
Testing Component-Based Systems Using
FSMs

Sami Beydeda1 and Volker Gruhn2

1 Federal Finance Office (Bundesamt für Finanzen)
Friedhofstr. 1
53225 Bonn, Germany
sami.beydeda@bff.bund.de

2 University of Leipzig
Chair of Applied Telematics / e-Business
Klostergasse 3
04109 Leipzig, Germany
gruhn@ebus.informatik.uni-leipzig.de

Summary. No matter which tools, techniques, and methodologies are used for
software development, it remains an error-prone process. Nevertheless, changing
such important constituents of the software process surely has an effect on the types
of faults inherent in the developed software. For instance, some types of faults are
typical for structured development, whereas others are typical for object-oriented
development.

This chapter explores the question of whether component-based software re-
quires new testing techniques, and proposes an integrated testing technique. This
technique integrates various tasks during testing component-based software: white-
and black-box testing of the main component (i.e., the top level component control-
ling the other components), black-box testing of components, black-box testing of
the middleware and integration testing of the main component with other compo-
nents.

Benefits of this technique are shown using a real-world example: the technique
is automatable and applicable to existing component-based software.

1 Introduction

In the last few years, component-based software development has received
much attention from both researchers and practitioners. Components seemed
to be the silver bullet software engineers have sought for decades. Researchers
have developed component models together with the necessary technologies,
which have been applied by practitioners in their daily work.

Unfortunately, testing of such software systems has not gained enough in-
terest. In the opinion of both practitioners and researchers, a component once

364 Sami Beydeda and Volker Gruhn

sufficiently tested does not require testing when reused. But experience shows
that this belief to be wrong, because components are often initially tested with
respect to a certain application domain, thus failing in new environments [423].

The first subsection identifies the properties of components in order to un-
derstand components and component-based software. Furthermore, this sub-
section gives the reasons why traditional testing techniques cannot be used
for testing this kind of software. The second subsection outlines several re-
quirements for testing techniques for component-based software.

1.1 Properties of Components Affecting Testing

Although components and development of software based on components were
discussed by computer scientists more than 30 years ago [262], there is no
common definition of these terms available to date. Different authors define
the term component differently, although all have roughly the same concepts
in mind [48, 49]. Another reason for this is that developers of component
models like Sun Microsystems with its JavaBeans3 and Enterprise JavaBeans
models4, and Microsoft Corporation with COM5, have a diverse technical
understanding of the notion of a component. However, we do not try to define
these terms. Rather, we establish a list of properties most components have in
common. Although this list cannot be complete, it is sufficient to investigate
the implications of component-based development on testing. Components
typically share the following properties:

• Components are (nearly) independent and replaceable parts of a system.
A component conforms to and provides a set of interfaces [48].

• Usually, a component possesses an internal state which affects results de-
livered by its methods and its dynamic behavior.

• Special components, called commercial-off-the-shelf (COTS), can be pur-
chased on a component market. Often, these types of components are
delivered without their source code.

• Since components may be distributed over several computers, communi-
cation among components requires middleware technologies like CORBA6

and DCOM7.

Obviously, software development will remain an error-prone process even
if component-based development contributes to an improvement of software
quality. However, an important question at this point is do the above properties
of a typical component affect testing?

Predictably, component-based software requires techniques for testing
other than those for traditional software. There are several reasons for this:

3http://www.javasoft.com/beans/
4http://java.sun.com/products/ejb/
5http://www.microsoft.com/com/
6http://www.omg.org/corba/
7http://www.microsoft.com/com/

Testing Component-Based Systems Using FSMs 365

• In contrast with in-house developed software, white-box testing cannot be
conducted for COTS, since their source code is usually not available.

• Traditional testing techniques do not consider middleware technologies.
But the middleware of component-based software is an integral part of it,
and has also to be tested.

1.2 Requirements for Testing Techniques

Having identified the reasons as to why traditional testing techniques cannot
be applied to component-based software, the next question is what require-
ments do a testing techniques have for component-based software?

With respect to the reasons explained above, such testing techniques have
to fulfill the following requirements:

White- and black-box testing of the main component. Generally, software
has to be tested using several techniques. Specifically, these techniques
have to include both white- and black-box techniques [24]. Since few tech-
niques combine the white- and black-box approach [38,65], the main com-
ponent has to typically be tested first using test cases generated on the
basis of the source code, and then using test cases generated on the basis
of its specification.

Black-box testing of components. Since source code may not be available
for some components, they can only be black-box tested. In fact, black-
box testing of components is usually sufficient, because at this level there
is often no need for low-level testing techniques based on source code.
Harrold et al. [170] distinguish two different perspectives during testing
in component-based development. One of these perspectives is called the
component-provider perspective and refers to the testing of components
by their developers on the basis of the source code. Since developers have
detailed knowledge about the internal structure of their components, they
can test their components more effectively than users. The other perspec-
tive, called the component-user perspective, refers to the testing of com-
ponents by their users, without access to their source code. Even if source
code is available, components should be only black-box tested, because
of the missing knowledge about the internal structure of the component
and the danger of losing oneself in too much detail. In this article, we as-
sume that components, except for the main component, are tested by their
users. Thus, testing is performed with the component-user perspective.

Testing only the required component functionality. Often the main com-
ponent requires only a subset of the functionality a component provides.
Thus, testing techniques for component-based software have only to test
these required subsets [170,350,422]. Experience shows that these subsets
have to actually be tested, because components are often tested with re-
spect to a special application domain, and thus subsequently fail in new
environments [423].

366 Sami Beydeda and Volker Gruhn

Testing the middleware. Test cases have to be provided for testing the
middleware used. It is obvious that failures of middleware are likely to in-
fluence the behavior of the entire system. Therefore, testing of component-
based software has also to aim at ensuring the absence of faults in the
middleware layer.

Testing the interaction of the main component. Another important issue
for such testing techniques concerns integration testing. Integration test-
ing consists of testing the interaction of the main component with other
components. Even if all components are free of faults, a system consisting
of them may fail due to wrong interactions.

The requirements explained above make clear that component-based software
cannot be sufficiently tested with existing techniques. Therefore, research in
this area has to aim at developing new techniques suited for these require-
ments.

2 Demonstrative Example

In this section, an example from the banking area, used in the remainder of this
article, is introduced. The example used to demonstrate our testing technique
is a system called BankApp, used for making deposits and withdrawals on bank
accounts. The BankApp system consists of the main component, a component
called account, and a middleware component, required for interaction of the
main component with the account component. Each of these constituents is
described in detail below.

2.1 The account Component

As its name suggests, the account component simulates the bank customers’
account. It encapsulates ID and account balance and provides suitable meth-
ods to check and alter the balance. Figure 1 shows the specification of this
component. In our approach, the specification for each component is given as
a special finite state machine, called component state machine (CSM), which
corresponds to class state machines described by Hong et al. [183]. In fact,
the component state machines used in our technique originate from their class
state machines. The main difference between a class state machine and a com-
ponent state machine is that transitions within a component state machine
are augmented with Java code in order to allow automatic generation of an
executable frames for event types and executable oracle for testing. An ora-
cle determines the result a program should compute for a particular input,
with respect to the specification, and compares this result with that obtained
by actually executing the program for the same input. Executable oracles
have been used, for instance, by Hoffman and Strooper [179, 180]. However,
automatic generation of executable oracles is left for further study.

Testing Component-Based Systems Using FSMs 367

initial final

t2 t3 t4

t1
ready

t5

source target event guard action
t1 initial ready Account(accountId,initialBalance) true Id=accountId;

balance=initialBalance;
t2 ready ready deposit(amount) true balance+=amount;
t3 ready ready withdraw(amount) amount<=balance balance-=amount;
t4 ready ready balance() true return balance;
t5 ready final remove() true home.remove(accountId);

Fig. 1. Specification of the account component as a component state machine.

In Fig. 1, abstract states of the component are represented by circles,
while each transition is depicted as an arrow leading from its source state
to its target state. These transitions are formally specified through 5-tuples
(source, target, event, guard, action). A transition consists also – in addition
to a source and a target state – of an event causing the transition, a predicate
guard which has to be fulfilled before the transition can occur, and the action
defining the operations on the component variables during the transition. As
explained above, the guard and the action of a transition are defined using
Java statements for automation purposes.

As depicted in Fig. 1, a CSM includes two special circles, labeled initial
and final. These two circles represent the state of a component before its
creation and after its destruction, respectively. Thus, they represent states in
which the component variables and their values are not defined, meaning that
these two states are abstract states of a component. Furthermore, Hong et
al. [183] have proposed introducing an error state representing the state of
a class after an error has occurred. In the following figures, the error state
has been omitted for the sake of clarity. However, components are supposed
to enter the error state after the occurrence of an event that is either not
specified for a particular state or does not fulfill one of the guards.

After initialization, the account component enters the ready state. The
ready state indicates that the account has been initialized and is ready to re-
ceive deposit and withdrawal requests. After each deposit request, the account
component remains in the ready state. However, withdrawal requests can im-
ply a change to the error state. The error state is entered when clients of
the account component try to overdraw from the account. The account com-
ponent also provides an observer method, called balance(), for checking the
account balance. A change to the final state is triggered by invoking the

368 Sami Beydeda and Volker Gruhn

remove() method. This method does not correspond to a finalize (destructor)
method. Rather, it invokes the appropriate method of the middleware which
then destroys the account component. In the specification of the account
component in Fig. 1, an account is modeled by a Java object having the two
attributes Id and balance.

2.2 The Middleware Component

The BankApp system is implemented using the Enterprise JavaBeans technol-
ogy8 of Sun Microsystems. The Enterprise JavaBeans specification defines a
component architecture for building distributed, object-oriented applications
in Java. Each component in the Enterprise JavaBeans technology, called bean,
is encapsulated in a server which addresses multithreading, resource pool-
ing, clustering, distributed naming, automatic persistence, remote invocation,
transaction boundary management, and distributed transaction management.
More information can be found on the Internet9.

For testing the BankApp system, a CSM is used that specifies only a small
subset of features an Enterprise JavaBeans server provides. The CSM de-
picted in Fig. 2 models only the resource pooling functionality of an Enterprise
JavaBeans server. To keep the example simple, other important features such
as automatic persistence and remote invocation have not been addressed.

The simple server used in the example possesses two main states, namely,
capacityAvailable and capacityLimit. Assuming that this simple server does
not provide an automatic persistence functionality, it enters, after its invo-
cation and initialization, the capacityAvailable state. The server maintains
a pool that can store several account beans. Since this pool has a limited
capacity, the state of the server changes to the capacityLimit state after the
creation of a certain number of beans10. The server also provides a method
which does not change its state. The findByPrimaryKey() selects a particular
account, identified by its ID, from the pool. The specification in Fig. 2 uses a
Hashtable object as a pool defined in the java.util package.

2.3 The Main Component

Figure 3 contains the specification of the main component. Assum-
ing that persistence is not addressed, the main component enters the
accountNotAvailable state after its initialization . The accountNotAvailable
state indicates that a certain account referred by ac does not ex-
ist. This state can be changed by creating a new account using

8http://java.sun.com/products/ejb/
9http://www.javasoft.com/

10Note that in the simple example used, activation and passivation of beans are
not considered.

Testing Component-Based Systems Using FSMs 369

t 6
t 8

t 7
t 1

1
t 1

0
t 9

t 1
2

t 1
4

in
it

ia
l

fi
n

a
l

t 1
3

ca
p

a
ci

ty
-

ca
p

a
ci

ty
-

L
im

it
A

va
il

a
b

le

s
o
u
r
c
e

t
a
r
g
e
t

e
v
e
n
t

g
u
a
r
d

a
c
t
io

n
t 6

in
it

ia
l

c
a
p
a
c
it

y
A

v
a
il

a
b
le

A
c
c
o
u
n
t
H
o
m
e
(
)

t
r
u
e

i
n
t

c
a
p
a
c
i
t
y
=
3
;

p
=
n
e
w
H
a
s
h
t
a
b
l
e
(
c
a
p
a
c
i
t
y
)
;

t 7
c
a
p
a
c
it

y
A

v
a
il

a
b
le

f
in

a
l

f
i
n
a
l
i
z
e
(
)

t
r
u
e

t 8
c
a
p
a
c
it

y
L

im
it

f
in

a
l

f
i
n
a
l
i
z
e
(
)

t
r
u
e

t 9
c
a
p
a
c
it

y
A

v
a
il

a
b
le

c
a
p
a
c
it

y
A

v
a
il

a
b
le

c
r
e
a
t
e
(
i
d
,
b
a
l
a
n
c
e
)

!
p
.
c
o
n
t
a
i
n
s
K
e
y
(
i
d
)

a
c
=
n
e
w

A
c
c
o
u
n
t
(
i
d
,
b
a
l
a
n
c
e
)
;

&
&

p
.
s
i
z
e
(
)
<
c
a
p
a
c
i
t
y
-
1

p
.
p
u
t
(
i
d
,
a
c
)
;

t 1
0

c
a
p
a
c
it

y
A

v
a
il

a
b
le

c
a
p
a
c
it

y
A

v
a
il

a
b
le

r
e
m
o
v
e
(
i
d
)

p
.
c
o
n
t
a
i
n
s
K
e
y
(
i
d
)

p
.
r
e
m
o
v
e
(
i
d
)
;

t 1
1

c
a
p
a
c
it

y
A

v
a
il

a
b
le

c
a
p
a
c
it

y
A

v
a
il

a
b
le

f
i
n
d
B
y
P
r
i
m
a
r
y
K
e
y
(
i
d
)
p
.
c
o
n
t
a
i
n
s
K
e
y
(
i
d
)

r
e
t
u
r
n

p
.
g
e
t
(
i
d
)
;

t 1
2

c
a
p
a
c
it

y
A

v
a
il

a
b
le

c
a
p
a
c
it

y
L

im
it

c
r
e
a
t
e
(
i
d
,
b
a
l
a
n
c
e
)

!
p
.
c
o
n
t
a
i
n
s
K
e
y
(
i
d
)

a
c
=
n
e
w

A
c
c
o
u
n
t
(
i
d
,
b
a
l
a
n
c
e
)
;

&
&

p
.
s
i
z
e
(
)
=
=
c
a
p
a
c
i
t
y
-
1
p
.
p
u
t
(
i
d
,
a
c
)
;

t 1
3

c
a
p
a
c
it

y
L

im
it

c
a
p
a
c
it

y
A

v
a
il

a
b
le

r
e
m
o
v
e
(
i
d
)

p
.
c
o
n
t
a
i
n
s
K
e
y
(
i
d
)

p
.
r
e
m
o
v
e
(
i
d
)
;

t 1
4

c
a
p
a
c
it

y
L

im
it

c
a
p
a
c
it

y
L

im
it

f
i
n
d
B
y
P
r
i
m
a
r
y
K
e
y
(
i
d
)
p
.
c
o
n
t
a
i
n
s
K
e
y
(
i
d
)

r
e
t
u
r
n

p
.
g
e
t
(
i
d
)
;

F
ig

.
2
.

C
o
m

p
o
n
en

t
st

a
te

m
a
ch

in
e

o
f
a

si
m

p
le

E
n
te

rp
ri

se
J
av

a
B

ea
n
s

se
rv

er
.

370 Sami Beydeda and Volker Gruhn

fin
a

l

t1
8

t1
9

in
itia

l

t1
5

t1
6

t1
7

t2
0

t2
3

t2
2

t2
1

a
cco

u
n

t-

N
o

t-

A
va

ila
b

le

a
cco

u
n

t-

A
va

ila
b

le

s
o
u
r
c
e

t
a
r
g
e
t

e
v
e
n
t

g
u
a
r
d

a
c
t
io

n
t1

5
in

itia
l

a
c
c
o
u

n
tN

o
tA

v
a
ila

b
le

m
a
i
n
(
)

t
r
u
e

h
o
m
e
=
n
e
w

A
c
c
o
u
n
t
H
o
m
e
(
)
;

a
c
=
n
u
l
l
;

t1
6

a
c
c
o
u

n
tN

o
tA

v
a
ila

b
le

f
in

a
l

e
x
i
t
(
)

t
r
u
e

t1
7

a
c
c
o
u

n
tA

v
a
ila

b
le

f
in

a
l

e
x
i
t
(
)

t
r
u
e

t1
8

a
c
c
o
u

n
tN

o
tA

v
a
ila

b
le

a
c
c
o
u

n
tA

v
a
ila

b
le

c
r
e
a
t
e
A
c
c
o
u
n
t
(
i
d
,
b
a
l
a
n
c
e
)
t
r
u
e

a
c
=
h
o
m
e
.
c
r
e
a
t
e
(
i
d
,
b
a
l
a
n
c
e
)
;

t1
9

a
c
c
o
u

n
tN

o
tA

v
a
ila

b
le

a
c
c
o
u

n
tA

v
a
ila

b
le

l
o
o
k
U
p
A
c
c
o
u
n
t
(
i
d
)

t
r
u
e

a
c
=
h
o
m
e
.
f
i
n
d
b
y
P
r
i
m
a
r
y
K
e
y
(
i
d
)
;

t2
0

a
c
c
o
u

n
tA

v
a
ila

b
le

a
c
c
o
u

n
tN

o
tA

v
a
ila

b
le

r
e
m
o
v
e
A
c
c
o
u
n
t
(
)

a
c
.
b
a
l
a
n
c
e
(
)
=
=
0
.
0
a
c
.
r
e
m
o
v
e
(
)
;

a
c
=
n
u
l
l
;

t2
1

a
c
c
o
u

n
tA

v
a
ila

b
le

a
c
c
o
u

n
tA

v
a
ila

b
le

l
o
o
k
U
p
A
c
c
o
u
n
t
(
i
d
)

t
r
u
e

a
c
=
h
o
m
e
.
f
i
n
d
b
y
P
r
i
m
a
r
y
K
e
y
(
i
d
)
;

t2
2

a
c
c
o
u

n
tA

v
a
ila

b
le

a
c
c
o
u

n
tA

v
a
ila

b
le

d
e
p
o
s
i
t
A
c
c
o
u
n
t
(
a
m
o
u
n
t
)

t
r
u
e

a
c
.
d
e
p
o
s
i
t
(
a
m
o
u
n
t
)
;

t2
3

a
c
c
o
u

n
tA

v
a
ila

b
le

a
c
c
o
u

n
tA

v
a
ila

b
le

w
i
t
h
d
r
a
w
A
c
c
o
u
n
t
(
a
m
o
u
n
t
)

t
r
u
e

a
c
.
w
i
t
h
d
r
a
w
(
a
m
o
u
n
t
)
;

F
ig

.
3
.

S
p
ecifi

ca
tio

n
o
f
th

e
m

a
in

co
m

p
o
n
en

t
a
s

a
co

m
p
o
n
en

t
sta

te
m

a
ch

in
e.

Testing Component-Based Systems Using FSMs 371

createAccount(). In this case, the accountAvailable state is entered. Sim-
ilarly, the accountNotAvailable state is entered again when the account re-
ferred to as ac is removed using the removeAccount() method. Moreover,
the main component provides the lookUpAccount() method for selecting ac-
counts from the pool maintained by the Enterprise JavaBeans server. After
the invocation of this method, the state of the main component either changes
from the accountNotAvailable state to the accountAvailable state, if the ac-
count considered before has been removed, or remains in the accountAvailable
state. Although the state does not change in the latter case, the considered
account changes. Other methods provided by the BankApp component do not
change its state. depositAccount() and withdrawAccount() can be used to
change the balance of an existing account. Since the balance of the referenced
account does not influence the state, these two methods do not affect the
state. The error state can be entered in various situations. These situations
can be distinguished into two groups. An error can occur either when trying
to operate on an account which does not exist or when trying to remove an
account which is not empty.

2.4 Implementation of the BankApp System

The account component is implemented as a stateful session bean11. The
persistence of the component is ensured by the Enterprise JavaBeans server
using a database via JDBC12. The Enterprise JavaBeans server used in the
example is the BEA WebLogic Server 4.0.3, available as a trial version on
the Internet13. However, the proposed technique is not tailored to a special
technology. In the first section of this article, we have described the notion of
a component only by a set of properties; no technology or existing component
model has been referred to for defining the notion of a component. The only
information required is the specification of the middleware.

The source code of the account component is available together with other
necessary files on Websites of the BEA WebLogic Server14.

3 Description of the Testing Technique

This section contains a detailed description of the testing technique. The first
subsection explains a graphical representation of component-based software,
which facilitates test case generation. The following subsections demonstrate
the generation of test cases for the various constituents of the BankApp system.

11http://java.sun.com/products/ejb/
12http://java.sun.com/products/jdbc/
13http://www.beasys.com/download/weblogic.html
14http://www.weblogic.com/docs/examples/ejb/basic/containerManaged/

index.html

372 Sami Beydeda and Volker Gruhn

3.1 Component-Based Software Flow Graph (CBSFG)

The basis of the proposed technique is a graphical representation of
component-based software, called component-based software flow graph (CB-
SFG), visualizing information gathered from both specification and source
code. After having generated this graphical representation, well known tech-
niques for structural testing [24] can be applied on this representation to
identify test cases. Thus, test cases for white- and black-box testing are de-
termined simultaneously, without considering these strategies separately.

In our approach, test cases for black-box testing are generated according to
the ideas of Hong et al. [183]. Their technique for black-box testing of classes
requires a specification of the class in the form of a finite state machine,
which they call class state machine. Hong et al. have proposed determining
test cases for black-box testing of classes by associating definitions and uses
of class variables according to a data flow criterion, and identifying those test
cases that cover these def-use pairs. The important idea is to determine test
cases for black-box testing by techniques for white-box testing.

Our first idea was to build a control flow graph on the basis of the source
code and then to identify the definitions and uses of the class variables within
this control flow graph. After the identification of definitions and uses, they
can be associated with each other, and test cases can be generated to cover
the associated def-use pairs – in exactly the same way as in the handling of
conventional definitions and uses. Although this approach is feasible in theory,
the identification of definitions, and especially of uses of the attributes, might
be impossible. For instance, assume the guard of a transition looks like a ≤ b.
In the best case, this guard would appear in the source code as ‘if a<=b
...;’. But a programmer who is not restricted in his style of programming
could transform this expression into ‘if a<b { ...; if a==b ...; }’. Even
in this simple case, it is almost impossible to identify the guard. Of course, this
problem could be solved by constraining the programmer to a certain style.
But this solution has two shortcomings: the technique would not be applicable
to existing software, and constraining programmers to a certain programming
style would hinder acceptance of the technique.

To tackle this problem, we have elaborated the following solution:

1. A frame is generated for each event type occurring within transitions of
CSMs of the component-based software,

2. the action part of each frame is marked with a label indicating the method
implementing the action.

These steps are explained using the CSM of the main component in Fig. 3.
During the first step, each transition t = (source, target, event, guard, action)
is transformed to a nested if-then-else construct:

if (predicate(source)) { // state
if (guard) { // guard

action; // action

Testing Component-Based Systems Using FSMs 373

}
else throw new ErrorStateException();

}
else throw new ErrorStateException();

predicate(source) refers to the predicate of the source state, i.e., the
predicate on component variables defining the occurrence of state source. For
instance, predicate(accountNotAvailable) is ac==null.

After transforming each transition to a frame, frames of transitions having
the same event type are combined. For instance, transition t9 and transition
t12 in Fig. 2 share the event create(). Their frames can be merged to the
following frame:

createSpec(id, balance) {
if (predicate(capacityAvailable)) {

if (!p.containsKey(id) && p.size()<capacity-1) {
ac=new Account(id, balance);
p.put(id, ac);

}
else

if (!p.containsKey(id) && p.size()==capacity-1) {
ac=new Account(id, balance);
p.put(id, ac);

}
else throw new ErrorStateException();

}
else throw new ErrorStateException();

}

Having represented each event type in this way, the identification of defi-
nitions and uses during a transition is trivial due to the simple and predefined
structure of a frame. After the identification, test cases covering the identified
def-use pairs can be generated. Note that we do not validate the frame. Test
cases determined in this way also cover statements within the source code
representing the definition and the use identified within the frame. The rea-
son is that the predicate statements ‘if (predicate(source)) ...’ and ‘if
(guard) ...’ act as a filter. They filter exactly those inputs which execute
only the corresponding statements in the source code. Generally, a definition
is tested by a use by executing first the definition and then the use. It is not
necessary to know which statements represent the definition and the use. It
is only important to ensure that both the definition and the use are executed
in a certain order and that the variable is not redefined before the use occurs.

The second step consists of adding a label to the action parts of the frames,
indicating the method implementing the event type. Note that this is where
the integration of the white- and the black-box approach takes place. For
instance, during the second step, the action parts of the frame of method

374 Sami Beydeda and Volker Gruhn

create() are augmented with a label ‘implementing method: create()’
which refers to the appropriate method:

ac=new Account(id, balance);
p.put(id, ac);
// implementing method: create()

A frame can be generated for the entire component-based software under
test by repeating this procedure for every event type, including also those of
the components. After generating the frames for each event type, a control
flow graph showing the overall structure of the component-based software can
be generated. The CBSFG of the BankApp system is shown in Fig. 4.

error

error

179

intra-method control flow edge

inter-method def-use pair

control flow graph of a method

inter-method control flow edge

specification-implementation edge

frame of a method

error

error

error

f

t

259

251

f

f

t

t

f

250

260

257

g11

a11

s11

g14

a14

s14

a5

g5

s5

180

181

182

184

189

191

197

a20

a20

g20

s20

s9

g9

a9

a12

a12

g1

s1

a1

a1

a18

g18

s18

g10

a10

s10

g13

a13

s13

event loop

createAccount() removeAccount() depositAccount() withdrawAccount()

main()

create()

Account() remove()

remove() findByPrimaryKey() deposit()

a22

g22

s22

a2

g2

s2

withdraw()

a3

g3

s3

t f

t

t

f

f

t

t

f

f

t

t

f

f

ft

t

t

f

f

t

t

t

t t

t

f

f f

f

f

f

t

t t

t

f

f

f

f

t
f

t f

t

t

f

f

t

t f

f t

t f

ft

201

203

207
t f

g15

a15

s15
t

t

f

f
g6

a6

s6
t

t

f

f

g19

a19

s19

g21

a21

s21

t

t

f

f ft

t f

lookUpAccount()

158

233

234

237

a23

g23

s23

g16

a16

s16

g17

a17

s17

290

exit()

t

t

f

f ft

t f

exit?

t
f

error

error

208

9

256

255

209

210

t

t f

f

221

223

224

220

error

error

error

error

236

error

error

204164

165

175

168

167

error

error

error

error

error error

error error

error

error error

error
error

error

error

a g

265

12

error

error

errorerror

error

error

277

283

284

288

293

294

274

286

275

f
264

266
t

267

268

269

270

271

t

t

f

f

t

t

f

f

249

252

253

254

Fig. 4. Component-based software flow graph of BankApp.

Testing Component-Based Systems Using FSMs 375

As explained before, a CBSFG is a directed graph visualizing both control
and data flow within component-based software. Each method of the main
component is represented by two subgraphs. One of these subgraphs represents
control flow of the frame generated on the basis of the specification, whereas
the other represents control flow determined using the source code of the
method. Contrary to a method within the main application, a method in
another component is represented by a flow graph visualizing only its frame.
The reason is obvious: a control flow graph of a method can only be built if
its source code is available.

These subgraphs are interlinked with each other by control and data flow
edges. Three types of control and data flow edges can be distinguished:

Intra-method control and data flow edges. Intra-method control and data
flow edges visualize control and data dependencies within a single sub-
graph. For instance, an intra-method data flow edge connects a node rep-
resenting a definition of a variable with another node representing a use
in the same method. Intra-method control flow edges are drawn as thin
arrows, whereas intra-method data flow edges have been omitted in Fig. 4.

Inter-method control and data flow edges. Edges of this type model con-
trol and data flow between subgraphs of the same type. For instance, an
invocation of a method within another is modeled by an inter-method con-
trol flow edge leading from the node representing the invoking statement
in the first method to the node representing the entry statement of the
second method. Similarly, an inter-method control flow edge also models
triggering an event of a CSM within the action part of a transition of
another CSM. Inter-method control flow edges connect both control flow
graphs of methods with each other and control flow graphs of frames with
each other. Contrary to inter-method control flow edges, inter-method
data flow edges connect only nodes within control flow graphs of frames.
As stated above, the objective of frames is to ease identifying and associat-
ing definitions and uses of component variables. Thus, inter-method data
flow edges are not required for method control flow graphs. Inter-method
edges are shown by bold gray arrows in Fig. 4. Note that inter-method
data flow edges which do not represent def-use pairs are omitted.

Specification-implementation edges. These type of edges visualize the
connection between specification and source code by connecting the
two subgraphs of the main component methods. Thus, a specification-
implementation edge leads from the node representing the action within
a frame to the node representing the entry node of the method referred
to by the label added during the second step of the frame generation.
Specification-implementation edges are drawn as dashed arrows in Fig. 4.

In Fig. 4, statements are represented by rectangles which are interlinked
to each other by control and data flow edges. The number of outgoing control
flow edges can be either one or two, depending on the statement represented

376 Sami Beydeda and Volker Gruhn

by a node. A node representing a predicate statement has two outgoing edges,
labeled t(rue) and f(alse), to indicate the path which is to be taken, whereas
all other nodes representing other statements have only one outgoing control
flow edge15. The number of outgoing data flow edges can vary according to
the number of references to the variable defined in the node.

The graph in Fig. 4 also possesses two special nodes, labeled event loop
and exit?. These two nodes take into account the event-driven nature of the
example used.

3.2 Generating Test Cases for the Main Component

Our approach combines white- and black-box strategies by using a single
technique for test case generation. White-box testing is conducted to test
source code of individual methods, whereas black-box testing aims at testing
the state-dependent behavior of a component that is tested by validating
data flow among methods. Thus, test cases for black-box testing consist of
a sequence of method invocations, whereas test cases for white-box testing
consist of only one method invocation16.

In the remainder of this chapter, only a data flow criterion is used for
simplicity. However, the proposed technique is not restricted to a data flow
criterion. Several criteria, including control flow criteria, can be used. As a
first step for test case generation, definitions and uses of variables have to be
identified and associated with each other. Associating definitions and uses of
local variables within methods can be carried out only by considering their
source code. In contrast with associating local definitions and uses, associat-
ing definitions and uses of component variables has to take into account the
possible method sequences defined by the appropriate CSM. A definition and
a use can be associated with each other only if the method including the use
can be invoked after an invocation of the method including the definition. It
is important to ensure that the component variable is not redefined.

For instance, the definition of variable ac within the action a19 of tran-
sition t19 cannot be associated with the use of the variable within guard
g19, since this would imply invoking removeAccount() two times to ensure
the correct order of definition and use. But removeAccount() is not defined
for state accountNotAvailable; thus, the main component would enter the
error state after the second invocation. However, the definition within action
a18 can be tested by the use in guard g19 by invoking (createAccount(),
removeAccount()).

Figure 4 shows the def-use pairs within the main component induced
by the all-definitions criterion [24]. These def-use pairs are (a18, g20),

15Note that a switch statement in C or Java can be transformed into a nested
if-then-else construct.

16In some cases, initialization of the state might require invocation of a sequence
prior to the invocation of the specific method.

Testing Component-Based Systems Using FSMs 377

(a19, a20), and (a21, a23). These def-use pairs can be covered by the fol-
lowing test cases: (main(), createAccount(), removeAccount(), exit()),
(main(), createAccount(), lookUpAccount(), removeAccount(), exit())
and (main(), createAccount(), lookUpAccount(), withdrawAccount(),
exit()).

3.3 Generating Test Cases for the account Component

Since source code for the account component is not available, white-box test-
ing cannot be carried out. Black-box testing is performed in exactly the same
way as in the case of the main component. Definitions and uses within con-
trol flow graphs of frames are associated with each other according to the
all-definitions criterion, and test cases are generated covering those def-use
pairs.

However, there is one significant difference in test case generation between
the main component and the account component. Since the account compo-
nent is used in the context of the main component, some of its valid method
sequences cannot be tested. The account component is invoked through the
main component, which uses a subset of the functionality the account com-
ponent provides. Thus, some def-use pairs cannot be covered in this con-
text, although such a data flow might occur in another context. However,
we do not need to test functionality which is not required in a specific con-
text [350,422,423].

For instance, although (deposit(), balance()) is a valid test case for
testing the definition of component variable balance within action a2, this
test case is not valid in the current context because the BankApp system does
not provide a functionality to check account balances. Thus, we do not need
to test the interaction of methods deposit() and balance(). However, since
balance() is invoked by the main component within guard g19, we cannot
completely omit this method.

Taking into account the possible method sequences within the
BankApp system, the following def-use pairs have to be covered in or-
der to fulfill the all-definitions criterion: (a1, a2), (a2, a2), and (a3, g3).
These def-use pairs can be tested by the following test case sequences:
(main(), createAccount(), depositAccount(), exit()), (main(),
createAccount(), depositAccount(), depositAccount(), exit()) and
(main(), createAccount(), depositAccount(), withdrawAccount(),
withdrawAccount(), exit()).

3.4 Generating Test Cases for the Middleware

Test case generation for the middleware component is carried out in exactly
the same way as in the case of the account component. Test cases have to
fulfill the all-definitions criterion, have to be valid method sequences of the

378 Sami Beydeda and Volker Gruhn

middleware component and have to be possible in the context of the BankApp
system.

In order to test the middleware appropriately, the following def-use pairs
have to be covered by test cases: (a6, a18), (a9, g12), (a12, a13), (a13, a10),
and (a10, g12). Test case sequences executing these def-use pairs are (main(),
createAccount(), exit()), (main(), createAccount(), createAccount(),
exit()), (main(), createAccount(), removeAccount(), exit()), (main(),
createAccount(), removeAccount(), createAccount(), exit()) and
(main(), createAccount(), createAccount(), removeAccount(),
removeAccount(), exit()).

3.5 Generating Test Cases for the Integration Test

Another important task is testing the interaction of the main component with
the account component and the middleware component. The main component
is tested with the same test cases that have been generated for its black-box
testing. The main difference between black-box testing of the main component
and integration testing is that in the latter the same test cases are repeated
for every possible state of the components [55].

The integration test of the main component with the account component
does not require new test cases because the account component possesses
only one abstract state. This state is entered after initializing the component,
done in each test case by invoking createAccount().

In contrast with the account component, the middleware component re-
quires generating new test cases. The middleware component can enter two
abstract states, namely capacityAvailable and capacityLimit. The integration
test can be performed with the test cases used for testing the main component;
the only difference is in the parameters passed. To test the capacityAvailable
state, the capacity parameter has to be higher than 1. For the other cases,
the capacity parameter has to be set exactly to 1 in order to enter the
capacityLimit state by creating one account.

3.6 Regression Test based on CBSTDs

CBSFGs can also be used for identifying test cases for regression testing on
the basis of the technique of Rothermel and Harrold [351, 352]. They have
proposed comparing two successive versions of an object-oriented program
with respect to their graphical representations called class control flow graph
(CCFG). This comparison identifies those statements which have to be tested
due to modifications made during the last correction, or due to modified con-
trol and data dependencies from modified statements. Using the same ap-
proach, a CBSFG is generated after a modification, and is compared with the
CBSFG of the prior version of the component-based software. By comparing
these two graphs, those statements and def-use pairs can be identified that

Testing Component-Based Systems Using FSMs 379

have been modified or that are affected by modifications made to other state-
ments. The modified version needs to be tested only with respect to these
changed or affected statements or def-use pairs. Since CCFG and CBSFG
have a similar structure, their algorithms can also be used, with some adjust-
ments, for selecting test cases for component-based software on the basis of
CBSFGs. Note that CBSFGs also permit selection of test cases for black-box
testing and integration testing, whereas CCFGs do not.

4 Conclusions

In this chapter, we outlined requirements that have to be addressed by test-
ing techniques for component-based software. After discussing these require-
ments, we have described a graphical representation of component-based soft-
ware called component-based software flow graph (CBSFG) facilitating test
case generation. The generated test cases cover the important features of
component-based software to be tested: white- and black-box testing of the
main component, black-box testing of other components (including the mid-
dleware component), and integration testing.

The applicability of this approach has been demonstrated with an example,
a system for conducting deposits and withdrawals a bank account. Enterprise
JavaBean technology has been used as middleware.

Our aim during the development of this technique was its automatability.
Every step during testing, except test case generation, which is in fact a very
hard problem, can be carried out automatically.

