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ABSTRACT 

 

This research project is a part of our endeavor to developing a new hydrogen sulfide 

(H2S) splitting cycle for hydrogen production. In view of that the Bunsen reaction is the key step 

for the overall efficiency, the objective of this research is to develop an effective and efficient 

process to carry out the Bunsen reaction in the presence of organic solvents. Organic solvents 

can help dissolve iodine crystal, lower the reaction temperature and reduce the corrosiveness 

accompanying the reaction. Through screening of the ordinary organic solvents, aromatic 

hydrocarbons stood out and toluene was used in this project.  

In order to study the Bunsen reaction rate in the presence of toluene, the iodine solubility 

in HI solution was extensively explored at room temperature. Although the iodine solubility in 

water is small (0.3404g/L at 25 ), it was found that the iodine solubility in HI solution increases 

greatly as the [HI] increases. At lower [HI] (0~0.238 M), the iodine solubility is linear to [HI] 

with a relationship of [iodine solubility] = 0.57[HI] + 0.0030; at higher [HI] (0.238 ~7.6 M), the 

relationship of the iodine solubility and [HI] conforms to [iodine solubility]/[HI] = 0.190[HI] + 

0.58.  

In the second part, the iodine distribution behavior between HI solution and toluene phase 

was studied at room temperature. It was determined that the iodine distribution coefficient (D = 

[I2]HI solution/[I2]toluene) increases as the increase of [HI]. At lower [HI] (0~1.89 M), the distribution 

coefficient has a quadratic relationship with [HI] as D = 1.4027[HI]
2
 + 0.8638[HI] + 0.0088; at 

higher [HI] (1.89~7.54 M) the distribution coefficient is linear to [HI] with a relationship of 

D=5.5937[HI]-3.5632. 

On the basis of the above work, in a semi-batch reactor, the Bunsen reaction rate in the 

presence of toluene was measured. In a mixture of toluene and water, iodine prefers to stay in 
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toluene phase. The Bunsen reaction was readily initiated by feeding SO2 into water phase. 

Experimental results indicated that the rate of the Bunsen reaction in the presence of toluene is 

equal to the molar flow rate of feeding SO2 when the iodine concentration is higher than a certain 

value. This specific value depends on the reaction conditions, such as the interface area between 

water and toluene phase, the dispersion efficiency and the flow rate of SO2. 
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NOMENCLATURE 

 

A or ABS     Absorbance of ultraviolet–visible spectrophotometer 

                    Concentration of the absorbing species in materials 

D                  Distribution coefficient of iodine between hydroiodic acid and toluene phase,  

[I2]HI solution /[I2] toluene  

                     Molar extinction coefficient, L mol
-1

 cm
-1

 

HSC       The name of the program, which is based on the fact that calculation modules 

automatically utilize the same extensive thermochemical database which contains 

enthalpy (H), entropy (S) and heat capacity (Cp) data for more than 25000 chemical 

compounds. 

   and           The intensity of incident light and that of transmitted light, respectively 

                     Path length that light will go through, cm 

M                 Molarity, mol L
-1

 

SCCM          Volume flow rate of SO2, Standard cubic centimeter per minute 

TMFM          Thermal mass flow meter 

UV-Vis         Ultraviolet-visible spectrophotometer 

[ ]                 Molarity, mol L
-1
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1. INTRODUCTION 

 

1.1 H2S splitting cycle  

 

In oil sands bitumen upgrading, a huge amount of hydrogen is desired to convert organic 

sulfur-containing compounds into hydrogen sulfide (H2S), which is further oxidized into sulfur 

and water in sulfur removal and recovery units such as the Claus plant. The hydrogen used here 

is mainly produced by steam reforming of natural gas. This process not only consumes clean 

fossil fuels but also releases greenhouse gas CO2. Furthermore, hydrogen produced by this way 

finally goes into water and is difficult to recycle. In view of the adverse effect as mentioned 

above, a novel hydrogen production by H2S splitting cycle was proposed for the first time by 

Wang
1
, which contains reactions (1) , (2) and (3) as follows. 

 

H2S splitting cycle 

                                                                                                (1) 

                              (the Bunsen Reaction)                              (2) 

                                                                                                            (3) 

The overall reaction is: 

                                                                                                                          (4) 

 

This new H2S splitting cycle allows the conversion of H2S into H2 and elemental S with two 

working reagents I2 and H2SO4 recycled. Further, if the sulfur produced by reaction (1) is 

continued to be oxidized into SO2 by reaction (5), reactions (2) and (3) would occur in a double 

scale because two moles of SO2 are produced. As a result, the overall reaction becomes reaction 
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(6) instead of (4). In this way, another new cycle called H2S-H2O splitting cycle was further 

proposed: 

 

H2S-H2O splitting cycle 

                                                                                                (1) 

                                                                                                                            (5) 

                                 (the Bunsen Reaction)                        (2) 

                                                                                                          (3) 

The overall reaction is: 

                                                                                                      (6) 

 

This new cycle produces two moles of hydrogen and one mole of sulfuric acid from only one 

mole of H2S. Both H2S and H2S-H2O splitting cycles are sustainable processes to recycle 

hydrogen for oil sands bitumen upgrading without CO2 emission. The engineering objective of 

both cycles is to develop processes integrating all of the above reactions. 

H2S or H2S-H2O splitting cycle arose from two areas of research work. One area is the 

gas-liquid reaction system of H2S and H2SO4 (reaction 1), which has been studied by Wang and 

Chuang
2 ,3 ,4 ,5 ,6

. The other area is the well-known thermochemical sulfur-iodine (S-I) water 

splitting cycle
7,8

 as follows:  

 

S-I water splitting cycle 

                                                                                              (7)  

                              (the Bunsen Reaction)                               (2) 
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                                                                                                             (3) 

The overall reaction is: 

            .                                                                                                          (8) 

 

Since the only difference between S-I water splitting cycle and the H2S splitting cycle is 

reactions (1) and (7), the research progresses achieved in the former area can be applied to the 

latter. The current research on S-I water splitting cycle indicates that the Bunsen reaction is the 

key reaction to determine the overall efficiency, because its products, H2SO4 and HI, mixture 

have to be purified to feed reactions (7) and (3), and this purification process is the most energy-

consuming step
7,8

. This situation is the same for H2S or H2S-H2O splitting cycle. Therefore, in 

order to optimize the H2S or H2S-H2O splitting cycle, it is important to develop an effective and 

efficient way to carry out the Bunsen reaction. A literature review about the current routes of 

operating the Bunsen reaction will be introduced in Chapter 2. 

 

1.2 Organization of this thesis 

 

In this thesis, Chapter 1 introduces the background of the H2S splitting cycle. Chapter 2 is 

a literature review on the operations of the Bunsen reaction. After the review, the knowledge gap 

was revealed and the research objective of this project was proposed. Chapter 3 describes the 

experimental procedures, which consists of analytical methods such as the determinations of the 

iodine solubility in HI solution, iodine distribution coefficient between HI solution and toluene, 

and the rate of the Bunsen reaction in a semi-batch reactor. Chapter 4 presented the results and 

discussions. In Chapter 5, the conclusions and future work were discussed.  
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2. LITERATURE REVIEW 

 

The Bunsen reaction has been extensively studied in the S-I water splitting cycle and is 

also the key step to decide the efficiency of the H2S splitting cycle. For the introduction of the 

research background, a literature review is introduced in this chapter. 

 

2.1 Survey of the Bunsen reaction routes to improve its energy efficiency  

 

2.1.1 General Atomic stoichiometry  

 

The operation of General Atomic stoichiometry on the Bunsen reaction was proposed by 

General Atomics
9
 in the study of the S-I water splitting cycle. This method is operated in the 

liquid water media in a large excess of iodine to separate two product acids into two immiscible 

liquid phases: a heavy HIx phase and a light sulfuric acid phase. The heavy HIx phase is a 

combination of hydrogen iodide, iodine and water and the light phase is sulfuric acid shown in 

the following equation
10,11

: 

 

              

                                                                            )            (9) 

 

In this method, although the HI and H2SO4 are separated physically, the excess amount of 

water and iodine requires a great deal of energy to extract and recycle prior to the decomposition 

subunits. More specifically, sulfuric acid phase is only 57(wt) % H2SO4 and needs to be 

concentrated via a series of evaporators. The molar ratio of HI: H2O is 1:5 in HIX phase, which is 



 

5 

 

very close to ratio (1:5.36) of the azeotrope of HI and H2O at atmospheric pressure. Both 

extractive distillation for HIx phase using H3PO4 
12

and reactive distillation
13

 were believed to be 

the most expensive and energy-intensive steps. All these purification processes make the Bunsen 

reaction the bottleneck of the overall cycle’s efficiency. 

Furthermore, this method of the Bunsen reaction is operated at 120 , which is slightly 

above the iodine melting point, 113.7  at atmospheric pressure. This not only leads to the 

severe corrosiveness caused by the evaporation of iodine, but also makes the following two side 

reactions feasible
14

, which consume the formed HI and H2SO4.  

 

                                                                                                      (10) 

                                                                                                         (11) 

 

Currently, lots of relevant researches on the Bunsen reaction are devoted to reduce the 

usage of I2 and H2O and therefore decrease the energy burden caused. Recent progresses of the 

Bunsen reaction operations are reviewed as below. 

 

2.1.2 The Bunsen reaction in organic solvents 

 

The Bunsen reaction in organic solvents was first discussed by De Beni et al.
15

. Organic 

solvents can dissolve the reactants I2, SO2 and H2O, and the product HI. Thus, HI stays in 

organic phase and so is separated from H2SO4 which stays in the water phase. For example, 

tributylphosphate (TBP) was selected for the Bunsen reaction due to its good solubility for SO2. 

The resulting TBP and SO2 mixture can dissolve a sufficient but smaller amount of I2 and H2O 
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for the Bunsen reaction. The simplified process is illustrated in Figure 2.1, where the product 

H2SO4 stayed in water phase and HI in TBP phase. Although this method reduced greatly the 

excess amount of iodine, the HI recovery from the organic solvent was still difficult.  

 

 

Figure 2.1 Scheme of the Bunsen reaction in TPB 

 

2.1.3 The Bunsen reaction with a precipitating agent formation 

 

Metathesis reactions with formation of insoluble solid salts lead to liquid-solid separation 

instead of original liquid-liquid separation of hydroiodic acid and sulfuric acid
16

. For example, 

lead sulfate was used in this method as shown in Figure 2.2. The accompanying reactions are: 

 

                                    (20-120°C)                                        (12) 

                                  (420-450°C)                                         (13) 

                                            (20-80°C)                   (14) 

 

Reactions (13) and (14) regenerate       and recycle it to the process. This route drastically 

decreases the recirculation rate of recycling agents (water and iodine) and avoids energy-
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intensive HIx processing, but it is disadvantageous to use solid material and concentrate dilute 

phosphoric acid. 

 

 
 

 

Figure 2.2 Scheme of the Bunsen reaction with insoluble lead sulfate 

 

2.1.4 The Bunsen reaction in a electrochemical membrane reactor  

 

The application of electrochemical membrane reactor (Figure 2.3) for the Bunsen 

reaction was proposed by Nomura et al.
17,18

. 

 

Anode side reaction:                                                                 (15) 

Cathode side reaction:                                                                             (16) 

 

In this method, two acids are physically separated by the electrochemical membrane 

reactor and the excess use of iodine is avoided. But the product is diluted acids because large 

excess amount of water is required for the permeation of proton through the exchange membrane 

(Figure 2.3). Thus, more efforts are needed to improve this method. 
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Figure 2.3 Schematic diagram of an electrochemical membrane reactor 

 

2.2 The proposal of the Bunsen reaction in organic solvents 

 

From the above literature review, it can be learned that one challenge in the Bunsen 

reaction operation is to reduce substantially the excess use of I2 and H2O. The other challenges 

are to lower the reaction temperature and facilitate the purification of HI and H2SO4 aqueous 

mixture. Wang proposed a new method of carrying out the Bunsen reaction in organic solvents
19

. 

The idea is to use organic solvents to dissolve the solid iodine and then add stoichiometric water 

into it. When SO2 is introduced into this organic solution, the Bunsen reaction is initiated. 

Because only the stoichiometric amount of water was used, HI gas product (highly water-

soluble) would be released directly and H2SO4 should stay in the reactor. This suggestion can be 

illustrated in Figure 2.4. Thus, the Bunsen reaction does not have to occur at 120  for melting 

solid iodine and the usage of iodine and water is greatly reduced. The most important advantage 

of this method is that HI and H2SO4 can separate directly without huge energy burden. However, 

the validity and possible modification of this proposal needs to be explored.  
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Figure 2.4 Schematic diagram of the proposal of the Bunsen reaction in organic solvents 

 

2.3 Iodine solubility in ordinary organic solvents 

 

The purpose of the introduction of organic solvents in the Bunsen reaction is to dissolve 

the solid iodine. Therefore the organic solvents which have higher solubility for iodine should be 

reviewed. Hildebrand and Benesi et al.
20

 studied the iodine solubility in the ordinary organic 

solvents (Table 2.1), from which the suitable organic solvents for the Bunsen reaction will be 

screened out later in section 4.2. 

 

 

 

 

 

 

SO2 HI (g) 

Sulfuric acid  

Solvent     +  I2 +H2O 
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Table 2.1 Iodine solubility in the ordinary organic solvents 

 

 

 

Organic solvent 
Iodine solubility, 

molar fraction, 25  

benzene 0.0488 

toluene 0.0639 

o-xylene 0.0786 

p-xylene 0.0760 

m-xylene 0.0825 

1,2,3-trimethylbenzene 0.0993 

1,2,4-trimethylbenzene 0.0915 

1,3,5-trimethylbenzene 0.1058 

1,2,3,4-tetramethylbenzene 0.1167 

ethylbenzene 0.0586 

n-propylbenzene 0.0589 

cumene 0.0561 

n-butylbenzene 0.0548 

isobutylbenzene 0.0480 

tert-butylbenzene 0.0501 

chlorobenzene 0.0333 

bromobenzene 0.0549 

n-C6H14 0.00456 

n-C7H16 0.00679 

CCl4 0.0115 

CHCl3 0.0228 

CS2 0.0546 

cyclohexane 0.0092 

ethyl alcohol 0.0471 

ethyl ether 0.0896 
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2.4 Iodine solubility in water and the solubilizing effect of HI on iodine in water 

 

For the above proposal of the Bunsen reaction in organic solvents, the reaction mixture is 

a combination of an organic solvent, iodine, water, HI and H2SO4. Aside from the iodine will 

dissolve in organic solvents, will it have solubility in other species? To know about it, the 

following literature was reviewed. 

Iodine solubility in pure water is very small (0.3404g/L at 25 )
21

. However, the 

existence of iodide (I
-
) and proton (H

+
) will greatly increase the iodine solubility in water. One 

reason is that iodine crystals can dissolve rapidly in an iodide aqueous solution by forming 

soluble triiodide ions (  
 )

22
. The other reason is that polyiodine species, I2X, where x=1, 2, 3, 4 

etc., will be stabilized by H
+ 

in the solution
22

. Iodine solubility in concentrated hydroiodic acid 

solution (45.9-66.7wt% HI) was summarized in Table 2.2
23

.  

 

Table 2.2 Iodine solubility in concentrated hydroiodic acid 

 

 
HI ,wt% Gravity ,25  I2 ,kg/L I2 ,kg/kg I2,mol/HI, mol 

66.7 1.946 5.22 2.68 2.03 

64 1.877 4.72 2.52 1.98 

54.4 1.644 3.47 2.11 1.95 

50.2 1.557 2.84 1.825 1.83 

45.9 1.486 2.28 1.853 1.68 
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2.5 Knowledge gap 

 

According to above literature review and the proposal of the Bunsen reaction in organic 

solvents, the knowledge gaps are concluded as follows: 

1. Up to date, neither General Atomic stoichiometry nor other new methods are 

available to run the Bunsen reaction in an efficient way. One of new attempts to 

explore the Bunsen reaction is to run the reaction in organic solvents. However, this 

proposal has not been tested.  

2. The suitable organic solvents for the Bunsen reaction have not been screened 

thoroughly. 

3. The iodine solubility in less than 57wt% hydroiodic acid solution (the azeotropic 

mixture of HI and water) has not been investigated sufficiently. 

4. The iodine distribution coefficient between HI solution and toluene has not been 

studied. 

5. The reaction rate of the Bunsen reaction in the two phases of organic solvent and 

water has not been reported. 
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2.6 Research objectives 

 

The goal of this project is to develop a novel process to operate the Bunsen reaction by 

use of organic solvent at room temperature. The research objectives can be described as follows:  

1. At first, different water-insoluble organic solvents will be screened and toluene will 

be chosen to run the Bunsen reaction in a two-phase mixture.  

2. The iodine solubility in HI solution with different concentrations in the absence and 

the presence of H2SO4 will be determined. The relationship of the iodine solubilities 

and the concentrations of hydroiodic acid solution will be investigated. 

3. The distribution coefficient of iodine between HI solution and toluene will be 

determined. 

4. The rate of the Bunsen reaction in the two-phase mixture of the HI solution and 

toluene will be determined in a semi-batch reactor. 
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3. EXPERIMENTAL  

 

3.1 Chemicals and instruments 

 

All chemicals used for experiments are ACS grade and used without further purification 

as received: iodine (Acros Organics), sodium hydroxide (EMD), sodium thiosulfate anhydrous 

(Fisher), potassium iodide (BDH), and toluene (BDH). All solutions were prepared with 

deionized water.  

The UV-Vis absorption spectroscopy was determined using UV mini 1240 UV-Vis 

spectrophotometer from Shimadzu and Mandel 10mm path length quartz cuvettes.  

 

3.2 Analytical methods 

 

Toluene is chosen for the Bunsen reaction in this work according to the screening results 

over organic solvents. 

For the Bunsen reaction in the presence of toluene, a set of corresponding analytical 

methods should be chosen and established. In this thesis, the protons concentration in water 

phase was determined by acid-base titration method; the iodine concentration in toluene phase 

was determined by iodometry method; the iodine in toluene phase and the iodide ions in the 

water phase were determined by UV-Vis spectrometry (see details in Appendix D). 

NMR was used to see if there is reaction between toluene and iodine (Appendix C) 
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3.3 The semi-batch reactor for the Bunsen reaction   

 

The semi-batch reactor used for the Bunsen reaction is shown as Figure 3.1. The reactor 

is a three-necked Pyrex flask (9), which is connected with the SO2 feeding system and a 

condenser for gas escape. Iodine was dissolved in the solvents in the reactor. The SO2 was 

introduced evenly into the aqueous phase through a gas dispersion tube (8) and the flow rate of 

SO2 was controlled by the thermal mass flow meter (5). For the benefit of mass balance, washing 

bottle (11-a) filled with toluene was used to trap iodine vapor. Methyl orange was added into the 

water in washing bottle (11-b) to detect the escape of SO2. 

 

 

  

 

 

 

 

 

 

Figure 3.1 Schematic diagram of the semi-batch experimental setup for the Bunsen reaction: (1) 

SO2 cylinder; (2) N2 cylinder; (3), (4) three way plug valve; (5) thermal mass flow meter for 

SO2; (6) thermal mass flow meter for N2; (7) ball valve; (8) gas dispersion tube; (9) reactor; (10) 

condenser; (11-a) washing bottle filled with toluene; (11-b) washing bottle with methyl orange 

water solution  
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3.4 Determination of iodine solubility in hydroiodic acid (HI) solution 

 

The HI solutions with different concentrations ranged from 0 M to 7.6 M were saturated 

with iodine. For the resulting iodine saturated hydroiodic acid solutions, the iodine 

concentrations were determined by iodometry method and the proton concentrations were 

titrated with NaOH solution.  

In order to evaluate the effect of H2SO4 on the iodine solubility in the hydroiodic acid 

solution, 5 mL of 0.943 M H2SO4 solution was added to 5 mL of 1.9 M hydroiodic acid. Then 

the HI-H2SO4 solutions with different concentrations were prepared by half serial dilution. The 

iodine solubilities in HI solutions and HI-H2SO4 solutions were compared to demonstrate if 

H2SO4 has influence on the iodine solubility in HI solution.  

All the experiments were operated at room temperature (23  -24  ) unless indicated. 

 

3.5 Determination of the distribution coefficient of iodine between hydroiodic acid (HI) 

solution and toluene 

 

In order to determine the distribution coefficient of iodine between HI solution and 

toluene, 5 mL of iodine toluene solution (0.458 M) was mixed with 5 mL of HI solution at 

different concentrations (0~7.6 M). After mixed thoroughly, the toluene phase and the water 

phase separated in a separatory funnel. The concentrations of iodine and proton in the water 

phase were titrated with sodium thiosulfate and sodium hydroxide respectively; the iodine 

concentration in toluene phase was determined by a UV-Vis spectrometer at 497nm according to 

Beer-Lambert law (A = lc). The molar extinction coefficient of iodine in toluene is 1.02 × 10
3
 L 

mol
-1

 cm
-1

 as reported by Benesi and Hildebrand
24

. The iodine distribution coefficient (D) was 
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equal to the ratio of the iodine concentration in the HI solution to the iodine concentration in the 

toluene (Equation 17). 

 

D = [I2] HI solution/[I2] toluene                                                                                               (17) 

Because the Bunsen reaction product mixture consists of H2SO4 and HI, it is necessary to 

determine if H2SO4 affects the iodine distribution coefficient.  5 mL of the mixture of HI solution 

(0.375 M) and H2SO4 solution (0.189 M) was mixed with 5 mL of iodine toluene solution (0.466 

M). Then the iodine distribution coefficient was determined as above (Equation 17). 

In order to study the influence of volume ratio between toluene phase and HI solution on 

the distribution coefficient, 5 mL of HI solution (0.506 M) was mixed with 5, 25, 50, 100 mL of 

0.257 M iodine toluene solution. Then the iodine distribution coefficient for each of the resulting 

two-phase mixtures was determined as above (Equation 17). 

All above experiments were operated at room temperature (23  -24  ) unless indicated. 

 

3.6 The rate measurement of the Bunsen reaction in the semi-batch reactor 

 

The semi-batch reactor as illustrated in Figure 3.1 was used to study the rate of the 

Bunsen reaction. After the reaction was initiated by feeding SO2 gas, the reaction mixture was 

sampled by pipette at certain time intervals. The iodine and proton concentrations in toluene 

phase and water phase were determined as section 3.4. Then the rate of the Bunsen reaction was 

measured according to the change of the remaining amount of iodine over reaction time. 
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4. RESULTS AND DISCUSSIONS 

 

4.1 The investigation of the Bunsen reaction in the presence of organic solvents 

 

At first, the idea of the Bunsen reaction in organic solvents was studied in a semi-batch 

reactor as illustrated in Figure 3.1. Toluene was chosen as the organic solvent. Three reactions 

were run with varied amount of water for 7 hours. The conditions and results were summarized 

in Table 4.1. In the Run 1, without water added, 2.3% loss of iodine may be due to the iodine 

evaporation in nitrogen flow. However, in Run 2, 63.2% conversion of iodine was observed with 

30 mL of water used, indicating that the Bunsen reaction can occur readily in the mixture of 

toluene and excess water. In Run 3, stoichiometric amount of water was used. Only 2.3% loss of 

iodine was observed. This suggested that the occurrence of the Bunsen reaction is difficult with 

stoichiometric water in the presence of toluene. 

 

Table 4.1The Bunsen reactions in toluene and water 

 

 

 
Run1 

(Blank) 

Run2 

(Excess of water) 

Run3 

(Stoichiometric water) 

Toluene volume , mL 100 100 100 

The mass of iodine, g 1.1257 1.0695 1.1580 

Water volume 0 30mL 164µL 

SO2 (1000ppm) flow rate ,SCCM 150 150 150 

Running hours 7 7 7 

The loss and conversion of iodine 2.3% 63.2% 2.3% 
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The observation encouraged us to further explore the problem with HSC software, by 

which the Gibbs free energy change of the Bunsen reaction was calculated (Table 4.2). The 

computational result indicated that the Bunsen reaction cannot occur if HI product exists as a gas 

with stoichiometric water used (     at 0-125 
o
C). Therefore, both the experimental and 

computational results do not support the validity of the proposal of using stoichiometric water 

and toluene for the Bunsen reaction. 

Furthermore, it is indicated in Table 4.2 that the Bunsen reaction will be driven to the 

right-hand side if the products HI and H2SO4 can be ionized in water (     at 0-125 
o
C). This 

is to say, the amount of water is the key factor to determine the occurrence of the Bunsen 

reaction at room temperature. Herein, the water functions as a reactant and a solvent in the 

Bunsen reaction.  

Thus, when toluene and an excess amount of water (relative to iodine in organic solvents) 

are fed into a reactor, a two-phase reaction mixture is formed. Then the gaseous SO2 is 

introduced into water phase directly to start the Bunsen reaction. The reaction will occur in the 

water phase or at the interface of toluene and water phase, where the amount of water is enough 

to ionize the products HI and H2SO4. During the reaction, the reactant iodine has much higher 

solubility in toluene than in water and easily moves to water phase to supply the Bunsen 

reaction; the ionized species HI and H2SO4 will stay preferentially in water phase (Figure 4.1).  

By this way, the "in organic solvent" method was modified to the "in the presence of 

organic solvents" method. The water phase is where the Bunsen reaction occurs while the 

toluene phase is an iodine reservoir.  

As described above, the advantages of the Bunsen reaction in the presence of organic 

solvents are as follows: 
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1. Organic solvents, by dissolving the solid iodine, help to achieve the close contact 

between iodine, water, and SO2 for the Bunsen reaction. Fast Bunsen reaction becomes possible 

at room temperature instead of 120 . 

2. The excess of iodine can be avoided by dissolving iodine in organic solvents. The 

organic phase is a reservoir to provide the iodine for the Bunsen reaction in the water phase. In 

this way, the corrosiveness or deposition due to the volatility of iodine can be reduced 

substantially.  

 

 

 

 

Figure 4.1 Simplified scheme for the Bunsen reaction in the presence of organic solvents 
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Table 4.2           and K of the Bunsen reaction calculated by HSC, 

(a) When stoicheometric water is used, HI is gas and H2SO4 is liquid; (b) When excess 

amount of water is used, all HI and H2SO4 are ionized. 

 

(a) 

 

I2 (l) + SO2(g) + 2H2O  2HI(g) + H2SO4(l)  

T,     H , kJ  S, J/K  G, kJ K Log(K) 

0 119.840 78.933 98.279 1.601E-019 -18.796 

25 105.956 28.398 97.489 8.296E-018 -17.081 

50 104.178 22.670 96.852 2.204E-016 -15.657 

75 102.475 17.591 96.350 3.490E-015 - 14.457 

100 100.825 13.014 95.969 3.672E-014 -13.435 

125 99.205 8.813 95.697 2.781E-013 -12.556 

 

 

 

(b) 

 

I2(l) + SO2(g) + 2H2O   4H
+
+ 2I

-
 + SO4

2- 

T,    H, kJ  S, J/K  G, kJ K Log(K) 

0 -147.253 -299.350 -65.485 3.340E+012 12.524 

25 -181.833 -422.599 -55.835 6.067E+009 9.783 

50 -199.987 -481.104 -44.519 1.573E+007 7.197 

75 -217.367 -532.910 -31.835 5.981E+004 4.777 

100 -235.211 -582.391 -17.892 3.197E+002 2.505 

125 -254.376 -632.078 -2.714 2.270E+000 0.356 
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4.2 The selection of organic solvents suitable for the Bunsen reaction 

 

In the efforts to select proper organic solvents for the Bunsen reaction, the screening 

criteria can be summarized in Table 4.3. The solvents listed in Table 4.4 were the same as Table 

2.1 and the solvents' properties such as boiling point, density, solubility in water and fire 

diamond level were also included. The molar fraction of the iodine solubility in Table 2.1 was 

converted into g/mL. From Table 4.3 and Table 4.4, the following conclusions can be drawn: 

1. Although ethyl ether and ethyl alcohol have higher solubility for iodine, ethyl ether is 

very volatile and highly flammable and ethyl alcohol is miscible in water. 

2. The aromatic solvents such as toluene, xylene, trimethylbenzene, chlorobenzene and 

bromobenzene may be suitable for the Bunsen reaction. These water-insoluble 

compounds have low volatility and good chemical inertia.  

Initially in our lab, Le Person chose toluene as the solvent for the Bunsen reaction
25

. 

Toluene is a water-insoluble aromatic solvent with boiling point at 110 
o
C and low toxicity, thus 

suitable for the Bunsen reaction. The NMR result shows no reaction between toluene and iodine 

(Appendix C). 

Table 4.3 Proposed criteria of organic solvents used for the Bunsen reaction 

 

 
 Criteria Impact 

1.High solubility for iodine Form iodine reservoir to feed the Bunsen reaction 

2.No or low solubility for H2O, HI 

and H2SO4 Keep HI and H2SO4 in water phase. 

3.High boiling point High boiling point means low volatility and less hazardous. 

4.No reaction with I2, HI, H2SO4, 

H2O Chemical inertia reduces process complexity. 

5. Less hazardous The environment safety and health issues. 

6.Less expensive The process cost. 
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Table 4.4 Screening of organic solvents for the Bunsen reaction 

 

 

Organic solvents 
Molecular  

weight 

Boiling 

point  
H/F/R* Density, 

g/ml 

Solubility 

in water 

(g/100ml,20 ) 

Iodine20 

solubility, molar 

fraction,25  

Iodine 

solubility, 

g/mL,25  

Benzene 78.11 80.1 2/3/0 0.8765 0.08 0.0488 0.146 

Toluene 92.14 110.6 2/3/0 0.8669 0.05 0.0639 0.163 

o-xylene 106.16 144 2/3/0 0.88 insoluble 0.0786 0.180 

p-xylene 106.16 138 2/3/0 0.86 insoluble 0.0760 0.169 

m-xylene 106.16 139 2/3/0 0.86 insoluble 0.0825 0.185 

1,2,3-trimethylbenzene 120.2 175 0/2/0 0.894 0.005 0.0993 0.208 

1,2,4-trimethylbenzene 120.2 169 1/2/0 0.88 very poor 0.0915 0.187 

1,3,5-trimethylbenzene 120.2 165 2/2/0 0.864 very poor 0.1058 0.216 

1,2,3,4-tetramethylbenzene 134.22 205 1/2/1 0.905 insoluble 0.1167 0.226 

ethylbenzene 106.17 136 2/3/0 0.867 0.015 0.0586 0.129 

n-propylbenzene 120.19 159 0/2/0 0.862 slightly 0.0589 0.114 

cumene 120.19 152 2/3/0 0.864 insoluble 0.0561 0.108 

n-butylbenzene 134.22 183 0/2/0 0.86 insoluble 0.0548 0.094 

isobutylbenzene 134.22 170 2/2/0 0.853 insoluble 0.0480 0.081 

tert-butylbenzene 134.22 169 2/3/2 0.867 insoluble 0.0501 0.086 

chlorobenzene 112.56 132 1/3/0 1.106 low 0.0333 0.086 

bromobenzene 157.01 156 1/2/0 1.491 insoluble 0.0549 0.140 

n-C6H14 86.18 69 1/3/0 0.6548 0.0013 0.00456 0.009 

n-C7H16 100.21 98.42 1/3/0 0.684 immiscible 0.00679 0.012 

CCL4 153.82 76.72 3/0/0 1.5867 0.08 0.0115 0.030 

CHCl3 119.38 61.2 2/0/0 1.483 0.8 0.0228 0.074 

CS2 76.139 46.3 3/4/0 1.261 0.29 0.0546 0.243 

cyclohexane 84.16 80.74 1/3/0 0.779 immiscible 0.0092 0.022 

ethyl alcohol 46.07 78.4 1/3/0 0.789 miscible 0.0471 0.215 

ethyl ether 74.12 34.6 2/4/1 0.7134 6.9 0.0896 0.240 

*
 H: Level of health hazard; F: level of flammability; R: level of reactivity. 

 

 

 

 

 

 



 

24 

 

4.3 Iodine solubility in hydroiodic acid solution 

As mentioned in the literature review in section 2.4, the iodine solubility in HI solution is 

substantially higher than in water. For the Bunsen reaction in the presence of toluene, the HI 

concentration in the water phase will gradually increase as the reaction proceeds. Therefore, 

iodine solubility in HI solution and the relationship between iodine solubility and HI solution 

concentrations need to be studied. The experimental results about iodine solubility in HI solution 

with different concentrations were summarized in Table 4.5. The maximal concentration of 

commercially available HI solution is 57wt% or 7.60 M. 

 

Table 4.5 Iodine solubility in less than 7.6 M hydroiodic acid  

 

 
Hydroiodic 

acid 
 Hydroiodic acid saturated by iodine 

No. [HI] [H
+
] 

±Uncertainty, 

M 

I2 solubility, 

M 

±Uncertainty 

M 

Molar ratio of 

I2 solubility/[HI] 

1 7.60 4.42 0.63 8.08 0.53 1.06 

2 3.80 3.63 1.74 4.18 0.11 1.10 

3 1.90 2.00 0.11 1.81 0.46 0.954 

4 0.950 1.061 0.070 0.726 0.066 0.764 

5 0.475 0.550 0.070 0.317 0.057 0.668 

6 0.238 0.280 0.076 0.1394 0.0001 0.587 

7 0.119 0.153 0.012 0.067 0.013  

8 0.0765 0.099 0.016 0.045 0.010  

9 0.0594 0.079 0.031 0.0339 0.0038  

10 0.0380 0.059 0.020 0.0247 0.0087  

11 0.0297 0.048 0.015 0.0181 0.0038  

12 0.0190 0.0439 0.0048 0.0173 0.0037  

13 0.00956 0.028 0.022 0.0115 0.0085  

14 0.00478 0.0160 0.0090 0.0043 0.0017  

15 0.00239 0.0156 0.0060 0.0045 0.0027  

16 0.00120 0.0109 0.0066 0.0030 0.0021  
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(a) 

 

(b) 

 

 

Figure 4.2 The relationship between [H
+
] in iodine saturated hydroiodic acid and [HI] in 

hydroiodic acid, (a) [HI] range: 0~7.6 M; (b) [HI] range: 0~0.95 M 

  

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

5.00 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 

[H
+
] 

in
 i

o
d

in
e 

sa
tu

ra
te

d
 h

y
d

ro
io

d
ic

 a
ci

d

[HI] in hydroiodic acid

Y = 1.106X + 0.016

R² = 0.9998

0.000 

0.200 

0.400 

0.600 

0.800 

1.000 

1.200 

0.000 0.200 0.400 0.600 0.800 1.000 

[H
+
] 

in
 i

o
d

in
e 

sa
tu

ra
at

ed
 h

y
d

ro
io

d
ic

 a
ci

d

[HI] in hydroiodic acid

X

Y



 

26 

 

In Table 4.5, it was found that [H
+
] increased when  HI solution was saturated by iodine 

at [HI] < 1.90 M, while [H
+
] decreased at [HI] > 1.90 M. As shown in Figure 4.2a&b, [H

+
] 

shows a linear response to increasing [HI] when [HI] < 1.90 M and the plotting of  [H
+
] against 

[HI] levels off when [HI] > 1.90 M. 

The dissolution of iodine in HI solution will be accompanied by the hydrolysis of iodine 

(Table 4.6)
 26, 27

. All the equations in Table 4.6 suggest that the hydrolysis of iodine produces H
+
 

and the anions such as               
  . Overall one mole of I2 produces two moles of H

+
. This 

can explain the increase of [H
+
] at [HI] < 1.90 M.  

 

Table 4.6 Equilibrium processes of iodine hydrolysis 

 

 

No. Reaction 

1 

2 

3 

4 

5 

6 

7 

8 

9 

                 

                

             

             

        
  

             

           

                

            
           

 

 

But it seems to be difficult to explain why [H
+
] decreased at [HI] > 1.90 M when 

dissolving iodine in HI solution. In experiments, it was observed that the volume of the resulting 

solution increased significantly when iodine was dissolved at the saturating concentration in the 

HI solution with concentration higher than 1.90 M. Therefore, the measured [H
+
] in the iodine-
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saturated HI solution was lowered. It seems to be reasonable to extrapolate the linear relationship 

between [H
+
] and [HI] even at [HI] > 1.90 M if the volume expansion due to iodine dissolution is 

taken into consideration.  For example, when HI solution (7.6 M) was saturated by iodine, the 

[H
+
] was measured as 4.42 M. According to the linear relationship obtained in Figure 4.2b, if 

there is no volume expansion, the [H
+
] measured should be 8.08 M (Table 4.7). The ratio of the 

"corrected" [H
+
] (8.42 M) to the measured [H

+
] (4.42 M) is 1.9, representing 1.9 times of volume 

expansion due to iodine dissolution.  Then the revised iodine solubility is equal to 15.4 M (7.6 M 

× 1.9). In the same way, the corresponding results for the HI solution (3.8 M, 1.9 M) saturated by 

iodine were also revised and included in Table 4.7. 

 

Table 4.7 Revised iodine solubility in larger than 1.90 M hydroiodic acid  

 

Hydroiodic acid Hydroiodic acid saturated by iodine 

[HI ] [H
+
] Iodine solubility, M 

Molar ratio of  

I2 solubility/HI 

 measured revised measured revised measured revised 

7.60 4.42 8.42 8.08 15.4 1.06 2.02 

3.80 3.63 4.22 4.18 4.86 1.10 1.28 

1.90 2.00 2.12 1.81 1.93 0.954 1.02 

 

 

On the basis of the studies on the iodine hydrolysis, the relationship between the iodine 

solubility and the [HI] in the HI solution was investigated. As shown in Figure 4.3, the iodine 

solubility was plotted versus [HI]. The iodine solubilities used when [HI] > 1.90 M was the 

revised values (Table 4.7), while the solubilities used when [HI] < 1.90 M was the measured 

values directly (Table 4.5). 

The plotting of the iodine solubility versus [HI] is a two-phase curve as shown in Figure 

4.3. In phase 1, the iodine solubility is linear to [HI] in the concentration range of 0~0.238 M 

(Figure 4.4); in phase 2, the iodine solubility/[HI] is linear to [HI] in the concentration range of 
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0.238~7.6 M (Figure 4.5). The equations about the relationship of the iodine solubility versus 

[HI] were summarized in Table 4.8. 

 

 

Figure 4.3 The iodine solubility in hydroiodic acid  

 

 

Figure 4.4 The relationship between iodine solubility and [HI] at the [HI] range of 0 to 0.238 M 
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Figure 4.5 The relationship between the molar ratio of iodine solubility/[HI] and [HI] at the [HI] 

range of 0.238 to 7.6 M  

 

 

Table 4.8 The relationships between iodine solubility and [HI] in HI solution 

 

 

 

 

 

HI 

concentration 

range, M 

Equation 

Coefficient 

of 

determination 

Sample standard deviation 

Slope 
Intercept 

M 

Phase 1 0~0.238 
Y=0.57X+0.0030 

Y=[I2],X=[HI] 
0.9971 0.01 0.0008 

Phase 2 0.238~7.6 
Y=0.190X+0.58 

Y=[I2]/[HI], X=[HI] 
0.9948 0.007 0.02 

 

 

H2SO4 is one of the Bunsen reaction products and stays in the water phase to form a HI-

H2SO4 solution. So it is necessary to study the iodine solubility in such a solution. In HI-H2SO4 

aqueous solution which has a molar ratio 2:1 as the stoichiometric ratio of HI to H2SO4 in the 

Bunsen reaction, the iodine solubilities were determined and the results were summarized in 

Table 4.9. 
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Table 4.9 The influence of H2SO4 on the iodine solubility in HI solution 

 

 
HI-H2SO4 solution 

Solution 

saturated by 

iodine 

No. [HI] [H2SO4] 
I2 solubility, 

M 

1 0.950 0.472 0.735 

2 0.475 0.236 0.324 

3 0.238 0.118 0.137 

4 0.119 0.0590 0.0648 

5 0.0594 0.0295 0.0363 

6 0.0297 0.0147 0.0231 

7 0.0148 0.00737 0.0133 

 

In Figure 4.6, it is clearly shown that the iodine solubilities in HI solutions are the same 

as that in HI-H2SO4 solution. Therefore, the relationship between the iodine solubility and [HI] 

concluded from pure HI solution is still applicable to the HI-H2SO4 solution, i.e. the reaction 

mixture of the Bunsen reaction. 

 

Figure 4.6 The iodine solubility in HI and HI- H2SO4 solutions. 
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In conclusion, the iodine solubility in HI solution was investigated. The linear 

relationships between the iodine solubility and [HI] were deduced for two different concentration 

ranges of HI solutions. The existence of H2SO4 does not affect iodine solubility in HI solution. 

 

4.4 Distribution coefficient of iodine between hydroiodic acid and toluene 

 

During the process of the Bunsen reaction in the presence of toluene, iodine is consumed 

and HI is accumulated in the water phase. In such a reaction system, the behavior of the iodine 

distribution is closely related to the reaction rate because the reaction is very likely to occur at 

the interface of two phases or in the water phase. In analogy to the reaction mixture, a mixture of 

toluene and HI solution was used to determine the iodine distribution.  

In this experiment, the iodine distribution coefficient (D) between the HI solution and the 

toluene phase is defined as [I2]HI solution/[I2]toluene, and the volume ratio is defined as Vtoluene /VHI 

solution. In Table 4.9, the concentrations of HI, iodine in HI solution and toluene before and after 

mixing were presented and distribution coefficients of iodine (D) were calculated under different 

concentrations of HI solutions. 

In Figure 4.7, the distribution coefficients of iodine (D) were plotted versus the 

concentrations of HI solution. The nonlinear regression analysis indicated the plot is a two-phase 

curve. At the [HI] range of 0~1.89 M, the relationship of D and [HI] fits in a quadratic equation 

(inset of Figure 4.8a); at the [HI] range of 1.89~7.54 M, the relationship fits in a linear equation 

(inset of Figure 4.8b). As shown in Table 4.10, the experimental and calculated D were 

consistent. 
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Table 4.9 Distribution coefficient of iodine between HI solution and toluene  

 

(a) 

 

 

Before distribution After distribution 

No. 

[HI] in 

hydroiodic 

acid 

[I2] in 

toluene 

phase 

Volume 

ratio 

[I2] in 

water 

phase 

[I2] in 

toluene 

phase 

D 

1 7.54 0.466 1 0.1002 0.00259 38.7 

2 3.77 0.466 1 0.2304 0.0132 17.5 

3 1.89 0.466 1 0.305 0.0459 6.6 

4 0.943 0.466 1 0.275 0.133 2.07 

5 0.471 0.466 1 0.178 0.243 0.73 

6 0.236 0.466 1 0.0994 0.342 0.291 

7 0.118 0.466 1 0.0498 0.382 0.130 

8 0.0589 0.466 1 0.0261 0.402 0.0649 

9 0.0295 0.466 1 0.0132 0.404 0.0327 

 

 

(b) 

No. [HI],M 
[I2] in water 

phase 

±Uncertainty 

M 

[I2] in toluene 

phase 

±Uncertainty, 

M 

1 7.54 0.100 0.030 0.00259 0.0045 

2 3.77 0.230 0.024 0.0132 0.0027 

3 1.89 0.305 0.064 0.046 0.030 

4 0.943 0.275 0.005 0.133 0.010 

5 0.471 0.178 0.021 0.243 0.021 

6 0.236 0.099 0.074 0.342 0.015 

7 0.118 0.050 0.017 0.382 0.001 

8 0.0589 0.0261 0.0012 0.402 0.068 

9 0.0295 0.0132 0.0064 0.404 0.058 
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Figure 4.7 Distribution coefficients versus [HI] 
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(b) 

Figure 4.8 The relationship between D and [HI] in hydroiodic acid (a) [HI] range: 0~1.89 M, (b) 

[HI] range: 1.89~7.54 M 

 

 

Table 4.10 Comparison of experimental and regression D  

 

 

No. [HI]  

Experimental 

D 

Regression D 

Calculated Calculated 

1 7.54 38.7 38.7 
 

2 3.77 17.5 17.5 
 

3 1.89 6.6 6.67 6.62 

4 0.943 2.07 
 

2.07 

5 0.471 0.73 
 

0.727 

6 0.236 0.291 
 

0.290 

7 0.118 0.130 
 

0.130 

8 0.0589 0.0649 
 

0.0645 

9 0.0295 0.0327 
 

0.0355 
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4.4.1 Factors that may affect the distribution coefficient of iodine  

 

For the Bunsen reaction in the presence of toluene, the water phase contains H2SO4 and 

HI. It is necessary to study the influence of H2SO4 on the iodine distribution. As shown in Table 

4.11, the [I2] in toluene solution was fixed at 0.466 M. When the water phase is 0.375 M of HI 

solution, the D was determined as 0.490; when the water phase is a mixed HI-H2SO4 solution 

(0.375 M and 0.189 M respectively), the D was determined as 0.482. The two D values agree 

very well, suggesting that the existence of H2SO4 in HI solution does not cause the change of the 

iodine distribution coefficient. 

Table 4.11 Influence of H2SO4 on the distribution coefficient 

 

Before distribution After distribution 

No. 

[HI] in 

water 

phase 

[H2SO4] in 

water 

phase 

[I2]in 

toluene 

[I2] in 

water 

phase 

[I2] in 

toluene 

phase 

D 

1 0.375 0.189 0.466 0.148 0.301 0.490 

2 0.375 0.00 0.466 0.149 0.308 0.482 

 

Thus far, all the distribution coefficients discussed above were measured from a mixture 

of toluene and HI solution with a 1:1 volume ratio. Generally speaking, the distribution 

coefficient is independent of the volume ratio of two phases. Supposedly, this principle is also 

applicable to the iodine distribution between HI solution and toluene. However, because the 

dissolution of iodine in HI solution is a complicated process, the volume ratio may be one of the 

factors that affect the distribution coefficient. In Table 4.12a, as the volume ratios of toluene to 

HI solution were changed from 1:1 to 20:1, the D values remained constant within experimental 

errors. This suggests that the volume ratio is not a factor to affect the iodine distribution 

coefficients.  
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Furthermore, as shown in Table 4.12b, the [I2] in HI solution increased as the volume 

ratio of toluene to HI solution increased. However, the increasing of the [I2] in HI solution 

obviously slowed down after the volume ratio > 2:1 (Figure 4.9). Therefore, the 2:1 volume ratio 

of toluene to HI solution is good enough to maintain almost the maximal [I2] in HI solution 

which is helpful to Bunsen reaction. 

 

Table 4.12 Influence of volume ratio on the distribution coefficient  

(a) 

 

Before distribution After distribution 

No. 

[HI] in water 

phase 

[I2] in toluene 

phase 

Volume 

ratio 

[I2] in water 

phase 

[I2] in toluene 

phase D 

1 0.506 0.257 1 0.107 0.121 0.890 

2 0.506 0.257 5 0.165 0.220 0.749 

3 0.506 0.257 10 0.175 0.237 0.736 

4 0.506 0.257 20 0.189 0.246 0.767 

 

Average value 0.785 

 

 

 

(b) 

 

Before distribution After distribution 

No. 

[HI] in water 

phase 

[I2] in toluene 

phase 

Volume 

ratio 

[I2] in water 

phase 

[I2] in toluene 

phase D 

1 0.506 0.317 1 0.132 0.156 0.850 

2 0.506 0.317 2 0.171 0.221 0.774 

3 0.506 0.317 3 0.186 0.251 0.743 

4 0.506 0.317 4 0.193 0.233 0.827 

5 0.506 0.317 5 0.188 0.290 0.649 

6 0.506 0.317 6 0.210 0.286 0.734 

7 0.506 0.317 7 0.203 0.283 0.715 

8 0.506 0.317 8 0.204 0.293 0.756 

 Average value 0.756 
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Figure 4.9 The [I2] in water phase after distribution versus the volume ratio of toluene to 

HI solution. Volume ratio range: 1:1 ~8:1. 

 

 

In conclusion, the existence of H2SO4 does not affect the iodine distribution coefficient 

between toluene and HI solution and the volume ratio of toluene to HI solution was optimized as 

2:1 for the study of the Bunsen reaction in the presence of toluene. 

 

4.5 Bunsen reaction rate in a semi-batch reactor 

 

4.5.1 Blank experiments 

 

In order to figure out whether there are side reactions accompanying the Bunsen reaction 
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nm was 1.074 and corresponding concentration of iodine in toluene was 0.105 M, which is equal 

to the original iodine concentration in toluene. This suggested that there is no loss of iodine and 

no detectable reactions among iodine, toluene and SO2 unless water is present.  

 

4.5.2 The Bunsen reaction rate in iodine-HI solution 

 

The Bunsen reaction occurs in the water phase or at the interface between toluene and 

water phases while it cannot take place in toluene phase. Therefore, the rate of Bunsen reaction 

was first studied in the iodine-HI aqueous solution in the absence of toluene. Then effect of the 

presence of toluene on the reaction rate was studied. 

Iodine-HI solution was prepared by mixing 5.3048 g of iodine with 150 mL of 0.209 M 

HI solution. The resulting solution stood at room temperature for 1 hour. Then the [H
+
] was 

determined by NaOH solution titration as 0.241 M, and the [I2] was determined by iodometry 

titration as 0.0768 M. The solution was put into the reactor as illustrated in Figure 3.1. Then 

130.4 SCCM of 1000 ppm SO2 was introduced. As soon as the SO2 was fed into the reactor, the 

Bunsen reaction was started. The [I2] and the [H
+
] in the reaction solution was analyzed at 

certain interval times. The results were summarized in Table 4.13a. The ratio of [H
+
] /[I2] is 

around 4, consistent with the stoichiometry of the Bunsen reaction. According to the 

stoichiometry, moles of SO2 consumed are equal to the moles of iodine consumed or one-fourth 

of the moles of proton produced. The comparison of the calculated SO2 consumption and the 

measured SO2 by thermal mass flow meter (TMFM) can indicate how much of the feeding SO2 is 

consumed in the Bunsen reaction. In Table 4.13a, the ratios of the calculated consumption and 

the measured feeding of SO2 (absorbance of SO2) are approximately 100%. This suggested that 
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the feeding of SO2 was consumed in the Bunsen reaction completely and rapidly. In experiments, 

no escape of SO2 was detected in the washing bottle (11b in Figure 3.1).  

Furthermore, the iodine was consumed continually to lower concentration as the feeding 

of SO2, but the consumption of SO2 was still sufficient and efficient. That is to say, the depletion 

of SO2 in the Bunsen reaction is independent of the iodine concentration. For example, when 

1000 ppm of SO2 was introduced, the reaction rate ([I2]/t) was constant as shown in Figure 

4.10 and was equal to the molar flow rate of feeding SO2 (Table 4.16). 

Further work was conducted to investigate the dependence of the Bunsen reaction rate on 

the feeding of SO2. When the concentration of SO2 gas solution introduced was increased from 

1000 ppm, 1.04% to 100%, complete consumption of SO2 was still observed (Table 4.14 and. 

Therefore, the rate of the Bunsen reaction in HI solution is solely controllable by the introduction 

of SO2. The reaction rates ([I2]/t) were also found to be equal to the molar flow rate of feeding 

SO2 (Table 4.16). 

When pure SO2 was used, the average absorbance of SO2 was found to be 75%. 

However, it cannot be concluded that the pure SO2 did not undertake the reaction completely. It 

is very likely that the introduced pure SO2 gas did not disperse thoroughly into the reaction 

mixture before it escaped from the reaction mixture. This problem can be overcome by 

increasing the contact interface of the gas phase and solution phase. In conclusion, if SO2 and 

iodine can be mixed effectively and sufficiently, the Bunsen reaction in iodine-HI aqueous 

solution is independent of iodine concentration and the reaction rate is equal to the molar flow 

rate of SO2. 
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Table 4.13 The Bunsen reaction at 130.4 SCCM of 1000 ppm SO2 with 150 mL iodine-HI 

aqueous solution 

 

 

(a-1) 

 

Volume 

of water, 

L 

Reaction time(mins) 

Accumulated   Interval 
[H

+
] [I2] [H

+
] [I2] 

0.15 0 0 0.241 0.0768 
  

0.15 158 158 0.278 0.0670 0.0370 0.00981 

0.148 308 150 0.310 0.0588 0.0325 0.00817 

0.145 515 207 0.352 0.0456 0.0420 0.01327 

0.142 644 129 0.382 0.0378 0.0300 0.00777 

0.14 764 120 0.408 0.0305 0.0255 0.00729 

0.138 884 120 0.440 0.0229 0.0325 0.00763 

0.129 1006 122 0.484 0.0136 0.0440 0.00932 

0.126 1126 120 0.507 0.0063 0.0230 0.00723 

0.122 1223 97 0.533 0 0.0260 0.00633 

Iodine lost , mol 1.69E-04 
    
 

 

(a-2) 

 

 [H
+
]/ [I2] 

Calculated  

SO2 ,mol 

SO2 measured 

from TMFM, 

mol 

Absorbance 

of SO2 

        

3.77 1.39E-03 1.35E-03 102% 

3.98 1.20E-03 1.29E-03 94% 

3.16 1.52E-03 1.79E-03 85% 

3.86 1.07E-03 1.11E-03 96% 

3.50 8.92E-04 1.04E-03 86% 

4.26 1.05E-03 1.04E-03 102% 

4.72 1.20E-03 1.05E-03 114% 

3.18 7.25E-04 1.04E-03 88% 

4.11 7.72E-04 8.37E-04 92% 

Average absorbance of SO2 95% 
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(b) 

 

Volume of water, 

L 

Accumulated reaction 

time, mins 
[I2] Iodine, mol 

0.15 0 0.0768 1.15E-02 

0.15 157 0.0670 1.01E-02 

0.148 308 0.0588 8.71E-03 

0.145 515 0.0456 6.61E-03 

0.142 644 0.0378 5.37E-03 

0.14 764 0.0305 4.27E-03 

0.138 884 0.0229 3.16E-03 

0.129 1006 0.0136 1.75E-03 

0.126 1126 0.0063 7.97E-04 

0.122 1223 0.00 0.00E+00 

 

 

 

Figure 4.10 Moles of iodine in reaction mixture versus reaction time for the Bunsen reaction at 

130.4 SCCM of 1000 ppm SO2 

 

 

 

 

y = -1E-05x + 0.0116

R² = 0.9995

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

0 200 400 600 800 1000 1200 1400

Io
d

in
e 

 i
n
 r

ea
ct

io
n
 m

ix
tu

re
, 

m
o

l

Reaction time , minutes

y

x



 

42 

 

 

 

Table 4.14 The Bunsen reaction at 129.6 SCCM of 1.04% SO2 

 

(1) 

 

 

Volume of 

water, L 

Reaction time (mins) 

Accumulated Interval 
[H

+
] [I2] [H

+
] [I2] 

0.15 0 0 0.2455 0.0750 
  

0.15 77 77 0.42 0.0310 0.1745 0.04407 

0.147 120 43 0.5065 0.0085 0.0865 0.02249 

0.145 133 13 0.538 0.0000 0.0315 0.00848 

Iodine lost, mol: 1.69E-05 
   

 

 

 

(2) 

 

 [H
+
]/  [I2] 

Calculated  

SO2 ,mol 

SO2 measured 

from TMFM, 

mol 

Absorbance 

of SO2 

        

3.96 0.00654 0.00660 99% 

3.85 0.00318 0.00369 86% 

3.72 0.00114 0.00111 102% 

Average absorbance of SO2 96% 
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Table 4.15 The Bunsen reaction at 40.8 SCCM of pure SO2 

 

 

(1) 

 

Volume of 

water, L 

Reaction time (mins) 

Accumulated       Interval 
[H

+
] [I2]  [H

+
]  [I2] 

0.1 0 0 0.556 0.310 
  

0.1 5 5 0.807 0.242 0.251 0.0675 

0.098 10 5 1.063 0.177 0.256 0.0649 

0.096 15 5 1.319 0.113 0.257 0.0646 

0.094 22 7 1.770 0.000 0.451 0.1128 

Iodine lost, mol 0.00 
    

 

 

(2) 

 

 [H
+
]/  [I2] 

Calculated 

SO2 ,mol 

SO2 measured 

from TMFM, 

mol 

Absorbance 

of SO2 

        

3.72 0.00628 0.00870 72% 

3.94 0.00626 0.00870 72% 

3.97 0.00616 0.00870 71% 

4.00 0.01060 0.0122 87% 

Average absorbance of SO2 75% 

 

 

 

Table 4.16 Comparison of molar flow rate of SO2 and reaction rate of iodine for the Bunsen 

reaction 

 

 
The volume 

concentration 

of SO2 

Flow rate of SO2 Reaction rate of 

iodine, mol/min SCCM           mol/min 

1000 ppm 130.4 8.63E-06 1.00E-05 

1.04% 129.6 8.57E-05 8.00E-05 

pure 40.8 1.74E-03 1.40E-03 
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4.5.3 The Bunsen reaction rate in the presence of toluene  

 

For the Bunsen reaction in the presence of toluene, the reaction rate was studied 

similarly. As the Bunsen reaction proceeds, more and more HI is produced in the water phase. 

As the HI concentration in the water phase is increasing, iodine will redistribute between toluene 

phase and water phase. The influence of toluene on the rate of the Bunsen reaction needs to be 

explored. An experiment with conditions as shown in Table 4.17 was performed. While SO2 was 

introduced into the aqueous phase, the rate of the Bunsen reaction in the presence of toluene 

changed through 3 stages (Table 4.18): 

Stage one (0-38mins): At the initial stage of the Bunsen reaction (0-38mins), most of 

iodine stayed in the toluene phase due to the low iodine solubility in water and low concentration 

of HI solution. At this stage, the water phase was observed as colorless solution. During the 

process of the reaction, complete SO2 absorbance (determined as 110% absorbance) was 

observed, indicating that the reaction rate was solely decided by the flow rate of SO2 at this 

stage. 

Stage two (38-85mins): At this stage, the [HI] in water phase was high enough to 

compete for iodine with toluene phase. Accordingly, the water phase was observed to change 

from light yellow to dark red color. According to the conclusions from section 4.5.1, the Bunsen 

reaction rate in iodine-HI solution at this stage is still equal to the molar flow rate of SO2. 

Stage 3(85-185mins): At this stage, the unreacted iodine was becoming less and less. 

Therefore, although the HI concentration in water phase continued to increase, it was observed 

that the water phase turned colorless and most of the iodine stayed in the toluene phase. The 

iodine concentration in water phase was too low to react with the feeding SO2 efficiently. The 

absorbance of SO2 dropped rapidly from around 100% to 33% (Table 4.18).  
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In conclusion, for the Bunsen reaction in the presence of toluene, the rate is equal to the 

molar flow rate of SO2 unless the iodine concentration is very low. The threshold concentration 

of iodine was believed to depend on the conditions of the reaction system, such as the interface 

area, the dispersion efficiency and the flow rate of SO2.  

 

Table 4.17 Initial conditions of the Bunsen reaction in the presence of toluene 

 

 
Volume of 

water phase 

mL 

Volume of 

toluene 

mL 

Volume 

ratio  

[I2] [HI] 

in water 

Flow rate  

of SO2, 

mol/min in water in toluene 

60 120 2 0 0.106 0 8.63E-05 

 

Table 4.18 The Bunsen reaction in the presence of toluene 

 

(1) 

 

Reaction time, mins   

Accumulated     Interval 

[H
+
] in 

water  

[I2] in 

water 

Water 

volume, 

mL 

[I2]  in 

toluene  

Toluene 

volume, 

mL 

0 0 0.000 0 60 0.1056 120.0 

38 38 0.240 0.00198 60 0.0732 120.0 

85 47 0.500 0.00622 58 0.0293 119.9 

132 47 0.760 0 56 0.0123 119.7 

183 51 0.878 0 55 0.000213 103.5 

 

(2) 

 

Increased 

proton, 

mol 

Decreased 

iodine, mol 

Increased 

proton/Decreased 

iodine  

Calculated 

SO2, mol  

SO2 measured 

from TMFM, 

mol 

Absorbance 

of SO2 

            

0.0144 0.00378 3.81 0.00360 0.00328 110% 

0.0151 0.00490 3.08 0.00377 0.00406 93% 

0.0146 0.00204 7.14 0.00204 0.00406 50% 

0.00649 0.00145 4.46 0.00145 0.00440 33% 
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5. CONCLUSIONS AND FUTURE WORK 

 

In the research of H2S splitting cycle for hydrogen production, the Bunsen reaction, 

especially in the presence of organic solvents was explored. The following conclusions were 

drawn from the work that I have done for this project: 

1. Toluene was chosen as a suitable organic solvent used in the Bunsen reaction;  

2. The dissolution of iodine in HI solution was discussed. Due to the iodine hydrolysis in 

HI solution, the [H
+
] in I2-HI aqueous mixture was found to be linear to the original [HI] of the 

HI solution.  

3. On the basis of the study on the dissolution of iodine in HI solution, the iodine 

solubility in HI solution was investigated. It was found that the iodine solubility is linear to the 

[HI] in the range of 0~0.238 M and the iodine solubility/[HI] is linear to the [HI]  in the range of 

0.238~7.6 M. Furthermore, the existence of H2SO4 in the HI solution does not change the 

relationships. 

4. The iodine distribution between HI solution and toluene was investigated. 

Experimental results indicated that the iodine distribution coefficients between the two phases 

are increasing as the [HI] is increasing. In the [HI] range of 0~1.89 M, the coefficients D are in a 

quadratic relationship to [HI], while in the [HI] range of 1.89~7.54 M, the coefficients D are in a 

linear relationship to [HI]. In addition, the existence of H2SO4 in the HI solution does not change 

the relationships and the optimal volume ratio of toluene to HI solution was found to be 2:1. 

5. In a semi-batch reactor, the Bunsen reaction rate in iodine-HI aqueous solution was 

determined. It was found that the reaction rate is independent of the iodine concentration and 

equal to the molar flow rate of SO2.  
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6. In a semi-batch reactor, the Bunsen reaction rate in the presence of toluene was 

determined. It was found that the reaction rate is also equal to the molar flow rate of feeding SO2 

if the iodine concentration is higher than a certain value. The threshold value of iodine 

concentration is dependent on experimental conditions.  

In the future, the research work on this topic may be carried out on the following aspects:  

1. More organic solvents need to be tested to choose the optimal solvent for the Bunsen 

reaction. 

2. The scale-up reactor of the Bunsen reaction in the presence of toluene should be 

chosen and designed. 

3. The development of new method and technology is necessary for the production of 

hydrogen from the Bunsen reaction mixture. Electrolysis of the HI-H2SO4 solution from the 

Bunsen reaction is one of the candidates.  
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APPENDIX A 

CALIBRATION OF MASS FLOW CONTROLLER  

 

Thermal mass flow meters from SIERRR were used in the experiments: 

Port for N2, serial number: C-26615, range: 0-2000 SCCM; 

Port for SO2, serial number: C-22616, range: 0-200 SCCM. 

Mass Flow calibrator was BIOS DryCal DC-2 Dry Primary Flow Calibrator. 

For port of N2, model DC-MC-1was used and for port of SO2, model DC-LC-1 was used.   

STP: 293.15K, 1atm. 

Molar volume of gas at STP: 24.055mol/L. 

The calibrating results were showed in Table A-1 and A-2. 

Table A-1 Calibrating results of flow meter for N2 

MFC reading, 

SCCM 

Calibrator 

reading, SCCM 

Real volume 

of N2,SCCM 

64 71.05 72.47 

120 117.1 119.4 

176 156.6 159.7 

232 219.9 224.3 

280 268.3 273.7 

344 329 335.6 

400 374.6 382.1 

456 427.5 436.1 

544 514.3 524.6 

632 596.3 608.2 

688 659.4 672.6 

744 712 726.2 

816 770.8 786.2 

928 885.7 903.4 

1024 989.6 1009 

1216 1191 1215 

1328 1284 1310 

1520 1487 1517 

1720 1702 1736 

1832 1793 1829 
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Table A-2 Calibrating data of flow meter for SO2 

MFC 

Reading, 

SCCM 

Calibrator 

Reading, 

SCCM 

1000ppm  

SO2,SCCM 

1000ppm 

SO2, 

mol/min 

1.04% 

SO2, 

SCCM 

1.04% SO2, 

mol/min 

Pure 

SO2, 

SCCM 

Pure SO2, 

mol/min 

10.4 6.313 6.437 2.676E-07 6.419 2.775E-06 4.507 1.874E-04 

20.8 22.06 22.49 9.351E-07 22.431 9.698E-06 15.75 6.548E-04 

40.8 51.61 52.63 2.188E-06 52.478 2.269E-05 36.85 1.532E-03 

60.8 83.9 85.55 3.556E-06 85.311 3.688E-05 59.90 2.490E-03 

80 114 116.2 4.832E-06 115.917 5.012E-05 81.40 3.384E-03 

100 145.3 148.2 6.159E-06 147.744 6.388E-05 103.7 4.313E-03 

120 176.1 179.6 7.465E-06 179.062 7.742E-05 125.7 5.227E-03 

125.6 185.2 188.8 7.851E-06 188.315 8.142E-05 132.2 5.497E-03 

130.4 192.6 196.4 8.164E-06 195.839 8.467E-05 137.5 5.717E-03 

 

Calibrating curve for N2 were showed in Figure A-1, and calibration curve for 1000ppm, 

1.04% and pure SO2 were respectively showed in Figure A-2, A-3, and A-4. 

 

 

Figure A-1 MFC calibration –N2 port 
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Figure A-2 MFC calibration –1000PPM SO2 

 

 

Figure A-3 MFC calibration –1.04% SO2 
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Figure A-4 MFC calibration –pure SO2 
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APPENDIX B 

RAW DATA OF EXPERIMENTS 

 

1. Raw data of Iodine solubility in hydroiodic acid 

 

Different concentrations of NaOH and Na2S2O3 solution was prepared to satisfy 

different concentrations of protons and iodine in the iodine saturated hydroiodic. The 

experimental results are shown in Table B-1(a) and (b), which are the raw data of iodine 

solubility in hydroiodic acid. 

 

2. Raw data of iodine solubility in HI-H2SO4 solution 

 

Table B-2 listed the raw data of iodine solubility in HI-H2SO4 aqueous mixture. 

 

Table B-1 Raw data for iodine solubility in hydroiodic acid 

(a) 

 HI 

Concentration, 

M 

NaOH, 

M 

VNaOH ,mL 

/ 1 mL(VW) 

Na2S2O3, 

M 

VNa2S2O3, mL  

/1 mL (VW) 

   A B C 
 

A B C 

1 0.0765 0.01231 7.43 8.4 8.25 0.02005 4.00 4.80 4.60 

2 0.0383 0.01231 4.23 5.5 4.55 0.00401 11.07 14.34 11.60 

3 0.0191 0.01231 3.75 3.5 3.46 0.00401 7.90 9.37 8.60 

4 0.00956 0.01231 3.25 2.35 1.8 0.00401 7.30 5.94 3.90 

5 0.00478 0.01 1.90 1.2 1.7 0.00103 9.65 6.95 8.50 

6 0.00239 0.01 1.47 1.83 1.37 0.00103 9.20 10.70 6.52 

7 0.00120 0.01 1.32 0.8 1.15 0.00103 7.73 4.65 5.35 

8 0 0.01 1.27 1.27 1.27 0.00103 7.34 7.34 7.34 
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 (b) 

 

HI 

concentration, 

M 

NaOH, M 
VNaOH ,mL 

/ 1 mL(VW) 

Na2S2O3 

M 

VNa2S2O3, mL  

/1 mL (VW) 

   
A B 

 
A B 

1 7.60 0.4995 8.80 9.00 0.3348 48.00 48.50 

2 3.80 0.4995 7.60 7.00 0.3348 25.00 24.90 

3 1.90 0.1 19.92 20.10 0.1618 21.95 22.85 

4 0.950 0.1 10.55 10.66 0.1618 8.91 9.04 

5 0.475 0.1 5.44 5.55 0.1618 3.87 3.98 

6 0.238 0.1 2.86 2.74 0.02005 13.90 13.90 

7 0.119 0.0123 12.50 12.35 0.02005 6.62 6.83 

8 0.0594 0.0123 6.60 6.20 0.02005 3.41 3.35 

9 0.0297 0.0123 4.00 3.81 0.02005 1.84 1.78 

 

 

Table B-2 Raw data for iodine solubility in HI-H2SO4 aqueous solution 

 

 

HI 

concentration 

M 

H2SO4 

concentration 

M 

NaOH, 

M 

VNaOH ,mL 

/ 1 mL(VW) 

Na2S2O3 

M 

VNa2S2O3, mL  

/1 mL (VW) 

    
A B 

 
A B 

1 0.950 0.472 0.4995 3.88 3.90 0.3348 9.05 4.41 

2 0.475 0.236 0.1 9.90 10.40 0.1618 3.78 4.23 

3 0.238 0.118 0.1 5.05 5.08 0.02005 13.67 13.72 

4 0.119 0.0590 0.1 2.59 2.58 0.02005 6.45 6.48 

5 0.0594 0.0295 0.0123 12.00 11.45 0.02005 3.85 3.40 

6 0.0297 0.0147 0.0123 7.00 6.88 0.02005 2.10 2.50 

7 0.0148 0.00737 0.0123 3.85 4.12 0.02005 1.10 1.55 
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3. Raw data of distribution ratio of iodine between hydroiodic acid and toluene 

 

Table B-3 listed the raw data of iodine distribution between hydroiodic acid and toluene. 

 

Table B-3 Raw data of distribution coefficient of iodine between hydroiodic acid and toluene 

 

 
[HI ],M 

NaOH, 

M 

VNaOH ,mL 

/ 1 mL (VW) 

Na2S2O3, 

M 

VNa2S2O3, mL  

/1 mL (VW) 

UV-Vis ABS at 497nm 

for toluene phase 

   
A B 

 
A B A B 

1 7.54 0.5166 16.05 16.08 0.02005 9.76 10.23 0.383×6 0.506×6 

2 3.77 0.5166 8.13 8.18 0.02005 23.18 22.79 0.384×36 0.372×36 

3 1.89 0.5166 4.15 4.04 0.3348 1.85 1.79 0.468×96 0.518×96 

4 0.943 0.5166 2.03 2.06 0.3348 1.65 1.63 0.344×396 0.239×576 

5 0.471 0.5166 1.03 1.05 0.3348 1.03 1.10 0.431×576 0.437×576 

6 0.236 0.1022 2.60 2.56 0.02005 9.78 10.05 0.893×396 0.887×396 

7 0.118 0.1022 1.26 1.26 0.02005 4.98 4.96 0.993×396 0.993×396 

8 0.0589 0.1022 0.66 0.70 0.02005 2.65 2.55 0.728×576 0.709×576 

9 0.0295 0.1022 0.30 0.35 0.02005 1.30 1.33 1.062×396 1.038×396 

where 0.383×6 means the ABS was 0.383 after the iodine toluene solution was diluted by 6 

times. 
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4. Raw data for the Bunsen reaction rate in a semi-batch reactor 

 

Table B-4 Raw data of the Bunsen reaction rate at 130.4 SCCM of 1000 ppm SO2 with 150 mL 

volume of iodine–HI solution 

  

Volume 

of 

water, L 

Interval 

time, 

mins 

NaOH, 

M 

VNaOH ,mL 

/ 1 mL (VW) 

Na2S2O3, 

M 

VNa2S2O3, mL  

/1 mL (VW) 

   

A B 

 

A B 

0.15 0 0.1 2.41 2.40 0.03269 4.70 4.70 

0.15 158 0.1 2.80 2.75 0.03269 4.10 4.10 

0.148 150 0.1 3.10 3.10 0.03269 3.60 3.60 

0.145 207 0.1 3.52 3.52 0.01130 8.08 8.05 

0.142 129 0.1 3.84 3.80 0.01130 6.73 6.65 

0.14 120 0.1 4.10 4.05 0.01130 5.40 5.40 

0.138 120 0.1 4.40 4.40 0.01130 4.10 4.00 

0.129 122 0.1 4.88 4.80 0.01130 2.40 2.40 

0.126 120 0.1 5.10 5.04 0.01130 1.12 1.12 

0.122 97 0.1 5.34 5.32 0.01130 0.00 0.00 

 

 

Table B-5 Raw data of the Bunsen reaction rate at 129.6 SCCM of 1.04% SO2  

 

Volume 

of 

water, L 

Interval 

time, 

mins 

NaOH, 

M 

VNaOH ,mL 

/ 1 mL (VW) 

Na2S2O3, 

M 

VNa2S2O3, mL  

/1 mL (VW) 

   
A B 

 
A B 

0.15 0 0.1 2.43 2.48 0.01130 13.30 13.26 

0.15 77 0.1 4.20 4.20 0.01130 5.48 5.48 

0.147 43 0.1 5.10 5.03 0.01130 1.46 1.54 

0.145 13 0.1 5.38 5.38 0.01130 0.00 0.00 
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Table B-6 Raw data of the Bunsen reaction rate at 40.8 SCCM of pure SO2  

 

Volume 

of 

water, L 

Interval 

time, 

mins 

NaOH, 

M 

VNaOH ,mL 

/ 1 mL (VW) 

Na2S2O3, 

M 

VNa2S2O3, mL  

/1 mL (VW) 

   

A B 

 

A B 

0.1 0 0.1 5.57 5.55 0.03296 19.00 18.90 

0.1 5 0.1 8.10 8.05 0.03296 14.89 14.75 

0.098 5 0.1 10.65 10.6 0.03296 10.90 10.80 

0.096 5 0.1 13.18 13.20 0.03296 6.90 6.90 

0.094 7 0.1 17.70 17.70 0.03296 0 0 

 

Table B-7 Raw data of the Bunsen reaction rate in presence of toluene 

(a) 

Interval 

time, 

mins 

Volume 

of water, 

mL 

NaOH

, M 

VNaOH, mL 

/ 1 mL (VW) 

Na2S2O3, 

M 

VNa2S2O3, mL 

/1 mL (VW) 

Volume 

of 

toluene, 

mL 

UV-Vis ABS at 

497nm 

   
A B 

 
A B 

  
0 60 0.1 0 0 0.01130 0.00 0.00 120 0.980×111 

38 60 0.1 2.4 2.4 0.01130 3.50 3.50 120 0.746×101 

47 58 0.1 5 5 0.01130 1.10 1.10 119.9 0.592×51 

47 56 0.1 7.6 
 

0.01130 0.00 
 

119.7 0.249×51 

51 55 0.1 8.8 8.76 0.01130 0.00 0.00 108.5 0.219 

 

(b) 

Interval time, 

mins 

Volume of 

toluene, ml 
UV-Vis ABS at 497nm 

36 119.8 0.386×51 

11 119.7 0.249×51 

15 119.6 0.100×51 

10 119.5 0.183×6 

9 118.5 0.575 

7 113.5 0.399 

10 108.5 0.219 

where, 0.980×111 means the ABS is 0.980 after the toluene phase was diluted by 

111times. 
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APPENDIX C 

NMR SPECTRA FOR IODINE TOLUENE SOLUTION 

Figure C-1, C-2 and C-3 are respectively NMR spectrum for pure toluene, iodine toluene 

solution and iodine toluene solution after contacting with 7.6M hydroiodic acid for 24hrs. Three 

same spectra showed that there was no side reaction between toluene and iodine even in presence 

of strong acid of 7.6M HI solution. 
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APPENDIX D 

ANALYTICAL METHODS 

 

1. Determination of the proton concentration in water phase 

 

The products of the Bunsen reaction are HI and H2SO4 with molar ratio 2:1. Both of them 

are strong acids and tend to be ionized in water phase as soon as they are produced. Therefore, if 

the proton in water phase is determined, the iodide and sulfate ion can be deduced according to 

the stoichiometric proportion of the Bunsen reaction. The simplest way to determine the 

concentration of proton in water phase is acid-base titration. The proton can be titrated by 

standard solution of sodium hydroxide using phenolphthalein as indicator, and the chemistry is:  

           

The experimental procedures are followed as below. MNaOH g NaOH was weighed out with 

electronic balance and then was added into a dry and clean volumetric flask with volume VV.F L. 

The weighed NaOH was dissolved in less than VV.F L of water and then the flask was filled to 

the calibration mark by the careful addition of the remaining water. The concentration of NaOH 

standard solution obtained was in the range of 0.01~0.6M depending on the concentration of 

protons in titrated sample. The burette was filled to 0 mL mark with NaOH standard solution. 

VW mL of water phase was withdrawn by a pipette into 100 mL Erlenmeyer flask. And then five 

drops of phenolphthalein were added in it. The NaOH standard solution was added slowly from 

burette to the water phase being titrated. The first last appearance of the pink was taken to the 

equivalence point of the titration. The volume of NaOH standard solution was recorded as VNaOH 

mL. Finally, the proton concentration in water phase can be calculated by the following equation: 
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where 

    : Concentration of proton in water phase, mol L
-1

 

MNaOH:The mass of NaOH, g 

     : Volume of NaOH standard solution, mL 

VV.F.: Volume of volumetric flask, L 

  : Volume of water phase being titrated, mL 

 

2. Determination of the concentration of iodine in water phase 

 

As discussed in section 2.4, HI can increase the iodine solubility in water phase. 

Therefore, the water phase will dissolve more amount of iodine with more HI produced by the 

Bunsen reaction. The classic analytical method to determine the iodine concentration in water is 

iodometry using thyodene (Fisher) as indicator. The chemistry is: 

2 S2O3
2−

 (aq) + I2 (aq) → S4O6
2−

 (aq) + 2 I
−
 (aq) 

The experimental procedures are followed as below.         
 g Na2S2O3 was weighed out by 

electronic balance and then was added into a dry and clean volumetric flask with volume VV.F L. 

The weighed Na2S2O3 was dissolved in less than VV.F L of water and then the flask was filled to 

the calibration mark by the careful addition of the remaining water. The concentration of 

Na2S2O3 standard solution was in the range of 0.01~0.4M depending on the concentration of 

iodine in titrated sample. The burette was filled to 0 mL mark with Na2S2O3 standard solution. A 

pipette was used to withdraw VW mL of water phase into 100 mL Erlenmeyer flask. Then a small 

amount of thyodene (indicator) was added into it. The Na2S2O3 standard solution was added 
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slowly from burette to the water phase being titrated. The end point was reached when the water 

phase in the Erlenmeyer flask turns to colorless from blue. The volume of Na2S2O3 standard 

solution         
 mL was recorded. Finally, the iodine concentration in water phase can be 

calculated by the following equation: 

     
        

        
 

               
 

where 

    : Concentration of iodine in water phase, mol L
-1

 

        
: The mass of Na2S2O3, g 

        
: Volume of Na2S2O3 standard solution, mL 

VV.F.: Volume of volumetric flask, L 

  : Volume of water phase being titrated, mL 

 

3. Determination of the molar extinction coefficient of iodine in toluene phase and iodide in 

water phase 

 

A UV-Vis spectrophotometer is used to determine the concentration of iodide in the 

water phase and iodine in the toluene phase according to the Beer-Lambert law. 

        

 

  
        

where 

A: Absorbance 

   and  : Intensity of incident light and that of transmitted light, respectively 

 : Molar extinction coefficient, L mol
-1

 cm
-1
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 : Path length, cm 

  : Concentration of the absorbing species in materials 

 

3.1 Molar extinction coefficient of iodine in toluene 

 

Figure D-1 is the UV-Vis absorbance spectrum of iodine toluene solution (2.1×10
-4

 M). 

Two absorbance peaks for iodine in toluene within 200-700 nm are at 315 nm and 497 nm. The 

peak at 275 nm belongs to toluene. The peak at 497 nm is used to determine the concentration of 

iodine because the absorbance of iodine at 315 nm is too strong and close to the absorbance peak 

of toluene at 275 nm. A calibration curve of iodine in toluene was determined from 7 deferent 

concentrations of iodine toluene solutions as shown in Figure . Excellent linearity was observed 

for the plotting of absorbance over concentration. According to Beer-Lambert law (A = lc), the 

slope of linear calibration curve can give the molar extinction coefficient () of iodine in toluene. 

The experiment was repeated for four times and the average molar extinction of iodine in toluene 

is (1.03 ± 0.09) × 10
3
 L mol

-1
 cm

-1
 at 497 nm (Table D-1).  
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Figure D-1 Absorption spectrum of 2.1×10
-4

 M iodine toluene solution 

 

 

 
 

Figure D-2 UV-Vis calibration curve of iodine in toluene 
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Table D-1 Molar extinction coefficient of iodine in toluene 

 

No. 
Wavelength 

nm 

Extinction coefficient 

(ε, L mol
-1

 cm
-1

) 

Coefficient of  

determination 

Uncertainty 

(L mol
-1

 cm
-1

) 

1 497 1071 1 2 

2 497 1036 1 1 

3 497 1070 1 2 

4 497 942 1 1 

Average 497                    

 

 

3.2 Molar extinction coefficient of iodide in water  

 

In the same way, the molar extinction coefficient of iodide in water was determined. 

Figure D-3 is the UV-Vis absorbance spectrum of iodide solution (1.6×10
-5

 M).There is one 

maximum absorbance peak for iodide in water at wavelength 226nm. One of calibration curves 

is shown in Figure D-4. The average molar extinction coefficient is 1.34×10
4
 L mol

-1
 cm

-1
 (Table 

D-2).  

 

 
Figure D-3 Absorption spectrum of 1.6×10

-5
 M iodide aqueous solution 
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Figure D-4 UV-Vis calibration curve of iodide in water 

 

 

 

 

Table D-2 Molar extinction coefficient of iodide in water 
 

 

No. 
Wavelength 

(nm) 

Extinction coefficient 

(ε, L mol
-1

 cm
-1

) 

Coefficient of  

determination 

Uncertainty 

(L mol
-1

 cm
-1

) 

1 226 13455 0.9981 299 

2 226 13474 0.9994 120 

3 226 13447 0.9998 79 

4 226 13215 0.9999 76 

5 226 12974 0.9999 76 

Average 226                    
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