
A Notation and Framework for Dialog Flow
Control in Web Applications

Matthias Book and Volker Gruhn

Chair of Applied Telematics / e-Business,? Department of Computer Science
University of Leipzig, Klostergasse 3, 04109 Leipzig, Germany

{book, gruhn}@ebus.informatik.uni-leipzig.de

Abstract. The usability of web applications today often suffers from
the page-based medium’s lack of intrinsic support for hierarchical di-
alog sequences mirroring the parent-child relationships between dialog
boxes in window-based user interfaces. For multi-channel applications,
an additional challenge lies in reconciling the device-independent busi-
ness logic with the device-specific interaction patterns necessitated by
different clients’ input/output capabilities. We therefore present a graph-
ical Dialog Flow Notation that allows the specification of nestable dialog
sequences for different presentation channels. These specifications serve
as input for a Dialog Control Framework that controls the dialog flows
of complex web applications.

1 Introduction

Web engineers are faced with two major challanges today: The first is the dif-
ference between page-based and window-based user interface (UI) paradigms:
In window-based applications, any window can spawn “child windows”, and
the completion of a dialog in a child window returns the user to the dialog in
the parent window. Users can rely on this predictable behavior that reinforces
their conceptual model and thus increases applications’ usability [14]. In web
applications, however, only simple linear and branched dialog sequences can be
implemented with basic session state management techniques, while hierarchical
dialog sequences require more complex dialog control logic. Secondly, if an appli-
cation shall be accessed through a variety of devices, their different input/output
(I/O) capabilities affect how users work with an application: A dialog that may
be completed in a single step on a desktop browser may have to be broken up into
multiple interaction steps on a mobile device. Yet, the server-side business logic
should remain independent of such client-side specifics [3, 8]. This obviously calls
for a separation of presentation and business logic – however, that is not as trivial
as it sounds since the dialog control logic tends to get mixed up with the other
tiers. To address the issues of nestable dialogs and device-dependent interac-
tion patterns, we introduce a Dialog Flow Notation that allows the specification
of complex dialog flows (section 2), and present a Dialog Control Framework

? The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


that provides the corresponding dialog control logic for black-box reuse in any
application (section 3).

2 The Dialog Flow Notation

The Dialog Flow Notation (DFN) specifies the sequence of UI pages and process-
ing steps in an application, and the data exchanged between them. It models the
dialog flow as a transition network called a dialog graph. The notation refers
to the transitions as events and to the states as dialog elements. These ele-
ments are further divided into hypertext pages (symbolized by dog-eared sheets
and referred to by the more generic term masks in the DFN) and business logic
operations (symbolized by circles and called actions here). Every dialog element
can generate and receive multiple events. Which element will receive an event
depends both on the event and the generating element (e.g., an event e may be
received by action 1 if it was generated by mask A, but be received by action
2 if generated by mask B). Events can carry parameters containing form input
submitted through a mask or data produced by the business logic to facilitate
communication between elements. They are not bound to HTTP requests or
responses, but can also link two actions or two masks. The DFN also provides
dialog modules (symbolized by boxes with rounded corners) which encapsulate
dialog graphs and enable the specification of nested dialog structures. When a
module receives an event from the exterior dialog graph that it is embedded in,
traversal of its interior dialog graph starts with the initial event. When the
interior dialog graph terminates, it generates a terminal event that is prop-
agated to the super-module and continues the traversal of the exterior dialog
graph (Fig. 1). For more complex dialog structures, the DFN offers a number of
additional event and element types [2] that we will not discuss here in detail.

Login
check
name,

passwd

submit

incorrect

has
admin
rights?

correctcheck
login
status

not yet
logged

in
 nomark

user as
logged

in

done

User Authorization

create new
account

register

 yes

is admin

is user

cancelled

done

already logged in

Fig. 1. Example: Dialog graph of User Authorization module

To cater to the different interaction patters required for different client de-
vices, the DFN allows the specification of dialog flows for different presentation
channels in multiple versions of a module and distinguishing them with chan-
nel labels (Fig. 2). While the channels employ different dialog masks according



to those devices’ I/O capabilities, they use the same actions for processing the
user’s input, as indicated by the shading. This enables developers to reuse the
device-independent business logic on multiple channels.

Checkout [WML]

Enter
address

check
address

submit

incorrect
Enter

shipping
data

correct check
shipping

data

submit

incorrect
Enter
billing
data

correct check
billing
data

submit

incorrect
correct place

order

Checkout [HTML]

Enter
address,
shipping,

billing

check
address

submit

incorrect
correct check

shipping
data

correct check
billing
data

correct place
order

ok

incorrect
incorrect

done

ok

done

Fig. 2. Example: Dialog graphs of Checkout module on HTML and WML channel

3 The Dialog Control Framework

Web applications are usually designed according to the Model-View-Controller
(MVC) paradigm [13], which suggests the separation of UI, business logic and
control logic. The Dialog Control Framework (DCF) features a very strict im-
plementation of the MVC pattern, completely separating not only the business
logic and UI, but also the dialog flow specification and dialog control logic. As
the coarse architecture (Fig. 3) shows, the action objects contain only calls to
the business logic. The generic dialog control logic is contained in the dialog
controller that receives events coming in through channel servlets on each
presentation channel. It looks up the receivers of these events in the dialog flow
model – a collection of objects representing dialog elements that hold references
to each other to mirror the dialog flow, built upon initialization of the framework
by parsing an XML-based representation of the graphical dialog flow specifica-
tion. Depending on the receiver that the controller retrieved from the model for
an event, it may call an action, forward the request to a mask, nest or terminate
modules. The latter operations are performed on module stacks.

Due to the strict separation of tiers, device-independent applications can
be built with minimal redundancy: Only the dialog masks and the dialog flow
specifications need to be specified for the different presentation channels, while
the business logic is implemented device-independently only once and the dialog
control logic is provided by the framework. Since the dialog controller is aware
of the whole dialog flow specified for each channel, it can manage complex dialog
constructs such as nesting modules that would be hard to realize if the dialog
control logic was distributed over all action objects.



2. Lookup

6. Lookup

Client

Dialog
Controller

Model
Dialog
Mask

3. Dispatch

4. U
pdate

5. Result

7. F
orw

ard

8. Extract

Action

Dialog Flow Model

Channel
Servlet

1. Request

Dialog
Flows

Document

Dialog
Elements
Document

Dialog Graph DiagramsDialog Flow Specification

9. Response

translationimport

Module
Stack

Fig. 3. Coarse architecture of the Dialog Control Framework

4 Related Work

Most tools offering dialog control implementation support for web applications
follow the MVC design pattern to facilitate easier dialog control. The Apache
Jakarta Project’s Struts framework [1] is the most popular solution today, how-
ever, it forces developers to combine business logic and dialog control logic in the
action objects, which renders the dialog control implementation cumbersome and
inflexible. While the concept of an application-independent “screen flow man-
ager” that determines the next view is described in the Java BluePrints [16], no
framework seems to exist yet that employs this pattern to implement complex
dialog constructs such as the arbitrarily nestable modules and device-specific
dialog flows offered by the DCF. The World Wide Web Consortium’s XForms
initiative [5] is mostly concerned with the specification of widgets on pages and
does not support nestable dialog modules.

Notations for the specification of web-based UIs mostly focus on data-intensive
information systems, but not interaction-intensive applications [6]: Development
processes such as RMM [11] and OOHDM [15], modeling notations and languages
such as HDM-lite (used by the Autoweb tool [7]), and WebML [4] support the
generation of web pages out of a large, structured data basis or provide dynamic
views on database content, but do not allow the specification of highly interactive
features with modular, nested dialog structures.

While the concept of modeling dialog systems as state-based systems is not
new [9] and generic notations for this already exist (e.g. Statecharts [10]), we
chose not to use any generic notation because expressing the particularities of
web-based dialog flows (e.g. different dialog elements, modules and events) in
those would be cumbersome in practice. Also, we wanted to provide the DFN
with constructive instead of mere descriptive power, enabling developers to use
complex dialog constructs intuitively without having to spell out their details in
a generic notation.



5 Conclusions

The pragmatic approach advocated above notwithstanding, we are currently
working on the definition of formal semantics that will enable us to reason
about the specifications produced with the DFN (in addition to the operational
semantics already defined by the DCF implementation). This can be achieved
by showing that all DFN constructs can also be expressed by means of a more
generic formalism, even if that would not be suitable for practical use.

While related methodologies tend to derive the web-based UI more or less di-
rectly from an established data model, the DFN does not make any assumptions
about the underlying data model, but exclusively describes the users’ interaction
with the system. Thus, it should support a dialog-driven development process
that emphasizes the ISO dialog principles of suitability for the task and confor-
mity with user expectations [12] from the start.

References

1. Apache Jakarta Project. Struts. http://jakarta.apache.org/struts/
2. Book, M., Gruhn, V.: A Dialog Control Framework for Hypertext-based Applica-

tions. Proc. 3rd Intl Conf. on Quality Software (QSIC 2003), IEEE Press, 170–177
3. Butler, M., Giannetti, F., Gimson, R., et al.: Device Independence and the Web.

IEEE Computing 6, 5 (2002), 81–86
4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling

Language for Designing Web Sites. Computer Networks 33 (2000), 137–157
5. Dubinko, M., Klotz, L.L., Merrick, R., et al.: XForms 1.0, W3C Recommendation

(2003). http://www.w3.org/TR/2003/REC-xforms-20031014/
6. Fraternali, P.: Tools and Approaches for Developing Data-Intensive Web Applica-

tions: A Survey. ACM Computing Surveys 31, 3 (1999), 227–263
7. Fraternali, P., Paolini, P.: Model-Driven Development of Web Applications: The

Autoweb System. ACM Trans. on Information Systems 28, 4 (2000), 323–382
8. Gaedke, M., Beigl, M., Gellersen, H.-W., et al.: Web Content Delivery to Heteroge-

neous Mobile Platforms. Advances in Database Technologies, LNCS 1552 (1998)
9. Green, M.: A Survey of Three Dialogue Models. ACM Trans. on Graphics 5, 3

(1986), 244–275
10. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-

puter Programming 8, 3 (1987), 231–274
11. Isakowitz, T., Stohr, E. A., Balasubramanian, P.: RMM: a methodology for struc-

tured hypermedia design. Comm. ACM 38, 8 (1995), 34–44
12. International Organization for Standardization: Ergonomic requirements for office

work with visual display terminals (VDTs) – Part 10: Dialogue principles. ISO
9241-10 (1996)

13. Krasner, G.E.: A Cookbook for using the Model-View-Controller User Interface
Paradigm in Smalltalk. Journ. of Object-Oriented Programming 1, 3 (1988), 26–49

14. Rice, J., Farquhar, A., Piernot, P., et al.: Using the web instead of a window
system. Proc. CHI ’96, 103–110. ACM Press (1996)

15. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Comm.
ACM 38, 8 (1995), 45–46

16. Singh, I., Stearns, B., Johnson, M., et al.: Designing Enterprise Applications with
the J2EE Platform, 2nd Edition. Addison-Wesley (2002)


