

 254 Int. J. Web Engineering and Technology, Vol. 3, No. 3, 2007

 Copyright © 2007 Inderscience Enterprises Ltd.

Performance tuning and cost discovery of mobile
web-based applications

Matthias Book*, Volker Gruhn, Malte Hülder
and André Köhler
Department of Computer Science
University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany
E-mail: book@ebus.informatik.uni-leipzig.de
E-mail: gruhn@ebus.informatik.uni-leipzig.de
E-mail: huelder@ebus.informatik.uni-leipzig.de
E-mail: koehler@ebus.informatik.uni-leipzig.de
*Corresponding author

Abstract: When considering the addition of a mobile presentation channel to
an existing web-based application, project managers should know how the
mobile channel’s characteristics will impact the user experience and the cost
of using the application, even before development begins. The PETTICOAT
(Performance Tuning and cost discovery of mobile web-based Applications)
approach presented here provides decision-makers with indicators on the
economical feasibility of mobile channel development. In a nutshell, it involves
analysing interaction patterns on the existing stationary channel, identifying
key business processes among them, measuring the time and data volume
incurred in their execution, and then simulating how the same interaction
patterns would run when subjected to the frame conditions of a mobile channel.
As a result of the simulation, we then gain time and volume projections
for those interaction patterns that allow us to estimate the costs incurred by
executing certain business processes on different mobile channels.

Keywords: web engineering; mobile communications; cost estimation.

Reference to this paper should be made as follows: Book, M., Gruhn, V.
Hülder, M. and Köhler, A. (2007) ‘Performance tuning and cost discovery
of mobile web-based applications’, Int. J. Web Engineering and Technology,
Vol. 3, No. 3, pp.254–270.

Biographical notes: Matthias Book is a doctoral candidate at the University of
Leipzig. He holds a Diploma in Applied Computer Science from the University
of Dortmund. His research interests are the development of the Dialog Flow
Notation (DFN) for the specification of modular dialogue flows in web-based
applications and the Dialog Control Framework (DCF) for the control of such
dialogue flows on presentation channels such as desktop and mobile devices.

Volker Gruhn holds the Deutsche Telekom Chair of Applied Telematics
and e-business at the University of Leipzig. Previously, he worked at the
Fraunhofer Institute for Software and Systems Engineering (ISST), and later
was a Professor at the University of Dortmund. He is a founder and Chairman
of the supervisory board of the Dortmund-based adesso AG. Gruhn is
author and co-author of about 120 national and international publications. His
research interests include agile and model-driven methods for the development
of distributed and mobile e-business applications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Performance tuning and cost discovery of mobile web-based applications 255

Malte Hülder is a doctoral candidate at the University of Leipzig. He holds
a Diploma in Computer Science from the University of Dortmund, where he
also previously worked as a Research Associate. His research interests are
in the area of mobile applications, especially hybrid connectivity for
always-online applications.

André Köhler is a doctoral candidate at the University of Leipzig. He holds
a Diploma in Business Information Systems from the University of Leipzig.
His research focus is on Mobile Process Landscaping, a method for the
systematic analysis of distributed process landscapes and the identification of
potential for process optimisations that can be accomplished through the use
of mobile technologies.

1 Introduction

As thin-client applications, web-based applications have the advantage of independence
from the user and his preferred device. Only the existence of a browser and a suitable
network connection are needed. Thus, web-based applications seem to be convenient for
mobile use. But in hands-on trials of such scenarios, the response time of the application
is often notably worse compared to its use in a LAN environment. Furthermore, the
communication costs are hard to predict. An organisation that plans to provide mobile
access to its existing web-based applications for a large group of mobile workers needs
detailed information about response times and estimated cost of the application in a
mobile environment before investing any effort in building it. Therefore, the expected
response time, as well as the expected cost of the application on different mobile
networks needs to be quantified at an early stage. With PETTICOAT (Performance
Tuning and cost discovery of mobile web-based Applications), we present a method that
can be used for this purpose.

The PETTICOAT method can be used by software developers as well as software
project managers. After compiling all necessary information, a tool calculates indicators
that reveal the application’s response time and communication costs in the mobile
environment. This way, decisions on the development of a mobile channel for an
application can be based on quantitative arguments. If the application is classified as not
immediately suitable for mobile use, decision-makers can use the detailed results to
consider whether it is reasonable to address particular deficits in the application’s design
revealed by the simulation. This optimisation can be conducted for single features or the
whole application.

In this paper, we describe how the PETTICOAT method was employed in a case
study that we performed in cooperation with an insurance company. The following
section presents each step of the method in detail. Using examples from the case study,
we show how to model the application structure as a dialogue flow (Section 2.1), identify
typical interaction sequences within the application (Section 2.2), measure the time and
data volume in the existing application (Section 2.3), specify the mobile channels’
characteristics (Section 2.4), simulate the application’s interaction sequences on different

 256 M. Book, V. Gruhn, M. Hülder and A. Köhler

mobile channels and evaluate the response times and cost implications of the observed
time and data volume (Section 2.5). After an overview of the related work in Section 3,
Section 4 provides a short summary and outlines ongoing and future work in this area.

2 The PETTICOAT method

The PETTICOAT method provides decision makers with indicators on the economical
feasibility of mobile channel development. In a nutshell, it involves identifying
interaction sequences in a dialogue flow model of the existing application, measuring the
time and data volume incurred in their execution (either by analysing web server log files
or observing real-time traffic), and then simulating how the same interaction sequences
would perform when subjected to the frame conditions of a mobile channel. As a result of
the simulation, we gain time and volume projections for the interaction sequences that
allow us to estimate the cost incurred by working with the application on different mobile
channels (Figure 1).

Figure 1 The PETTICOAT method

The following subsections present these steps in more detail and illustrate them with
excerpts from a case study we performed for an insurance company. In that project, we
applied the PETTICOAT method to the prototype of a new web-based offer management
system in order to estimate the cost that will be incurred each month by insurance agents
accessing the system over mobile networks such as GSM, GPRS and UMTS.

Dialogue flow
model

Web server
log files

Sequence
identification

Volume/time
measurement

Interaction
sequences

Volume/time
statistics

Channel
profiles

Simulation

Communication
cost estimate

Response
time estimate

 Performance tuning and cost discovery of mobile web-based applications 257

2.1 Modelling the dialogue flow

As a basis for our analysis, we need a model of the application’s complete dialogue
structure. We use the Dialog Flow Notation (DFN) (Book and Gruhn, 2004) for this
purpose. This graphical notation models an application’s dialogue flow as a directed
graph of states that are connected by transitions. We call the transitions ‘events’ and the
states ‘dialogue elements’, distinguishing ‘masks’ (web pages rendered on the client) and
‘actions’ (business logic executed on the server). Events can carry parameters that
transport business data, such as form input.

2.1.1 Manual dialogue graph specification

By building dialogue graphs from masks, actions and events, the developer can specify
all possible user interactions with the application. To increase the expressive power of the
specification, parts of a dialogue graph can be encapsulated in ‘dialogue modules’ that
can be reused in different contexts within the same application by nesting them into the
dialogue flow at arbitrary levels. This allows the developer to build complex dialogue
structures that closely mirror the users’ mental model of the complex business processes
supported by large-scale web applications.

While the notation may seem suitable only for static websites with a finite number of
pages at first sight, it can model database-driven websites with dynamically generated
pages just as well, if we assume that one mask represents a class of similar page instances
that are all embedded in the same navigational structure (for example, in an online shop,
we do not need to model individual masks for each product, but just one Product Details
mask that can show the details of any product). Note, however, that a different modelling
approach would be needed for more complex GUIs rendered using AJAX, applets or
other technologies, since those rely on a different interaction paradigm and thus produce
different communication patterns.

As an example, Figure 2 shows the dialogue graph of the offer management system
analysed in the case study. Since we were looking at a rather simple prototype, the model
does not make use of the DFN’s dialogue modularisation capabilities and comprises only
seven dialogue masks connected through a number of actions that implement various
business operations, an exemplary selection of which is shown in Table 1. Field staff
users enter the application through the initialise system action (0), which leads to the
Search Transaction Form mask (A) where they can look up, create or edit transactions.
Using the other masks and actions, transactions can be associated with insurance agents,
insurance holders and policy offers.

In order to use these graphical specifications as input for the following steps, they can
be automatically translated into the XML-based Dialog Flow Specification Language
(DFSL) (Book and Gruhn, 2004). However, we do not show this straightforward
conversion step here for the sake of brevity.

 258 M. Book, V. Gruhn, M. Hülder and A. Köhler

Figure 2 Dialogue graph of the offer management system

Table 1 Masks and actions of the offer management system (excerpt)

Mask identification Content

A Search Transaction Form

B Edit Transaction Form

C Associate Agent Form

D Create Agent Form

E Associate Insurance Holder Form

F Create Insurance Holder Form

G Edit Offer Form

Action identification Function

0 Initialise system

2 Search transactions

4 Prepare transaction for editing

6 Prepare offer for editing

… …

26 Expand transaction elements

27 Collapse transaction elements

28 Load documents

29 Browse transaction elements

30 Process offer modifications

A2 B4

3

25 26

27

28

29

G 30

5

6

7

24

E

21

20

8

C

11

10

9

13 18

16 22D

1512

F

2319

0

 Performance tuning and cost discovery of mobile web-based applications 259

2.1.2 Automatic dialogue graph reconstruction

Since the PETTICOAT method is typically employed to assess existing applications that
were built without using the DFN, modelling their dialogue graphs a posteriori may be a
tedious task. However, this work can be supported by the automatic reconstruction of the
dialogue graph from information found in web server access log files. For each request,
these log files record (if configured properly) the URL of the requested page, the URL of
the previous (referring) page, and information that can be used to associate requests with
user sessions. In principle, we could iterate over the log file entries and populate the
dialogue graph with a mask for each requested page and an event for each referral from
one page to another within the same user session.

In practice, this approach does not work quite as smoothly because the information in
the log files is not unambigous: For one thing, if no unique session identifier is included
in the log entries, we need to rely on heuristics, such as a combination of the user agent
name and the IP address found in the log entry in order to identify sessions, which may
not be entirely accurate. As a second and much harder challenge, the URL recorded in the
log file may not clearly identify the page that is ultimately presented to the user, since it
usually points to some processing logic (e.g., a user authenticity check) that may deliver
different pages based on the processing outcome (e.g., a ‘login successful’ or ‘login
failed’ page).

In order to identify these pages unambiguously, we need to capture additional
information in the log files. This can be accomplished either by inserting tiny transparent
images with unique URL parameters into the delivered pages, which inject additional
requests into the web server log files containing the desired information, or by identifying
the selected page at a suitable central point just before it is delivered (e.g., within the
application’s dialogue control logic, or in a filter intercepting all responses going out to
clients) and recording the information in a separate log file. The choice between these
methods depends on the architecture of the application – generally, developers should
aim to keep to a minimum the required level of invasion into the existing logic in order to
minimise the development effort and risk of introducing errors.

One might argue that even when the challenges of unambiguous page and session
identification are addressed, the automatically reconstructed dialogue flow model may
not be complete, i.e., it may not comprise all possibilities for navigation that are offered
by the application, if those were not recorded in the web server log files (e.g., if a certain
link was never used, the respective request was never logged). However, for the purpose
of the PETTICOAT method, this is not a problem since we are only interested in those
paths that users actually traverse, anyway. It is also likely that the auto-generated
dialogue flow model will have to be manually cleaned up a bit before being used for
further processing, since it may contain redundant events or ‘loose ends’ that are
introduced by prematurely terminated sessions, discontinuities in the referral chain
caused by backtracking, or semantic considerations that are not apparent from the raw log
entries. However, we believe that this manual vetting will require less effort than
specifying the complete dialogue graph of a complex web application from scratch.

 260 M. Book, V. Gruhn, M. Hülder and A. Köhler

2.2 Identifying interaction sequences

The dialogue graph of an application specifies all possible ways of interaction that the
user interface allows. Since the same business process may be accomplished in a number
of similar, but still different ways, there will typically be some more and some less
frequently traversed paths through the dialogue graph (called ‘interaction sequences’
from now on). To arrive at a representative cost projection for the business processes
performed with the application, we therefore need to analyse the actual interaction
sequences that occur in the application. By identifying the sequences that the users
traverse most frequently, we can later weigh the cost they incurred, accordingly.

In the case study, we identified and analysed 15 interaction sequences (i.e., subsets
of the whole dialogue graph), based on the tasks that users can perform in the offer
management system. In web-based systems, every possible way through the application
could be defined as one interaction sequence. The restriction to the 15 most important
interaction sequences was requested by the company that developed the mobile
application we evaluated. Decisive factors for the restriction were the importance of
a sequence for completion of a business process and the number of recurrences in a
given period. To extend the scope of our analysis, we could also have looked for further
interaction sequences in the web server log files that were performed frequently by users,
even though they did not lead to completion of a task – those sequences would then hint
at usability problems in the application. By analysing those unsuccessful sequences, too,
we could determine how much (unnecessary) cost they incur.

As an example, Figure 3 shows the sequence for finding a transaction, browsing its
elements and editing the associated offer. The events in this sequence are annotated with
probabilities to reflect the different possibilities of executing this business process. Since
a user’s interaction steps are not isolated from each other, but depend on the history of his
interactions, these probabilities are conditional: In the notation, we first note the
probability of a user following this event, and then (after a vertical bar) note which action
the user must have executed before as a condition for this probability. For example, from
mask A, there is a 1.0 probability that the user will execute action 2 under the condition
that he executed action 0 before, but a 0.5 probability that he will execute action 2 if
he already executed that action before. In other words, if the user just entered the
application, he will definitely use the search feature, but if he already searched for a
transaction, there is only a 50% probability that he will use the search feature again.
Rather, there is also a 50% probability that he will proceed to edit the transaction he
found (denoted by the 0.5 | 2 probability for the event leading to action 4). For events
without annotation, the implicit probability of traversal is 100%, regardless of the
previously executed action.

Obviously, the events’ probabilities may depend on a longer history than just the last
executed action. For those cases, our interaction model allows the specification of
preconditions comprising multiple previous actions. We are currently investigating the
level of history that needs to be incorporated into this model in order to achieve
sufficiently accurate approximations of the users’ behaviour.

 Performance tuning and cost discovery of mobile web-based applications 261

Figure 3 Interaction sequence for finding and editing an offer associated with a transaction

In our case study, the probabilities were estimated based on practical considerations.
Alternatively, a more realistic probability model can be obtained by evaluating user
tracking information that is routinely collected in web server log files (Pitkow and Pirolli,
1999). This can be accomplished through an algorithm similar to the one used to
reconstruct the application’s dialogue graph in the previous step: First, we manually need
to define the masks and events that a certain business process comprises (e.g., A, B, G
and their connecting actions and events in the example in Figure 3). This step cannot be
automated since it requires knowledge of the masks’ and events’ semantics, which cannot
be deduced from the log files. After this, we can automatically iterate over the log files,
looking for patterns that mirror the possible paths through the defined interaction
sequence. In the process, we count the frequency of each observed variation of the
interaction sequence (e.g., 0-A-2-A-4-B versus 0-A-2-A-2-A-4-B), and calculate the event
probabilities and preconditions from these findings (for the sake of brevity and focus on
the overall PETTICOAT approach, we will not go into further detail on the details and
challenges of this algorithm here).

While it is helpful to visualise the resulting interaction sequences graphically as in
Figure 3 during the conceptualisation phase of the study, they ultimately need to be
converted to a machine-readable format in order to be processed by the simulation tool.
We use a variation of the DFSL for this purpose. The resulting sequence specification
also contains estimates on how often each sequence will be executed by each user each
month, which will be used towards the end of the simulation in order to calculate the
approximate monthly cost of executing all sequences.

2.3 Measuring data volume and time

As mentioned in the introduction, the two main factors influencing the cost of interaction
with an application over a mobile channel are the time spent online and the data volume
transmitted. To project these metrics for mobile channels, we measure them on the
existing stationary channel and then input them into the simulation.

A2 B4
0.5 | 2

26

27

28

29
0.2

0.2
0.2

0.3

G

1.0 | 0
0.5 | 2

0

306
0.1

 262 M. Book, V. Gruhn, M. Hülder and A. Köhler

There are a few challenges in the details of this measurement process, however. Most
importantly, for the volume measurement, we need to distinguish between static and
dynamic content. While static content (such as images) always incurs the same volume
(apart from caching effects, which can be accounted for in the simulation), dynamic
content (such as search result pages) can produce a different volume for each request. To
obtain accurate estimates, we need to deduce a probability distribution or an average
value from the accumulated volume data. Also, web server log files only log the net
volume of the content, but not any overhead introduced on lower levels of the protocol
stack that nevertheless does count for billing purposes. This overhead can either be
ascertained by observing the data flow directly on a sufficiently low protocol level
instead of relying on server log files, or by factoring it into the simulation in close
accordance with the respective protocol specifications.

In our case study, we used a simple HTTP traffic listener to obtain the necessary data.
The characteristics of each web page, image, etc., were described in an XML-based
format where each of those ‘web elements’ is represented by a WebElement tag that
contains tags for its various attributes: Tags starting with Request or Response, for
example, contain the data volume incurred for the request and the response of the web
element in bytes, depending on whether the web server configuration allows HTTP
compression or not. The Inlines tag contains references to web elements such as
images included in a page. For each of these, we can specify the offset of their include
point on the page (i.e., the number of bytes of the parent web element that need to be
loaded before the inline web element is requested by the browser). As an example, the
document excerpt in Figure 4 shows the description of the Search Transaction Form
mask in our case study.

Figure 4 Web element specification for Search Transaction Form mask

<WebElement>
 <ID>A</ID>
 <Desc>Search Transaction Form</Desc>
 <ElementType>text/html</ElementType>
 <Cache>0</Cache>
 <RequestUncomp>750</RequestUncomp>
 <RequestComp>500</RequestComp>
 <ResponseUncomp>9000</ResponseUncomp>
 <ResponseComp>3000</ResponseComp>
 <Inlines>
 <Inline>
 <WebElementID>100</WebElementID>
 <OffsetComp>1200</OffsetComp>
 <OffsetUncomp>5000</OffsetUncomp>
 </Inline>
 </Inlines>

</WebElement>

 Performance tuning and cost discovery of mobile web-based applications 263

To measure the time it takes to complete an interaction sequence, a number of
contributing factors need to be considered. The total time a user spends online is the
sum of user activity (e.g., filling in forms), upstream and downstream transmission
time, channel latency and server processing time. To accurately distinguish all these
contributing factors, we would need synchronised timing on both the server and the
client, which is hard to guarantee. Fortunately, however, only the user and server activity
matter for the subsequent simulation, since the observed transmission time and latency
already depend on the stationary channel that we measured on. We can thus deduct them
from the overall time during the simulation based on our knowledge of the stationary
channel characteristics and volume transmitted. This way, we are left with the user and
server activity time, to which we can add the newly calculated transmission time and
latency based on the mobile channel’s characteristics. Alternatively, if we are measuring
on a channel with very high bandwidth (e.g., an Ethernet), we can just measure the time
difference between sending a response to the client and receiving the next request on the
server, and regard this interval as the user activity time, since the included transmission
time (typically a fraction of a second) is much shorter than the user activity (typically
quite a few seconds) in comparison and can thus be neglected.

In preparation for the following steps of the PETTICOAT approach, the measured
timings are specified for each action, i.e., each transition between masks, in an
XML-based format similar to the one shown in Figure 4.

2.4 Defining channel profiles

Besides the description of the application’s interaction patterns, mask and action
characteristics, we still need a detailed specification of the target (usually wireless)
network environment, since different wireless networks have different characteristics
regarding bandwidth, latency, pricing, etc. We define these characteristics in XML-based
‘channel profiles’ for each network that shall be considered in the simulation. In our case
study, we defined 16 channels, including different compression variants for GSM,
HSCSD, GPRS and UMTS networks. The tool also considers the effects of fluctuating
signal strength. Each profile contains the gross uplink and downlink bandwidth in bit/s,
network latency for wired and wireless networks, and the average ratio of gross data and
content data. In addition to these data describing the physical network characteristics, a
channel profile contains several attributes for packet and compression characteristics
describing HTTP, TCP and IP protocols. Furthermore, the network provider’s rates for
volume-based and time-based billing are contained in the profile description.

Thus, different assumptions about the quality of reception, use of compression
algorithms, certain protocol features, or provider’s rates result in different channel
profiles. Channel profiles are stored in XML documents and can be edited by the user in
the simulation tool, as illustrated by the definition of a GPRS 53.6 channel profile with
data compression under the assumption of medium reception in Figure 5.

The rates in the case study were based on pricing plans of a German
telecommunications provider. Channel and protocol characteristics were defined based on
the respective technical specifications, and a number of profile variants for different
connection quality levels were defined for each channel, based on estimates and provider
information. Note that the accuracy of the simulation results could be improved further
by defining channel profiles based on parameter measurements in the target environment,
rather than drawing them from the specifications.

 264 M. Book, V. Gruhn, M. Hülder and A. Köhler

Figure 5 Specification of channel characteristics in the simulation tool

2.5 Simulation of interaction sequences on different channels

In order to perform the simulation, our tool requires the XML documents produced in
the previous steps as input, i.e., the application profile that contains the web elements
and their volume data, the actions and their timing data, and the sequences with their
probability and frequency data; and also the channel profiles containing the bandwidth,
latency and pricing characteristics.

Using this input, the simulation tool works in three steps that will be described in
detail in the following sections:

1 The simulator begins each interaction sequence at its entry point. Taking into
account the branching probabilities, it then simulates the time it takes to load each
mask in the sequence, considering the inline element offsets, which incur latency and
traffic that delay the completion of the mask. This step already yields insights into
usability problems that may be caused by unacceptably high response times.

2 The results for each interaction step of a sequence are accumulated, taking the user’s
idle time between interactions into account.

3 The results for each interaction sequence are multiplied by its estimated frequency
per user and month. Summing up the results finally yields the projected
communication costs of the application per user and month.

 Performance tuning and cost discovery of mobile web-based applications 265

2.5.1 Simulation of interaction steps

The simulation results for the response times of the actions (i.e., the transitions between
the masks) in the interaction sequence shown in Figure 3 on a selection of channels are
given in Figure 6. The diagram clearly shows that the use of a client-side cache (actions
marked ‘with cache (w/c)’) significantly reduces the response time in contrast to
executing the same sequence without a cache (marked ‘no cache (n/c)’). However, it may
still be relevant to investigate an application’s response time without a cache since not all
mobile platforms provide sufficient cache memory.

Figure 6 Simulation results for response times

From Figure 6, we can also determine that only the UMTS channel with enabled browser
cache supports answering times of less than three seconds for this application and thus
provides adequate usability (if we follow Shneiderman’s (2002) rule that response times
for simple actions should not exceed one second, while the maximum response time for
standard actions is four seconds).

Figure 6 also indicates that in our case study, the response times on the GPRS channel
are longer than those on the GSM or HSCSD channel (using the identical compression
and caching mechanism). This may come as a surprise, as GPRS may provide three to
four times the bandwidth of a GSM 14.4 channel. On the other hand, GPRS has a
network latency of about two seconds, so any request is delayed by about two seconds

GSM 14
.4

GSM 14
.4

(TC)

GSM 14
.4

(H
C)

GSM 14
.4

(H
C+TC

)

HSCSD (H
C+T

C)

GPRS (T
C)

GPRS (H
C)

GPRS (H
C+T

C)

UMTS (H
C+T

C) 0 w/c

2 w/c

4 w/c

6 w/c

26 w/c

27 w/c

28 w/c

29 w/c

30 w/c

0 n/c
2 n/c

4 n/c
6 n/c

26 n/c

27 n/c

28 n/c

29 n/c

30 n/c

0

3

6

9

12

15

18

21

24
Time [s]

Channels

Actions

 266 M. Book, V. Gruhn, M. Hülder and A. Köhler

before the transmission of the requested data actually begins. By that time, the requested
data would already have reached the recipient on the GSM channel. Only if the cache is
deactivated, the GPRS channel can make up for the latency with its higher bandwidth.

Other, more complex timing constraints than the above-mentioned three-second
response time rule are also conceivable. For example, we could define the constraint that
mask n has to be loaded within t seconds after leaving mask m. The results gained in the
simulation may then indicate which masks are responsible for failing the constraints and
need to be optimised. If no redesign seems feasible, the application cannot be used on
the simulated channel with the specified constraints. For example, in our case study,
the results on the GPRS channel indicate that a redesign should particularly focus on
embedding inline elements at the top of a mask, so that requests for these elements can be
sent earlier by the browser, and the network latency is mitigated by the remainder of the
page still being loaded in parallel.

2.5.2 Simulation of interaction sequences

In the second step, the simulation tool sums up the results for the individual steps in a
sequence gained in the first step. It also adds the user’s estimated idle time to simulate
how long a user works with a mask on average before the next mask is requested. This
way, the tool determines how long it typically takes to execute a whole interaction
sequence on a channel (taking the different probabilities for the sequence variants into
account), and how many bytes are transferred in the process. Using the providers’ rates
specified in the channel profiles, the tool can then calculate the cost of performing each
interaction sequence on each channel.

In Table 2, an excerpt of the results gained for a selection of channels and sequences
from our case study is given. For each of the available channels (GSM, HSCSD, GPRS
and UMTS), four simulations were carried out using no compression, HTTP compression
(by the web server), transfer compression (by the carrier), and both HTTP and transfer
compression. Sequence 4 denotes the process of a user creating a new policy offer, which
has to be associated with an existing insurance agent and a new insurance holder.
Sequence 11 represents the process of creating a new policy offer by copying an existing
one. Finally, sequence 12 contains the results for finding and editing a policy offer, as
shown in Figures 3 and 6. For each channel/sequence combination, the table contains the
time taken to execute the whole sequence, the total amount of kilobytes transferred in the
process, and the cost incurred under a time- and volume-based pricing plan on the
respective channel. Since volume-based billing is not available for GSM and HSCSD
channels, the respective fields remain blank.

The results indicate that the use of data compression reduces the data volume to
roughly a third of the uncompressed volume, resulting in lower transmission times. It is
important to note, however, that when using transfer compression, the carrier will charge
for the uncompressed data volume. HTTP compression thus seems to be the better choice
for volume-based pricing plans, as only the reduced data volume is billed. This effect can
be observed, e.g., when comparing the results for scenario 11 (with and without cache) on
the GPRS channel with transfer versus HTTP compression. A volume-based plan also
allows for more flexibility regarding idle times, since longer client-side activities before
requesting the next mask are not billed. On the other hand, transfer compression seems to
be the best choice for time-based plans, because it yields the shortest transfer times

 Performance tuning and cost discovery of mobile web-based applications 267

resulting in lower charges. Combining both transfer and HTTP compression may
combine their advantages, but because of a greater overhead and slightly longer
execution time on the web server, this combination may not yield the lowest cost
regarding time and/or volume.

Table 2 Simulation results for performing interaction sequences on different channels (excerpt)

Se
qu

en
ce

C
ac

he
?

R
es

ul
ts

G
SM

 1
4.

4

H
SC

SD

(H
T

T
P

 C
om

p.
 +

T

ra
ns

fe
r

C
om

p.
)

G
P

R
S

(T
ra

ns
fe

r
C

om
p.

)

G
P

R
S

(H
T

T
P

 C
om

p.
)

G
P

R
S

(H
T

T
P

 C
om

p.
 +

T

ra
ns

fe
r

C
om

p.
)

U
M

T
S

(H
T

T
P

 C
om

p.
 +

T

ra
ns

fe
r

C
om

p.
)

4 w/c Time [s] 81,4 62,9 75,2 76,1 74,6 52,0

 Volume [kB] 61 22 62 22 23 22

 Charge (t) [€] 0,41 0,28 0,13 0,13 0,12 0,09

 Charge (vol) [€] – – 0,06 0,02 0,02 0,02

4 n/c Time [s] 206,2 76,5 89,2 90,6 88,6 58,7

 Volume [kB] 292 109 293 109 109 109

 Charge (t) [€] 1,03 0,34 0,15 0,15 0,15 0,10

 Charge (vol) [€] – – 0,29 0,11 0,11 0,11

11 w/c Time [s] 185,4 129,0 156,2 160,5 154,4 110,2

 Volume [kB] 143 41 137 42 41 43

 Charge (t) [€] 0,93 0,58 0,26 0,27 0,26 0,18

 Charge (vol) [€] – – 0,13 0,04 0,04 0,04

11 n/c Time [s] 420,8 165,3 191,4 203,4 199,5 124,7

 Volume [kB] 580 220 566 221 222 212

 Charge (t) [€] 2,10 0,74 0,32 0,34 0,33 0,21

 Charge (vol) [€] – – 0,55 0,22 0,22 0,21

12 w/c Time [s] 210,1 149,1 191,0 184,7 182,9 129,9

 Volume [kB] 150 43 152 45 45 45

 Charge (t) [€] 1,05 0,66 0,32 0,31 0,31 0,22

 Charge (vol) [€] – – 0,15 0,04 0,04 0,04

12 n/c Time [s] 467,5 193,8 222,4 223,8 217,3 150,8

 Volume [kB] 621 236 620 226 223 230

 Charge (t) [€] 2,34 0,87 0,37 0,37 0,36 0,25

 Charge (vol) [€] – – 0,61 0,22 0,22 0,23

 268 M. Book, V. Gruhn, M. Hülder and A. Köhler

2.5.3 Simulation of monthly usage

In the final simulation step, the tool uses the results gained so far to project the total
cost that will be incurred when one user works with all interaction sequences in the
application over the course of one month. This enables project managers to estimate the
total communication costs that can be expected on all channels, and decide if the addition
of a mobile channel will pay off.

For our case study, the final results indicated that a UMTS channel with combined
transfer and HTTP compression and a volume-based pricing plan is the best option. This
scenario would incur an estimated monthly cost of €55.11 per user. A volume-based plan
on a GPRS channel with transfer and HTTP compression costs only €54.94 per user and
month, but exhibits worse usability owing to the longer response times brought about by
high network latency, as Figure 6 illustrated. Since UMTS is currently not available all
over the country, GPRS can still be recommended as a suitable backup solution with
limited usability. The time-based plans for the HSCSD and GSM channel would result in
monthly costs of €298.35 and €421.19 per user, respectively, with both using only
transfer compression, since the combination of transfer and HTTP compression would be
even more expensive in total.

3 Related work

The PETTICOAT approach employs a number of techniques from the web usage and
web data mining fields, as described by Cooley (2003), Srivastava et al. (2000) and
Kosala and Blockeel (2000). Dutta et al. (2001) show how frequent and thus critical user
paths can be identified in e-commerce applications. The authors provide a model of
the user behaviour in the form of session graphs and conduct analyses regarding the most
frequently used user paths as well as critical edge sequences. This technique could be
quite useful for our approach, because the identification of the most frequently used
subset of all possible user paths in the application model is needed.

Furthermore, there are many approaches for web log analysis aimed at classifying
user paths (e.g., Spiliopoulou, 2000; Berkhin et al., 2001; Kim et al., 2004; Heer and
Chi, 2002; Chi et al., 2000; Gillenson et al., 2000). Especially, the identification of long
sequences described by Pitkow and Pirolli (1999) seems to be an important topic for the
PETTICOAT concept. The identification of actually chosen user paths versus all possible
user paths in the application model is needed in order to obtain meaningful results from
the following simulation. In this context, the work of Mao et al. (2001) is of specific
interest. They present a notion for a cluster-based online monitoring system for web
traffic. The target-oriented analysis of web traffic is a task to be solved within the
PETTICOAT approach.

As PETTICOAT particularly addresses the analysis of dynamic web applications
instead of static web pages, the analysis of web traffic is even more difficult. This
problem is addressed, e.g., by Berendt and Spiliopoulou (2000), which deals with
dynamic web content generation and website analysis.

Other approaches to improving the performance of web-based applications have
focused on using thin clients to transmit just the image of the application (see e.g., Lai
et al., 2004). The findings of this work are of relevance to the deduction of consequences
(application design, bandwidth restriction) based on the simulation results. In this

 Performance tuning and cost discovery of mobile web-based applications 269

context, Bent et al. (2004) and Krishnamurthy and Wills (2000) report interesting results
from an analysis of large websites regarding performance, cache and cookie issues. These
results could be used for the creation of a package of measures in order to modify the
analysed website regarding performance issues in the mobile environment.

4 Conclusion and future work

In this paper, we have shown a method for assessing the response times and
communication costs of adding mobile channels to an existing web-based application.
As illustrated by the case study, the results of the simulation indicate if an existing
application can be accessed efficiently on certain mobile channels, and provide clues on
how the application may have to be optimised for shorter response times. The simulation
also provides an estimate of the cost of using the application on various mobile channels,
which is a valuable factor in deciding if the introduction of a mobile channel will pay off
for an organisation in the future.

In our ongoing work, we currently focus on the automated analysis of web
applications to simplify the initial steps of the PETTICOAT method. This includes
deriving the dialogue flow model and the probabilities and frequencies of typical
interaction sequences from the data contained in web server log files, rather than
modelling them manually. Further research will comprise refinements of the probabilistic
model for the interaction sequences and a more detailed specification of mobile channel
characteristics and billing schemes in order to increase the accuracy of the estimates, and
thus the quality experienced by users when accessing web-based applications through
mobile channels.

Acknowledgements

The authors would like to thank Andreas Kriegel for his development of the
simulation tool, Adrian Bensch for his work on interaction sequence identification and
Matthias Pätzold for his work on dialogue graph reconstruction. The Chair of Applied
Telematics/e-Business is endowed by Deutsche Telekom AG.

References

Bent, L., Rabinovich, M., Voelker, G.M. and Xiao, Z. (2004) ‘Characterization of a large Web site
population with implications for content delivery’, WWW ’04: Proceedings of the 13th
International Conference on the World Wide Web, ACM Press, pp.522–533.

Berendt, B. and Spiliopoulou, M. (2000) ‘Analysis of navigation behaviour in Web sites integrating
multiple information systems’, The VLDB Journal, Vol. 9, No. 1, pp.56–75.

Berkhin, P., Beche, J.D. and Randall, D.J. (2001) ‘Interactive path analysis of Web site traffic’,
KDD ’01: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM Press, pp.414–419.

Book, M. and Gruhn, V. (2004) ‘Modeling Web-based dialog flows for automatic dialog control’,
19th IEEE International Conference on Automated Software Engineering (ASE 2004), IEEE
Computer Society Press, pp.100–109.

 270 M. Book, V. Gruhn, M. Hülder and A. Köhler

Chi, E.H., Pirolli, P. and Pitkow, J. (2000) ‘The scent of a site: a system for analyzing and
predicting information scent, usage, and usability of a web site’, CHI ’00: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ACM Press, pp.161–168.

Cooley, R. (2003) ‘The use of web structure and content to identify subjectively interesting web
usage patterns’, ACM Transactions on Internet Technology, Vol. 3, No. 2, pp.93–116.

Dutta, K., VanderMeer, D., Datta, A. and Ramamritham, K. (2001) ‘Discovering critical edge
sequences in e-commerce catalogs’, EC ’01: Proceedings of the 3rd ACM Conference on
Electronic Commerce, ACM Press, pp.65–74.

Gillenson, M., Sherrell, D.L. and da Chen, L. (2000) ‘A taxonomy of web site traversal patterns
and structures’, Commun. AIS, Vol. 3, No. 4, p.5.

Heer, J. and Chi, E.H. (2002) ‘Separating the swarm: categorization methods for user sessions on
the web’, CHI ’02: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM Press, pp.243–250.

Kim, D-H., Atluri, V., Bieber, M., Adam, N. and Yesha, Y. (2004) ‘A clickstream-based
collaborative filtering personalization model: towards a better performance’, WIDM ’04:
Proceedings of the 6th Annual ACM International Workshop on Web Information and Data
Management, ACM Press, pp.88–95.

Kosala, R. and Blockeel, H. (2000) ‘Web mining research: a survey’, SIGKDD Explorations,
Vol. 2, No. 1, pp.1–15.

Krishnamurthy, B. and Wills, C.E. (2000) ‘Analyzing factors that influence end-to-end web
performance’, Proceedings of the 9th International World Wide Web Conference on Computer
Networks: The International Journal of Computer and Telecommunications Networking,
North-Holland Publishing Co., pp.17–32.

Lai, A.M., Nieh, J., Bohra, B., Nandikonda, V., Surana, A.P. and Varshneya, S. (2004) ‘Improving
web browsing performance on wireless PDAs using thin-client computing’, WWW ’04:
Proceedings of the 13th International Conference on the World Wide Web, ACM Press,
pp.143–154.

Mao, Y., Chen, K., Wang, D. and Zheng, W. (2001) ‘Cluster-based online monitoring system of
web traffic’, WIDM ’01: Proceedings of the 3rd International Workshop on Web Information
and Data Management, ACM Press, pp.47–53.

Pitkow, J. and Pirolli, P. (1999) ‘Mining longest repeating subsequences to predict World Wide
Web surfing’, Proceedings of the 2nd USENIX Symposium on Internet Technologies
and Systems.

Shneiderman, B. (2002) User Interface Design, mitp-Verlag.

Spiliopoulou, M. (2000) ‘Web usage mining for web site evaluation’, Commun. ACM, Vol. 43,
No. 8, pp.127–134.

Srivastava, J., Cooley, R., Mukund, D. and Pang-Ning, T. (2000) ‘Web usage mining: discovery
and applications of usage patterns from web data’, SIGKDD Explorations, Vol. 2, No. 1,
pp.12–23.

