
Merging components and testing tools:
The Self-Testing COTS Components (STECC) Strategy∗

Sami Beydeda, Volker Gruhn
University of Leipzig

Department of Computer Science
Applied Telematics / e-Business

Klostergasse 3
04109 Leipzig, Germany

{sami.beydeda, volker.gruhn}@informatik.uni-leipzig.de

Abstract

Development of a software system from existing compo-
nents can surely have various benefits, but can also entail
a series of problems. One type of problems is caused by a
limited exchange of information between the developer and
user of a component. A limited exchange and thereby a lack
of information can have various consequences, among them
the requirement to test a component prior to its integration
into a software system. A lack of information cannot only
make test prior to integration necessary, it can also compli-
cate this tasks.

This paper proposes a new strategy to testing compo-
nents and making components testable. The basic idea of
the strategy is to merge components and testing tools in or-
der to make components capable of testing their own meth-
ods. Such components allow their thorough testing without
disclosing detailed information, such as source code. This
strategy thereby fulfills the needs of both the developer and
user of a component.

1 Introduction

A major trend of recent years in software engineering is
that of component-based development. The underlying idea
of component-based development is to construct a software
system from existing components instead of programming
the software system from scratch.

Quality assurance, including testing, conducted in devel-
opment and use of a component can be considered accord-
ing to [13, 12] from two distinct perspectives. These per-

∗The chair for Applied Telematics / e-Business is endowed by Deutsche
Telekom AG.

spectives are those of thecomponent providerandcompo-
nent user. The component provider corresponds to the role
of the developer of a component and the component user to
that of a client of the component provider, thus to that of the
developer of a system using the component.

The use of components in the development of software
systems can surely have several benefits, but can also intro-
duce new problems. Such problems concern, for instance,
testing of components. The component provider and com-
ponent user need to exchange various types of information
during the development of the component itself and also
during the development of a system using the component.
However, exchange of such information can be limited due
to various reasons and both the component provider and
component user can face a lack of information. Such a
lack of information might cause various problems which
in turn might require that tests have also to be carried out
by the component user. This contradicts to the believe that
a component thoroughly tested by the component provider
does not need to be retested by the component user. Such a
lack of information might not only obligate the component
user to test a component, it might also complicate compo-
nent user’s tests. An important example for this is a lack of
source code for test case generation purposes.

A number of approaches have been proposed in the liter-
ature which aim at either avoiding a lack of information or
allowing testing in spite of such a lack. These approaches,
however, suffer from certain limitations and we believe that
a novel type of approaches is required to address the testing
of component appropriately. This paper summarizes our re-
sults. Sec. 2 describes the limited exchanged of information
among the component provider and component user, and
the potential problems due to a lack of information. Sec. 3
explains approaches proposed to tackle the problems in test-
ing components together with their limitations. Sec. 4 intro-



duces theself-testing COTS components(STECC) method,
a novel strategy for testing components and making com-
ponents testable. Sec. 5 finally gives our conclusions and
shows the directions of our current and future research.

2 Exchange of information in development of
and with components

2.1 Information relevant for development of com-
ponents and component-based systems

The component provider and component user generally
need to exchange information during the various phases of
developing the component and a component-based system.
The development of a component, if the component is it-
self developed non-component-based and thus is not itself
a component-based system, usually consists of the typical
phases of software development. Software development
usually includes the phases of requirements analysis and
definition, system and software design, implementation and
unit testing, integration and system testing, and operation
and maintenance, if it is conducted according to the water-
fall model or a derivative of it [19]. The single phases might
be named differently depending on the actual software pro-
cess model, which, however, does not affect the following
explanations. During some of these phases, the component
provider needs to exchange information with the component
user. Such phase are, for instance:

Requirements analysis and definition.The phase of
requirements analysis and definition obviously ne-
cessitates information concerning the capabilities and
conditions the component needs to satisfy according to
the component user’s expectations.

Operation and maintenance.The phase of operation
and maintenance usually requires on the one hand in-
formation for the operation the component by the com-
ponent user, i.e. assembly of the component with oth-
ers, and on the other hand information for the mainte-
nance of the component by the component provider.

Even though a waterfall model-based software process
has been assumed so far, similar patterns of information
exchange can also be identified for other software process
models and the results obtained also apply for them.

Information flow between component provider and com-
ponent user does not only occur during the development
of a component. Information needs often also to be ex-
changed between the two roles during the development of a
component-based system using the component. The expla-
nations in the following assume a concrete process model
for component-based development as described in [19].

However, the explanations are also valid for other pro-
cess models for component-based development, since the
phases in which information is exchanged between the two
roles usually have their counterparts also in those mod-
els. The process model for reuse-oriented software devel-
opment using components includes six phases as described
in [19]. These phases are requirements specification, com-
ponent analysis, requirements modification, system design
with reuse, development and integration, and system valida-
tion. During some of these phases, a bidirectional informa-
tion flow between the component provider and component
user can be observed. Examples of these phases are:

Component analysis.The component analysis phase
necessitates information supporting identification of
components available from the various sources, their
analysis with respect to certain criteria, and finally se-
lection of the component being most suitable for the
component-based system to be developed.

Development and integration.The phase of develop-
ment and integration can also require technical infor-
mation which the component user needs to obtain from
the component provider during the phase. Such tech-
nical information might concern the interfaces of the
component, the required middleware etc.

System validation.The phase of system validation is
also a phase in which information often needs to be ex-
changed between the two roles. Such an exchange of
information might concern white-box test cases gen-
erated by the component provider, meta-information
supporting the component user in testing etc.

The above list of phases in component-based develop-
ment requiring exchange of information between the com-
ponent provider and component user is not necessarily com-
prehensive. However, the aim of the above list is only
to show that interaction between the two roles takes place
throughout the lifecycles of components and component-
based systems, and the flow of information is not merely
one way [17, 18].

2.2 Factors affecting exchange of information

Various factors impact the exchange of information be-
tween the component provider and component user. The in-
formation requested by one role and delivered by the other
can differ in various aspects, if it is delivered at all. It can
differ syntactically insofar that it is, for instance, delivered
in the wrong representation and it can also differ semanti-
cally in that it, for instance, is not in the abstraction level
needed. The differences might be due to various factors and
one of these factors is the organizational relation between
the two roles.



A component can be distinguished with respect to the
organizational relational between the component provider
and component user according to [6] in the categoriesin-
dependent commercial item, special version of commercial
item, component produced by contract, existing component
from external sourcesand component produced in-house.
Information exchange among the component provider and
component user depends, as one factor, on the category into
which the component is classified regarding to the organi-
zational relation between the two roles.

As the one extreme, the component can be a commercial
item. The quality of information exchange between compo-
nent provider and component user is in comparison to the
other cases often the worst. There are various reasons for
this, such as the fact that the component provider might not
know the component user due to an anonymous market. In
such a case, the component provider can base own develop-
ment tasks on assumptions and can deliver only information
to the component user supposed to be needed. Furthermore,
the component might be used by several component users
and the component provider might decide to only consider
the needs of the majority of them. The specific needs of a
single component user might than be ignored. Finally, the
component provider might not disclose detailed technical
information even if needed by the component user to avoid
that another component provider receives this information.
The component provider might decide to only make the in-
formation available which respects intellectual property and
retains competition advantages.

As the other extreme, the component can be produced in-
house. The quality of information exchange between com-
ponent provider and component user is in comparison to the
other cases often the best. One of the reasons for this can be,
for instance, the fact that the component is developed in the
same project in which it is assembled. The exchange of in-
formation in both directions, from the component provider
to the component user and the reverse direction, can take
place without any differences in the requested and deliv-
ered information. Furthermore, the component provider and
component user are roles, they can also be played by the
same person, if the component is used in the same project
in which it is developed. Information would even not be
necessary to be exchanged.

2.3 Problems due to a lack of information

2.3.1 Context-dependent development of a component

One type of information required for the development of
a component is that indicating the application environment
in which it will later be used. Such information, how-
ever, might not be available so that the component provider
might develop the component on the basis of assumptions
concerning the application environment. The component is

then explicitly designed and developed for the needs of the
assumed application environment, which, however, might
not be the one in which the it will be actually used. Even
if the component is not tailored to a certain application
environment but constructed for the broader market, the
component provider might unconsciously assume a certain
application environment and its development might again
become context-dependent. A consequence of context-
dependent development of a component can be that testing
is also conducted context-dependently. A component might
work well in a certain application environment and can ex-
hibit failures in another [24, 22].

One of the reasons for context-dependent development
of a component is often the component provider’s lack of in-
formation concerning the possible application environments
in which the component might be used later. Tests con-
ducted by the component provider might also be context-
dependent and a change of application environment, which
might be due to reuse of the component, generally requires
additional tests in order to give sufficient confidence that the
component will behave as intended also in the new applica-
tion environment. Additional tests are required even if often
contrary claimed that components frequently reused need
less testing, e.g. [20]. Moreover, a component reused in
a new application environment needs to be tested irrespec-
tive of its source. A component produced in-house does not
necessarily need less testing for reuse purposes than a com-
ponent being an independent commercial item [24].

2.3.2 Insufficient documentation of a component

Development of a component-based system generally re-
quires detailed documentations of the components which
are to be assembled. Such documentations are usually de-
livered together with the respective components and each of
them needs to include three types of information related to
the corresponding component:

Functionality. The specification of the component
functionality gives a description of the functions of
that component, i.e. its objectives and characteristics
actions, to support an user in solving a problem or
achieving an objective.

Quality. The specification of component quality can
address, for instance, of quality assurance, particularly
including testing techniques, applied, metrics used to
measure quality characteristics and their values.

Technical requirements.The specification of the tech-
nical requirements of a component needs to address
issues such as the resources required, the architectural
style assumed, the middleware used.



Documentation delivered together with a component and
supposed to include specifications of the above outlined as-
pects might, however, be insufficient for development of a
component-based system. The various types of information
provided by the documentation can deviate from those ex-
pected syntactically as well as semantically, and it can even
be incomplete. This problem can be viewed from two dif-
ferent perspectives. On the one hand, it can be considered
as a problem due to a lack of information. The component
provider might be suffering from a lack of information and
might therefore not provide the information as documenta-
tion actually needed by the component user. On the other
hand, it can be considered as a reification of a lack of infor-
mation. Instead assuming the component provider as suffer-
ing from a lack of information while developing the compo-
nent and assembling its documentation, the component user
is assumed as suffering from such a lack while developing a
component-based system using the component. Insufficient
documentation is according to the latter perspective not the
effect of a lack of information but its reification. However,
the subtle differences of these perspective are not further
explored.

Both prototyping and familiarization require that the
component under consideration is executed, which is also
the main characteristic of testing. In fact, both can be con-
sidered as testing, if the term of testing is defined more gen-
erally without assuming that testing is a quality assurance
action. The objectives of both are not necessarily related
to quality assurance, but are in principle to obtain informa-
tion which is not delivered as part of the documentation.
Furthermore, components delivered with insufficient docu-
mentation might also required testing in its original sense,
particularly if the documentation does not include informa-
tion concerning quality assurance conducted. Even if the
documentation includes such information, quality assurance
conducted might not be sufficient for the application en-
vironment in which the component will be used. In such
cases, the component usually needs to be retested also by
the component user, since the component user is from the
viewpoint of the end-user responsible for the quality of the
component-based system and the component user’s reputa-
tion depends on its quality [24].

3 Existing approaches

3.1 Overview of the approaches discussed

The approaches considered in the following are solely
those which take into account a lack of information, even if
not explicitly mentioned, and which can be applied by the
component user. Approaches have been considered in par-
ticular which aim at tackling the problems caused by such a
lack. These approaches do not address the cause but rather

tackle the potential difficulties which might be encountered
when testing components.

The discussion does not consider approaches to testing
components which are not concerned by a lack of informa-
tion. Such approaches are those which do not require source
code access or information not available to the component
user, such as black-box approaches. The discussion also
does not consider approaches to testing components which
either are explicitly intended to be used by the component
provider or require information without giving a solution to
tackle a possible lack of that information to the component
user.

Further note that the approaches discussed are not neces-
sarily described entirely. Only those aspects of an approach
are described which are relevant in this context and other
aspects, which obviously might be important in other dis-
cussions, are omitted for the sake of brevity.

A more comprehensive overview of approaches to test-
ing COTS components can be found in [4, 5].

3.2 Built-in testing approaches

A component can contain test cases or can possess facil-
ities capable of generating test cases which can be accessed
by the component user or which the component can use to
test itself and its own methods. The corresponding capa-
bilities allowing this are called built-in testing capabilities,
which are one type of the approaches addressing the effects
of a lack of information. The component user thus does not
need to generate test cases and difficulties which the com-
ponent user would otherwise face thus can in principle not
complicate the component user’s test.

A built-in test approach can be found in [23]. A compo-
nent can operate according to this approach in two modes,
namely in anormal modeand amaintenance mode. In the
normal mode, the built-in test capabilities are transparent to
the component user and the component does not differ from
other, non-built-in testing enabled components. In the main-
tenance mode, however, the component user can test the
component with the help of its built-in testing features. The
component user can invoke the respective methods of the
component, which execute the test, evaluate autonomously
its results, and output a test summary. The authors describe
a generic technical framework for enhancing a component
with built-in tests. One of the few assumptions is that the
component is implemented as a class. Under this assump-
tion, it is suggested to implement built-in testing by addi-
tional methods which either contain the test cases to be used
in hard-wired form or are capable of generating them. The
integral benefit of such an implementation is that the meth-
ods for built-in testing can be passed to subclasses by inher-
itance.

A built-in testing approach is also proposed in [15, 21,



8, 2, 3]. Even though this approach is called by its au-
thors a self-testing approach, it is referred to for the sake
of consistency as a built-in testing approach. The features
characterized by the authors as self-testing significantly dif-
fer from those characterized as self-testing in the context
of the STECC strategy and resemble those of the above ap-
proach. The approach and that explained share several prop-
erties. Besides various modes of operation, a component
is assumed to be implemented using object-oriented lan-
guages, Java in particular. Built-in testing is implemented
by additional methods. Each component method testable
by built-in testing capabilities possesses a testing method
as counterpart which invokes it with predefined arguments.
An oracle is implemented by the means of component in-
variant, method pre- and postcondition. Invariants, pre-
and postconditions are determined based on the specifica-
tion of the component and are embedded by the compo-
nent provider in the source code of the component. The
functionality necessary to validate them and other function-
ality, such as that necessary for tracing and reporting pur-
poses, is implemented by a framework, which technically
requires that the component, or more clearly the main class
of the component, implements a certain interface. Similar
to the above approach, the built-in testing capability can be
passed to subclasses by inheritance. The authors propose
to measure test completion by the means of fault injection,
which is, however, not feasible in this context, since this re-
quires source code access, which the component user does
not have. The component user therefore has to assume that
the built-in test are sufficient.

Another built-in test approach, thecomponent+ap-
proach, can be found in [14, 1]. A shortcoming of the last
built-in testing approach is that test cases or a description
of their generation need to be stored within the component.
This can increase the resource consumption of the compo-
nent, which, particularly taking into account that the built-in
testing capabilities of a component is often required only
once for deployment, can be an obstacle for its use. To
avoid this shortcoming, the authors define an architecture
consisting of three types of components, namelyBIT com-
ponents, testers, andhandlers. The BIT components are
the built-in testing enabled components. These components
implement certain mandatory interfaces. Testers are com-
ponents which access to the built-in testing capabilities of
BIT components through the corresponding interfaces and
which contain the test cases in a certain form. In the above
approach, a built-in testing enabled component also encom-
passes the functionality of the testers. Here, however, they
are separated with the benefit that they can be developed and
maintained independently, and that they do not increase re-
source requirements of BIT components in the operational
environment. Finally, handlers are components in this ar-
chitecture which do not contribute to testing, but can be re-

quired, for instance, to ensure recovery mechanisms in the
case of failures.

The built-in testing approaches presented do not restrict
the tests which can be conducted insofar that they are
not constrained to black-box testing. Built-in testing ap-
proaches which are constrained to black-box testing, such
as those in [9, 10, 11] and [16], are not discussed, since
black-box testing does not necessarily require provisions by
the component provider. Assuming a specification is given,
the component user can obtain the appropriate test cases
and test the component in principle without the component
provider’s support. Black-box built-in testing capabilities
undoubtedly have the potential of simplifying component
user’s tests by improving component testability, but the cor-
responding tasks can usually also be accomplished by the
component user.

3.3 Limitations of existing approaches

The built-in testing approaches in [23], [15, 21, 8, 2, 3]
and [14, 1] aim at tackling difficulties in testing components
caused by such a lack, difficulties in test case generation in
particular. They can simplify component user’s test inso-
far that the component user might not need to generate test
cases, but they might be in some cases not appropriate. The
reasons include:

Firstly, the built-in testing approaches explained are
static in that the component user cannot influence the
test cases employed in testing. A component which
is built-in testing enabled according to one of the ap-
proaches explained either contains a predetermined set
of test cases or the generation, even if conducted on-
demand during runtime, solely depends on parameters
which the component user cannot influence. Specifi-
cally, the component user cannot specify the adequacy
criterion to be used for test case generation. However,
the component user might wish to test all components
to be assembled with respect to an unique adequacy
criterion. Built-in testing approaches, at least those de-
scribed, do not allow this.

Secondly, built-in testing approaches using a prede-
fined test case set generally require considerable stor-
age. Specifically, large components with high inher-
ent complexity might require a large set of test cases
for their testing. A large set of test cases obviously re-
quires a substantial amount of storage which, however,
can be difficult to provide taking into account the stor-
age required in addition for execution of large com-
ponents. This is also the case if test cases are stored
separately from the component, such as proposed by
component+ approach.



Existing approaches generally do not ensure that tests are
conducted as required by the component user. They have
the benefit that the component user does not need to gen-
erate test cases, since test cases are provided by a built-in
testing enabled component itself, and thus does not need ac-
cess to detailed information. However, test cases provided
by such a component might not be adequate with respect to
requirements of the component user.

4 STECC strategy in component testing

4.1 Underlying idea

The existing approaches do not address the needs of the
component user appropriately as shown by the previous dis-
cussion. The main drawback of the approaches of the sec-
ond category is their static nature. They are inflexible in-
sofar that test cases provided by a built-in testing enabled
component are static, even if they are not specified by a
concrete set but by a generation procedure. In both forms,
the component provider thus needs to make some assump-
tions concerning the requirements of the component user,
which again might be wrong or inaccurate. The strategy
proposed obviates such assumptions. The underlying idea
of the strategy proposed is to augment a component with
functionality of analysis and testing tools. A component
augmented accordingly is capable of conducting some or
all activities of the component user’s testing processes. The
strategy is thereby called theself-testing COTS components
(STECC) strategy [4].

The STECC strategy meets the demands of both the
component provider and component user. It has two main
benefits:

Firstly, the component provider does not need to dis-
close detailed information. This does not mean that
such information is not processed during tests con-
ducted by the component user. Such information is
either available to the component in an encapsulated
form or is generated on-demand by it during testing.
In both cases, the corresponding information is not
accessible to the component user, but is nevertheless
processed by the component. As a consequence, the
information processed can be very fine-grained. For
instance, source code, which the component provider
would not disclose to the component user, can be pack-
aged in a certain form into the component and can be
used for test case generation purposes. Even if the
test case generated are returned to the component user,
source code still remains hidden.

Secondly, the component user can parameterize tests
as required. A component augmented according to the

STECC strategy possesses functionality of an analy-
sis and testing tool and provides the component user
the full functionality of such tools. As an example,
the component user does not need to test a component
according to the adequacy criterion anticipated by the
component provider. The component user can generate
test cases exactly as in the same case as having access
to e.g. the source code of the component and using a
separate analysis and testing tool for test case genera-
tion.

4.2 Impact on the component user’s testing pro-
cesses

The STECC strategy, if considered for testing purposes
by the component user, impacts several activities of a com-
ponent user’s testing process. In particular, the single activ-
ities of a typical testing process are impacted as follows:

Test plan definition.Some of the decisions made dur-
ing definition of test plans are addressed by conven-
tions of the STECC strategy and its actual implemen-
tation. Such decisions concern, for instance, the tar-
get component model and framework. The actual im-
plementation might assume, for instance, the Enter-
prise JavaBeans component model and framework [7].
Another decision can concerns the technique used for
analysis and testing purposes, such as the test case gen-
eration technique. Related to test case generation, the
actual implementation of the STECC strategy might
also prescribe a certain type of completion criterion
used to measure testing progress.

Test case generation.Generation of test cases is the
integral constituent of self-testability as assumed by
the STECC strategy. Test case generation needs to be
entirely conducted by the self-testing component due
to a lack of its source code and necessary white-box
information to the component user, who therefore can-
not carry out this task. Various types of test case gener-
ation techniques can be embedded in the actual imple-
mentation of the STECC strategy. Test cases as gener-
ated in this context do not necessarily include expected
results. This depends on the fact whether the specifica-
tion of the component is available in a form in which
it can automatically processed.

Test driver and stub generation.The component user
does not need to generate test drivers for component
method testing. The actual implementation of the
STECC strategy usually includes the necessary provi-
sions to execute the methods of the component consid-
ered. Stubs, however, might be necessary if the method
to be tested needs to invoke those of absent compo-
nents. A component can often be embedded in a wide



variety of application contexts and the specific applica-
tion context can therefore often not be anticipated. The
component user needs either to provide the stubs or to
embed the component in the target application context.

Test execution.The execution of the methods under
consideration with generated test cases can also be
conducted by the implementation of the STECC strat-
egy. As one possibility for test execution, a dy-
namic technique can be used for test case generation
purposes, which iteratively approaches to appropriate
test cases and successively executes the method to be
tested for this purpose. As another possibility for test
execution, test cases generated can be stored and exe-
cuted in a separate testing phase.

Test evaluation.The evaluation of tests needs either to
be addressed by the component user or by the imple-
mentation of the STECC strategy. The reason for this
is mainly the fact whether the specification or expected
results are available to the implementation. In the case
in which the specification or expected results are avail-
able, this task can be conducted by the implementation
of the STECC strategy. Otherwise, expected results
have to be determined and compared with those ob-
served during and after test execution by the tester, i.e.
component user.

5 Conclusions and future research

One of the factors complicating development of compo-
nents and component-based system is a limited exchange of
information between the component provider and compo-
nent user. Both roles can face a lack of information relevant
for their development tasks. A lack of information can have
manifold consequences. A consequence is, for instance, the
requirement to test a component prior to its integration into
a system, even it has been tested by the component provider.
Furthermore, a lack of information can not only make tests
mandatory, it can even complicate testing.

This paper has introduces the self-testing COTS compo-
nents (STECC) strategy. The basic idea of this strategy is
to augment a component with functionality similar to that
of analysis and testing tools. The idea of this strategy is
allow the component user to test the component with re-
spect to information which is not directly accessible to the
component user. The information is either generated by the
component itself on-demand or is encapsulated in it. In both
cases, the information is transparent to the component user
and is processed the component itself for testing purposes
without disclosing it.

Our research in the future will focus on developing a
method giving guidance to both the component provider
and component user. The method will guide the component

provider in augmenting a component. For this purpose, a
framework will be developed implementing the necessary
functionality of analysis and testing tools. The component
user will be guided by the method in carrying out tests.

We would like to invite the reader to participate in an
open discussion started to gain a consensus concerning
the problems and open issues in testing components. The
contributions received so far can be found athttp://
www.lpz-ebusiness.de and new contributions can
be made by email tosami.beydeda@informatik.
uni-leipzig.de .

References

[1] C. Atkinson and H.-G. Groß. Built-in contract testing
in model-driven, component-based development. InICSR
Workshop on Component-Based Development Processes,
2002.

[2] B. Baudry, V. L. Hanh, J.-M. Jezequel, and Y. L. Traon.
Trustable components: Yet another mutation-based ap-
proach. InSymposium on Mutation Testing (Mutation),
pages 69–76, 2000.

[3] B. Baudry, V. L. Hanh, J.-M. Jezequel, and Y. L. Traon.
Trustable components: Yet another mutation-based ap-
proach. In W. E. Wong, editor,Mutation testing for the new
century, pages 47–54. Kluwer Academic Publishers, 2001.

[4] S. Beydeda.The Self-Testing COTS Components (STECC)
Method. PhD thesis, Universität Leipzig, Fakulẗat für Math-
ematik und Informatik, 2003.

[5] S. Beydeda and V. Gruhn. State of the art in testing com-
ponents. InInternational Conference on Quality Software
(QSIC). IEEE Computer Society Press, 2003.

[6] D. Carney and F. Long. What do you mean by COTS? –
finally, a useful answer.IEEE Software, 17(2), 2000.

[7] L. G. DeMichiel. Enterprise javabeans specification, version
2.1. Technical report, Sun Microsystems, 2002.

[8] D. Deveaux, P. Frison, and J.-M. Jezequel. Increase soft-
ware trustability with self-testable classes in java. InAus-
tralian Software Engineering Conference (ASWEC), pages
3–11. IEEE Computer Society Press, 2001.

[9] S. Edwards. A framework for practical, automated black-
box testing of component-based software. InInternational
ICSE Workshop on Automated Program Analysis, Testing
and Verification, 2000.

[10] S. H. Edwards. A framework for practical, automated black-
box testing of component-based software.Software Testing,
Verification and Reliability, 11(2):97–111, 2001.

[11] S. H. Edwards. Toward reflective metadata wrappers for for-
mally specified software components. InOOPSLA Work-
shop Specification and Verification of Component-Based
Systems (SAVCBS), 2001.

[12] M. J. Harrold. Testing: A roadmap. InThe Future of Soft-
ware Engineering (special volume of the proceedings of the
International Conference on Software Engineering (ICSE)),
pages 63–72. ACM Press, 2000.



[13] M. J. Harrold, D. Liang, and S. Sinha. An approach to
analyzing and testing component-based systems. InInter-
national ICSE Workshop Testing Distributed Component-
Based Systems, 1999.

[14] J. Hörnstein and H. Edler. Test reuse in cbse using built-in
tests. InWorkshop on Component-based Software Engineer-
ing, Composing systems from components, 2002.

[15] J.-M. Jezequel, D. Deveaux, and Y. L. Traon. Reliable ob-
jects: Lightweight testing for oo languages.IEEE Software,
18(4):76–83, 2001.

[16] E. Martins, C. M. Toyota, and R. L. Yanagawa. Constructing
self-testable software components. InInternational Confer-
ence on Dependable Systems and Networks (DSN), pages
151–160. IEEE Computer Society Press, 2001.

[17] M. Morisio, C. Seaman, A. Parra, V. Basili, S. Kraft, and
S. Condon. Investigating and improving a COTS-based
software development process. InInternational Conference
on Software Engineering (ICSE), pages 32–41. ACM Press,
2000.

[18] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E.
Kraft, and S. E. Condon. COTS-based software develop-
ment: Processes and open issues.The Journal of Systems
and Software, 61(3):189–199, 2002.

[19] I. Sommerville. Software Engineering. Addison-Wesley,
sixth edition, 2001.

[20] C. Szyperski.Component Software Beyond Object Oriented
Programming. Addison-Wesley, 1998.

[21] Y. L. Traon, D. Deveaux, and J.-M. Jezequel. Self-testable
components: from pragmatic tests to design-to-testability
methodology. InTechnology of Object-Oriented Languages
and Systems (TOOLS), pages 96–107. IEEE Computer So-
ciety Press, 1999.

[22] J. Voas. COTS software: The economical choice?IEEE
Software, 15(2):16–19, 1998.

[23] Y. Wang, G. King, and H. Wickburg. A method for built-in
tests in component-based software maintenance. InEuro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 186–189. IEEE Computer Society Press,
1999.

[24] E. J. Weyuker. Testing component-based software: A cau-
tionary tale.IEEE Software, 15(5):54–59, 1998.


