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Abstract

The domain requirements of software projects often seem
so specialized to developers that their original design does
not incorporate any commercial-off-the-shelf (COTS) com-
ponents. However, if major implementation problems are
encountered at a later stage in the project, the integration
of a COTS component that promises to solve those prob-
lems may become a desirable alternative to struggling on
with the original implementation. While a number of meth-
ods and criteria have already been proposed for require-
ments engineering, risk assessment and candidate selection
of COTS components, they were developed for application
in the initial phases of a project and thus do not take into ac-
count the much tighter time and design constraints imposed
in a later project stage. To spark discussion on necessary
adaptations of the established methods, this position paper
uses the example of a concrete project to illustrate the char-
acteristics of “switch or struggle” situations and proposes
an initial set of risk factors to be considered at that time.

1. Motivation

As a corollary to common rules for component-based de-
sign, conventional wisdom suggests that commercial off-
the-shelf (COTS) components should be selected early in
a project in order to make sure one does not write redun-
dant code, but maximizes the potential for re-use, prevents
architectural mismatch and designs the interface for most
efficient integration – otherwise, it seems, the risks associ-
ated with deferring these issues may seriously diminish the
chances of a project’s successful completion [5].

These arguments are certainly true for development
projects that intend to rely on COTS components from the
start, but our experience is that in practice, a considerably
larger number of projects initially do not plan for COTS
integration but traditional in-house software development.
However, if serious implementation problems arise unex-
pectedly in such projects, COTS component integration

may suddenly become an attractive alternative after all.
We believe that even in such situations, when the oppor-

tunity for early COTS consideration has long passed and the
component design is already finalized, the late integration of
COTS components may still be a viable option in order to
improve or even save the whole project. Obviously, the risks
and benefits of switching to a COTS component at this time
vs. struggling on with the in-house implementation must be
assessed very carefully. However, we believe that develop-
ers in such a “switch or struggle” situation cannot simply
resort to established COTS requirements engineering [7],
risk assessment [6] and candidate selection [3] methods, as
the late project stage enforces much tighter constraints than
those methods assume. In this position paper, we therefore
propose a number of criteria that may serve as guidelines
for developers at such a decision point, and would like to
stimulate discussion on strategies for successful late COTS
component integration.

In the following sections, we first relate our own experi-
ence with a “switch or struggle” situation (Sect. 2) to illus-
trate the nature of the problem we would like to address in
this paper. Drawing from our observations, we then identify
an initial set of risk factors that we believe should be con-
sidered before deciding about any late COTS component in-
tegration (Sect. 3). Finally, we suggest issues for discussion
and directions for further research (Sect. 4).

2. Project Experience

2.1 Context and Setup

Our hypotheses are spurred by observations of an ongo-
ing 17-month project where we are currently developing
tools for the specification and control of complex naviga-
tion structures (“dialog flows”) in web-based applications –
namely, a so-called Dialog Flow Editor that enables devel-
opers to model dialog flows in the graphical Dialog Flow
Notation (DFN) and generate XML-based specifications out
of them, and a Dialog Control Framework that interprets
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Figure 1. Validator with COTS Prolog prover.

those specifications and handles users’ interactions with a
web application accordingly [1].

Like any specification language, the DFN comprises a
number of rules that define what makes a valid dialog flow
specification. To make sure that the framework will not ex-
ecute faulty dialog flow specifications that may lead to un-
predictable application behavior, we must guarantee that the
noation’s rules hold both for the editor’s diagrams and the
framework’s run-time interpretation of the generated XML
specifications. To ensure that the exact same validation
rules are applied by the editor and framework, we factored
the validation logic out into a separate component (the so-
called validator) that can be used by both tools (Fig. 1).
Since the editor and framework work in different execution
environments (a plug-in for the Eclipse IDE vs. a servlet-
based framework deployed on an application server) with
different data models (visual entities of a graphical editor
vs. fragments of an XML-based Document Object Model),
they are decoupled from the validator by interfaces that em-
ploy simple graph constructs to describe the dialog flows.
The actual validation takes place in an off-the-shelf Prolog
theorem prover, whose knowledge base is populated with
facts about the dialog graphs and then queried for invalid
constructs, using Prolog predicates for the DFN rules.

While this approach seems straightforward and natural
in hindsight, it is quite different from the architecture we
had first designed, since the decision to integrate the off-
the-shelf Prolog prover was actually made very late in the
project. In the following subsections, we will sketch the
project’s initial progress up to the point where we felt our
original design was doing the validator more harm than
good; then present the risks and benefits of the options we
had to consider at this decision point; and finally relate our
experiences after switching to the COTS component.

One key to understanding the design decisions discussed

in the following sections is the organizational setup of our
project: As a joint academic/industry endeavor, it is char-
acterized by a higher degree of design freedom than a pure
industry project - for example, concrete solutions for some
challenges that are still a topic of current research (e.g. de-
vice independence [2]) were not yet completely worked out
in the specification phase, but left to be addressed by the im-
plementors of the respective components. Still, the project
of course follows a strict schedule, which restricts the time
developers can spend on solving those issues.

The editor and framework are developed in parallel by
two essentially separate development teams under a joint
project lead. While a prototype of the framework’s core
dialog control logic already existed as a starting point, the
editor had to be built from scratch. The milestones in the
project plans for both components are coordinated so the
framework will at any time be able to interpret the XML
specifications generated by the editor. Since neither the
framework nor the editor contain any validation logic of
their own, the validator was developed in a third parallel
project “thread” during the first months of the editor’s and
framework’s implementation. A common milestone for in-
tegrating the validator with the two “client” components
was defined in the project plans for all three teams.

2.2 In-House Implementation Attempt

In the initial design phase (P0 in Fig. 2), we had designed an
interface for the validator component that abstracted from
the editor’s and framework’s data model by representing di-
alog flows as simple directed graphs.

In the succeeding implementation phase (P1), we began
to develop Java algorithms that searched for violations of
any DFN rules in the dialog graph. Unfortunately, after im-
plementing the first few rules, it became apparent that the
code fragments for checking individual rules were often dis-
tributed over several different methods, as certain properties
had to be verified at different times of the graph traversal.
Also, as a consequence of the fragmented implementation
of individual rules, the node and edge classes originally de-
signed as simple interface entities accumulated more and
more state information, transforming them into a third dia-
log flow model in its own right. We realized that for these
reasons, the further implementation of the validator would
turn increasingly complicated and error-ridden.
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Figure 2. Component integration timeline.



At this point, the validator team took a step back to re-
assess their needs and wishes: Ideally, it should be possible
to express and check the DFN rules individually and close to
their mathematical form, as they are originally stated as in-
variants in predicate logic. Moreover, it should be possible
to define subsets of rules that could optionally be skipped
if they are irrelevant in a certain context or implicitly en-
forced by the editor and framework already (a capability
would help in reducing the computational cost of validat-
ing a complete dialog flow specification). Most importantly,
any alternative solution would have to comply with the in-
terface that the other teams already relied on.

2.3 “Switch or Struggle” Decision

Thus, we had decide between struggling on with the origi-
nal procedural implementation of the validator, or switch-
ing to a more declarative approach. We soon concluded
that starting over and implementing a declarative validation
logic from scratch was not feasible, since we lacked the time
and skills to write our own theorem prover. Therefore, the
only alternative was to find a COTS component capable of
proving predicates.

Table 1 lists the factors influencing our decision most:
Our expected progress in continuing the procedural imple-
mentation would probably be steady, but impeded by many
refactoring and bug-fixing iterations. On the other hand, the
progress in finding and integrating the right validation com-
ponent would be less predictable, but promised a fast track
to a purely domain-centric implementation and testing.

The expected integration effort would only be a chal-
lenge for the COTS alternative, since it depended on tech-
nical complexity of any glue code required. Preferably, the
component would provide a Java interface, but even that
would still have to be mapped to the interface of the valida-
tion component.

Regarding future maintainability, the in-house imple-
mentation would probably turn out messy, as modifying in-

Table 1. Expectations for in-house validator
implementation vs. COTS prover integration.

in-house COTS
implementation integration

progress slow, but steady hard to predict
integration none large, depending
effort on component
maintenance high low
effort
confidence in low high
correctness

dividual rules (whether for extensions to the DFN or just
corrective maintenance) would require touching code in
several places. In comparison, maintenance of individual
rules expressed as predicates would be localized to single
spots in the code.

For these reasons, the overall confidence in a correct val-
idator implementation that would be true to the specifica-
tion was low for a continued in-house implementation, but
quite high for reliance on the COTS component. However,
while the COTS integration seemed to have clear benefits
in the long run, it was still the more risky alternative. Nev-
ertheless, we decided to switch to this approach since we
already had an interface and internal data model for the
validator. These could be “reinterpreted” as an enhanced
connector that would comfortably hide the interface of any
COTS component we would end up choosing, and allow us
to make compromises regarding its technical details. On
this basis, we deemed the risks of a COTS component’s in-
tegration to be justifiable even this late in the project.

2.4 Component Selection and Integration

With this strategy for the technical integration worked out,
our actual component selection process in phase P2 could
then focus much more on organizational aspects. Especially
important to us were little or no additional expenses for li-
censing the COTS component, yet freedom to redistribute it
as part of a commercial product; the possibility to declare
DFN predicates in Prolog, since we had the necessary skills
in-house; and proven maturity of the component and quality
of its documentation.

After considering different candidates, we decided on
SWI-Prolog [9] since it fulfills our requirements and comes
with the bidirectional Prolog/Java interface JPL. The pro-
cess of retrofitting our validator with SWI-Prolog (phase
P3) was largely accomplished by employing the validator’s
existing graph model and augmenting it with code to trans-
late the properties of nodes and edges into Prolog facts.
The JPL interface provides access to a prover instance that
consults DFN rules formulated as Prolog predicates. Even
while JPL has its quirks, the integration took place without
major problems.

In order to validate a dialog graph, the editor or frame-
work pass the respective node and edge objects to the val-
idator component, which asserts the corresponding facts in
the Prolog knowledge base and then evaluates the rule pred-
icates, which yield solutions indicating any violating enti-
ties. These solutions are mapped back to the original node
and edge objects, which the validator returns to the calling
component with suitable error messages or warnings. The
editor or framework can then react appropriately by display-
ing the messages and/or highlighting the offending graph
elements.



2.5 Emerging Benefits

Since the project is still in progress, a final judgment of our
decision’s overall pay-off cannot be made yet. Still, we al-
ready see first benefits that we attribute to the integration of
the COTS component.

First and foremost, we observe a shift of focus from low-
level algorithmic technicalities to high-level domain con-
cepts. The developers now spend much more time dis-
cussing the actual semantics of DFN rules rather than imple-
mentation details of Java-based graph traversal algorithms.
This said, we still encounter occasional challenges in the
precise formulation of DFN rules in Prolog, or need to re-
solve technical issues in the glue code connecting our origi-
nal interface and the JPL API. However, the ratio of techni-
cal vs. conceptual concerns clearly improves towards con-
ceptual.

This shift also emerges in testing the validator. Since
much less infrastructural code is produced, our testing ef-
forts focus much more immediately on the DFN rules and
their “implementation” in Prolog predicates (we consider
SWI-Prolog mature enough to assume that failing tests are
caused by errors in our predicates, not errors in the prover).
This way, by testing the validator we are actually testing the
accuracy of our specification.

Looking ahead, we expect that due to this strong domain
focus enabled by the new COTS-based validator implemen-
tation, we will be able to finish development of the compo-
nent earlier and with higher confidence in its quality.

3. Characteristics of Late COTS Integration

3.1 Project Situation

While the late exchange of a partially completed in-house
implementation against a COTS component worked well in
our project, we do not recommend it in general. We believe
that ideally, developers should design systems diligently,
stay committed to their designs (whether COTS-based or
not), and not introduce late changes lightly. However, our
experience taught us that a project may not progress ideally,
so component developers may find themselves confronted
with unforeseen major technical or domain-specific chal-
lenges. In this case, they still have three options in order to
build a (hopefully) working component after all:

(a) continue the component’s implementation according
to the original design, struggling to circumvent or ac-
cept its flaws

(b) scrap the component’s implementation so far and try
to implement it using a different approach

(c) scrap the component’s implementation and switch to a
COTS component serving the same purpose

Out of these options, we consider (a) and (b) to be related
“struggle” strategies insofar as the responsibility for finding
an alternative implementation continues to rest with the de-
veloper. In contrast, resorting to a COTS component quali-
fies option (c) as a separate strategy (“switch”).

Of course, switching is not a sure-fire strategy: While
it may effectively evade or resolve problems in the origi-
nal implementation, it comes at the cost of introducing late
major design changes. This always carries numerous risks,
such as additional effort required for familiarizing develop-
ers with the new design, adapting the existing control flow
and data model implementation to the new component in-
terface, re-testing the integration and fixing side-effects and
errors. These risks will likely not be restricted only to the
changed component, but affect the rest of the system and
thus endanger the overall project schedule and budget.

The successful evasion of this gloomy outlook in our
project prompted us to question whether we were just lucky,
or if there are actually certain factors that can mitigate the
risks and make late COTS integration a viable alternative in
“switch or struggle” situations. Developers could then use
those factors to assess whether the risks associated with late
COTS integration outweigh its benefits.

3.2 Risk Assessment

Before going into detail on the risk factors, we should clar-
ify our understanding of late integration in order to put
the following discussions into perspective: We define “late
COTS component integration” as “retrofitting an already
committed-to component design with a COTS component”.
The emphasis on the fixed component interface is important
since the dependence of client components severely limits
our design freedom in a “switch or struggle” situation. This
distinguishes it from the ideal case of early COTS compo-
nent requirements and risk analysis where the COTS com-
ponent would not adapt to, but define that interface. In the
case of late integration, however, we need to consider the
following risk factors:

Level of interface abstraction. If we assume that the
component’s interface was originally designed with in-
house implementation in mind, the most obvious risks stem
from this interface’s robustness against changes in the com-
ponent’s internal implementation (especially when those
changes are as radical as exchanging it against a COTS
component). Since changing an already published interface
will require potentially far-reaching changes in the imple-
mentations of client components, we do not recommend
switching to a COTS component late in the project if it
would require changing the existing component interface.



However, a well-designed interface that abstracts from
technical details of the client components and its own im-
plementation should be robust enough to survive the inter-
nal switch to a COTS component without changes. Still,
it will be necessary to bridge the gap between the original
component’s domain-specific interface and the technicali-
ties of the COTS component’s API. The effort and risk in-
volved in this process depend not only on how wide the gap
between the two interfaces is, but also if the necessary skills
are available on the project team.

In our case, the differences between the editor’s and
framework’s data model prompted an independent graph-
based validator interface that made no assumptions about
the actual implementation of the component, so we could
retrofit it with the COTS Prolog prover without too much
effort, and without affecting the editor or framework.

Divergence of architectural assumptions. Besides any
gaps between the formal interface declarations, there may
still be a mismatch in the architectural assumptions [4] or
design intent [8] of the original and the COTS component.
Often, these assumptions relate to the data structures (e.g.
valid input range, possible output range, return values for
invalid input, failed operations, empty results etc.) and/or
processing protocols (e.g. thread safety, statefulness, trans-
action handling, caching strategies etc.). In contrast to tradi-
tional COTS integration products, however, we see a rever-
sal of precedence in “switch or struggle” situations: Here,
the assumptions are not determined by the COTS compo-
nents, but by the existing project context, which is much
harder to change at this time and therefore requires more
manual mediation in the form of glue code.

In order for a COTS component to be successfully inte-
grated behind an existing interface, it must work under the
same assumptions that were made in the original compo-
nent design. Minor differences in these assumptions (likely
related to data structures, such as type conversions) can be
ironed out by glue code that mediates between the origi-
nal component interface and the COTS component. How-
ever, if major differences (especially in processing proto-
cols) are present, compensating for them in glue code may
cost too much implementation effort, require unavailable
special skills, or force unreasonable restrictions upon the
COTS and/or client components. We therefore conjecture
that late COTS integration does not bear substantial risk
only if the architectural assumptions of the original inter-
face and the COTS component diverge just in minor, prefer-
ably data structure-related aspects.

In our case, the original design assumed that the dia-
log graph’s nodes and edges would be stored by the val-
idator component for re-use in future validation runs. Since
this behavior could be emulated in the off-the-shelf Prolog
prover by retaining the relevant facts in the knowledge base,

the way in which the editor or framework use the validator
component did not need to be changed.

The previously discussed factors provide some generic
guidance on whether the late integration of a COTS com-
ponent is advisable at all. However, the risk associated with
such a decision also depends on the actual choice of COTS
component: Even when the original component interface
and its architectural assumptions are uncritical, designers
may still decide against late integration of any desirable
component candidates on the market if the individual char-
acteristics of these components introduce too high risks.

Technical complexity and compatibility. One of these
component-specific risk factors is the effort required for
the technical integration of the COTS component: Deal-
ing with a component’s dependence on obscure libraries,
reliance on certain platform versions, incompatibility with
other components and similar issues can incur equal or more
effort than the pure business-level integration, or even prove
impossible to resolve. Performance considerations regard-
ing response time and memory footprint may reveal further
risks, which typically affect the whole system.

To minimize the risks of late COTS component integra-
tion, these factors should be assessed for each candidate
component. While technical integration issues can usually
be identified with reasonable effort using a prototyping ap-
proach, performance issues typically do not become appar-
ent until the COTS component is already integrated into
the system and working under production load. Usually, a
thorough COTS component selection process would involve
simulations that alert developers of such issues early, but in
a “switch or struggle” situation, the time frame will likely
be too tight to set up performance simulations for all candi-
date components. A pre-integration survey of other users’
experiences with a particular component cannot eliminate
these risks, but possibly give an indication of any problems
to expect. We claim that the technology-related risks of late
COTS integration can be kept within reasonable limits if
such a prototyping and research phase precedes the actual
choice and integration. If all candidate components seem to
pose major integration challenges, we recommend that de-
velopers stick to their original implementation plans so as
not to introduce unquantifiable risks into the project, even if
the COTS integration would be desirable for other reasons.

In our case, the technical issues were the main focus
of our decision process: Prototyping had shown that SWI-
Prolog could be integrated into a Java environment using
the JPL library. Although the technical integration seemed
non-trivial (for example, it required the inclusion of na-
tive libraries on Windows and Linux platforms, as well as
bundling the SWI-Prolog engine with the Prolog implemen-
tation of the DFN rules), we considered these challenges



manageable and thus proceeded to integrate SWI-Prolog.

Organizational constraints. Last but not least, the feasi-
bility of late COTS component integration often depends on
organizational constraints. Again, these can be best judged
per candidate rather than in general. Some factors that may
heavily influence the decision for or against an otherwise
desirable candidate are its licensing model, the availability
of source code, the quality of documentation, the product’s
age and maintenance frequency, etc. Typically, these crite-
ria can be readily determined before integration and thus do
not pose actual risks, but rather introduce constraints on the
set of suitable candidates.

To support the technical challenges of late COTS integra-
tion discussed above, choosing a candidate with complete
documentation is certainly advisable, and having the source
code available may save an integration project in situations
where the COTS component does not integrate as smoothly
as expected. However, we would generally deem it too risky
to integrate a COTS component late if it is already fore-
seeable that its source code will need to be adapted, unless
the planned adaptation is so minor that its success can be
proven in a cut-through prototype. The other organizational
constraints depend largely on the individual project context,
so no generic advice can be given on them. For example,
when liability for the final product is an issue, much higher
attention must be given to the COTS component’s maturity,
reliability and trustworthiness.

In our case, we required that the COTS component
would not limit our options for choosing a licensing model
for our own product. SWI-Prolog fulfilled this prerequisite
and also made a good impression regarding documentation
and maintenance record, thus confirming our choice.

4. Conclusions

Our goal here is to raise awareness of project situations
that may call for late COTS component integration, to show
that it is feasible under certain circumstances (even when
the project was originally not planned as a COTS integra-
tion project), and to identify an initial set of risk factors to
be considered in such a situation. Due to a project’s far
progress at this point, we found that the risk assessment has
to take different factors and more severe constraints into ac-
count than in a project’s initial phases. Therefore, we hy-
pothesize that established processes and methodologies for
COTS risk assessment and selection are not suitable for late
COTS integration. We therefore propose that methods for
late COTS component integration, and especially strategies
for weighing risks vs. benefits in such “switch or struggle”
scenarios, are an important topic for future research in the
COTS community, and offer our initial set of risk factors as
a basis for discussion.
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