
SQUIRREL� : DBS-based information retrieval system for

the WWW with context graphs

Sergej Melnik, Timo B�ohme, Karsten B�ohm

fmelnik, timo, boehmg@aix520.informatik.uni-leipzig.de

University of Leipzig, Institute of Computer Science

September, 1996

Abstract

We describe a new WWW-based information system called Squirrel which demonstrates

an attempt to integrate a relational database system (RDBS) with an information retrieval

system (IRS) providing context based access to a SGML document collection. Indexing of

the documents is performed on full-text basis whereas search capabilities include ranking of

the retrieved documents. A functioning prototype has been implemented and is available on

the Internet**.

1 Introduction

The Web represents today the information source. In some impetuously developing areas it is

sometimes the only one. The vast amount of information available on the Web requires new

methods of information retrieval. To tackle this problem there have been developed a number of

search engines like Lycos [Lyc96], AltaVista [Alt96] or InfoSeek [Inf96]. They index a considerable

part of the documents on the Internet referencing them via hyperlinks.

Although delivering surprising results in individual cases, these search engines exhibit severe draw-

backs. Especially the lack of semantic di�erentiation leads often to problems. For example, a

search for Java a year ago would have delivered more information about co�ee and holiday islands

than about a programming language. Today the situation is certainly quite the contrary.

*The abbreviation Squirrel stands for Simple Query Interface for Resource Retrieval in Electronic Libraries.

The name of the prototype was originally inspired by lovely gray squirrels inhabiting the surrounding parks of

Kingston University, London, where a considerable part of the implementation was carried out.

**http://doesen3.informatik.uni-leipzig.de:8080/squirrel/search.html

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Furthermore to follow a link is often the only way to �nd out what is behind it. This often leads

to long `co�ee breaks' when a link points e.g. to an overseas site and happens to contain only

irrelevant information. On the other hand indexing the whole Web on a central place leads to

inherent scaling problems. This is indicated e.g. by the fact that in spite of parallel computing this

asynchronously created index gets fast outdated what makes a part of the document collection

unreachable. This situation is criticized by many users as being time consuming and ine�ective.

To address the above mentioned weak points we have developed another approach independently

of other related research work. Conventionally the document is the major information piece on

the Internet. However, many large documents are sometimes highly structured covering distantly

related topics. Retrieving such a document requires the user to perform another search, this time

inside the document. Obviously, the document structure needs to be taken into consideration.

We specify the document structure using the Standard Generalized Markup Language (SGML).

This allows us to markup e.g. document header and title as well as to subdivide documents into

smaller semantically coherent units that we call chunks. These can be retrieved independently of

the documents they belong to.

In order to provide e�cient access to a document collection we store it as a repository in which

chunks are indexed on the full-text basis building up a vector space. Using the vector space

model the Squirrel prototype provides semantic di�erentiation within the document collection

organizing chunks in a context structure. Thus in the example above the user can ensure the

intended interpretation of `Java' providing the context of programming languages. The context

structure is implemented as a context tree projected onto the vector space. The context tree

provides structured view on the repository enabling the user to localize relevant topics. Apart of

this, the context tree serves for grouping search results according to the context structure. These

results are ordered by relevance to the query employing ranking algorithms and presented to the

user. After that user can retrieve on-the-y formatted chunks with highlighting of the found

keywords.

The graphical user interface is a special feature of the Squirrel system. It is used to facilitate the

search and to visualize the search results. Written fully in Java [Fla96] | like all components of

the system | the client applet runs with any Java-enabled browser. The applet interacts with the

server application which is responsible for performing SQL queries using JDBC [Jav96] protocol

and converting outgoing documents into HTML format.

The remainder of this article is organized as follows: in the next section we describe the concep-

tual basis of the Squirrel system, i.e. the context structure and related clustering mechanisms.

Sections 3{6 deal with our prototype implementation. In section 3 we present a brief overview

of the system. Section 4 contains the description of the underlying DBS. Section 5 is devoted

to the document acquisition and storage. The description of the user interface can be found in

2

section 6. Finally, the experiences gained while testing the system and planned extensions are

stated in section 7.

2 Context tree and clustering

In order to ensure an acceptable recall (e.g. the ratio of retrieved documents to all relevant doc-

uments) while seeking for a document in a repository, one must guarantee that no important

keywords of any document have been missed during indexing. A natural way to do this is to

index documents on the full-text basis. Unfortunately, providing an e�cient means of search in

the repository, full-text indexing alone does not solve the problem of semantic classi�cation of the

documents (or chunks in our case, i.e. parts of documents) found. At last, semantic di�erentiation

is an important factor for increasing precision of the search (e.g. the ratio of relevant documents

to all documents found).

To facilitate semantic di�erentiation of the terms (keywords) indexed in the repository we impose

a context structure upon the document space. The aim to organize the document repository

into a structured collection led us to using a context tree which groups document subspaces into

hierarchically ordered topics or contexts. This hierarchy results from subdivision of individual

topics focusing broader contexts into narrower de�ned ones. One of the well known catalogues

using this strategy is Yahoo [Yah96] which enjoys wide popularity with the Internet users.

In our implementation the context tree is composed of a number of context nodes each representing

a particular topic. A parent{child relation on the node set de�nes the node hierarchy. As we

mentioned above, each topic identi�es a certain subspace in the vector space of the document

repository. Thus, a node, de�ned by a vector (or set) of keywords, is located approximately `in

the middle' of the subspace it comprises. This is ensured using keywords with the highest average

weigh for the chunks inhabiting a context node. We call these keywords unique keywords.

Due to its inherent nature, the notion of subspace or subtopic proposes using relative term vectors.

Relative in the sense that it is su�cient to store only additional terms to distinguish subnodes

within a given node, without replications of the supernode terms in every subnode. The sum of

relative vectors yields the corresponding absolute vector. The idea of document spaces and relative

vectors is illustrated in �gure 1.

Now that we have briey described the main building parts of the context structure, we continue

with how the context tree is constructed.

Intuitive navigating through the tree requires a high quality tree structure. Apparently, it is hardly

possible to reach the ideal structure using fully automatic methods. On the other hand, manual

maintenance of the context tree demands high expenditures in time and human resources. We try

to reach a compromise using semiautomatic procedures.

3

dimension x

d
im

en
si

o
n

 y

relative vector

absolute vector

document subspace

Figure 1: Schematic two-dimensional model of the document space.

In our current implementation we employ a hierarchical agglomerative single{link clustering as

well as heuristic clustering [Sal89]. Probably not the best, these methods are well known and

relatively easy to implement. Hierarchical clustering di�ers from heuristic in that we can rely

on the knowledge of all pairwise chunk{chunk similarities. Therefore the corresponding cluster

generation is relatively expensive to perform. In return, hierarchical clustering produces a unique

set of well-formed clusters for each set of data. We use this algorithm for initial context node

partitioning provided adequate number of chunks in a node (please refer to section 5 for more

detailed information on chunk processing). Apart of the control of the result quality, a human

administrator is asked to name individual nodes. Heuristic clustering consists in �nding one or

more appropriate nodes to place a single chunk into. This technique requires manual placement

con�rmation.

3 System overview

In our opinion, one can better understand and evaluate the Squirrel prototype being familiar

with its underpinning foundations. As we pointed out in the introduction, the main goal of the

development of the system was fast and precise search. Concentrating our e�ort on this aim, we

tried to pay an adequate attention to the issues of generalization, accessibility and scalability.

This gave birth to the conceptual framework of the system and eventually led to the current

implementation. In following we describe the individual aims, their underlying concepts and the

resulting implementation.

We considered the search being the key issue. The need to perform it fast requires indexing of

the document repository. As mentioned earlier we use full-text indexing to improve the recall

factor. Although we are aware that full-text indexing is already integrated in some database

systems, we preferred to implement it on our own using a SQL [MS93] database. This leaves us

the highest exibility for experiments with di�erent IR methods. The indexing is described further

4

in section 5. To perform the search precise we followed the idea of context tree (see section 2) as

well as ranking of search results. In our prototype ranking is based on the relative term frequency

in the document. During preprocessing of documents a numeric value identifying relevance of the

given term for the corresponding chunk is generated and stored in the DB. This value is the basis

of the calculation of the chunk relevance for the query.

Another important issue is generalization. To provide format independence of the documents in

the repository, we use SGML [Bry88]. The origin of SGML documents, converting documents from

and into SGML and storing them in the Squirrel database is addressed closer in section 5. The

interface to the DBS is based on SQL. Together with JDBC (Java Database Connectivity) [Jav96]

they facilitate interoperability and provide the basis of working in heterogeneous environments.

To meet the requirement of portability, we have chosen Java as our implementation language.

Both server and client side of the software are written in Java as well as DB administration and

converting tools. Java enables us to run Squirrel servers (in future communicating one with

another) across any Java-aware platform whereas the client applet can access the server from any

Java-enabled browser.

This leads us to the accessibility issue. From the very beginning the whole system has been

designed for working on the Internet using the client-server model. This includes concurrent access

from multiple users as well as hypertext support. With its multithreading functionality Java seems

to be well suited for this kind of application. Besides that, in order to deliver hypertext (HTML

documents) our server supports a small subset of HTTP (HyperText Transfer Protocol) [HC94].

Apparently, maintaining a single repository one will inevitably encounter major scalability prob-

lems. A known solution represents distribution of resources. It is applicable to our case as

transparent linking of context subtrees from di�erent repositories into single context structure

with parallel query processing. During the development of the prototype we steadily kept an eye

on this perspective. For the time being, however, it is not integrated into the system framework.

Let us now take a look at how the goal and concepts mentioned above are implemented in the

Squirrel prototype. The main components of the system are shown below in �gure 2. In the

remainder of this section we describe the functionality they embody as well as interaction of the

system components.

The central part of the system is the Control unit which provides the interface to the database

engine. Additionally it is responsible for tight IRS-RDBS coupling. Communication between

RDBS and the control unit is carried out by means of SQL on top of the JDBC [Jav96] protocol,

a standard SQL database access interface for Java. The control unit uses the Converter module

which undertakes converting documents into di�erent formats. Such operation can be requested

while formatting outgoing HTML documents as well as by the Library manager which comprises a

number of tools for administrating the document collection. It also semiautomatically preprocesses

5

source documents

User

Client

Converter

Index

RDBMS

SGML-DB

Library Manager /
Tools

IRS
Admin
User /

Control unit

Server

JDBC / SQL

JDBC / SQL

TCP / IP

Figure 2: Components of the Squirrel system.

incoming documents before inserting them into the repository via the control unit.

The Client mediates in the interaction between the user and the Control unit over TCP/IP

[Com95]. It forwards the query to the server, interprets received results and visualizes them

graphically in the frame of the context tree. The user interface of the client is described detailed

in section 6.

Next section deals with the internals of the RDBS component which comprises the document

repository and indexing engine.

4 Database structure

The core of the Squirrel system builds a SQL database. Its main tasks are maintaining the IR

data and the document repository. To preserve applicability of the system we have done without

proprietary DB solutions which already incorporate full-text indexing. For the same reason we

have chosen JDBC. JDBC (Java Database Connectivity), like Microsofts ODBC (Open Database

Connectivity) [Gei95], is an interface de�nition for communication between database applications.

All notable database companies has been contributing to this standard. It is safe to assume that

JDBC drivers will be available for all major DBS until the end of this year. We enlarge the

6

spectrum of DB systems working with our prototype by using only a small subset of SQL.

The structure of the database is described in the following paragraphs. Below in �gure 3 you can see

the entity-relationship model representation of the database. From this schema can be concluded

that we employ a tight coupling between the IRS and the DBS. Having index information, context

tree and document data in the same database, it is possible to localize documents relevant for the

query using a single SQL statement.

UNIKEY

relevance

name Node

CONTEXT

Chunk

CHUNK

POTKEY

Keyword

Keyword

status

position

length

n m

n

n

n

m

Documenttype

name

link

1

TREE

m

n1

Entity

Attribute

Relation

Figure 3: Entity-relationship schema of the Squirrel database.

As mentioned earlier, chunks are the smallest independently retrievable document pieces. The

document-chunk ownership is reected in the relation chunk. To be able to retrieve the original

or updated version of a document, the link attribute of the document stores additionally the URL

to the source �le. Full-text index information for the IRS is also based on chunks. All keywords

a chunk contains and their relevance within the chunk (for more information about the relevance

calculation see section 5) are stored in the relation potkey. The relevance attribute is used by the

ranking system which orders retrieved chunks by their importance according to the stated query.

7

Context tree structure is implemented as a parent-child relation (relation tree) on the nodes.

Every node has a number of unique keywords (relation unikey) describing the place of the node

in the vector space. The assignment of chunks to context nodes is stored in the relation context.

As follows from the �gure, a chunk can be a member of several nodes. In the next section we

address the issues of data acquisition and �lling the database.

5 Document acquisition and storage

This section presents the workow of the Squirrel system from the viewpoint of the document life

cycle. We begin with document origin, describe the chunk splitting process including converting

to SGML and �nally come to the stage where the stored chunks can be retrieved by the user. This

process is illustrated in �gure 4.

One aim of the Squirrel system is the implementation of an interface to information sources

of di�erent formats. We use the notion of document to describe a �le containing structured text

and self-contained objects like pictures etc. The objects can be stored and retrieved within the

surrounding text but are not indexed by the IRS. Structured text ranges from plain ASCII text,

formated text (e.g. HTML, TeX) to database �les. Currently we have implemented �lters for a

few document types. As an example of well-structured documents we used HOWTO manuals

wide spread in the public domain sector. On the other hand, much up-to-date problem-solution

oriented data is contained in news groups postings as well as mailing lists. Our prototype also

supports these formats.

The life of a document found by a search agent or inserted into the database by the system admin-

istrator starts with converting it into SGML according to our DTD (document type de�nition).

This is done by the general �lter module which tries to choose the appropriate �lter according to

the document type and format. In this step the �lter also splits the document into logical units

(chunks) and marks them using SGML tags. In the case of structured documents these can be

for example individual sections. Afterwards the position of every chunk within the document is

stored in the database. We might add that all converting and �ltering tools used in the Squirrel

system have been developed by ourselves.

Once marked and saved, the chunks are indexed by adding all keywords (words which are not

contained in a stop word list) to the database. For the ranking system the keywords are enriched

by the relevance attribute which is calculated using the overall number of words in a chunk,

the number of unique words, the absolute frequency and information about the position of the

keywords (header or body of the chunk, to give an exapmle).

At the last step the chunks have to be placed in related contexts. As pointed out in section 2

we make use of hierarchical and heuristic clustering. For this purpose we have developed two

8

filtering relevant
knowledge

storing & indexing

retrieval

Java server

source
documents

search agent

source documentssource documents

index tablesSGML Database

user

problem solution
knowledge structure

original documents
formatted documents

TCP / IP

Query

SGML

data collection

instance

piece of information

network connection

process / function

Java client

Figure 4: Workow diagram of the Squirrel system.

9

semiautomatic tools. Having reached this stage the chunks are ready to be searched for and

retrieved by users interacting with the system using a client interface.

6 User interface

The highest potential of Java for our prototype lies probably in the �eld of client-server applica-

tions. A Java application can open network connections directly to the database server without

the slowing down CGI (Common Gateway Interface) whereas a Java applet can directly commu-

nicate with a mediating server. The latter fact allows us to solve the problem of stateful gateways

in an elegant way. The Web is essentially stateless. To implement complete search sessions each

individual CGI-style gateway must maintain the state of the requests made to each server. The

solution lies in delegating the capturing of the state information to the client. Thus, the infor-

mation about the chunks found in response to a user query is stored directly in the client applet

enabling the user to refer to previous transactions without new server requests. Apart of the above

mentioned drawbacks, CGI applications are hardly portable.

Basically we provide two major types of interface to our system: the Java-based frame displaying

the context tree (the main interface) and the JavaScript interface which uses HTML forms. The

latter is provided primarily for the users who are not equipped with Java-enabled browsers and is

described in the full prototype documentation [MB96]. An example of the Java client window is

shown in �gure 5.

The window is divided into three parts. On the left-hand side you can see a graphical representation

of the context structure of the document repository. As it can be very large and elaborated, only

nodes found after a search or during navigating through the tree are displayed. On the right-hand

side the search results (chunks) found in the selected node are displayed ordered by relevance

and number of found terms. Selecting a chunk shows its content converted to HTML in the

corresponding browser window. In the lower part of the interface window the user can type in

a query. On default, the search terms are connected by the logical `OR'. To mark a keyword as

necessarily required one can put a plus sign in front of the keyword.

In order to provide search context to the query, one can use the Mark/Unmark button. When some

nodes are marked the search will be performed only in corresponding subtrees. As the number

of nodes found in earlier stated queries grows, it may be convenient to enforce cleaning of the

preceding results through deactivating the keep tree check box.

10

 ��

Figure 5: Example of the Squirrel interface window

7 Conclusions

Experimenting with the prototype (using a small SGML database of just above 10MB) we gained

useful experiences. First of all, using Java proved to be a right strategy. The system runs on

SunSPARC/Solaris and Linux without any changes, even without recompiling the code. JDBC

also seems to be a good choice. Through changing a couple of lines in the Squirrel con�guration

�le the system switches to another DB engine the only requirement being availability of a JDBC

driver. Sybase, Postgres95 and mSQL have been successfully tested.

To get user feedback we posted a message to a news group on the Internet. Some comments were

already integrated into the system. Beginning at an early stage the prototype was available on

the Web and thus proved to run relatively stable. Although response times are quite reasonable

for the current test database, the IRS engine seem to need further optimization.

The current version of the Squirrel system is still only a prototype. It does not employ thesauri,

morphological decomposition or vocabulary normalization. Further we plan to use distributed

databases using request brokers, especially in the light of coming CORBA (Common Object Re-

quest Broker Architecture) support for Java [Mer96]. Currently the work is under way to give the

Squirrel system a new pro�le. Primarily it is directed to processing of arbitrary SGML docu-

ments and including relational databases into the system as special SGML based documents. Pure

SGML documents will be stored in accordance to their internal structure and not at as it is the

11

case now (except for chunk structure). Instead of chunks we think of the notion of `dynamic sites'

which are created on-the-y and can contain multiple documents of di�erent types. We see the

advantage of this approach in that the hyperstructure of such `site' can di�er from the structure

of underlying documents. This imposes certain requirements of the layout formatting component,

especially for representing databases. An important issue is the referencing system. It should

include intra- and intersite references and be robust against moving and deleting of referenced

documents. This can be carried out in cooperation with the IR part of the system which provides

a way to reference sites using their content information rather than only links.

As a part of the new architecture we have already developed a new SGML processing engine.

It was successfully used for creating this technical report which has been written in SGML and

automatically converted to LaTeX [GM94] and HTML versions. The BibTeX-Bibliography has

also been extracted automatically.

Started as an approach to address the problems of search engines, the direction of our e�orts and

thus the functionality of the Squirrel system has been continuously moving to the �eld of digital

libraries. It was stimulating to discover similar ideas within the scope of DLI (Digital Library

Initiative) at the University of Illinois [SC96].

8 Acknowledgments

The authors are indebted to Prof. Erhard Rahm who encouraged us to write this paper and

provided us with many helpful comments. The ERASMUS exchange programme gave us the

opportunity to carry out the prototype implementation at the University of Kingston, Great

Britain. We thank our ERASMUS supervisor Dr. Chris Hutchison.

References

[Alt96] AltaVista-Homepage. http://www.altavista.digital.com, 1996.

[Bry88] M. Bryan. An author's guide to the Standard Generalized Markup Language.

Addison-Wesley, 1988.

[Com95] D.E. Comer. Internetworking with TCP/IP. Prentice Hall, 1995.

[Fla96] David Flanagan. Java in a Nutshell. O'Reilly and Associates, Inc., 1996.

[Gei95] Kyle Geier. Inside ODBC. Microsoft Press, 1995.

[GM94] Michel Goossens and Frank Mittelbach. Der LaTeX Begleiter. Addison-Wesley, 1994.

12

[HC94] M. Handley and J. Crowcroft. The World Wide Web | Beneath the Surf. London:

UCL Press, 1994.

[Inf96] InfoSeek-Homepage. http://www.infoseek.com, 1996.

[Jav96] JavaSoft, Sun Microsystems, Inc. The JDBC(tm) Database Access API.

http://www.javasoft.com/jdbc, 1996.

[Lyc96] Lycos-Homepage. http://www.lycos.com, 1996.

[MB96] Sergej Melnik and Timo B�ohme. SQUIRREL: why and how.

http://doesen3.informatik.uni-leipzig.de:8080, 1996.

[Mer96] Bernhard Merkle. Mokka f�ur den Broker, September 1996.

[MS93] Jim Melton and Alan R. Simon. Understanding the new SQL: a complete guide. Morgan

Kaufmann, 1993.

[Sal89] Gerard Salton. Automatic text processing. Addison-Wesley, 1989.

[SC96] Bruce Schatz and Hsinchun Chen. Federating Diverse Collections of Scienti�c

Literature, May 1996.

[Yah96] Yahoo-Homepage. http://www.yahoo.com, 1996.

13

