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Abstract: When considering the addition of a mobile presentation channel to 
an existing web-based application, project managers should know how the 
mobile channel’s characteristics will impact the user experience and the cost  
of using the application, even before development begins. The PETTICOAT 
(Performance Tuning and cost discovery of mobile web-based Applications) 
approach presented here provides decision-makers with indicators on the 
economical feasibility of mobile channel development. In a nutshell, it involves 
analysing interaction patterns on the existing stationary channel, identifying 
key business processes among them, measuring the time and data volume 
incurred in their execution, and then simulating how the same interaction 
patterns would run when subjected to the frame conditions of a mobile channel. 
As a result of the simulation, we then gain time and volume projections  
for those interaction patterns that allow us to estimate the costs incurred by 
executing certain business processes on different mobile channels. 
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1 Introduction 

As thin-client applications, web-based applications have the advantage of independence 
from the user and his preferred device. Only the existence of a browser and a suitable 
network connection are needed. Thus, web-based applications seem to be convenient for 
mobile use. But in hands-on trials of such scenarios, the response time of the application 
is often notably worse compared to its use in a LAN environment. Furthermore, the 
communication costs are hard to predict. An organisation that plans to provide mobile 
access to its existing web-based applications for a large group of mobile workers needs 
detailed information about response times and estimated cost of the application in a 
mobile environment before investing any effort in building it. Therefore, the expected 
response time, as well as the expected cost of the application on different mobile 
networks needs to be quantified at an early stage. With PETTICOAT (Performance 
Tuning and cost discovery of mobile web-based Applications), we present a method that 
can be used for this purpose. 

The PETTICOAT method can be used by software developers as well as software 
project managers. After compiling all necessary information, a tool calculates indicators 
that reveal the application’s response time and communication costs in the mobile 
environment. This way, decisions on the development of a mobile channel for an 
application can be based on quantitative arguments. If the application is classified as not 
immediately suitable for mobile use, decision-makers can use the detailed results to 
consider whether it is reasonable to address particular deficits in the application’s design 
revealed by the simulation. This optimisation can be conducted for single features or the 
whole application. 

In this paper, we describe how the PETTICOAT method was employed in a case 
study that we performed in cooperation with an insurance company. The following 
section presents each step of the method in detail. Using examples from the case study, 
we show how to model the application structure as a dialogue flow (Section 2.1), identify 
typical interaction sequences within the application (Section 2.2), measure the time and 
data volume in the existing application (Section 2.3), specify the mobile channels’ 
characteristics (Section 2.4), simulate the application’s interaction sequences on different  
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mobile channels and evaluate the response times and cost implications of the observed 
time and data volume (Section 2.5). After an overview of the related work in Section 3, 
Section 4 provides a short summary and outlines ongoing and future work in this area. 

2 The PETTICOAT method 

The PETTICOAT method provides decision makers with indicators on the economical 
feasibility of mobile channel development. In a nutshell, it involves identifying 
interaction sequences in a dialogue flow model of the existing application, measuring the 
time and data volume incurred in their execution (either by analysing web server log files 
or observing real-time traffic), and then simulating how the same interaction sequences 
would perform when subjected to the frame conditions of a mobile channel. As a result of 
the simulation, we gain time and volume projections for the interaction sequences that 
allow us to estimate the cost incurred by working with the application on different mobile 
channels (Figure 1). 

Figure 1 The PETTICOAT method 

The following subsections present these steps in more detail and illustrate them with 
excerpts from a case study we performed for an insurance company. In that project, we 
applied the PETTICOAT method to the prototype of a new web-based offer management 
system in order to estimate the cost that will be incurred each month by insurance agents 
accessing the system over mobile networks such as GSM, GPRS and UMTS. 
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2.1 Modelling the dialogue flow 

As a basis for our analysis, we need a model of the application’s complete dialogue 
structure. We use the Dialog Flow Notation (DFN) (Book and Gruhn, 2004) for this 
purpose. This graphical notation models an application’s dialogue flow as a directed 
graph of states that are connected by transitions. We call the transitions ‘events’ and the 
states ‘dialogue elements’, distinguishing ‘masks’ (web pages rendered on the client) and 
‘actions’ (business logic executed on the server). Events can carry parameters that 
transport business data, such as form input. 

2.1.1 Manual dialogue graph specification 

By building dialogue graphs from masks, actions and events, the developer can specify 
all possible user interactions with the application. To increase the expressive power of the 
specification, parts of a dialogue graph can be encapsulated in ‘dialogue modules’ that 
can be reused in different contexts within the same application by nesting them into the 
dialogue flow at arbitrary levels. This allows the developer to build complex dialogue 
structures that closely mirror the users’ mental model of the complex business processes 
supported by large-scale web applications. 

While the notation may seem suitable only for static websites with a finite number of 
pages at first sight, it can model database-driven websites with dynamically generated 
pages just as well, if we assume that one mask represents a class of similar page instances 
that are all embedded in the same navigational structure (for example, in an online shop, 
we do not need to model individual masks for each product, but just one Product Details 
mask that can show the details of any product). Note, however, that a different modelling 
approach would be needed for more complex GUIs rendered using AJAX, applets or 
other technologies, since those rely on a different interaction paradigm and thus produce 
different communication patterns. 

As an example, Figure 2 shows the dialogue graph of the offer management system 
analysed in the case study. Since we were looking at a rather simple prototype, the model 
does not make use of the DFN’s dialogue modularisation capabilities and comprises only 
seven dialogue masks connected through a number of actions that implement various 
business operations, an exemplary selection of which is shown in Table 1. Field staff 
users enter the application through the initialise system action (0), which leads to the 
Search Transaction Form mask (A) where they can look up, create or edit transactions. 
Using the other masks and actions, transactions can be associated with insurance agents, 
insurance holders and policy offers. 

In order to use these graphical specifications as input for the following steps, they can 
be automatically translated into the XML-based Dialog Flow Specification Language 
(DFSL) (Book and Gruhn, 2004). However, we do not show this straightforward 
conversion step here for the sake of brevity. 
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Figure 2 Dialogue graph of the offer management system 

Table 1 Masks and actions of the offer management system (excerpt) 

Mask identification Content 

A Search Transaction Form 

B Edit Transaction Form 

C Associate Agent Form 

D Create Agent Form 

E Associate Insurance Holder Form 

F Create Insurance Holder Form 

G Edit Offer Form 

Action identification Function 

0 Initialise system 

2 Search transactions 

4 Prepare transaction for editing 

6 Prepare offer for editing 

… … 

26 Expand transaction elements 

27 Collapse transaction elements 

28 Load documents 

29 Browse transaction elements 

30 Process offer modifications 

A2 B4
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25 26

27

28
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G 30
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2.1.2 Automatic dialogue graph reconstruction 

Since the PETTICOAT method is typically employed to assess existing applications that 
were built without using the DFN, modelling their dialogue graphs a posteriori may be a 
tedious task. However, this work can be supported by the automatic reconstruction of the 
dialogue graph from information found in web server access log files. For each request, 
these log files record (if configured properly) the URL of the requested page, the URL of 
the previous (referring) page, and information that can be used to associate requests with 
user sessions. In principle, we could iterate over the log file entries and populate the 
dialogue graph with a mask for each requested page and an event for each referral from 
one page to another within the same user session. 

In practice, this approach does not work quite as smoothly because the information in 
the log files is not unambigous: For one thing, if no unique session identifier is included 
in the log entries, we need to rely on heuristics, such as a combination of the user agent 
name and the IP address found in the log entry in order to identify sessions, which may 
not be entirely accurate. As a second and much harder challenge, the URL recorded in the 
log file may not clearly identify the page that is ultimately presented to the user, since it 
usually points to some processing logic (e.g., a user authenticity check) that may deliver 
different pages based on the processing outcome (e.g., a ‘login successful’ or ‘login 
failed’ page). 

In order to identify these pages unambiguously, we need to capture additional 
information in the log files. This can be accomplished either by inserting tiny transparent 
images with unique URL parameters into the delivered pages, which inject additional 
requests into the web server log files containing the desired information, or by identifying 
the selected page at a suitable central point just before it is delivered (e.g., within the 
application’s dialogue control logic, or in a filter intercepting all responses going out to 
clients) and recording the information in a separate log file. The choice between these 
methods depends on the architecture of the application – generally, developers should 
aim to keep to a minimum the required level of invasion into the existing logic in order to 
minimise the development effort and risk of introducing errors. 

One might argue that even when the challenges of unambiguous page and session 
identification are addressed, the automatically reconstructed dialogue flow model may 
not be complete, i.e., it may not comprise all possibilities for navigation that are offered 
by the application, if those were not recorded in the web server log files (e.g., if a certain 
link was never used, the respective request was never logged). However, for the purpose 
of the PETTICOAT method, this is not a problem since we are only interested in those 
paths that users actually traverse, anyway. It is also likely that the auto-generated 
dialogue flow model will have to be manually cleaned up a bit before being used for 
further processing, since it may contain redundant events or ‘loose ends’ that are 
introduced by prematurely terminated sessions, discontinuities in the referral chain 
caused by backtracking, or semantic considerations that are not apparent from the raw log 
entries. However, we believe that this manual vetting will require less effort than 
specifying the complete dialogue graph of a complex web application from scratch. 
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2.2 Identifying interaction sequences 

The dialogue graph of an application specifies all possible ways of interaction that the 
user interface allows. Since the same business process may be accomplished in a number 
of similar, but still different ways, there will typically be some more and some less 
frequently traversed paths through the dialogue graph (called ‘interaction sequences’ 
from now on). To arrive at a representative cost projection for the business processes 
performed with the application, we therefore need to analyse the actual interaction 
sequences that occur in the application. By identifying the sequences that the users 
traverse most frequently, we can later weigh the cost they incurred, accordingly. 

In the case study, we identified and analysed 15 interaction sequences (i.e., subsets  
of the whole dialogue graph), based on the tasks that users can perform in the offer 
management system. In web-based systems, every possible way through the application 
could be defined as one interaction sequence. The restriction to the 15 most important 
interaction sequences was requested by the company that developed the mobile 
application we evaluated. Decisive factors for the restriction were the importance of  
a sequence for completion of a business process and the number of recurrences in a  
given period. To extend the scope of our analysis, we could also have looked for further 
interaction sequences in the web server log files that were performed frequently by users, 
even though they did not lead to completion of a task – those sequences would then hint 
at usability problems in the application. By analysing those unsuccessful sequences, too, 
we could determine how much (unnecessary) cost they incur. 

As an example, Figure 3 shows the sequence for finding a transaction, browsing its 
elements and editing the associated offer. The events in this sequence are annotated with 
probabilities to reflect the different possibilities of executing this business process. Since 
a user’s interaction steps are not isolated from each other, but depend on the history of his 
interactions, these probabilities are conditional: In the notation, we first note the 
probability of a user following this event, and then (after a vertical bar) note which action 
the user must have executed before as a condition for this probability. For example, from 
mask A, there is a 1.0 probability that the user will execute action 2 under the condition 
that he executed action 0 before, but a 0.5 probability that he will execute action 2 if  
he already executed that action before. In other words, if the user just entered the 
application, he will definitely use the search feature, but if he already searched for a 
transaction, there is only a 50% probability that he will use the search feature again. 
Rather, there is also a 50% probability that he will proceed to edit the transaction he 
found (denoted by the 0.5 | 2 probability for the event leading to action 4). For events 
without annotation, the implicit probability of traversal is 100%, regardless of the 
previously executed action. 

Obviously, the events’ probabilities may depend on a longer history than just the last 
executed action. For those cases, our interaction model allows the specification of 
preconditions comprising multiple previous actions. We are currently investigating the 
level of history that needs to be incorporated into this model in order to achieve 
sufficiently accurate approximations of the users’ behaviour. 
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Figure 3 Interaction sequence for finding and editing an offer associated with a transaction 

In our case study, the probabilities were estimated based on practical considerations. 
Alternatively, a more realistic probability model can be obtained by evaluating user 
tracking information that is routinely collected in web server log files (Pitkow and Pirolli, 
1999). This can be accomplished through an algorithm similar to the one used to 
reconstruct the application’s dialogue graph in the previous step: First, we manually need 
to define the masks and events that a certain business process comprises (e.g., A, B, G 
and their connecting actions and events in the example in Figure 3). This step cannot be 
automated since it requires knowledge of the masks’ and events’ semantics, which cannot 
be deduced from the log files. After this, we can automatically iterate over the log files, 
looking for patterns that mirror the possible paths through the defined interaction 
sequence. In the process, we count the frequency of each observed variation of the 
interaction sequence (e.g., 0-A-2-A-4-B versus 0-A-2-A-2-A-4-B), and calculate the event 
probabilities and preconditions from these findings (for the sake of brevity and focus on 
the overall PETTICOAT approach, we will not go into further detail on the details and 
challenges of this algorithm here). 

While it is helpful to visualise the resulting interaction sequences graphically as in 
Figure 3 during the conceptualisation phase of the study, they ultimately need to be 
converted to a machine-readable format in order to be processed by the simulation tool. 
We use a variation of the DFSL for this purpose. The resulting sequence specification 
also contains estimates on how often each sequence will be executed by each user each 
month, which will be used towards the end of the simulation in order to calculate the 
approximate monthly cost of executing all sequences. 

2.3 Measuring data volume and time 

As mentioned in the introduction, the two main factors influencing the cost of interaction 
with an application over a mobile channel are the time spent online and the data volume 
transmitted. To project these metrics for mobile channels, we measure them on the 
existing stationary channel and then input them into the simulation. 
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There are a few challenges in the details of this measurement process, however. Most 
importantly, for the volume measurement, we need to distinguish between static and 
dynamic content. While static content (such as images) always incurs the same volume 
(apart from caching effects, which can be accounted for in the simulation), dynamic 
content (such as search result pages) can produce a different volume for each request. To 
obtain accurate estimates, we need to deduce a probability distribution or an average 
value from the accumulated volume data. Also, web server log files only log the net 
volume of the content, but not any overhead introduced on lower levels of the protocol 
stack that nevertheless does count for billing purposes. This overhead can either be 
ascertained by observing the data flow directly on a sufficiently low protocol level 
instead of relying on server log files, or by factoring it into the simulation in close 
accordance with the respective protocol specifications. 

In our case study, we used a simple HTTP traffic listener to obtain the necessary data. 
The characteristics of each web page, image, etc., were described in an XML-based 
format where each of those ‘web elements’ is represented by a WebElement tag that 
contains tags for its various attributes: Tags starting with Request or Response, for 
example, contain the data volume incurred for the request and the response of the web 
element in bytes, depending on whether the web server configuration allows HTTP 
compression or not. The Inlines tag contains references to web elements such as 
images included in a page. For each of these, we can specify the offset of their include 
point on the page (i.e., the number of bytes of the parent web element that need to be 
loaded before the inline web element is requested by the browser). As an example, the 
document excerpt in Figure 4 shows the description of the Search Transaction Form 
mask in our case study. 

Figure 4 Web element specification for Search Transaction Form mask 

 

<WebElement> 
  <ID>A</ID> 
  <Desc>Search Transaction Form</Desc> 
  <ElementType>text/html</ElementType> 
  <Cache>0</Cache> 
  <RequestUncomp>750</RequestUncomp> 
  <RequestComp>500</RequestComp> 
  <ResponseUncomp>9000</ResponseUncomp> 
  <ResponseComp>3000</ResponseComp> 
  <Inlines> 
    <Inline> 
      <WebElementID>100</WebElementID> 
      <OffsetComp>1200</OffsetComp> 
      <OffsetUncomp>5000</OffsetUncomp> 
    </Inline> 
  </Inlines> 

</WebElement> 
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To measure the time it takes to complete an interaction sequence, a number of 
contributing factors need to be considered. The total time a user spends online is the  
sum of user activity (e.g., filling in forms), upstream and downstream transmission  
time, channel latency and server processing time. To accurately distinguish all these 
contributing factors, we would need synchronised timing on both the server and the 
client, which is hard to guarantee. Fortunately, however, only the user and server activity 
matter for the subsequent simulation, since the observed transmission time and latency 
already depend on the stationary channel that we measured on. We can thus deduct them 
from the overall time during the simulation based on our knowledge of the stationary 
channel characteristics and volume transmitted. This way, we are left with the user and 
server activity time, to which we can add the newly calculated transmission time and 
latency based on the mobile channel’s characteristics. Alternatively, if we are measuring 
on a channel with very high bandwidth (e.g., an Ethernet), we can just measure the time 
difference between sending a response to the client and receiving the next request on the 
server, and regard this interval as the user activity time, since the included transmission 
time (typically a fraction of a second) is much shorter than the user activity (typically 
quite a few seconds) in comparison and can thus be neglected. 

In preparation for the following steps of the PETTICOAT approach, the measured 
timings are specified for each action, i.e., each transition between masks, in an  
XML-based format similar to the one shown in Figure 4. 

2.4 Defining channel profiles 

Besides the description of the application’s interaction patterns, mask and action 
characteristics, we still need a detailed specification of the target (usually wireless) 
network environment, since different wireless networks have different characteristics 
regarding bandwidth, latency, pricing, etc. We define these characteristics in XML-based 
‘channel profiles’ for each network that shall be considered in the simulation. In our case 
study, we defined 16 channels, including different compression variants for GSM, 
HSCSD, GPRS and UMTS networks. The tool also considers the effects of fluctuating  
signal strength. Each profile contains the gross uplink and downlink bandwidth in bit/s, 
network latency for wired and wireless networks, and the average ratio of gross data and 
content data. In addition to these data describing the physical network characteristics, a 
channel profile contains several attributes for packet and compression characteristics 
describing HTTP, TCP and IP protocols. Furthermore, the network provider’s rates for 
volume-based and time-based billing are contained in the profile description.  

Thus, different assumptions about the quality of reception, use of compression 
algorithms, certain protocol features, or provider’s rates result in different channel 
profiles. Channel profiles are stored in XML documents and can be edited by the user in 
the simulation tool, as illustrated by the definition of a GPRS 53.6 channel profile with 
data compression under the assumption of medium reception in Figure 5. 

The rates in the case study were based on pricing plans of a German 
telecommunications provider. Channel and protocol characteristics were defined based on 
the respective technical specifications, and a number of profile variants for different 
connection quality levels were defined for each channel, based on estimates and provider 
information. Note that the accuracy of the simulation results could be improved further 
by defining channel profiles based on parameter measurements in the target environment, 
rather than drawing them from the specifications. 



   

 

   

   
 

   

   

 

   

   264 M. Book, V. Gruhn, M. Hülder and A. Köhler    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Specification of channel characteristics in the simulation tool 

2.5 Simulation of interaction sequences on different channels 

In order to perform the simulation, our tool requires the XML documents produced in  
the previous steps as input, i.e., the application profile that contains the web elements  
and their volume data, the actions and their timing data, and the sequences with their 
probability and frequency data; and also the channel profiles containing the bandwidth, 
latency and pricing characteristics. 

Using this input, the simulation tool works in three steps that will be described in 
detail in the following sections: 

1 The simulator begins each interaction sequence at its entry point. Taking into 
account the branching probabilities, it then simulates the time it takes to load each 
mask in the sequence, considering the inline element offsets, which incur latency and 
traffic that delay the completion of the mask. This step already yields insights into 
usability problems that may be caused by unacceptably high response times. 

2 The results for each interaction step of a sequence are accumulated, taking the user’s 
idle time between interactions into account. 

3 The results for each interaction sequence are multiplied by its estimated frequency 
per user and month. Summing up the results finally yields the projected 
communication costs of the application per user and month. 
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2.5.1 Simulation of interaction steps 

The simulation results for the response times of the actions (i.e., the transitions between 
the masks) in the interaction sequence shown in Figure 3 on a selection of channels are 
given in Figure 6. The diagram clearly shows that the use of a client-side cache (actions 
marked ‘with cache (w/c)’) significantly reduces the response time in contrast to 
executing the same sequence without a cache (marked ‘no cache (n/c)’). However, it may 
still be relevant to investigate an application’s response time without a cache since not all 
mobile platforms provide sufficient cache memory. 

Figure 6 Simulation results for response times 

From Figure 6, we can also determine that only the UMTS channel with enabled browser 
cache supports answering times of less than three seconds for this application and thus 
provides adequate usability (if we follow Shneiderman’s (2002) rule that response times 
for simple actions should not exceed one second, while the maximum response time for 
standard actions is four seconds). 

Figure 6 also indicates that in our case study, the response times on the GPRS channel 
are longer than those on the GSM or HSCSD channel (using the identical compression 
and caching mechanism). This may come as a surprise, as GPRS may provide three to 
four times the bandwidth of a GSM 14.4 channel. On the other hand, GPRS has a 
network latency of about two seconds, so any request is delayed by about two seconds 

GSM 14
.4

GSM 14
.4 

(TC)

GSM 14
.4 

(H
C)

GSM 14
.4 

(H
C+TC

)

HSCSD (H
C+T

C)

GPRS (T
C)

GPRS (H
C)

GPRS (H
C+T

C)

UMTS (H
C+T

C) 0 w/c

2 w/c

4 w/c

6 w/c

26 w/c

27 w/c

28 w/c

29 w/c

30 w/c

0 n/c
2 n/c

4 n/c
6 n/c

26 n/c

27 n/c

28 n/c

29 n/c

30 n/c

0

3

6

9

12

15

18

21

24
Time [s]

Channels

Actions



   

 

   

   
 

   

   

 

   

   266 M. Book, V. Gruhn, M. Hülder and A. Köhler    
 

    
 
 

   

   
 

   

   

 

   

       
 

before the transmission of the requested data actually begins. By that time, the requested 
data would already have reached the recipient on the GSM channel. Only if the cache is 
deactivated, the GPRS channel can make up for the latency with its higher bandwidth. 

Other, more complex timing constraints than the above-mentioned three-second 
response time rule are also conceivable. For example, we could define the constraint that 
mask n has to be loaded within t seconds after leaving mask m. The results gained in the 
simulation may then indicate which masks are responsible for failing the constraints and 
need to be optimised. If no redesign seems feasible, the application cannot be used on  
the simulated channel with the specified constraints. For example, in our case study,  
the results on the GPRS channel indicate that a redesign should particularly focus on 
embedding inline elements at the top of a mask, so that requests for these elements can be 
sent earlier by the browser, and the network latency is mitigated by the remainder of the 
page still being loaded in parallel. 

2.5.2 Simulation of interaction sequences 

In the second step, the simulation tool sums up the results for the individual steps in a 
sequence gained in the first step. It also adds the user’s estimated idle time to simulate 
how long a user works with a mask on average before the next mask is requested. This 
way, the tool determines how long it typically takes to execute a whole interaction 
sequence on a channel (taking the different probabilities for the sequence variants into 
account), and how many bytes are transferred in the process. Using the providers’ rates 
specified in the channel profiles, the tool can then calculate the cost of performing each 
interaction sequence on each channel. 

In Table 2, an excerpt of the results gained for a selection of channels and sequences 
from our case study is given. For each of the available channels (GSM, HSCSD, GPRS 
and UMTS), four simulations were carried out using no compression, HTTP compression 
(by the web server), transfer compression (by the carrier), and both HTTP and transfer 
compression. Sequence 4 denotes the process of a user creating a new policy offer, which 
has to be associated with an existing insurance agent and a new insurance holder. 
Sequence 11 represents the process of creating a new policy offer by copying an existing 
one. Finally, sequence 12 contains the results for finding and editing a policy offer, as 
shown in Figures 3 and 6. For each channel/sequence combination, the table contains the 
time taken to execute the whole sequence, the total amount of kilobytes transferred in the 
process, and the cost incurred under a time- and volume-based pricing plan on the 
respective channel. Since volume-based billing is not available for GSM and HSCSD 
channels, the respective fields remain blank. 

The results indicate that the use of data compression reduces the data volume to 
roughly a third of the uncompressed volume, resulting in lower transmission times. It is 
important to note, however, that when using transfer compression, the carrier will charge 
for the uncompressed data volume. HTTP compression thus seems to be the better choice 
for volume-based pricing plans, as only the reduced data volume is billed. This effect can 
be observed, e.g., when comparing the results for scenario 11 (with and without cache) on 
the GPRS channel with transfer versus HTTP compression. A volume-based plan also 
allows for more flexibility regarding idle times, since longer client-side activities before 
requesting the next mask are not billed. On the other hand, transfer compression seems to 
be the best choice for time-based plans, because it yields the shortest transfer times  
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resulting in lower charges. Combining both transfer and HTTP compression may 
combine their advantages, but because of a greater overhead and slightly longer 
execution time on the web server, this combination may not yield the lowest cost 
regarding time and/or volume. 

Table 2 Simulation results for performing interaction sequences on different channels (excerpt) 
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4 w/c Time [s] 81,4 62,9 75,2 76,1 74,6 52,0 

  Volume [kB] 61 22 62 22 23 22 

  Charge (t) [€] 0,41 0,28 0,13 0,13 0,12 0,09 

  Charge (vol) [€] – – 0,06 0,02 0,02 0,02 

4 n/c Time [s] 206,2 76,5 89,2 90,6 88,6 58,7 

  Volume [kB] 292 109 293 109 109 109 

  Charge (t) [€] 1,03 0,34 0,15 0,15 0,15 0,10 

  Charge (vol) [€] – – 0,29 0,11 0,11 0,11 

11 w/c Time [s] 185,4 129,0 156,2 160,5 154,4 110,2 

  Volume [kB] 143 41 137 42 41 43 

  Charge (t) [€] 0,93 0,58 0,26 0,27 0,26 0,18 

  Charge (vol) [€] – – 0,13 0,04 0,04 0,04 

11 n/c Time [s] 420,8 165,3 191,4 203,4 199,5 124,7 

  Volume [kB] 580 220 566 221 222 212 

  Charge (t) [€] 2,10 0,74 0,32 0,34 0,33 0,21 

  Charge (vol) [€] – – 0,55 0,22 0,22 0,21 

12 w/c Time [s] 210,1 149,1 191,0 184,7 182,9 129,9 

  Volume [kB] 150 43 152 45 45 45 

  Charge (t) [€] 1,05 0,66 0,32 0,31 0,31 0,22 

  Charge (vol) [€] – – 0,15 0,04 0,04 0,04 

12 n/c Time [s] 467,5 193,8 222,4 223,8 217,3 150,8 

  Volume [kB] 621 236 620 226 223 230 

  Charge (t) [€] 2,34 0,87 0,37 0,37 0,36 0,25 

  Charge (vol) [€] – – 0,61 0,22 0,22 0,23 
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2.5.3 Simulation of monthly usage 

In the final simulation step, the tool uses the results gained so far to project the total  
cost that will be incurred when one user works with all interaction sequences in the 
application over the course of one month. This enables project managers to estimate the 
total communication costs that can be expected on all channels, and decide if the addition 
of a mobile channel will pay off. 

For our case study, the final results indicated that a UMTS channel with combined 
transfer and HTTP compression and a volume-based pricing plan is the best option. This 
scenario would incur an estimated monthly cost of €55.11 per user. A volume-based plan 
on a GPRS channel with transfer and HTTP compression costs only €54.94 per user and 
month, but exhibits worse usability owing to the longer response times brought about by 
high network latency, as Figure 6 illustrated. Since UMTS is currently not available all 
over the country, GPRS can still be recommended as a suitable backup solution with 
limited usability. The time-based plans for the HSCSD and GSM channel would result in 
monthly costs of €298.35 and €421.19 per user, respectively, with both using only 
transfer compression, since the combination of transfer and HTTP compression would be 
even more expensive in total. 

3 Related work 

The PETTICOAT approach employs a number of techniques from the web usage and 
web data mining fields, as described by Cooley (2003), Srivastava et al. (2000) and 
Kosala and Blockeel (2000). Dutta et al. (2001) show how frequent and thus critical user 
paths can be identified in e-commerce applications. The authors provide a model of  
the user behaviour in the form of session graphs and conduct analyses regarding the most 
frequently used user paths as well as critical edge sequences. This technique could be 
quite useful for our approach, because the identification of the most frequently used 
subset of all possible user paths in the application model is needed.  

Furthermore, there are many approaches for web log analysis aimed at classifying 
user paths (e.g., Spiliopoulou, 2000; Berkhin et al., 2001; Kim et al., 2004; Heer and  
Chi, 2002; Chi et al., 2000; Gillenson et al., 2000). Especially, the identification of long 
sequences described by Pitkow and Pirolli (1999) seems to be an important topic for the 
PETTICOAT concept. The identification of actually chosen user paths versus all possible 
user paths in the application model is needed in order to obtain meaningful results from 
the following simulation. In this context, the work of Mao et al. (2001) is of specific 
interest. They present a notion for a cluster-based online monitoring system for web 
traffic. The target-oriented analysis of web traffic is a task to be solved within the 
PETTICOAT approach. 

As PETTICOAT particularly addresses the analysis of dynamic web applications 
instead of static web pages, the analysis of web traffic is even more difficult. This 
problem is addressed, e.g., by Berendt and Spiliopoulou (2000), which deals with 
dynamic web content generation and website analysis. 

Other approaches to improving the performance of web-based applications have 
focused on using thin clients to transmit just the image of the application (see e.g., Lai  
et al., 2004). The findings of this work are of relevance to the deduction of consequences 
(application design, bandwidth restriction) based on the simulation results. In this 
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context, Bent et al. (2004) and Krishnamurthy and Wills (2000) report interesting results 
from an analysis of large websites regarding performance, cache and cookie issues. These 
results could be used for the creation of a package of measures in order to modify the 
analysed website regarding performance issues in the mobile environment. 

4 Conclusion and future work 

In this paper, we have shown a method for assessing the response times and 
communication costs of adding mobile channels to an existing web-based application.  
As illustrated by the case study, the results of the simulation indicate if an existing 
application can be accessed efficiently on certain mobile channels, and provide clues on 
how the application may have to be optimised for shorter response times. The simulation 
also provides an estimate of the cost of using the application on various mobile channels, 
which is a valuable factor in deciding if the introduction of a mobile channel will pay off 
for an organisation in the future. 

In our ongoing work, we currently focus on the automated analysis of web 
applications to simplify the initial steps of the PETTICOAT method. This includes 
deriving the dialogue flow model and the probabilities and frequencies of typical 
interaction sequences from the data contained in web server log files, rather than 
modelling them manually. Further research will comprise refinements of the probabilistic 
model for the interaction sequences and a more detailed specification of mobile channel 
characteristics and billing schemes in order to increase the accuracy of the estimates, and 
thus the quality experienced by users when accessing web-based applications through 
mobile channels. 
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