
Experiences with a Dialog-Driven Process Model
for Web Application Development

Matthias Book, Volker Gruhn
Chair of Applied Telematics/e-Business, Dept. of Computer Science, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany, Tel. +49-341-97-32337, Fax +49-341-97-32339

{book, gruhn}@ebus.informatik.uni-leipzig.de

Abstract

We present a dialog-driven process model for the devel-
opment of web-based applications that uses a graphical no-
tation to model and iteratively refine the application’s di-
alog flow, and communicate with non-technical stakehold-
ers in the development process. This way, the user interface
can drive the design and implementation of the application
logic and data model instead of being dictated by it. After
an introduction of the underlying notation and dialog con-
trol framework, we present how these tools can support the
phases of the development process and discuss experiences
gained from the implementation of a web application that
was built using this approach.

1. Introduction

Many enterprises are currently connecting their back-end
systems to the World Wide Web in order to provide their
employees and clients with access to important data and
business processes. This way, field staff of insurances, truck
drivers of logistics companies and clients of banks (to name
just a few) can request information and do business online
using a web browser, PDA or mobile phone [9].

We therefore present a dialog-driven process model for
the development of web applications that relies on two
tools: a dialog flow notation that allows developers to spec-
ify a web-based user interface with hierarchical, modular
dialog sequences and thus let users work with familiar nav-
igation structures; and a dialog control framework that de-
couples the device-independent application logic from the
interaction patterns required by different devices. We hy-
pothesize that the dialog-driven process model increases
web applications’ usability while at the same time reducing
the development effort by eliminating a number of redun-
dant activities. This supports an agile development process
in which the user experience of the final product is driving

the design and implementation of the other tiers instead of
being dictated by them.

After a brief introduction to the Dialog Flow Notation
and Dialog Control Framework in Sect. 2, we will present
the phases of the dialog-driven process model in Sect. 3.
These stages are illustrated with examples from the devel-
opment of a web application built to evaluate the feasibil-
ity of this approach. We will discuss the experiences gained
from that project in more detail in Sect. 4 before giving an
overview of the related work (Sect. 5) and drawing conclu-
sions from the project (Sect. 6).

2. Dialog flow specification and control

The Dialog Flow Notation (DFN) [3] models a web-
based application’s dialog flow as a transition network, i.e. a
directed graph of states connected by transitions called adi-
alog graph. The notation refers to the transitions asevents
and to the states asdialog elements. Two of the most impor-
tant dialog elements aremasks(hypertext pages symbolized
by dog-eared sheets) andactions(application logic opera-
tions symbolized by circles). Every dialog element can gen-
erate and receive multiple events (symbolized by arrows).
Which element will receive an event depends both on the
event and the generating element. Events can carry parame-
ters such as form data or processing results, and thus facili-
tate communication between dialog elements.

In the DFN, dialog graphs are never free-standing, but al-
ways encapsulated indialog modulesthat facilitate the con-
nection and nesting of dialog graphs, as illustrated e.g. in
Fig. 3 using the example of a “Create Account” module. A
module typically encapsulates one or more dialog masks,
actions and possibly sub-modules implementing a certain
functionality, process or behavior in the system (e.g. cre-
ating an account, logging in, searching for hotels, booking
a room etc.). Any module’s dialog graph can contain sub-
modules, and any module can itself be embedded in the di-
alog graphs of various super-modules. The modules’ defin-
itions are decoupled from each other, but through the inter-



3. Lookup


7. Lookup


Client


Dialog

Controller


Model

Dialog

Mask


2. Event


4. Dispatch


5. U
pdate


6. Event


8. F
orw

ard


9. Extract


Action


Dialog Flow Model


Channel

Servlet


1. Request


Dialog

Flows


Document


Dialog

Elements

Document


Dialog Flow Notation
Dialog Flow Specification Language


10. Response


translation
import


Module

Stack


Figure 1. Architecture of the Dialog Control Framework

faces of their initial and terminal events, they can call and
return results to each other. This facilitates easy reuse ofdi-
alog sequences and enables developers to model the com-
plete dialog flow of an application with a set of dialog mod-
ules that are nested into and connected with each other. To
model different interaction patterns that may be required by
different devices, developers can specify variants of a mod-
ule’s dialog flow by assigningpresentation channellabels
to them (noted in square brackets after the module name).

To enable a smooth transition from models to code, de-
velopers can model dialog flows using a graphical edit-
ing plug-in for the Eclipse IDE that validates the models
and auto-generates machine-readable specifications in the
XML-based Dialog Flow Specification Language (DFSL)
for interpretation by the Dialog Control Framework (DCF).

Following the MVC paradigm, the DCF architecture
(Fig. 1) [2] enforces a strict separation of presentation, ap-
plication and dialog control logic since neither the masks
nor the actions determine the next step in the dialog flow di-
rectly. Instead, this decision is made by the dialog controller
according to the dialog flow specification.

Upon initialization of the application, the DCF parses
the dialog flow specification expressed in the DFSL docu-
ments and builds an object-oriented dialog flow model from
it. Every time an event comes in from a client through one
of the presentation channel servlets (steps 1 and 2), the di-
alog controller looks up the receiver for this event in the
dialog flow model (3). If the receiver is an action, the dia-
log controller will dispatch the event to the respective ob-
ject (4), which may update the applications’ data model (5)
and then returns a new event indicating the result of the op-
eration (6). The dialog controller again looks this event up
in the dialog flow model (7), where it may find that it leads
to another action (in which case the cycle repeats) or to a

module or mask. If the event receiver is a module, the dia-
log controller will push a reference to it onto the user’s mod-
ule stack in order to reflect the user’s updated position in the
dialog flow, and then look up the receiver of that module’s
initial event. If the event receiver is a mask, the dialog con-
troller will dispatch the request to the implementation for
the corresponding presentation channel (e.g. a JavaServer
Page, step 8), which can read information from the data
model (9) to build a response that is finally sent back to
the client (10).

3. Dialog-driven process model

Since the DFN does not require technical knowledge
of a web application’s underlying protocols and technolo-
gies, but uses concepts that can be grasped quite intuitively
(“masks are what the user sees; actions are what the server
does; modules contain processes that the user executes”),
it should also be understandable by non-programmers (e.g.
audience representatives, usability experts and user inter-
face designers) and thus support communication between
the various stakeholders and roles involved in the software
development process. The notation lends itself naturally to
an iterative and incremental development process: In a top-
down approach, coarse drafts of the dialog structure created
in early stages of the development process can be refined
step by step in subsequent iterations.

In the following subsections, we will introduce a dialog-
driven process model (DDPM) that suggests how the DFN
and DCF may be employed in the phases of a typical web
application development processes. We illustrate the con-
cepts presented for each phase with examples from the de-
velopment of the ARGuS Travel Guide, a complex web ap-



ARGuS


Home


Home


Restaurants


Edit Account


ed
it 

ac
co

un
t


Sights


Travel Plan


tr
av

el
 p

la
n


Events
 Tram Schedule


Logout


Hotels


City Map


Create Account


Login


Clear Travel Plan


cl
ea

r 
pl

an



Edit

Travel Plan Entry


lo
gi

n


sights


hotels


events


tram



restau-

rants


lo
g-



ou

t


city m
ap


hom
e


si
gh

ts



ed
it 

en
tr

y


Figure 2. High-level dialog structure of the
ARGuS portal

plication built using the DFN and DCF in order to examine
the feasibility of this approach.

3.1. Requirements analysis phase

Early in the requirements analysis phase, a very coarse,
high-level view of the application’s dialog flow, showing
just the relationships between the most important com-
pounds, should be drafted in order to visualize the overall
structure and scope of the project. This early draft can be
derived from use cases and thus initiate the transition from
informal requirements to a more formal and detailed speci-
fication of the application’s look and feel.

The ARGuS Travel Guide, for example, bundles infor-
mation on Leipzig’s sights, restaurants, hotels, and pub-
lic transportation schedules and makes it available through
the web-based user interface of a portal system. Users can
search for points of interest and save them in a personal
travel planner to create their individual itinerary for a visit
to the city. Most features of the system can be accessed ei-
ther through a desktop browser, PDA or WAP-enabled mo-
bile phone. Consequently, the first step in the dialog flow
design was to identify the dialog modules that would later
contain these use cases, without specifying their actual dia-
log graphs yet (Fig. 2).

3.2. Specification phase

The details of the dialog flow should then be worked out
in the specification phase, preferably in incremental fash-
ion: In order to ensure that the whole development process
is driven by the users’ needs, the coarse dialog graphs
should be populated with an emphasis on dialog masks first,
since these are the entities that will ultimately determinethe

usability experience. The actions can be specified coarsely
at this early stage, and be refined in subsequent iterations.

If the application logic shall serve multiple presentation
channels, their dialog flows should be specified in parallel
to ensure that the dialog structure is as similar as possibleon
all channels, allowing users to switch channels without hav-
ing to rebuild their conceptual model of the application. In
this case, giving preference to the masks during the spec-
ification and design phase is especially important to pre-
vent the design of the actions from becoming presentation
channel-dependent. For example, to create a new account
in the system, the user needs to provide quite a bit of data
(address, travel preferences and desired password) — while
this can be all acquired in one form on the HTML chan-
nel, we use a sequence of three pages on the WML channel
to cater to mobile devices’ smaller screens (Fig. 3).

3.3. Design phase

By the end of the specification phase, the user experience
should have been worked out in terms of which masks exist
on various channels of the application and how the user can
navigate between them. In the design stage, when the struc-
ture of the underlying application logic and data model is
also designed, it is then time to refine the dialog graphs by
inserting all necessary actions between the masks to process
the users’ input and prepare the system’s output.

To complete the dialog graphs of the “Create Account”
module, for example, we need to add logic for validating the
data entered by the user. In order to keep this logic channel-
independent, we implement it in three actions that are exe-
cuted subsequently on the HTML channel, but interspersed
with the masks on the WML channel (Fig. 4). The necessity
to distribute the input processing over several actions only
becomes obvious if the channels are designed in parallel,
and preference is given to the masks — had we designed for
the HTML channel only, all the processing might have been
implemented in one action that would have been unsuit-

Create Account [WML]


address

form


invalid


prefer-

ences

form


valid


passwd

form


valid
 valid


Create Account [HTML]


address,

prefs,


passwd

form
 invalid


valid


done


invalid
 invalid


create

account


ok


done


create

account


ok


Figure 3. Early sketches of the “Create Ac-
count” dialog module



Create Account [WML]


address

form


address

plausib

check


submit


invalid

prefer-

ences

form


valid
 prefs

plausib

check


submit


invalid

passwd


form


valid
 passwd

plausib

check


submit


invalid

valid
 create


account


Create Account [HTML]


address,

prefs,


passwd

form


address

plausib

check


submit


invalid

valid
 prefs


plausib

check


valid
 passwd

plausib

check


valid
 create

account


ok


invalid

invalid


done


ok


done


Figure 4. Refined dialog flows of the “Create
Account” dialog module

able for reuse on the WML channel. Therefore, if we want
to avoid redundant implementation of application logic on
multiple channels, the structure of the logic must be flexi-
ble enough to serve all channels — and the required degree
of flexibility can only be gauged if the channels’ user inter-
faces are specified first.

As the application’s data model matures in the design
phase, this is also the time for specifying the data flow be-
tween the application logic and the user interface. This in-
cludes the detailed definition of the masks’ contents, i.e. the
data that the user should input and the system should out-
put. This stage will likely be characterized by mutual feed-
back between the dialog flow specification and the appli-
cation design: The dialog flow defines what the application
logic should do in response to user interactions, guiding the
design of the logic and data model, which in turn define the
data structures that the masks and actions will process.

Obviously, since the dialog flow specification is contin-
uously evolving from the first coarse sketches to the final
detailed graphs, no clear lines can be drawn between these
three phases. In practice, there will always be some degree
of overlap and iteration, depending on the type of applica-
tion and the actual process employed.

3.4. Implementation and testing phase

In the implementation phase, the refined dialog flow
model serves as essential input for the DCF, which will
manage the users’ interaction with the application accord-
ingly. Since a machine-readable specification can be gener-
ated from the dialog flow model automatically, there is no
need for developers to implement the specified dialog flows
manually. As an example, Figure 5 shows an excerpt from
the DFSL representation of the “Create Account” module.

Because of the modular nature of the dialog flow, mod-
ules may be added to the dialog flow model incrementally
as the implementation of their constituent masks and ac-
tions progresses. Developers can also test the interactionof
their masks and actions with the application logic incremen-
tally on a relatively low level by embedding them into sim-
ple dialog graphs that merely serve as test drivers.

Since the DFN encourages modularity in the dialog flow
and the DCF enforces the separation of dialog flow specifi-
cation, user interface design and application logic, any er-
rors found in tests of one of these tiers should be fixable
without affecting other tiers or even other elements of the
same tier. In contrast, the intermingling of application logic
and dialog control logic in actions that is allowed by ap-
proaches such as Apache Struts [1] bears the risk of intro-
ducing side effects when changing one aspect of the com-
bined logic.

4. Project experience

To evaluate the practical applicability of the DDPM and
the suitability of the DFN and DCF in this context, the AR-
GuS Travel Guide was implemented by a team of three stu-
dents with a background in common web engineering tech-
nologies, but no prior experience in using the DFN or DCF.
Over the course of a half year, the team built a portal sys-
tem comprising the core application logic and user inter-
face on three presentation channels: rich HTML for desktop
browsers, WML for mobile phones, and later, light HTML
for PDAs (some special features such as hotel booking and
tram routing were not fully implemented due to their inte-
grative or algorithmic complexity that were beyond the fo-
cus of this project). Following the DDPM, the team first
specified the complete dialog flow in the DFN before trans-
lating it into DFSL and implementing the application logic.

<dfs-flows>
<in-module name="create account">
<channel name="html">
...
<ex-action name="passwd plausib check">
<on-event name="valid">
<call-action>create account</call-action>

</on-event>
<on-event name="invalid">
<call-mask>
address, prefs, passwd form
</call-mask>

</on-event>
</ex-action>
<ex-action name="create account">
<on-event name="ok">
<term-event>done</term-event>

</on-event>
</ex-action>
</channel>
...

</in-module>
...
</dfs-flows>

Figure 5. Excerpt of the “Create Account”
module’s dialog flow specification



Figure 6. Searching for sights on the desktop
and mobile phone channel of ARGuS

While the developers found the basic DFN and DCF con-
cepts easy to learn, they initially found it difficult to differ-
entiate between control flow, data flow and dialog flow. By
consistently placing all application logic into the actions,
using a mix of dialog events and session variables for data
flow and restricting Java code in the masks to simple pre-
sentation issues, the team later managed to cut the size of
the dialog flow specification in half.

The total time for the specification and design of the
application logic and the dialog flows for the HTML and
WML channel was about two months. In the first part of the
implementation phase, the complete application logic and
24 rich HTML masks were then implemented along with
29 action classes that serve as the interface between the ap-
plication logic and user interface. This increment took about
two months to complete. After a successful system test of
the HTML channel, 22 masks for the WML channel were
implemented. No additional application logic had to be im-
plemented for this increment since the WML channel’s di-
alog flow had been coordinated with the HTML channel in
such a way that the whole application logic could be reused.
Consequently, its implementation took only two days.

Late in the project, the team decided to add a light HTML
channel serving virtually text-only pages was conceived for
use by PDAs and similar devices. This channel completely
reused all application logic, as well as the desktop chan-
nel’s dialog flows as the only difference was in markup, but
not in pagination. Since the DFN and DFSL support reuse
of specifications with minimal redundancy, this channel re-
quired only one day for the implementation of the 24 masks.

The observed implementation times reflect what would
be intuitive expectations for the development efforts of
these channels: Since the rich and light HTML channels are
very similar, one would expect the effort for adding the PDA
channel to be quite low. The observed implementation ef-
fort of just one day confirms this and suggests that the no-
tation and framework did not introduce any additional over-
head. For the implementation of the WML channel, the ob-
served implementation time of two days is a bit higher than

for the PDA channel, but still lower than expected. We con-
sider this a pay-off of the preceding two months of speci-
fication and design, where the dialog flows were iteratively
revised up to a maturity that later actually enabled the devel-
opers to simply implement the WML masks without having
to deal with any application logic in order to obtain a work-
ing mobile channel.

Obviously, these implementation times cannot be gener-
alized — more empiric evidence and a comparison to de-
velopment projects that do not use the approach suggested
here is necessary to draw valid conclusions on the efficiency
of this method vs. others. Also, since the rich HTML and
WML dialog flows were designed in parallel, it is not pos-
sible to quantify how much effort went into which channel.
It would be an interesting experiment to add a channel for a
device with restricted I/O capabilities late in the projectand
observe the development effort this incurs. Still, the initial
experiences gained from the ARGuS project look promis-
ing and show that it is feasible to build complex web-based
applications for multiple devices using the DDPM.

5. Related Work

The dialog-driven process model draws part of its effi-
ciency from the compatibility between the Dialog Flow No-
tation and Dialog Control Framework that allow a seamless
transition from models to code.

Other notations suggested for modeling web-based UIs
initially focused on data-intensive information systems,but
not interaction-intensive applications [5]: For example,the
RMM development process [8] allows the definition of nav-
igable relationships between data entities, and the OOHDM
[10] process provides classes like node, link and index to
represent different forms of navigation; however, they do
not provide explicit support for modeling different presen-
tation channels. The language WebML [4] is capable of
modeling the layout and appearance of web pages indepen-
dently of the output device using an abstract XML language
for its presentation model, but does not seem to provide
an overriding mechanism for the extension of generic di-
alog modules with channel-specific fragments that enables
the easy reuse of dialog sequences across presentation chan-
nels. Similarly, the Web Composition Language [6] focuses
on the specification of the dialog mask’s contents, but seems
to lacks tool support for handling navigation patterns.

Most tools offering dialog control implementation sup-
port for web applications follow the Front Controller design
pattern to facilitate easier dialog control. However, since
they lack accompanying notations, they still require devel-
opers to manually implement dialog flows that were speci-
fied using unrelated notations (if at all). The Apache Jakarta
Project’s Struts framework [1] is the most popular solution
today, however, it forces developers to combine application



logic and dialog control logic in its actions: The Struts con-
troller only decides which action should receive incoming
requests, but the actions then decide which view to display
next. Since the application logic is thus not completely de-
coupled from the dialog flow, reusing it on different chan-
nels is not always possible, making device-independent de-
sign cumbersome.

The need to spread complex forms over multiple inter-
action steps on small-screen devices instead of presenting
them as a whole is addressed by the Renderer-Independent
Markup Language (RIML) [11], an extension of XHTML
2.0 which contains semantic information for an automatic
pagination engine. Collecting the data fragments coming in
from the split-up forms is the task of a proxy between the
client and server in that approach. In contrast, we are work-
ing on an extension to the DCF that will enable it to manage
the necessary micro-dialog flows directly.

6. Conclusion

We presented a dialog-driven process model for the de-
velopment of web-based applications. Using this approach,
developers can derive early drafts of the application’s dia-
log flow from the requirements and then refine them contin-
ually using a graphical dialog flow notation that can serves
as a communication tool between all involved stakeholders
throughout the process. Since the dialog flows of the appli-
cation are specified first, they are driving the design of the
application logic instead of being dictated by it. This en-
courages compliance with the ISO dialog principles of con-
sistency with user expectations and suitably for the task [7]
and thus contributes to the usability of the application.

Based on our experiences gained from the development
of the ARGuS web application, we predict that a dialog-
driven process using the Dialog Flow Notation and Di-
alog Control Framework can reduce the development ef-
fort and cost for web applications in a number of ways:
Firstly, the development effort for application-specific di-
alog control logic is eliminated since the DCF that contains
all this logic can be reused as a black box. Secondly, the
redundant effort of first specifying an application’s dialog
flow in some notation and then manually implementing it
is eliminated since the DFN/DFSL specifications serve as
direct input to the DCF without the need for further pro-
gramming. Thirdly, redundant development effort for mul-
tiple presentation channels is eliminated since the DFN and
DCF encourage reuse of the device-independent application
logic and provide means to reuse similar parts of the dia-
log flow across channels. Fourthly, the risk of late discovery
of flaws in the user interface and business processes is re-
duced since the intuitively understandable DFN allows the
involvement of non-technical project stakeholders through-
out the project, and the seamless transition from specifica-

tion to implementation of dialog flows using the DCF al-
lows rapid prototyping. We hypothesize that in combina-
tion, these effects will lead to a reduced overall cost of web
application development and a shorter time to market, while
at the same time providing developers with means to struc-
ture web applications’ user interfaces on various devices in
a more user-friendly way.

7. Acknowledgments

The Chair of Applied Telematics/e-Business is endowed
by Deutsche Telekom AG.

References

[1] Apache Software Foundation. Struts.
http://struts.apache.org.

[2] M. Book and V. Gruhn. A dialog control framework for
hypertext-based applications. In H. Lin and H. Ehrich, ed-
itors, Proceedings of the 3rd International Conference on
Quality Software (QSIC 2003), pages 170–177. IEEE Com-
puter Society Press, 2003.

[3] M. Book and V. Gruhn. Modeling web-based dialog flows for
automatic dialog control. In19th IEEE International Confer-
ence on Automated Software Engineering (ASE 2004), pages
100–109. IEEE Computer Society Press, 2004.

[4] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Lan-
guage (WebML): a modeling language for designing Web
sites.Computer Networks, 33:137–157, 2000.

[5] P. Fraternali. Tools and approaches for developing data-
intensive web applications: A survey.ACM Computing Sur-
veys, 31(3):227–263, Sep 1999.

[6] M. Gaedke, M. Beigl, H. Gellersen, and C. Segor. Web con-
tent delivery to heterogeneous mobile platforms.Advances
in Database Technologies, LNCS, 1552, 1998.

[7] Intl Organization for Standardization. Ergonomic require-
ments for office work with visual display terminals — Part
10: Dialogue principles. ISO 9241-10, 1996.

[8] T. Isakowitz, E. Stohr, and P. Balasubramanian. RMM: a
methodology for structured hypermedia design.Communi-
cations of the ACM, 38(8):34–44, Aug 1995.

[9] A. K öhler and V. Gruhn. Analysis of mobile business
processes for the design of mobile information systems.5th
International Conference on Electronic Commerce and Web
Technologies (EC-Web ’04), LNCS, 3182:238–247, 2004.

[10] D. Schwabe and G. Rossi. The object-oriented hypermedia
design model.Communications of the ACM, 38(8):45–46,
Aug 1995.

[11] T. Ziegert, M. Lauff, and L. Heuser. Device independent web
applications — the author once – display everywhere ap-
proach.Proceedings of the 4th International Conference on
Web Engineering (ICWE 2004), LNCS, 3140:244–255, 2004.


