in section 4.1.3.1. All 336 eligible female 

Saskatoon CaMOs participants were mailed an invitation to participate in this study. Baseline 

measures for 147 participants that accepted the invitation have been previously described 

[53]. After one year, 115 participants returned for follow-up measurements. After two years, 

75 participants returned. To be eligible for this study, CaMOs participants had to have a 

lower leg circumference of less than 44cm (to fit the aperture of the scanner gantry) and be 

still for the scanning duration (approximately 4 minutes). Furthermore, valid forearm and/or 
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lower leg scans were required from at least two of the three annual imaging time points (T1, 

T2, or T3) for inclusion. Participants with diabetes, neuromuscular disease (Parkinson’s 

disease, multiple sclerosis, or other), eating disorders, immobilization (defined as 

confinement to a bed, wheelchair or cast for longer than one month) or a diagnosis or 

treatment for cancer during in the past six years were excluded from this analysis. All 

scanned participants were assigned a number and then sub-sampled using a random 

number generator for repeat pQCT measurements to determine the precision of muscle and 

adipose outcomes. A total of 35 women underwent repeat pQCT imaging of their non-

dominant forearm and lower leg within an average 9.7 (SD 3.6) days, as previously reported 

[149]. The University of Saskatchewan Biomedical Research Ethics Board reviewed and 

approved this research in accordance with the 2010 Canadian Tri-Council Policy Statement 

II: Ethical Conduct for Research Involving Humans. All participants provided written, informed 

consent. 

5.3.2! Descriptive Measures - Anthropometrics 
To characterize the sample, participant age, height (cm), weight (kg), and BMI (kg/m2) were 

assessed. Height was measured using a wall-mounted stadiometer (Holtain Ltd., Crosswell, 

Wales, UK) accurate to ± 1 mm and weight (in slacks and a t-shirt) from a calibrated scale 

(Toledo Ltd., Columbus OH, USA) accurate to ± 0.1 kg. 

5.3.3! Descriptive Measures – Physical Activity & Strength 
To assess whether physical activity and strength declined following baseline measures, 

participants completed self-reported minutes of physical activity and SF-36 Health Status 

questionnaire data. As well, participants performed the TUG [264] and isometric handgrip 

strength tests.  
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Two trained research assistants conducted the TUG test. Precision error (CV%RMS) 

calculated from repeat measurements of 35 women was 5.4% in this cohort. The protocol 

involved rising from a chair, walking three meters, turning around, and returning to their seat 

in a seated position. Each participant was asked to walk at their usual walking pace. A 

stopwatch measured the time between the moment the research assistant said the word 

“go” to the moment the participant’s body resumed contact with the backrest of the chair. 

Participants were able to make use of the chair arms, as well as any walking aids they would 

normally use in their daily lives. Each participant was granted a practice trial to ensure they 

understood the test protocol, followed by three timed trials with short rest intervals. The 

fastest completion time was recorded.  

 For the grip strength measure, participants underwent maximal isometric grip 

strength testing on their non-dominant hand using a JAMAR Hydraulic Hand Dynamometer 

(Lafayette Instrument Co. Lafayette IN, USA). Each participant was seated, with their 

shoulders adducted, elbows flexed at 90 degrees and forearms in neutral according to the 

American Society of Hand Therapists recommendations [265]. Three, 3-second long maximal 

attempts occurred with a half minute break provided between attempts. The highest score, 

accurate to ± 1 kg, was recorded with a precision error (CVRMS%) of 11%. 

5.3.4!  pQCT Image Acquisition 
Scans were acquired on the non-dominant (self-reported) lower leg and forearm using an XCT 

2000 pQCT (Stratec Medizintechnik GmbH, Pforzheim, Germany). The XCT 2000 is calibrated 

to provide hydroxyapatite mineral equivalent tissue densities, such that adipose tissue has a 

density of 0 mg/cm3 and water 60 mg/cm3 [146]. All images were collected at a scan speed 

of 20mm/s with a voxel size of 400µm x 400µm x 2.4mm. For both the forearm and lower 

leg, a scout scan was conducted to set a reference line at the medial aspect of the distal 
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radial epiphysis and the distal tibia plafond, respectively. A single image was collected at the 

site corresponding to 65% of total radius length or 66% of the total tibia length proximal from 

the reference line. These sites are the two most commonly pQCT-imaged locations for 

muscle and are the approximate anatomical location of the greatest limb girths [266,267]. 

The imaging technician visually assessed image quality using a subjective criterion; if motion 

artifacts interrupted cortical bone, the scan was not used and acquisition was repeated. All 

scans were acquired by the same technician (AFW).  

5.3.5! Image Analysis 
All scans were analyzed using BoneJ Version 1.3.11; a plugin for the freely-available image 

processing software ImageJ 1.48q (National Institutes of Health, Bethesda MD, USA) 

[104,255]. This image analysis protocol was selected for its relatively high precision of soft-

tissue outcomes as compared to other previously published pQCT image analysis techniques 

[149].  We used an upper threshold of 139mg/cm3 for soft-tissue to minimize the 

occurrence of rare tissue segmentation errors in older adult cohorts. The specifics of this 

image analysis technique and the parameters used are described elsewhere [149]. The 

automated image analysis software calculated muscle area and density as well as 

intramuscular adipose tissue (IMAT) and SAT areas for each scan.  

Automated contour detection algorithms did not always succeed in correctly 

identifying soft tissue boundaries; therefore, each analyzed image was visually inspected for 

errors using the BoneJ visual result output. All images were graded by two blinded 

technicians (AFW, CB) for severity of motion artifacts according to the visual inspection rating 

scale (1 to 5) developed by Blew et al. [108].  
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Figure 5: Visual inspection rating scale for femur (upper row) and tibia (lower row). Each score reflects the level 
of movement: 1 none, very minimal; 2 minimal; 3 moderate; 4 severe; 5 extreme. Reprinted with permission 
from Springer [108]. 

When two technicians’ ratings did not agree, a third blinded reviewer (SK) was consulted and 

the median value was reported. All scans rated >3 were excluded. To further minimize the 

effect of image quality on prospective soft-tissue changes, baseline and follow-up images 

that differed by more than one grade were also excluded.  

5.3.6! Statistical Methods 
For all participants, the longest available time between measures was utilized to determine 

annual change. This approach was taken to maximize both the observation time and sample 

size to provide accurate estimates of change [254].  Annual percentage change values were 

calculated by subtracting (adjusted) 1-year follow-up values from baseline values, and 

represented as a percentage change from baseline. To assess which outcomes actually 

changed, baseline and (adjusted) follow-up measures were statistically compared using IBM 

SPSS Statistics Version 22 (IBM, Armonk NY, USA). Skewness and kurtosis Z-scores as well 

as histograms and boxplots were used to check the data for normality (Z<1.96) and outliers 

(Z>2.58). Non-normal data was log-transformed, and re-checked for normality. Normally 
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distributed outcomes and transformed outcomes were compared using paired t-tests. Where 

log-transformation failed, the original data were compared using a Wilcoxon Signed-Rank 

test.  

 MTIs were defined as the ratio of measurement precision errors (specifically 80 and 

95% LSCs) to median annual percent changes. These two intervals represent the 

longitudinal sensitivity of pQCT measures, and estimate the time needed for 50% of the 

population to demonstrate age-related changes exceeding the instrument and operator’s 

measurement error [59]. For this study, LSCs from the related precision study of 35 women 

[149] were used to calculate MTIs. In this previous study, LSC was calculated based upon 

root-mean-squared coefficient of variation (CV%RMS) precision errors and an adjusted Z-score 

for the selected level of statistical confidence (Z = 1.8 for a two-tailed confidence of 80%; or 

Z = 2.77 for a two-tailed 95% confidence) via the equation LSC = Z-score x CV%RMS [59,149]. 

5.4! Results 
Baseline and follow-up data for a total of 108 and 120 valid forearm and lower leg  scans 

were collected (Figure 6). Of those with forearm scans, 22 were ineligible due to health 

conditions and 9 were excluded due to motion artifacts. Of those with lower leg scans, 24 

were ineligible due to health conditions and 4 were excluded due to motion artifacts. Data 

collected from a total of 97 participants were analyzed, for an overall average of 1.7 years 

(SD 0.6) of observation. 

Annual changes in height (-0.3 cm, P<0.001), and self-reported physical activity (-

3min/day, P<0.01) occurred over this time but they were not correlated with changes in 

muscle area, muscle density, SAT or IMAT area. Weight, BMI, TUG test time, grip strength, 

and SF-36 Health Status Score did not demonstrate an annual change (Table 5). The median 

annual change in forearm muscle area was -0.81% per year (P<0.001) (Table 2). In the 



 

 63 

 

Figure 6: Flow chart of the image analysis process. Participants were excluded if they indicated the presence of 
diabetes, neuromuscular disease (Parkinson’s disease, multiple sclerosis, or other), eating disorders, 
immobilization >1 month or cancer diagnosis or treatment within the previous 6 years. Image motion artifacts 
were rated on a scale of 1 (none) to 5 (extreme) according to the subjective criteria provided by Blew et al.  
[108]. Scans rated 4 (severe) or higher were not considered valid. Scans collected at two of the three time 
points (T1, T2, or T3) were analyzed for annual changes in soft-tissue outcomes if they were rated similarly or 
within <2 scores.  

lower leg, muscle area change was -1.23% per year (P=0.004). No annual change was 

observed in muscle density, IMAT or SAT at either site (Table 6).  

 The MTI results estimate that clinically relevant and significant reductions in forearm 

muscle area could be detected in half of the older female adult population after 6 and 9 

years of follow-up respectively (Table 5). In the lower leg, a decline in muscle area and   
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Table 5: Baseline and Annual Follow-Up Participant Characteristics!

 

density could be detected within 4 and 6 years using pQCT (Table 6). MTIs for forearm 

muscle density, IMAT and SAT measures ranged between 18 and 143 years (Table 6). 

5.5! Discussion 
This is the first study to estimate annual changes and MTIs for pQCT-derived muscle and 

adiposity measures in community-dwelling older women. Robust estimates of the years of 

observation required to observe real, biological changes in muscle area and density using 

pQCT will assist with the planning of aging cohort studies [35]. We observed annual declines 

in pQCT-derived muscle area by 0.8 to 1.2% in older women for estimated follow-up intervals 

of 4 to 9 Years. Using these rate-of-change values, we estimate that 6 to 9 and 4 to 6 years 

of age-related atrophy in forearm and lower leg muscle area are needed before a clinically 

relevant or biological difference could be detected in half the population. Statistically 

significant annual changes were not observed for muscle density, IMAT or SAT area.  

 

 
Baseline Follow-Up* 

 
  Mean SD Mean SD 

P-
Value 

N=97 
     Time Between Measurements (y) 1.7 0.6 

   Age (y) 74.5 7.8 
   Height (cm) 158.8 6.1 158.5 6.2 0.001 

Weight (Kg) 69.8 12.7 69.3 12.9 0.060 
Body Mass Index (Kg/m2) 27.7 4.7 27.5 4.7 0.266 
Physical Activity (min/day)** 20 24 17 19 0.011 
SF36 Health Status Score (Max=100)** 74 17 74 17 0.862 
TUG test (s)** 9.6 2.6 9.6 2.4 0.715 

Grip Strength (kg) 17.1 4.8 17.3 4.6 0.583 

Abbreviations: SD = Standard Deviation; TUG = Timed Up and Go.  
P-Values are from Paired T-tests unless indicated otherwise.  
*Values Adjusted to 1-yr of follow-up time.  
 **Wilcoxon Signed Rank Test.  
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Table 6: Estimated Annual Changes & Monitoring Time Intervals 
          Confidence Level 

Outcome N 

Baseline Follow-up* 

P-Value 

Median 
Annual 

Change (%) 

80% 95% 

Mean SD Mean SD 
LSC 
(%) 

MTI 
(y) 

LSC 
(%) 

MTI  
(y) 

65% Forearm            
Muscle Area (cm2) 77 24.9 3.1 24.7 3.3 0.001 -0.81 4.9 6 7.6 9 

Muscle Density (mg/cm3)** 77 72.4 2.1 72.2 2.1 0.370 -0.04 2.7 66 4.1 92 

IMAT (cm2) 77 0.9 0.5 0.9 0.5 0.751 -4.15 76 18 117 28 

SAT (cm2)  77 14 7.6 13.9 7.6 0.296 -0.10 9.4 94 14.4 143 

 
           

66% Lower Leg            
Muscle Area (cm2) 92 60.6 9.1 59.6 9.0 0.001 -1.23 4.5 4 6.9 6 

Muscle Density (mg/cm3) 92 70.3 3.0 70.0 3.1 0.271 -0.28 1.3 5 1.8 6 

IMAT (cm2) 92 1.4 1.4 1.4 1.2 0.839 -1.61 50 31 78 48 

SAT (cm2) 92 32.8 12.6 32.4 12 0.223 -0.24 4.3 18 6.6 27 
Abbreviations: SD = Standard Deviation; LSC = Least Significant Change; MTI = Monitoring Time Interval; IMAT = Inter-muscular Adipose 
Tissue; SAT = Subcutaneous Adipose Tissue.  
P-Values are from Paired T-Tests, unless indicated otherwise.  
* Values adjusted to 1-yr of follow-up time. 
**P-Values from a Wilcoxon Signed Rank Test.      
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To date, the majority of prospective muscle aging research has relied on DXA-derived 

lean mass [268-270] and clinical CT based measures of muscle area, SAT, and 

attenuation/density [28]. DXA-derived analogs of appendicular muscle size, specifically arm 

and leg lean mass are the most commonly cited. Changes in leg lean tissue mass have been 

reported as -0.15%/year (P<0.01) in healthy American women observed over 2 years [268], -

0.40 to -0.65%/year (P<0.001) in Japanese women observed over 6 years [269], and -

0.79%/year  (P<0.001) in Italian women observed over 5 years [270]. Similar to the muscle 

area results from this study, annual changes in arm lean mass were smaller than those 

reported for the leg [268-270]. The precision error (CV%RMS) of these outcomes was reported 

to be 10.9 and 2.7% for arm and leg lean mass, respectively [134]. Using these CV%RMS 

errors with previously-mentioned mean change values in older adult women [268-270], we 

can estimate DXA-derived leg lean mass MTIs to range between 9 and 50 years, and are 

likely even longer for arm lean mass (due to greater precision error). Similarly, 5 years of 

prospective clinical CT data in healthy American women aged 70-79 years of age 

demonstrated a -0.64%/year decline in thigh muscle area [28]. With a reported precision 

error of approximately less than 5% [25], we can estimate a substantially longer MTI of up to 

21 years for CT measures of the thigh muscle area.  These results suggest that pQCT-derived 

muscle area may be a more useful metric than CT when assessing prospective biological 

changes in appendicular muscle size with age. 

In this sample, muscle area changed concurrently with a decline in self-reported 

physical activity, but without changes in muscle density, IMAT, SAT area, weight (P=0.058), 

BMI, health status, or functional test performance. Functional test performances are known 

to vary with comorbidities such as arthritis and obesity [112]. Handgrip and TUG 

performances did not change despite a decline in forearm and lower leg muscle size. These 
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results support the notion that precise imaging-based measures may allow for the detection 

of changes in muscle, adipose and bone before changes in physical function become 

clinically evident [112]. Tools that can better evaluate and differentiate more specific body 

composition features (e.g., muscle area, muscle density/attenuation, IMAT) are necessary 

for the development of therapies targeting muscle and physical performance [112]. 

Recently, Murphy et al. [271] reported that older adults can transition between normal and 

pre-sarcopenic states; yet once sarcopenic they were unlikely to transition back to a more 

normal state. This emphasizes the need for early identification of persons at risk of adverse 

changes in muscle size and composition for preventive intervention. Clinical researchers can 

utilize MTI estimates to plan appropriate follow-up intervals when monitoring soft-tissue 

outcomes in older women. Conditions such as sarcopenic obesity and cachexia display 

secular trends in weight, muscle, and adipose loss which can obscure relationships between 

general body composition measures (BMI, total body fat percentage) and functional 

outcomes [13,113]. Clinical researchers can make use of LSC values to inform decision 

making when observing changes in body composition in response to conditions such as HIV-

associated lipodystrophy, cachexia, or the effects of treatments like bariatric surgery. Use of 

liberal (80% confidence) versus conservative (95% confidence) estimates will depend on the 

context, and relative importance of modifying clinical intervention before a statistical change 

is observed [59].  

There were no changes in SAT or IMAT in the forearm or lower leg. Static SAT values, 

concurrent with changes in muscle composition have also been reported at the mid-thigh in 

weight-stable 70-79 year old women [28]. Delmonico et al. [28], reported a 6% increase in 

the adipose infiltration of muscle tissue, regardless of changes in weight, muscle size or SAT. 

However, contrary to the clinical CT results of Delmonico et al. [28], we did not observe  
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Figure 7: Typical lower leg grayscale image collected using a Stratec XCT2000 peripheral quantitative 
computed tomography scanner (A).  The lower leg image is filtered and segmented by BoneJ (B) into 
subcutaneous adipose tissue (SAT; purple), muscle area (red + green), and inter-muscular adipose tissue 
(IMAT; green). 

changes in pQCT-derived IMAT. This discrepancy may be due to the different muscles imaged 

(the thigh has a larger IMAT depot than the lower leg) and both the inconsistency and 

imprecision of pQCT-derived IMAT [93,149]. The 0.4 mm in-plane pixel size and contrast of 

pQCT imaging makes measuring small IMAT areas challenging (Figure 7). We also analyzed 

images using another IMAT technique (Bone Diagnostic Inc., Fort Atkinson WI, USA) that does 

not utilize image filters [149,249]; despite that, these alternative measures did not change 

the results (data not shown). Thus, current pQCT image analysis techniques do not appear 

capable of reliably isolating IMAT from surrounding muscle tissue and require further 

development. The establishment of open-source pQCT image analysis software [251,255] 

increases the potential for improvement in pQCT-derived IMAT. These results support the 

suggestion that pQCT researchers should consider reporting muscle density [93,149], rather 

than IMAT [55], as a surrogate measure of muscle adiposity [127]. 
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Muscle density combines all soft tissues between the inner edge of the SAT and the 

outer edge of the bones as a precise [149] composite index of muscle adiposity [52]. 

Scanner attenuation or hydroxyapatite-calibrated tissue density is a validated, inversely 

related measure of tissue adipose content [55,124,125,127]. In this cohort, annual changes 

in muscle density were not significant, yet the high precision of pQCT-derived lower leg 

muscle density allows for estimated MTIs of 5 and 6 years. Therefore pQCT-derived lower leg 

muscle area and density may provide valuable insight into changes in muscle size and 

quality within the same 4 to 6 year time interval. Median annual percentage change values 

for forearm muscle density did not yield useful MTIs. The data here do not offer a concrete 

explanation for this upper and lower limb discrepancy. However, these findings may be 

linked to observations of greater skeletal muscle loss in the lower body [113] and previously 

demonstrated differences between lower and upper body neuromuscular properties and 

performance with age [272-274].  

This study has several strengths related to sample, scanning and analysis 

methodology. First, we prospectively measured a sub-sample of a well-described population-

based Canadian cohort [253]. The TUG test and grip strength results of this sub-sample are 

characteristic of normative reference values for normal, unimpaired older women [264,275]. 

Furthermore, in an attempt to isolate natural age-related changes in muscle we have 

excluded women with chronic conditions (i.e., immobilization, eating disorders, 

neuromuscular diseases, diabetes, cancer) that are known to accelerate muscle loss. 

Second, the precision error estimates for measures included in this study exceed 

conservative recommendations (minimum of 27 degrees of freedom) for robust CV%RMS 

values [149]. These precision error estimates were determined with 35 degrees of freedom, 

in randomly selected participants sampled from this same cohort and therefore can be 
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trusted within a narrow 95% confidence interval [118]. Furthermore, the repeat images 

utilized were collected a mean of 9.7 days apart to avoid underestimating the precision error 

of soft tissues [86]. This is important as same-day image collection can underestimate 

muscle and adipose tissue area precision errors due to enhanced technician recall when 

repositioning participants, or failure to capture between-day fluctuations in the precision 

error of the scanner [86]. Third, we have carefully minimized the risk of erroneous soft-tissue 

changes from image artifacts. This was achieved through the application of a standardized 

motion rating scale [108] by up to three independent observers. This conservative quality 

assurance process excluded low quality images and did not analyze prospective images that 

differed by more than one motion rating increment. Finally, we utilized data from two-year 

observation periods when both the participation rate and image quality allowed us to do so. 

This provided a more robust estimate of annual changes than a reliance on shorter 

observation periods [59].  

This study has specific limitations related to age-specificity and accuracy. First, these 

results are only applicable to older women and the cohort they were sampled from was 

based on an urban population that is predominantly Caucasian. Furthermore, this voluntary 

sub-project ran between the scheduled Year 10 and Year 16 follow-up periods of the CaMOs 

study. Thus, it is not possible to nest this sub-sample within previously collected CaMOs data 

for a direct comparison of the characteristics of non-respondent CaMOs peers. As such, 

selection bias for healthier participants cannot be ruled out. Therefore, this analysis may 

underestimate the magnitude of soft-tissue changes and subsequently overestimated MTIs. 

Thus, these findings likely provide conservative estimates to assist the design of 

interventions and prospective studies in community dwelling older women. Furthermore, 

unrecorded behavior modifying comorbidities (i.e. arthritis, peripheral artery disease, etc.) 
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may have influenced these soft-tissue change estimates. Lastly, beyond excluding 

participants with self-reported eating disorders, the nutritional status of participants was not 

monitored during this period of observation. This is important because nutritional deficits are 

considered to be a secondary cause of sarcopenia [166], a potential confounder for this 

data. However, the use of median annual change values to calculate MTIs minimizes the 

effect of outliers and acute behavioural variability in these estimates; better reflecting the 

naturally occurring annualized changes in the cohort.  

In conclusion, researchers can reasonably expect annual age-related changes of -0.8 to 

-1.2%/year in pQCT-derived forearm and lower leg muscle area. Accounting for measurement 

precision error, researchers can reasonably expect to detect declines in pQCT forearm 

muscle area within 4 to 9 years and lower leg muscle area and density within 4 to 6 years in 

community-dwelling Caucasian women >60 years. 
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6! Study Three:  
Lower Leg Muscle Density is 
Independently Associated with Fall 
Status in Older Adults 
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6.1! Synopsis 
This chapter describes an analysis of the associations of pQCT derived muscle density, 

health outcomes, and functional mobility to fall status. Muscle density is associated with fall 

status, independent of biologically relevant covariates and functional mobility, which 

suggests that it may serve as an important biomarker for fall risk and musculoskeletal health 

in older adults. 

6.2! Introduction 
Falls are the leading cause of non-fatal emergency room visits in the US [58], and the 

primary cause of hip fractures in adults greater than 65 years old [57]. Approximately one 

third of older adults report a fall each year, and 20% of falls require medical attention 

[213,241]. Older, community-dwelling adults who fall cost heath care systems an average 

(US) $3,476; in cases where surgery and/or hospitalization are required, costs can rise to 

approximately $26,483 per individual [222]. The need for research on fall etiology is 

accentuated by age-adjusted data suggesting the rate of fall-induced injury is increasing 

[224].  

Falls are multi-factorial events caused by a combination of demographic, 

environmental, behavioral, and sensorimotor factors [241]. Among these, the strength and 

power of lower leg muscles are major contributing factors for falls, postural stability, and 

balance recovery in older adults [239,276,277]. Aging muscle undergoes changes in 

composition, defined by a decline in lean mass and an increase in adipose and non-

contractile tissue [164]. Increased quantities of muscle adipose may contribute to the 

catabolic state observed in muscle with age owing to the secretion of pro-inflammatory 

cytokines which stimulate muscle catabolism [181,182,184]. The relative amount of intra- 

and inter-muscular adipose can be quantified using imaging techniques such as MRI and CT.  
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Similar to CT attenuation values [124] pQCT-derived density measures are inversely 

related to lipid content, and approximately 50% of the variance in muscle density is 

explained by inter- and intra-muscular adipose tissues [55]. In older individuals, muscle 

adiposity has been linked to reduced lower extremity performance as well as muscle torque 

[23,24]. Two large prospective studies on aging, the Health Aging and Body Composition and 

the Invecchiare in Chianti Studies both revealed that adiposity (percent body fat, muscle 

density) and physical performance (walking speed, chair stand ability) but not lean mass, 

muscle size, or strength were risk factors for disability in healthy, older adults [26,27]. There 

is a growing body of evidence that suggests muscle adiposity and associated functional 

deficits manifest in clinically significant fall-related outcomes. Older persons with low muscle 

attenuation (which reflects higher adiposity) are 50 - 80% more likely to develop mobility 

limitations [24], and are at a greater risk of fracture [30,31,187,188], disability [26,27] and 

hospitalization [29]. 

Recent results from our lab found pQCT-derived muscle density to be significantly lower 

in the legs of well-functioning older women who reported one or more falls in the past year 

when compared to controls matched for age, BMI, and general health status [53]. 

Furthermore, no significant difference on the TUG test was observed between fallers and 

non-fallers, despite this functional mobility test consisting of both walking speed and chair 

rise components [53,264]. The association between lower leg muscle density (a surrogate of 

fat infiltration) and falls has not been previously described in the literature. Furthermore, the 

role of functional mobility in the association between muscle density and falls is not known. 

Therefore, the primary objective of this study was to explore the relationships of muscle 

density, functional mobility, and health-related factors to fall status. The primary hypothesis 

was that muscle density would be associated with fall status after adjusting for age, sex, 
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BMI, general health status, diabetes, a number of pertinent comorbidities, and functional 

mobility. The secondary objective was to determine the independent and combined 

relationship of muscle density and functional mobility to fall status after adjusting for health-

related factors. The secondary hypothesis was that models which include both muscle 

density and TUG test time will have a better fit with the data than models that include these 

factors separately. 

6.3! Methods 

6.3.1! Participants 
Participants aged ≥60 years were recruited from the Saskatoon cohort of CaMOs as 

described previously. All 501 eligible CaMOs participants were mailed an invitation to 

participate in this study. Eligibility criteria, recruitment and measurements for 147 female 

participants have been previously described in detail [53]. For these analyses, an additional 

43 males were recruited a year later using the same methodology. The University of 

Saskatchewan Biomedical Research Ethics Board reviewed and approved this research 

(BIOREB 10-83), and all participants provided written informed consent. 

6.3.2! Descriptive Measures 
To characterize the sample, fall status was determined by a response to the retrospective fall 

recall question: “have you fallen in the previous 12-months?”. Defined according to the 

Prevention of Falls Network Europe Consensus as ‘‘an unexpected event in which the 

participants come to rest on the ground, floor, or lower level’’ [226]. Retrospective fall recall 

results demonstrated good agreement (Kappa = 0.77), when repeated an average of 9.7 

(3.6) days apart in a random sub-sample of 35 female participants. 

Participant age (y), height (cm), weight (kg), BMI (kg/m2), hand grip strength (Kg) and 

SF-36 Health Status questionnaire data were recorded. Height was measured using a wall-
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mounted stadiometer (Holtain Ltd., Crosswell, Wales, UK) accurate to ± 1mm and weight (in 

slacks and a t-shirt) from a calibrated scale (Toledo Ltd., Columbus OH, USA) accurate to ± 

0.1 kg. Body mass index (kg/m2) was derived from height and weight measures. Isometric 

grip strength measures of the non-dominant hand were collected using a JAMAR Hydraulic 

Hand Dynamometer (Lafayette Instrument Co. Lafayette IN, USA) according to American 

Society of Hand Therapists recommendations. The highest score from three, 3-second long 

maximal attempts accurate to ± 1 kilogram was recorded with a precision error (CVRMS%) of 

11%. Confounding medical conditions for muscular health including diabetes, 

neuromuscular diseases (NMD; Parkinson’s, Multiple Sclerosis, or other), osteoarthritis, 

eating disorders, and immobilization or a diagnosis of cancer in the past six years were 

recorded. 

6.3.3! Timed Up and Go Test 
Two trained research assistants conducted the TUG test. The precision error (CV%RMS) 

calculated from repeat measurements of 35 women in this cohort was 5.4%. The timed 

protocol involved rising from a chair, walking 3 meters, turning around, and returning to their 

seat, at their usual walking pace [264]. Participants were able to make use of the chair 

arms, as well as any walking aids they would normally use in their daily lives. Each 

participant was granted a practice trial to ensure they understood the test protocol, followed 

by three timed trials with short rest intervals. The fastest completion time was recorded. 

6.3.4! pQCT Image Acquisition 
Scans were acquired on the non-dominant lower leg using an XCT 2000 pQCT (Stratec 

Medizintechnik GmbH, Pforzheim, Germany). The XCT 2000 is calibrated to provide 

hydroxyapatite mineral equivalent tissue densities, such that fat tissue has a density of 0 

mg/cm3 and water 60 mg/cm3. All images were collected at a scan speed of 20mm/s using 
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a voxel size of 400µm x 400µm x 2.4mm. A single image was collected at the site 

corresponding to 66% of the total tibia length proximal from a reference line at the medial 

aspect of the distal tibia plafond. This is the most common location for lower leg muscle 

scans, and the anatomical location of the greatest limb girth.  

6.3.5! Image Analysis 
All scans were analyzed using BoneJ Version 1.3.11; a plugin for the freely-available image 

processing software ImageJ 1.48q (National Institutes of Health, Bethesda MD, USA). We 

used density thresholds 40-139mg/cm3 to define muscle tissue. Technical aspects of the 

image analysis protocol have previously been described in detail [149]. The precision error 

(CV%RMS) calculated from repeated measurements of 35 women in this cohort was 2.5% for 

muscle area and 0.7% for muscle density [149]. 

All images were graded by the consensus of up to three blinded technicians for the 

severity (1 to 5) of motion artifacts according to the visual inspection rating scale developed 

by Blew et al. [108]. Scans rated >3 were excluded. 

6.3.6! Statistical Methods 
Faller and non-faller descriptive results and statistical comparisons were calculated for 

all variables. Categorical proportions were compared using Fisher’s Exact test. Non-normal 

data was log-transformed, and re-checked for normality. Normally-distributed outcomes and 

transformed outcomes were compared using independent t-tests. Where log-transformation 

failed, the original data were compared using the Wilcoxon Rank-Sum test. Logistic 

regressions were reported for fallers (1) and non-fallers (0). To test the associations of 

muscle density and functional mobility with fall status, forced entry multivariable logistic 

regression models were generated controlling for biologically relevant covariates: age, sex, 

BMI, general health status, diabetes and a number of pertinent comorbidities. Three models 
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were generated to test the predictive ability of 1) muscle density, 2) TUG test time and 3) 

both muscle density and TUG. Likelihood ratio tests determined if the model fit improved 

between independent (Models 1 & 2) and combined (Model 3) variables.  We report 

descriptive means, SDs, relative proportions (%) and counts, P-values, the area under the 

curve (AUC) for each multivariable model, as well as odds ratios (OR) and 95% confidence 

intervals [95% C.I.] for each predictor. Statistical significance was set at P <0.05. All 

statistical analyses were performed with IBM SPSS Statistics, Version 22 (IBM, Armonk NY, 

USA).  

6.4! Results 
A total of 190 older adults were recruited. A flowchart (Figure 8) details the participants 

included and excluded at each step of the analysis. A detailed description of the 183 eligible 

adults is provided in Table 7.  

Bivariate logistic regression analyses revealed significant odds ratios for several factors 

(Table 8). For every unit higher in general health status score, the odds of being a faller 

(defined as having reported one or more falls in the past year) was reduced by 3% (OR 0.97 

[95% C.I. 0.95 to 0.99]). For every second increase in TUG test result, the odds of being a 

faller increased by 16% (OR 1.16 [95% C.I. 1.03 to 1.30]). Similarly, for every mg/cm3 

increase in muscle density, the odds of being a faller decreased by 15% (OR 0.85 [95% C.I. 

0.75 to 0.95]). Being diabetic increased the odds of being a faller by 329% (OR 3.29 [95% 

C.I. 1.12 to 9.64]). 

Multivariable models controlled for biologically relevant confounders (age, sex, BMI, 

general health status, diabetes, number of comorbidities) to compare the ability of muscle 

density and TUG test to independently predict fall status (Table 9).  All three models provided 
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Figure 8: Participant flow-chart detailing recruitment, bivariate, and multivariable analyses for models 1-3. 
Diabetes Q. = Questionnaire; 13 participants did not indicate a response and were excluded, along with 1 TUG 
test refusal. 
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Table 7: Descriptive Statistics  

 

Faller  
 (n=52) 

Non-Faller  
(n=131) P-Value 

Sex (male/female) 15/37 27/104 0.246a 

Age (y) 74.3 (8.6) 74.6 (7.6) 0.806b 

Height (cm) 161.9 (8.7) 162.0 (8.4) 0.867c 

Weight (kg) 75.8 (14.9) 71.7 (13.2) 0.095b 

BMI (kg/m2) 28.8 (5.1) 27.3 (4.3) 0.041b 

General Health Status (0 - 100) 64.6 (19.5) 73.0 (15.2) 0.022c 

TUG (s) 10.7 (3.1) 9.5 (2.4) 0.044c 

Grip Strength (kg) 19.7 (8.1) 20.4 (9.5) 0.584c 

Lower leg muscle    

Density (mg/cm3) 69.2 (3.5) 70.5 (2.3) 0.045c 

Area (cm2) 64.1 (11.2) 62.4 (11.2) 0.382b 

Comorbidities (count)    

Diabetes 15% (8) 5% (7) 0.034a 

NMD 4% (2) 10% (12) 0.356a 

Osteoarthritis 48% (25) 45% (59) 0.744a 

Eating disorders 2% (1) 0  (0) 0.284a 

*Immobilization >1month 6% (3) 2% (2) 0.096a 

*Cancer 10% (5) 6% (8) 0.354a 

Number of Comorbidities   0.307a 

0 33% (17) 47% (61)  

1 52% (27) 41% (54)  

2 14% (7) 10.7% (14)  

3 2% (1) 2% (2)  
Abbreviations: BMI = Body Mass Index; TUG = Timed Up and Go; NMD = Neuromuscular 
Diseases. P<0.05 are bolded. P-Values from a Fisher’s Exact Test; b Independent T-Test; c 
Wilcoxon Rank-Sum Test 
*Diagnoses/occurrences within the previous 6 years 

 

acceptable discrimination with significant AUC values between 0.74 and 0.76, and 

significant (P<0.05) improvement over the covariates (Table 9 & Figure 9). In Model 1, higher 

muscle density (mean 70.2, SD 2.6mg/cm3) reduced the odds of being a faller by 19% (OR 

0.81 [95% C.I. 0.67 to 0.97). In Model 2, each second of TUG test time (mean 9.8, SD 2.6s) 

independently increased the odds of being a faller by 17% (OR 1.17 [95% C.I. 1.01 to 1.37]).
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Table 8: Bivariate Associations with Fall Status!
 95% C.I. 

 
Odds Ratio (eβ) Lower Upper 

Sex (female=0) 1.56 0.75 3.25 
Age (y) 1.00 0.96 1.04 
Height (cm) 1.00 0.96 1.04 
Weight (kg) 1.02 1.00 1.05 
BMI (kg/m2) 1.08 1.00 1.16 
General Health Status (0-100) 0.97 0.95 0.99 
TUG (s) 1.16 1.03 1.30 
Grip Strength (Kg) 0.99 0.96 1.03 
Lower leg muscle 

   Density (mg/cm3) 0.85 0.75 0.95 
Area (cm2) 1.01 0.99 1.04 

Comorbidities (reference=0) 
   Diabetes 3.29 1.12 9.64 

NMD 0.40 0.09 1.84 
Osteoarthritis 1.13 0.59 2.15 

*Immobilization >1month 4.98 0.79 31.49 
*Cancer 1.70 0.53 5.48 

Number of Comorbidities (None=0) 
   1 1.79 0.88 3.65 

2 1.79 0.63 5.15 
3 1.79 0.15 21.00 

Bivariate relationship between fallers (1) and non-fallers (0). There were not enough participants with 
eating disorders to generate a bivariate odds ratio. Bolded values indicate odds ratios with 95% C.I.s 
that do not include 1.00. Abbreviations: C.I.=Confidence Interval; BMI = Body Mass Index; TUG = 
Timed Up and Go; NMD = Neuromuscular Diseases. 
*In previous 6 years 

 

In Model 3 age independently reduced the odds of being a faller by 8% (OR 0.93 [95% C.I. 

0.87 to 0.99]). Model 3 included both muscle density and TUG test time as predictors, yet 

only muscle density independently reduced the odds of being a faller by 17% (OR 0.83 [95% 

C.I. 0.69 to 0.99]). Furthermore, when comparing Model 2 and Model 3, the addition of 

muscle density to a model that included TUG improved (Χ21=4.46, P=0.03) the overall fit with  
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Figure 9: Receiver operating characteristic plot for multivariate models discriminating fallers (1) from non-
fallers (0). Model values are the area under the curve. Null Model: age, sex, BMI, health status, diabetes, 
comorbidities; Model 1: Null Model + muscle density (MD); Model 2: Null Model + TUG test; Model 3: Null Model 
+ TUG test and muscle density. Likelihood Ratio Test Significant (P < 0.05) improvement from: * Null Model; 
**Model 2. 

the data compared to a model with just TUG test time. The addition of TUG test time (Model 

3) did not improve (Χ21 =2.81, P=0.09) overall fit when compared muscle density only 

(Model 1).
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Table 9: Multivariable Associations     

 Model 
AUCa 

95% C.I.  Odds  
Ratio (eβ) 

(eβ) 95% C.I. 
  Lower Upper Lower  Upper 
Null Model 0.71 0.63 0.80    
Age (y)    0.98 0.93 1.02 
Sex (female=0)    1.91 0.84 4.36 
BMI (kg/m2)    1.07 0.99 1.16 
General Health Status (0-100)    0.97 0.95 0.99 
Diabetes (no=0)    3.11 0.86 11.26 
Number of Comorbidities (none=0)       

1    1.59 0.67 3.77 
2    1.05 0.26 4.29 
3    0.91 0.06 14.96 

       

Model 1 * 0.73 0.64 0.81 
   Age (y) 

 
  0.94 0.88 1.00 

Sex (female=0) 
 

  1.74 0.75 4.06 
BMI (kg/m2) 

 
  1.05 0.97 1.14 

General Health Status (0-100) 
 

  0.98 0.96 1.00 
Diabetes (no=0) 

 
  2.62 0.70 9.86 

Number of Comorbidities (none=0) 
 

  
   1 

 
  1.63 0.68 3.92 

2 
 

  1.11 0.26 4.73 
3    1.63 0.10 27.03 

Lower Leg Muscle Density (mg/cm3) 
 

  0.81 0.67 0.97 
 

   
   

Model 2 * 0.73 0.65 0.82 
   Age (y) 

 
  0.96 0.91 1.01 

Sex (female=0) 
 

  2.01 0.87 4.68 
BMI (kg/m2) 

 
  1.06 0.98 1.15 

General Health Status (0-100) 
 

  0.98 0.96 1.00 
Diabetes (no=0) 

 
  3.03 0.81 11.28 

Number of Comorbidities (none=0) 
 

  
   1 

 
  1.73 0.72 4.13 

2 
 

  0.93 0.22 3.99 
3    1.23 0.07 20.67 

TUG test (s) 
 

  1.17 1.01 1.37 
  

  
   

Model 3 *, ** 0.75 0.66 0.83 
   Age (y) 

 
  0.93 0.87 0.99 

Sex (female=0) 
 

  1.85 0.78 4.37 
BMI (kg/m2) 

 
  1.04 0.96 1.13 

General Health Status (0-100) 
 

  0.98 0.96 1.01 
Diabetes (no=0) 

 
  2.63 0.68 10.13 

Number of Comorbidities (none=0) 
 

  
   1 

 
  1.75 0.72 4.25 

2 
 

  0.98 0.22 4.41 
3    1.99 0.12 33.73 

Lower Leg Muscle Density (mg/cm3) 
 

  0.83 0.69 0.99 
TUG test (s) 

 
  1.14 0.98 1.34 

Multivariable models discriminate fallers (1), from non-fallers (0). Bolded values indicate odds ratios with 95% C.I.s that do not 
include 1.00. Comorbidities included the presence or recent history of diabetes, NMD, osteoarthritis, eating disorders, 
immobilization, or cancer. Abbreviations: AUC=Area Under Curve; L.R.T.=Likelihood Ratio Test; C.I.=Confidence Interval 
aRange 0.5-1.0. Degree of discrimination: 0.7-0.8 acceptable, 0.8-0.9 excellent, 0.9-1.0 outstanding. 
Likelihood Ratio Test Significant (P < 0.05) improvement from: * Null Model; ** Model 2. 
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6.5! Discussion 
This is the first study to explore the relationship between muscle adiposity and fall status in 

older adults. The results indicate that every mg/cm3 increase in muscle density decreases 

the odds of being a faller by 17%, independent of age, BMI, health status, diabetes, the 

number of comorbidities and functional mobility. Muscle density was recently identified as a 

potential fall risk factor when comparing female fallers and controls matched for age, BMI 

and health status [53]. These results build on evidence from two clinical CT studies 

supporting a negative relationship between imaging-based measures of adiposity and fall-

induced fractures [30,31]. Adjusting for similar covariates, Lang et al. reported an increase 

in hip fracture odds of 40% per SD decrease in thigh muscle attenuation independent of age, 

sex, BMI, muscle size, strength, physical function, and hip bone mineral density [30]. Given 

that less than 10% of falls result in a fracture [241], these results advance the hypothesis 

that muscle density is relevant to the most common mechanism of serious injury in older 

adults [57,58,241]. 

Prospective studies have established muscle adiposity as a risk factor for incident 

disability [26,27], reduced gait [141], mobility [24], and fractures [30,187,188]. Thus, 

measures of muscle adiposity can serve as adjunct biomarkers of metabolic and 

musculoskeletal health. The clinical relevance of imaging-based measures of muscle 

adiposity among other fall factors [231] such as vitamin D status, fall history, balance, visual 

deficits, arthritis, depression, and cognition requires further study. These results indicate 

pQCT-derived muscle density to have a modest multivariate association with fall status even 

after accounting for variability in functional mobility. The excellent precision (CV%RMS=0.7%) 

of lower leg muscle density measures in older adults [149] may facilitate the longitudinal 

sensitivity and clinical utility of this outcome for monitoring changes in muscle composition.  
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 Several physical activity and exercise studies suggest muscle adiposity to be an 

important and modifiable biometric target in older adults [35-37,184]. Taaffe et al. reported 

a 5.5% increase in thigh muscle density with 12-weeks of resistance training in older 

community-dwelling men and women [37]. In the context of the results, a lower leg muscle 

density increase of half that magnitude would reduce the odds of being a faller by more than 

30%. A recent randomized controlled trial demonstrated the specificity of 12-months of 

physical activity to reduce inter-muscular adipose, independent of total fat mass in sedentary 

older adults [36]. Most importantly, those physical-activity driven reductions in muscular 

adipose were independently associated with improved  physical performance [36]. These 

data further emphasize the importance of muscle adiposity as a biomarker in aging 

musculoskeletal health.   

Early identification of persons with greater muscle adiposity may improve their 

chances of a positive response to exercise; a recommended component for all multifactorial 

fall interventions [231]. Myosteatosis, “the accumulation of adipocytes within muscle” [167] 

and their secretion of pro-inflammatory cytokines exert pathophysiological effects which 

precede declines in muscular function with aging [182]. Pro-inflammatory cytokines promote 

peripheral insulin resistance, muscle protein catabolism [142,181], and decreased 

myofilament protein synthesis [181,182], increase oxidative stress, and reduce contractility 

and strength [142,181]. A heightened inflammatory state lowers the anabolic response to 

resistance exercise, making it more difficult for older adults to maintain and build muscle 

[181,182]. Older adult fallers with higher baseline levels of muscle adipose recently 

demonstrated blunted improvements in specific torque from three months of training with 

resistance, endurance and balance exercises [184].  
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The association between lower muscle density and fall status may also be a 

manifestation of the aging neuromuscular system. The degeneration of α-motoneuron axons 

inhibits the reinnervation of regenerating muscle fibres [173] and is related to muscle 

density [46]. Denervated “orphaned” fibres have two possible fates: 1) atrophy; signaling the 

differentiation of fibroblasts and adipocytes [175] or 2) reinnervation by a neighbouring 

motor-unit; resulting in the co-expression of contractile phenotypes [174], slowing contractile 

velocity, and reducing force and power. Thus, motoneuron degeneration reduces muscle 

density [46], and the power available for high-velocity fall-avoidance tasks such as 

recovering balance from a trip. 

The secondary objective of this investigation was to explore the independent and 

combined associations between muscle density and functional mobility to fall status. The 

TUG test is a composite measure of functional mobility [264], used to predict health decline 

and activities of daily living disabilities in community-dwelling older adults [278,279]. We 

demonstrated that the time to complete the TUG test was associated with fall status (OR 

1.17, [95% C.I. 1.01 to 1.37]), independent of age, sex, BMI, health status, diabetes, and the 

number of comorbidities. These results agree with prospective findings in a sample of 

community-dwelling Britons [280] who similarly demonstrated multivariate association 

between TUG and fall status (OR 1.09 [95% C.I. 1.00 to 1.19]) after adjustment for age, sex, 

number of comorbidities and falls in the previous year. The present analysis demonstrated 

that  the overall model fit improved with the addition of muscle density (P=0.03), but TUG 

was no longer an independent predictor of fall status (OR 1.14 [95% C.I. 0.98 to 1.34]). The 

proximity of the confidence interval to unity, and the relatively larger precision error (CV%RMS 

= 5.4%) of TUG measures, suggests that a larger sample may demonstrate an independent 

effect of functional mobility. Incident disability data indicates that the effect size for 
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performance on TUG-like functional mobility tasks may be smaller than measures of muscle 

adiposity in relatively healthy older adult cohorts [26]. Given that mean faller and non-faller 

TUG times were faster than many of the recommended fall risk cut-points for community-

dwelling older adults [281], it is also possible that a combined effect may predict fall risk in a 

sample with greater functional limitations and fall risk.  

This study has several strengths related to sample and analysis methodology. First, we 

have collected data from a sub-sample of a well-described randomly selected population-

based Canadian cohort [53,253]. Approximately 28% of the sample classified as fallers, 

similar to the estimated 29% of Canadian community-dwelling elders who experience a fall 

on an annual basis [213]. The TUG test results of this sub-sample are characteristic of 

normative reference values for normal, unimpaired older adults of this age [264]. Second, 

the multivariable analysis controls for several established confounding factors: age [28], sex 

[215], BMI [124], general health [53], and diabetes [137,167]. This study also has 

limitations related to the specificity of the sample and retrospective study design. First, these 

results were obtained from an urban sample of predominantly Caucasian older men and 

women. Furthermore, this voluntary sub-project ran between scheduled CaMOs study follow-

up periods. Thus it is not possible to directly compare participant characteristics with their 

non-respondent peers. Selection bias for healthier participants is likely given that age 

independently reduced the odds of being a faller in some models. Furthermore, the 

retrospective design did not allow us to determine whether the differences observed 

between fallers and non-fallers preceded or followed a fall event [239]. Lower muscle 

densities could also be a reflection of an injurious fall event and/or subsequent muscle 

deconditioning due to a fear of falling. The use of retrospective fall recall can minimize the 

magnitude of the observed effects through misclassification. A 23% underestimation of falls 
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has been reported for 12-month retrospective recall methods and approximately 6% of non-

fallers misclassify themselves in retrospective recall [282]. We provided the option of 

“unsure” on the falls questionnaire to mitigate the potential for misclassification. 

Nevertheless, the presence of non-differential misclassification, or the previously reported 

misclassification rates would reduce effect sizes, lending further support to the results. The 

robustness of these results will have to be tested through further investigation of muscle 

adiposity using prospective fall monitoring methods.  

This investigation provides further insight into the etiology of falls, by exploring the 

association between muscle density and fall status. The results expand upon the lower 

muscle density observed in female fallers [53], and supports indirect evidence of muscle 

adiposity as a risk factor for fall-related health outcomes such as frailty [45], fracture 

[30,31,187,188], hospitalization [29], and incident disability [26,27]. This research provides 

the impetus for the prospective study of muscle adiposity and fall risk. Muscle density is 

independently associated with fall status in a relatively unimpaired healthy older cohort, and 

the magnitude of this association is maintained after adjustment for biologically relevant 

covariates, as well as a measure of functional mobility. Thus, pQCT-derived muscle density 

may provide a physiological biomarker to further complement the assessment of 

musculoskeletal health and fall risk in well-functioning community-dwelling older adults. 
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7! General Discussion 
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7.1! Summary 
The overall aim of this thesis was to investigate the precision, annual changes, and 

longitudinal sensitivity of pQCT-derived muscle and fat outcomes, as well as explore the 

strength of their association with fall status in a cohort of community-dwelling older adults. 

The purpose of study one was to compare the precision of variations in image analysis 

protocols used to derive soft-tissue outcomes in older adults. This was achieved by first 

surveying the pQCT literature for studies that analyzed both muscle cross-sectional area and 

SAT, IMAT or muscle density. Protocols that were similar were sorted and given an identifier, 

and then each unique method was applied to a data set of repeat scans from 35 female 

CaMOs participants. The results of study one rejected the null hypothesis. Significant 

differences were detected among the precision errors for soft-tissue outcomes derived from 

each of the unique image analysis protocols. Precision errors appeared higher in the forearm 

than the lower limb, and varied considerably with the outcome. Muscle density provided 

precision error rates below 1%, whereas the precision error for IMAT was over 42%. Subtle 

differences existed in the precision of each of the methods applied. Protocols using the 

manufacturer’s recommendations appeared to experience more errors segmenting muscle 

from fat and bone when compared to third-party protocols and software. The precision error 

results corroborated with previously reported IMAT precision errors as high as 40% in middle-

aged women [93]. This was the first study to conduct a comparison of previously reported 

image analysis protocols. Furthermore, only two other studies [90,151] reported pQCT-

derived soft-tissue precision data for older adults, and only did so for some of the outcomes 

reported in this thesis. The results of study one provided the evidence necessary to select 

the most precise image analysis protocols for the prospective analysis of soft-tissue 

outcomes. This is important because the precision error is multiplied by a factor of 2.77 
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when assessing whether or not an observed change exceeds the error rate of a 

measurement tool with 95% confidence; and annual age-related changes in both DXA and CT 

measures of muscle mass and area have previously proven to be less than 1% [28,268-

270].  

Study two expanded on the results of study one, and focused on determining the 

annual changes and longitudinal sensitivity of pQCT-derived soft tissue outcomes by 

collecting and analyzing scans over one and two years. It was hypothesized that significant 

annual changes would be observed in pQCT soft-tissue outcomes. Statistically significant 

annual changes of -0.8 and -1.2% per year were observed in the muscle areas of the forearm 

and lower leg respectively. These findings were of a similar magnitude to declines reported in 

CT-derived muscle area and DXA-derived lean tissue mass for Italian and Japanese women, 

and showed a similar trend of greater changes in lower body muscles [268-270]. Significant 

annual changes were not detected for muscle density, SAT or IMAT, despite reports of 

changes in these soft-tissue parameters with aging [28,113,169,197]. Clinical CT studies 

that have demonstrated significant differences in IMAT tracked participants for 3 to 5 years 

[28,197], which may partially explain the failure to detect an effect in pQCT-derived IMAT and 

muscle density in study two.  Using both the precision data for soft-tissues and the annual 

changes observed, study two estimated MTIs wherein researchers could be either 80 or 95% 

certain that measured changes in muscle and fat tissues exceeded the limitations of both 

machine and operator error. These follow-up intervals can assist the planning of longitudinal 

studies that observe soft-tissue changes with pQCT. The more liberal MTI is an estimate 

wherein a clinical researcher could be 80% certain that observed changes are real biological 

effects and not an anomaly; whereas the more common 95% MTI provides an estimate of 

when observed changes would be statistically certain in 50% of the population [59]. Liberal 
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MTIs could be useful when monitoring clinically relevant trends that could influence the 

decision on whether or not a treatment or intervention should begin or be discontinued; 

situations where the benefits of pre-emptive action outweigh those of scientific certainty 

[59]. Simply having musculoskeletal imaging measures conducted can motivate people to 

modify their behaviour for better health [112]. The aim of estimating MTIs is to establish the 

most appropriate follow-up, so as to reduce measurement risk and cost burdens on both 

participants, clinics and/or laboratories [59]. The results of study two suggest that decreases 

in forearm and lower leg muscle area may be detected in 6 to 9 and 4 to 6 years 

respectively. Furthermore decreases in lower leg muscle density might also be detectable 

within 5 years. These estimates are likely conservative given the good physical function 

profile and potential for selection bias in this sample. Furthermore, in an attempt to generate 

estimates that characterize healthy aging; chronic conditions that can accelerate changes in 

muscle and fat outcomes were excluded from this analysis. Sub-populations with diabetes, 

neuromuscular disease, malnutrition, prolonged bed-rest or cancer will likely exhibit different 

(and likely shorter) MTIs. Although there are many MTIs reported for DXA and pQCT-derived 

bone outcomes [41,254], this thesis provides the first estimates generated for pQCT imaging 

based measures of muscle and fat outcomes in relatively healthy older adults.  

Lastly, study three involved an investigation of the bivariate and multivariable 

associations between fall status, pQCT-derived muscle density, and functional mobility.  

Study three correctly hypothesized that muscle density would be independently associated 

with fall risk after adjusting for biologically relevant covariates and functional mobility. The 

results demonstrated that for every unit increase in pQCT-derived muscle density (mean 

70.2, SD  2.6mg/cm3), the odds of having reported a fall dropped by 17% after adjusting for 

biologically relevant factors, and functional mobility performance. These results are similar to 
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odds ratios reported by Lang et al. [30,31] who observed a 40% decrease in other odds of 

hip fracture per SD increase in thigh muscle attenuation. Although every fall does not result 

in a hip fracture, falls are the primary mechanism by which older adults experience non-

violent hip fractures [57]. This investigation provides further insight into the etiology of falls, 

by exploring the strength of the association between muscle density and fall status. 

Research suggesting a relationship between muscle power, strength, and muscle adiposity 

[23,211] as well as the importance of lower body muscle strength in fall risk [239], may 

explain the mechanism that determines the association observed in study three. These 

results expand upon earlier research that reported lower muscle density in female fallers 

[53], and supports indirect evidence of muscle adiposity as a risk factor for fall-related 

health outcomes such as frailty [45], hip fracture [30,31], hospitalization [29], and incident 

disability [26,27]. The secondary hypothesis of study three was that models that included 

both muscle density and TUG would better fit the data than models that included them 

separately. This hypothesis was true when comparing the combined fit with a model that only 

included TUG and covariates, but was rejected when comparing the combined fit with muscle 

density. Put simply, muscle density improved the prediction of fall status after accounting for 

the variance explained by functional mobility, but improvements were not observed when 

adding functional mobility to models that already contained muscle density. Although the 

relative improvement in model fit is small, this result supports the prospective investigation 

of the predictive power and multivariate associations of muscle density and functional 

testing to falls in older adults.  
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7.2! Strengths and Limitations 
This research has several strengths and limitations. Among its strengths, the data were 

collected from a sample of relatively high-functioning community-dwelling older adult men 

and women. This sample is clinically relevant, because it can help us understand and 

prevent outcomes that may lead to a loss of independence, such as falling and fall-induced 

injuries. The use of common functional tests, such as the TUG and isometric hand grip 

strength, allowed for a comparison of this sample with age-appropriate reference values for 

healthy older adults [264,275]. This improved the ability to describe the participants in a 

functional context, and may also facilitate the pooling of data with other researchers. Lastly, 

the pQCT image analysis protocol utilized for this thesis was selected based on a comparison 

of the precision of all available options. As such, these results present estimates for pQCT 

derived muscle area, density, and SAT area in older adult women using the most precise 

protocol available.  

 There are several limitations of this thesis related to study design. These studies were 

part of a local subproject of a much larger national, multi-centre study. CaMOs participants 

volunteered to be involved in this research between their regular 5-year follow-up intervals 

for the CaMOs Study. As such, maintaining low participant burden was a significant design 

consideration that limited the number and complexity of outcomes measured with each 

participant’s appointment. Study two could have benefitted from the collection of behavior-

modifying comorbidity (i.e., arthritis, peripheral artery disease) and nutrition data when 

interpreting changes in soft-tissue outcomes over time. CaMOs questionnaires for self-

reported physical activity and simple functional tests such as handgrip strength and the TUG 

were utilized to measure behavior and physical function over time. The inclusion of a more 

detailed health condition questionnaire, objective measures of physical activity, and direct 
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measures muscle function may have yielded a more complete picture of the observed soft-

tissue changes. In study three, falls were ascertained via retrospective questionnaires to 

avoid participant fatigue and confusion, but are best recorded prospectively on calendars, 

diaries, or via regular telephone follow-ups. More detailed, prospective falls data would have 

facilitated analyses beyond the baseline measures, and investigations of recurrent fallers 

(who are more likely to have functional deficits). Lastly, because the baseline year (2010) for 

this sub-project did not coincide with CaMOs follow-up intervals, it is not possible to directly 

compare the participants in this thesis project with their non-responding cohort peers. Had 

this sub-project been nested, it would have been interesting to compare the groups on 16 

years of prospective health data to describe and assess the degree of health/survivor bias in 

the sub-sample.    

7.3! Conclusions 
In conclusion, this thesis demonstrated that pQCT imaging can provide precise 

measurements of muscle and fat outcomes in older adults. This is important for the study of 

muscular health and aging because the annual rate of change in these tissues can be quite 

low in older adults. Thesis data suggest a relative loss of muscle cross-sectional area of 0.8 

to 1.2% per year, with greater losses in the lower limb. Assuming that muscle tissues are not 

negatively impacted by other health conditions, biological changes can be detected with 80 

and 95% certainty within 4 to 9 years follow-up time. This data can assist with the planning 

of prospective research investigating the complex interactions between muscle, fat, and 

human health in aging. Lastly, this thesis demonstrated the strength of the association 

between one of these soft-tissue outcomes (muscle density) and falls, suggesting a 17% 

increase in odds of reporting a fall for every unit decrease in muscle density (mean 70.2, SD  

2.6mg/cm3).  
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7.4! Future Directions 
The clinical importance of the association between fall status and muscle density will need 

to be studied prospectively, and could be an interesting area of discovery. This thesis 

provides the methodological and effect-size data necessary to design a prospective 

investigation of this phenomenon using pQCT imaging. Currently, nutrition and physical 

exercise interventions are known to maintain [35] or improve muscle mass and physical 

function [7,32,165,166] and reduce muscle adiposity [36,37], increase insulin sensitivity 

[32,283], and reduce the number of falls and fall risk [241]. Very few studies provide a direct 

analysis of muscle adiposity and muscle torque [23,211] or power [211], even though there 

is considerable health outcome data (incident disability, reduced gait, mobility) indirectly 

suggesting a possible connection [24,26,27,141]. Future research that analyzes direct 

measures of human behaviour (i.e., multiphasic measures of activity), muscle function (i.e., 

muscle power) with anatomical (i.e., diffusion tensor imaging of muscle structure, measures 

of muscle size and adiposity), and physiological properties (i.e., mitochondrial energetics, 

inflammatory markers) will strengthen our understanding, and compliment research 

connecting changes in this organ with age. 

As we continue to study the etiology and prevention of sarcopenia and myosteatosis, 

tools that can provide further insight into the physiology of aging muscle and fat are needed 

[38,40,113,114]. More effective interventions will be possible through an enhanced 

understanding of the antecedents, natural history, and magnitude of changes in muscle loss 

and adipose infiltration observed with age [28,167]. Some of the data collected for this 

thesis was shared with a cross-disciplinary team of CaMOs Study investigators who have 

established a network of pQCT scanners in cities across Canada, and have been pooling 

imaging data with the goal of investigating the associations and development of muscle 
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atrophy and adiposity, frailty, and fractures in aging Canadians. Furthermore, the Canadian 

Health Measures Survey recently acquired two pQCT scanners to collect musculoskeletal 

health data on Canadians as part of Statistics Canada’s nationwide health survey. The 

relative affordability and ability of pQCT to provide precise, tissue-specific estimates of 

adipose content and muscle size make it a compelling tool that could compliment MRI in the 

next generation of muscle, fat, and bone health research. There is growing musculoskeletal 

research interest in the interactions been muscle, fat and bone [284]. Muscle and bone 

tissues have long been known to interact biomechanically [285,286]. Recent studies of the 

coordination of shared paracrine and endocrine signals in the development, aging, and injury 

of these tissues has spurred new research directions in muscle, bone and fat cross-talk, as 

well as integrated approaches to developing treatments for sarcopenia and osteoporosis 

[284].  

 Pharmacological interventions are now turning their focus to the manipulation of 

myostatin levels and the neuromuscular junction [166] to reverse the effects of aging on 

muscle [32]. Relevant to these targets, pQCT has been an effective tool for the study of 

appendicular muscle size and adiposity with respect to muscle torques [126], in relation to 

motoneuron atrophy [46], as well as  spinal cord injury [287] diabetes [48,93,288], frailty 

[45], development of disability [27], fall risk [53], and fractures [54]. By no means a new 

tool, pQCT may still have an important role to play in our understanding of metabolic and 

neuromuscular health in aging.
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Appendix B 
Measurement of Muscle and Fat in Postmenopausal Women: Precision of 
Previously Reported pQCT Imaging Methods. As Published in the Journal Bone. 
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Appendix C  
Calculations for Muscle and Fat Outcomes from Study One 
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The detailed steps of the Stratec XCT and BoneJ analysis protocols for muscle density 

and area, as well as SAT and IMAT area are provided below.  

 

A)! Stratec XCT 

Stratec XCT was intended for bone outcomes and therefore the output will always be 

stated in bone terms (i.e. cortical area, content, and density); however, the values are only 

representative of the tissue corresponding to the thresholds employed. Modifying the 

analysis thresholds to reflect soft tissues (i.e. -40 or 40mg/cm3) is a common feature of 

most XCT soft tissue analyses.  

 

Filtering 

Stratec XCT median filters F03, F05, U01 and U04 are used. Every voxel within a filter’s 

density range is modified to the median value of the NxN mask. Filter F03 is a 3x3 mask that 

acts on voxels in the density range of -500 to 500mg/cm3, F05 a 5x5 mask with a range of -

500 to 300mg/cm3, and U01 a 7x7 mask with a range of -300 to 3000mg/cm3. The U04 

filter is a custom-made 3x3 median filter with a range of 120 to 2000mg/cm3 and is 

available from Bone Diagnostic Inc. [249]. 
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Appendix Table 1: Stratec XCT Image Analysis Loop Settings  
 

Method Outcomes Analysis Step # ROI Threshold Inner 
Threshold 

Contour 
Mode 

Peel 
Mode 

Cortical 
Threshold 

Inner Cortical 
Threshold 

Separation 
Mode Filters 2 

XCT I Muscle Area, 
Density, SAT 
Area 

1 Entire Matrix -40 
 

3 1 
   

F03F05F05 

 
2 Entire Matrix 40 

 
3 1 

   
F03F05F05 

 
3 Entire Matrix 280 

 
1 2 

   
F03F05F05 

            
XCT II Muscle Area, 

Density 
1 Entire Matrix 40 

 
3 1 

   
F03F05 

 
2 Entire Matrix 280 

 
1 2 

   
F03F05 

            
XCT III 

Muscle Area, 
Density 

1 Entire Matrix 40 
 

1 1 
   

F03F05 

 
2 Manual Trace T/R 280 

 
1 2 

    

 
3 Manual trace F/U 280 

 
1 2 

                
XCT IV 

Muscle Area, 
Density, SAT 
Area, IMAT 

1 Entire Matrix -100 40 3 2 149 40 4 F03F05F05 

 
2 Entire Matrix 40 40 31 2 710 40 4 F03F05F05 

 
3 Entire Matrix -100 40 3 2 710 -100 4 

 

 
4 Entire Matrix 40 40 1 2 -100 2000 4 U01U01U01U04 

            
XCT V 

Muscle 
Density 

1 Manual trace Muscle -100 
 

1 2 
    

 
2 Manual Trace T/R -100 

 
1 2 

    

 
3 Manual trace F/U -100 

 
1 2 

                ROI = Region of Interest; T/R = Tibia/Radius; F/U =Fibula/Ulna; Manual Trace indicates that the ROI was traced around the tissue by a technician prior to 
analysis, this is in contrast to methods that use the entire image matrix and rely exclusively on a threshold-driven analysis to segment tissues.   
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Calculations: 

Abbreviations refer directly from Stratec’s XCT output, but reflect tissues corresponding 

to the thresholds applied in Appendix Table 1: 

TOT_A = Total Area (mm2) 

TOT_CNT = Total Content (mg/mm) 

CRTSUB_A = Cortical and Subcortical Area (mm2) 

CRTSUB_DEN = Cortical and Subcortical Density (mg/cm3) 

CRT_A = Cortical Area (mm2) 

CRT_DEN = Cortical Density (mg/cm3) 

TRAB_A  = Trabecular Area (mm2) 

For all calculations “#1-4” denote the analysis step # listed in Appendix Table 1. 

  



 

 126 

Method XCT I 

SAT Area 

#1 TOT_A is skin, SAT, muscle, IMAT, bone and marrow area (mm2) 

#2 TOT_A is muscle, IMAT, bone and marrow area (mm2) 

Equation: 

(#1 TOT_A - #2 TOT_A) *0.01cm2/mm2 = SAT (cm2) 

 

Muscle Area 

#2 TOT_A is muscle, IMAT, bone and marrow area (mm2) 

#3 TOT_A is bone and marrow area (mm2) 

Equation: 

(#2 TOT_A - #3 TOT_A) *0.01cm2/mm2 = Muscle Area (cm2) 

 

Muscle Density 

#2 TOT_CNT is muscle, IMAT, bone and marrow total content (mg/mm) 

#3 TOT_CNT is bone and marrow total content (mg/mm) 

Equation: 

(#2 TOT_CNT - #3 TOT_CNT) *0.1cm/mm = Muscle Content (mg/cm) 

Muscle Content (mg/cm) / Muscle Area (cm2) = Muscle Density (mg/cm3) 
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Method XCT II 

Muscle Area 

#1 TOT_A is muscle, IMAT, bone and marrow area (mm2) 

#2 TOT_A is bone and marrow area (mm2) 

Equation: 

(#1 TOT_A - #2 TOT_A) *0.01cm2/mm2 = Muscle Area (cm2) 

 

Muscle Density 

#1 TOT_CNT is muscle, IMAT, bone and marrow content (mg/mm) 

#2 TOT_CNT is bone and marrow total content (mg/mm) 

Equation: 

(#1 TOT_CNT - #2 TOT_CNT) *0.1cm/mm = Muscle Content (mg/cm) 

Muscle Content (mg/cm) / Muscle Area (cm2) = Muscle Density (mg/cm3) 

Method XCT III 

Muscle Area 

#1 TOT_A is muscle, IMAT, bone and marrow area (mm2) 

#2 TOT_A is tibia or radius bone and marrow area (mm2) 

#3 TOT_A is fibula or ulna bone and marrow area (mm2) 

Equation: 

(#1 TOT_A – (#2 TOT_A + #3 TOT_A)) *0.01cm2/mm2 = Muscle Area (cm2) 
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Muscle Density 

#1 TOT_CNT is the total content of tissues that are not SAT (mg/mm) 

#2 TOT_CNT is the tibia or radius total content (mg/mm) 

#3 TOT_CNT is the fibula or ulna total content (mg/mm) 

Equation: 

(#1 TOT_CNT - (#2 TOT_CNT + #3 TOT_CNT))  *0.1cm/mm = Muscle Content (mg/cm) 

Muscle Content (mg/cm) / Muscle Area (cm2) = Muscle Density (mg/cm3) 

Method XCT IV 

Method IV attempts to correct values that may be distorted by the presence of positive 

and/or negative movement artifacts. Positive movement artifacts are distortions of the 

voxels that cause the density to be higher than they should be, and negative lower. If the 

artifact exceeds a tissue threshold, it can impact the soft-tissue area results. Furthermore 

skin is removed from SAT area. 

SAT Area 

#1 TRAB_A is the skin, SAT, marrow and negative movement artifact area (mm2) 

#2 TRAB_A is the marrow and negative movement artifact area (mm2) 

#4 CRT_A is the skin area (mm2) 

#3 CRT_A is the bone and marrow area (mm2) 

#2 CRT_A is the bone area (mm2) 

Equation: 

(#1 TRAB_A - #2 TRAB_A - #4 CRT_A – (#2 TRAB_A – (#3 CRT_A - #2 CRT_A))) 

*0.01cm2/mm2 = SAT (cm2) 
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Muscle Area 

#2 CRTSUB_A is the muscle, IMAT and bone area (mm2) 

#2 CRT_A is the bone area (mm2) 

#2 TRAB_A is the marrow and negative movement artifact area (mm2) 

#3 CRT_A is the bone and marrow area (mm2) 

Equation: 

(#2 CRTSUB_A – #2 CRT_A + (#2 TRAB_A – (#3 CRT_A – #2 CRT_A)))  

*0.01cm2/mm2 = Muscle Area (cm2) 

 
Muscle Density 

#2 CRTSUB_DEN is the muscle, IMAT, and bone density (mg/cm3) 

#2 CRTSUB_A is the muscle, IMAT and bone area (mm2) 

#1 CRT_A is the bone and positive movement artifact area (mm2) 

#1 CRT_DEN is the bone and positive movement artifact density (mg/cm3) 

Equation: 

((#2 CRTSUB_DEN * (#2 CRTSUB_A / #1 CRT_A)) – #1 CRT_DEN) / ((#2 CRTSUB_A – 

#1 CRT_A) / #1 CRT_A) = Muscle Density (mg/cm3) 

 

IMAT Area 

#3 TRAB_A is the SAT, IMAT, marrow, negative movement area (mm2) 

#1 TRAB_A is the skin, SAT, marrow, negative movement area (mm2) 

#4 CRT_A is the skin area (mm2) 

Equation: 

(#3 TRAB_A – #1 TRAB_A + #4 CRT_A)*0.01cm2/mm2 = IMAT Area (cm2) 
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Method XCT V  

Muscle Area 

#1 TOT_A is the manually traced muscle, IMAT, bone and marrow area (mm2) 

#2 TOT_A is the manually traced tibia or radius bone and marrow area (mm2) 

#3 TOT_A is the manually traced fibula or ulna bone and marrow area (mm2) 

Equation: 

(#1 TOT_A – (#2 TOT_A + #3 TOT_A)) *0.01cm2/mm2 = Muscle Area (cm2) 

Muscle Density 

#1 TOT_CNT is the manually traced muscle, IMAT, bone and marrow area content 

(mg/mm) 

#2 TOT_CNT is the manually traced tibia or radius bone and marrow content (mg/mm) 

#3 TOT_CNT is the manually traced fibula or ulna bone and marrow content (mg/mm) 

Equation: 

(#1 TOT_CNT - (#2 TOT_CNT + #3 TOT_CNT))  *0.1cm/mm = Muscle Content (mg/cm) 

Muscle Content (mg/cm) / Muscle Area (cm2) = Muscle Density (mg/cm3) 
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 B) BoneJ (Method VI) 

The source code [255] and description of the BoneJ outcomes can be obtained online 

[252]. No additional calculations necessary. BoneJ abbreviations are defined below.  

SubCutFatA [cm²] = SAT Area 

MuA [cm²] = Muscle Area 

MuD [mg/cm³] = Muscle Density 

IntraFatA [cm²] = IMAT Area 

 

BoneJ can analyze a batch of images with the appropriate macro, reducing the analysis 

time. We have appended the text, and instructions for use of the batch macro from our 

analysis on the following page. 

BoneJ Image Batch Analysis Macro 

Copy the code on the following page into the ImageJ Macro Text Editor Found in: 

Plugins > New> Macros >  

1) Make sure the text in the macro editor matches the text below. 

2) Replace the file directory and save directory paths with the paths to folders on your 
computer. (Of note, the example file path is for a Macintosh OS,  Windows users will 
need to use the appropriate file path for their system; i.e. C:\filefolder\) 

3) Hit Save 

To Run: 

Plugins> Macros> Select saved macro.txt file 
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macro "Batch Soft Tissue Analysis"{ 

 setBatchMode(true); 

 sourceDir = "/Users/imagefolder/"; //Replace this path with 
the path to the folder containing Stratec “.M01 or 02, 03, etc.” 
image files on your computer 

 visualDir = "/Users/imageexport/"; //Replace this path with 
the path to where you want to save the visualization images on 
your computer 

 parameterString = " air_threshold=-40.0 fat=40.0 
muscle_threshold=40.0 marrow_threshold=80 
soft_tissue_threshold=140 rotation_threshold=169.000 
area=550.0000 bmd=690.0000 roi_selection=Bigger 
soft_tissue_roi_selection=Bigger 
rotation_selection=According_to_Imax/Imin 
analyse_density_distribution analyse_soft_tissues 
suppress_result_image set_distribution_results_rotation_manually 
manual_rotation_[+-_180_deg]=90.0000 
save_visual_result_image_on_disk image_save_path="+visualDir; 

 files = getFileList(sourceDir); 

 for (i = 0; i<files.length;++i){ 

  showProgress(i+1, files.length); 

  run("Stratec pQCT", "select="+sourceDir+files[i]); 

  run("Distribution Analysis", parameterString); 

  close(); 

 } 

 setBatchMode(false); 

} 
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Appendix D 
Example: Calculating of Relative (CV%RMS) and Absolute (SDRMS) Precision Error
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  A B C D E 
1  Measure 1 Measure 2  Mavg Δmean Δmean^2 
2 Participant 1 25.5 26.1 25.81 -0.63 0.39 
3 Participant 2 30.2 31.9 31.07 -1.70 2.89 
4 Participant 3 18.8 20.8 19.80 -2.01 4.03 
5 Etc., … … … … … 
6  

 
Average 25.56 SDRMS 1.10 

7  
   

CV%RMS 4.32 
  

      Gluer 
Equation # 

[118] 
      C2-5 AVERAGE(A2:B2) 

    C6 AVERAGE(C2:C5) 
    D2-5 (A2-B2) 
    E2-5 D2^2 
   4b E6 (SDRMS) SQRT(SUM(E2:E5)/(2*COUNT(E2:E5))) 

 5 E7 (CV%RMS) (E6/C6)*100 
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Appendix E 
Copyright Permissions for the Reprint and use of Published Figures 
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Figure 2: Komolka et al. [122]              
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Figure 3: Lang et al. [30] 
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Figure 5: Blew et al. [108] 
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