
BINTEST – Binary Search-based Test Case Generation∗

Sami Beydeda, Volker Gruhn
University of Leipzig

Department of Computer Science
Chair of Applied Telematics / e-Business

Klostergasse 3
04109 Leipzig, Germany

{sami.beydeda, volker.gruhn}@informatik.uni-leipzig.de

Abstract

One of the important tasks during software testing is the
generation of test cases. Various approaches have been
proposed to automate this task. The approaches available,
however, often have problems limiting their use. A problem
of dynamic test case generation approaches, for instance,
is that a large number of iterations can be necessary to ob-
tain test cases. This article proposes a novel algorithm for
path-oriented test case generation based on binary search
and describes a possible implementation.

1 Introduction

Various approaches have been proposed for automated
test case generation. The approaches available to date are
classified in [9] into the categoriesrandom, path-oriented,
goal-orientedand intelligent approaches. Random tech-
niques determine test cases based on assumptions concern-
ing fault distribution (e.g. [2]). Path-oriented techniques
generally use control flow information to identify a set of
paths to be covered and generate the appropriate test cases.
These techniques can further be classified instaticanddy-
namic ones. Static techniques are often based on sym-
bolic execution (e.g. [10]), whereas dynamic techniques ob-
tain the necessary data by executing the program under test
(e.g. [8]). Goal-oriented techniques identify test cases cov-
ering a selected goal such as a statement or branch, irre-
spective of the path taken (e.g. [9]). Intelligent techniques
of automated test case generation rely on complex computa-
tions to identify test cases (e.g. [11]). Another classification
of automated test case generation techniques can be found
in [11].

∗The chair of Applied Telematics / e-Business is endowed by Deutsche
Telekom AG.

The algorithm proposed in this article can be classified
as a dynamic path-oriented one. Its basic idea is similar
to that of described in [8]. The path to be covered is con-
sidered step-by-step, i.e. the goal of covering a path is di-
vided into subgoals, test cases are then searched to fulfill
them. The search process, however, differs substantially.
In [8], the search process is conducted a specific error func-
tion. In our approach, test cases are determined using binary
search, which requires certain assumptions but allows effi-
cient test case generation. This article explains the basic
formal foundation of thebinary search-based test case gen-
eration (BINTEST) algorithmtogether with a brief overview
of a possible implementation. A more thorough explanation
of the BINTEST algorithm, its implementation and other
aspects can be found in [3, 5, 6].

2 Binary search in test case generation

2.1 Terminology

The primary use of the BINTEST algorithm is in testing
the methods of a class. Before explaining the BINTEST
algorithm, we first formally define the basic terms.

Def. 1. Let M be the method under test andC be the
class providing this method. Let furtherx1, . . . , xn desig-
nate the arguments ofM and attributes ofC, andDxi

with
1 ≤ i ≤ n be the set of all values which can be assigned
to xi. ThedomainD of M is defined as the cross product
Dx1 × · · · ×Dxn and aninput of M as an elementx in D.
A test casexO is an input which satisfies a testing-relevant
objectiveO. 2

The above definition of the test case term is not restricted
to arguments ofM , it also encompasses the attributes of the
class. The behavior of a method might not only depend on
values of the method’s arguments, it might also depend on
values of the class’ attributes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The BINTEST algorithm generates test cases with re-
spect to certain paths in the control flow graph of the method
to be tested. It attempts to identify for a pathP a test case
xP in the method’s domain which is appropriate for the
traversal of that path. The traversal of pathP thus repre-
sents the testing-relevant objectiveO referred to in Def. 1.
A test casexP meets the objective of traversing pathP if P
is traversed when the arguments ofM and attributes ofC
are set to the values specified byxP andM is invoked. The
definition below formalizes the terms used in the following.

Def. 2. The control flow graphG of M is a directed
graph(V,E, s, e) whereV is a set of nodes,E ⊆ V 2 is
a set of edges,s, e ∈ V are the initial and final node, re-
spectively. AsegmentS in G with lengthl is defined as a
vector(v1, . . . , vl) ∈ V l of nodes with(vk, vk+1) ∈ E for
1 ≤ k < l. A pathP in G is a segment(v1, . . . , vm) with
v1 andvm being the initial nodes and final nodee of G,
respectively. 2

The nodes of a control flow graph represent basic blocks
within the source code ofM , the edges control flow be-
tween basic blocks. Abasic blockis a sequence of consec-
utive statements in which flow of control enters at the be-
ginning and leaves at the end without halting or branching
except at the end [1].

2.2 Test case generation strategy

The BINTEST algorithm employs a strategy similar to
that of the test case generation approach proposed in [8]:
the path to be covered is not considered as a whole, it is
rather divided into its basic constituents, in our case its
edges, which are then considered in the sequence respect-
ing their ordering on the path. A test casexP is approached
to by successively generating inputs covering each of the
edges ofP . A particular edge is only traversed by a subset
of all possible inputs. The inputs need to fulfill the branch-
ing condition of this edge for its traversal.

Def. 3. Let IB be the set of boolean values{true, false}.
Thebranching conditionBr(vk,vk+1) of edge(vk, vk+1) is
a functionBr(vk,vk+1) : D → IB defined as
Br(vk,vk+1)(x)

=
{

true if vk has one successor,
bvk

(x) = (vk, vk+1) else
with bvk

: D → E being a function which maps inputx to
the edge which connectsvk and the node representing the
basic block entered after the traversal of that represented by
vk. 2

Branching conditions associated with edges link single
inputs in the method’s domain with paths in the control flow
graph. Control flow graphs as introduced so far do not relate
inputs of the represented method with paths and we thus
cannot determine the path traversed for a certain input.

The above definition of a branching condition distin-
guishes the case in which basic blockvk possesses a sin-
gle successor from that in which it possesses two or more
alternative successors. In the latter case, the basic block
modeled byvk includes as the last statement a branching
statement, such as anif -, for - or while -statement in
Java which necessitate two edges originating from a node
and aswitch -statement which can also necessitates more
than two edges. A node, however, can also have no suc-
cessors at all when control flow halts at the last statement
of the basic block modeled, i.e. the node corresponds to the
final node of the control flow graph. This case is excluded
from consideration, since edges cannot originate from the
final node.

Let P be the set of paths for which test cases need to
be generated. The BINTEST technique receives the ini-
tial input x(0) from the tester and evaluates the branching
condition of the first edge(v1, v2) of P , a path inP, with
respect to this value. Branching conditionBr(v1,v2) is gen-
erally not met for all inputs inD but for values in a cer-
tain subsetD(1) ⊆ D and the initial input is therefore
changed to a valuex(1) ∈ D(1) ensuring the traversal of
edge(v1, v2), i.e.Br(v1,v2)(x

(1)) = true. In the next step,
the branching condition of the second edge(v2, v3) on P
is evaluated given that arguments ofM and attributes of
C are set to the values specified byx(1). Again,Br(v2,v3)

is generally only satisfied by a subsetD(2) ⊆ D andx(1)

needs to be modified if it does not lie inD(2). D(2) is
also a subset ofD(1), since all values inD(2) have also
to satisfy the branching condition of the predecessor edge.
Hence,D(2) ⊆ D(1) ⊆ D. This procedure is continued
for all edges onP until either an input is found fulfilling all
branching conditions or a contradiction among these condi-
tions is detected. In such a case, the branching conditions
cannot be fulfilled entirely and the path is infeasible [11].

2.3 Monotony

The BINTEST algorithm approaches to a test casexP

traversing a pathP ∈ P by successively generating a se-
ries of inputsx(0), x(1), x(2), . . . , xP . In such a series, input
x(0) is provided by the tester as the initial starting value, the
others are calculated by the algorithm. Let∆ be the neces-
sary qualitative modification in order to obtainx(j+1) from
x(j). A possibility to determine∆ is using information con-
cerning the monotony behavior of the branching condition
under consideration.

Def. 4. Let ≤X and≤Y be order relations defined on
setsX andY , respectively, andx, x′ be two arbitrary el-
ements in a subsetI of X with x ≤X x′. A function
f : X → Y is monotone increasing on Iiff

f(x) ≤Y f(x′)



andmonotone decreasing on Iiff

f(x) ≥Y f(x′).

Functionf is calledmonotone onI iff it is either mono-
tone increasing or decreasing onI, and is calledpiecewise
monotoneiff X is entirely partitioned andf is monotone on
each subset. 2

The notion of monotony describes the behavior of a func-
tion in relation to a change of the input. It gives a qualitative
indication whether outputs of the function move in the same
direction as inputs or in the reverse direction. Considering a
branching condition as a function whose monotony behav-
ior is known, the direction in which the input needs to be
moved to satisfy the branching condition can be determined
uniquely. Eventually, a branching condition might not be
monotone on its entire domain. In such a case, considera-
tion has to be restricted to a subset on which it is monotone
with the consequence that∆ can only be uniquely deter-
mined within this subset and might be different in others.

The definition of branching conditionBr(vk,vk+1) in
Def. 3 distinguishes two cases. It distinguishes the case in
which nodevk has a single successor from that in which
it has several alternative successors. In the former case, the
branching condition constantly returnstrue. The monotony
behavior is obvious. In the latter case, the result of the
branching condition is determined by comparison of func-
tion bvk

with the expected edge. The monotony behavior
of the branching condition is here not that obvious, partic-
ularly if bvk

is composed of other functions. The following
lemma gives a property of functions composed of piecewise
monotone functions.

Lem. 1. Assume thatf1 : X1 → Y1, . . . , fn : Xn →
Yn is a family of piecewise monotone functions withYi ⊆
Xi+1. Let Fn : X1 → Yn be a function defined as the
compositionFn = fn ◦ · · · ◦ f1. Under this assumption,Fn

is also piecewise monotone. 2

Proof. The lemma is shown by induction overn. Case
F1 = f1. Functionf1 is piecewise monotone by assump-
tion andF1 has the same property, since it equals tof1.
CaseFi+1 = fi+1 ◦Fi. The composed functionFi is piece-
wise monotone due to the assumption of induction and letI
be a subset of its domain’s partition. Letx andx′ be two ar-
bitrary elements inI with x ≤Xi

x′. The monotony implies
that one of the monotony conditions holds, i.e. either

Fi(x) ≤Yi Fi(x′)

or Fi(x) ≥Yi
Fi(x′).

For the sake of brevity, this is also abbreviated as

Fi(x) SYi
Fi(x′).

Functionfi+1 is also piecewise monotone by assumption.
The monotony condition is satisfied byFi(x) andFi(x′) if

both lie in the same subsetI ′ of its domain’s partition. In
such a case, following holds

fi+1(Fi(x)) SXi+1 fi+1(Fi(x′))

fi+1 ◦ Fi(x) SXi+1 fi+1 ◦ Fi(x′)

Fi+1(x) SXi+1 Fi+1(x′)

andFi+1 is also monotone onI. Fi(x) andFi(x′), how-
ever, might not be inI ′ and might thus not meet one of the
monotony conditions. In such a case,Fi+1 is not monotone
on I andI needs to be partitioned in at most three subsets.
One of these subsets contains the elements mapped onI ′,
one of them the elements being less than the least and one
of them the elements being greater than the greatest element
of the first subset.Fi+1 is then monotone on all three sub-
sets and is therefore piecewise monotone. 2

A function fi is referred to asatomicif it cannot be fur-
ther decomposed. Such a function is typically implemented
by the underlying programming language as an operation
or by a class or component as a method. The application
of the lemma to Def. 3 is obvious. The comparison ofbvk

with the expected edge can be considered as the composed
functionF = fn ◦ · · · ◦ f1 with fn being the comparison
andfn−1◦· · ·◦f1 being the decomposed form ofbvk

, if it is
not already atomic. The single atomic functions of which a
particular branching condition is composed can technically
be determined using tracing. Tracing statements can be in-
serted into the method under test which are executed im-
mediately prior to the execution of operations and methods
corresponding to atomic functions, and the atomic functions
constituting a particular branching condition can be identi-
fied.

2.4 BINTEST algorithm

The necessary modification to obtain a test casexP is
indicated by∆ qualitatively.∆ gives the direction in which
the input needs to be modified, not the extend of the modi-
fication andxP thus cannot be directly obtained.xP needs
therefore to be approached to iteratively. The BINTEST al-
gorithm conducts the necessary iterations according to the
binary search strategy.

Fig. 1 shows the BINTEST algorithm. The BINTEST al-
gorithm requires as input the set of pathsP to be traversed
and computes an appropriate set of test casesT as output.
Line 1 of the algorithm has the purpose of initialization, in
this line the setT is initialized in which the test cases cov-
ering the paths inP are stored. After initialization, lines 3–
41 are executed for each pathP to be covered. For each
pathP , a setA is constructed including all possible vectors
(I1, . . . , Im−1) with Ii being a subset in the partition of the
branching condition’s domain associated with theith edge
(line 3). After the definition ofA, a repeat-loop is entered



1: T = ∅
2: for each pathP = (v1, . . . , vm) ∈ P
3: A = A1 × · · · ×Am−1, with Ai being the partition ofBr(vi,vi+1)’s domain
4: repeat
5: select a(I1, . . . , Im−1) from A
6: remove(I1, . . . , Im−1) from A
7: I = D
8: monotony = increasing
9: k′ = 0
10: repeat
11: determine middle elementx of I
12: consider the edges onP according to their ordering and determine the first edge(vk, vk+1)

with eitherx 6∈ Ik or Br(vk,vk+1)(x) 6= true if such an edge exists
13: if edge(vk, vk+1) exists
14: then
15: if k = k′ and (∆′ = increase andx < x′ or ∆′ = decrease andx > x′)
16: then
17: I = Iother

18: if monotony = increasing
19: thenmonotony = decreasing
20: elsemonotony = increasing
21: else
22: if x < lower boundary ofIk or Br(vk,vk+1)(x) 6= true

23: then∆ = increase
24: else∆ = decrease
25: bisectI in two halvesIlow andIup

26: if ∆ = increase andmonotony = increasing or ∆ = decrease andmonotony = decreasing
27: then
28: I = Iup

29: Iother = Ilow

30: else
31: I = Ilow

33: Iother = Iup

34: k′ = k
35: ∆′ = ∆
37: x′ = x
38: until edge(vk, vk+1) does not exist orI = ∅
39: until edge(vk, vk+1) does not exist orA = ∅
40: if edge(vk, vk+1) does not exist
41: then addx to T
42: returnT

Figure 1. The BINTEST algorithm.

in which the elements inA are considered until either a test
case has been found coveringP or A is empty and thusP
is infeasible (lines 4–39). The following lines of the algo-
rithm, lines 5–9, initialize the variables used in an iteration.
A vector is selected and remove fromA, the subsetI in
which the test case is searched is set to the method’s domain
D and the branching condition considered is assumed to be
monotone increasing. After this initialization, lines 10–38
are executed for the vector selected until an appropriate test
case is found or the subset in which the search is conducted
has been bisected to the empty set and thus a test case could

not be found for the vector considered. Within this loop, the
middle elementx of the search subset is computed (line 11).
The branching conditions onP are then considered regard-
ing tox starting with that of the first edge onP and proceed-
ing with respect to the ordering of the edges onP (line 12).
Each branching condition is analyzed to determine whether
x lies in the subset specified by the vector and the branch-
ing condition resultstrue with that input. If for a branching
condition these conditions are not fulfilled,P is not cov-
ered and lines 14–36 are executed in order to fulfill them.
The operations conducted in these lines aim at approaching



to an appropriate input. The algorithm validates in line 15
whether the monotony assumption is correct. For this pur-
pose, it firstly determines whether the branching condition
considered has also been considered in the last iteration by
comparing their indexesk andk′, and secondly determines
whether the inputx has moved in the direction suggested
by ∆′, the qualitative modification indication obtained in
the last iteration. If the monotony assumption was wrong,
the bisection step of the last iteration is reverted and the
monotony assumption is corrected (lines 17–20). Lines 22–
32 are executed if the monotony was correct. Here, a∆
is obtained by assessing ifx lies in the subset prescribed
by the vector for the branching condition considered and
the branching condition is fulfilled (lines 22–32). After ob-
taining ∆, the search subsetI is bisected and one of the
halves is selected taking into account∆ and the monotony
assumption (lines 26–33). Lines 34–37 of the algorithm in
the remainder of the loop store the current state of the al-
gorithm in auxiliary variables to allow the reversion of the
bisection step if the monotony assumption appears in the
next iteration to be wrong. After the execution of the loop,
x is added toT if P has been covered.

3 Tool support

The BINTEST algorithm has been implemented as a
part of a framework,BINTEST framework, supporting the
testing of classes and components. The integration of the
class under test with this framework encompasses two tasks,
which are the following:

Firstly, the framework requires that the class under
consideration needs to implement a certain interface,
calledClassUnderTest .

Secondly, the methods which the user might wish to
test need to be instrumented with tracing statements.

The two tasks cannot be fully automated. The first task in
particular requires application context-specific information
to implement the methods declared by the interface, which
cannot be automatically deduced from the source code of
the class. The methods to be implemented by the class
consist of, for instance, those to determine the middle el-
ement between two others in the domain of the method un-
der test, and to obtain the domains’ partitions of operations
and methods invoked during the execution of the method
under test. Obviously, these methods cannot be automati-
cally generated and need to be implemented by the tester.
However, the tester does not need to implement these meth-
ods for standard operations of the Java programming lan-
guages and methods of the standard class library, since they
are available by the framework.

Contrary to the first task, the second task which has to
be performed during the preprocessing phase can be fully
automated. This task consists of inserting tracing code for
obtaining information for following purposes:

Firstly, an objective of the tracing code is to deliver
the information necessary to validate that inputs of the
methods invoked during the execution of the method
under test lie in the corresponding subsets of their do-
mains. The information required consists of an ID
identifying the method invoked, an ID identifying the
invocation and the input passed.

Secondly, the objective of the tracing code is also to
collect the necessary information to determine the path
traversed during execution of the method under test.
The path traversed can be uniquely determined by ob-
serving the edges selected by the conditional state-
ments. The edge selected by a conditional statement
generally depends on a boolean expression and edge
selected can identified by observing the values of these
expressions.

The framework, or more clearly the main class of the
framework, offers for this purpose the methodsI , E andT.
These methods have to be inserted at the appropriate posi-
tions in the source code of the method under test.

I . This method has the purpose of observing the value
of an arbitrary expression without interfering its exe-
cution. Such an expression might be an argument in
a method call or the expression within a conditional
statement according to which the alternative executed
next is chosen. For instance, in the case off(x) be-
ing a method invocation, the tracing statement has to
be inserted in this method invocation so that the value
of x is observed. It can be achieved byf(I(x)) .

E. This method has the purpose of identifying the ID
of the method invoked again without interfering the in-
vocation. This can be achieved by inserting an invoca-
tion of E right after the invocation of a method with
explicitly giving its ID. In the case of the above ex-
ample, this can be accomplished by the framework as
E("f", f(I(x))) .

T. This method can be considered as being the coun-
terpart ofE for the use in the context of conditional
statements. Similar to methodE, which indicates that
a method has been invoked, methodT indicates that a
conditional statement has been reached. For instance,
anif -statement such asif (x==2) ... this is ac-
complished byif (T(1,(x==2))) ... with 1
being the ID of this conditional statement.



The information necessary to conduct the second task of
the preprocessing phase can generally be obtained by syn-
tactical analysis of the source code of the method under test
as also apparent by the above brief explanation of the three
methods. This information can, for instance, be computed
by tools capable to parse the Java programming language.
Such a tool has been generated using the parser generator
ANTLR 2.7.1. The tool generated parses the source code of
the class and inserts the tracing statements at the appropriate
positions.

4 Conclusions

We have presented in this article a novel approach for test
case generation based on binary search and a tool imple-
menting the approach for test data generation in the case of
class-level testing. A case study has been conducted which
has shown that the algorithm developed can require far less
iterations than other comparable approaches.

We are continuing our research on this approach, as it
possesses several benefits:

1. We have demonstrated the approach for generating nu-
merical test data. However, it can also be used to gen-
erate test cases of any class as long as the two basic
assumptions are satisfied.

2. It can be used for class-level testing. Object-oriented
programming languages are used more and more in re-
cent years for software development, making appropri-
ate testing techniques necessary.

3. The success of some existing test case generation tech-
niques often depends on certain parameters and we can
encounter the problem of calibration. Our approach
does not require parameter calibration.

4. Path-oriented test data generation is often carried out
using optimizing techniques. Optimizing techniques
can suffer from the problem of local minima or the ini-
tial starting point being too far from the solution [7].
Our approach does not suffer from these problems.

However, a problem can occur in the case of a method
including several statements whose input domains have to
be divided into intervals. As each combination of intervals
has to be considered in the worst case, a large number of
binary searches might be carried out before the appropriate
input is identified.

Even if the approach is efficient in the case study consid-
ered, empirical studies are required to generalize this claim.
Additionally, we also need to compare the approach to ex-
isting test case generation techniques as far as possible. An-
other task in the future are therefore comparative empirical
studies.

One of the applications of the BINTEST algorithm is in
testing COTS components [3, 4]. We believe that the di-
verging needs of the two parties involved in the develop-
ment of a component-based system, component developers
and developer of the system, can be met by self-testability.
A possibility to achieve component self-testability is to em-
bed a test case generation technique, such as the BINTEST
approach, into the component. In this context, we would
like to invite the reader to participate in an open discus-
sion started to gain a consensus concerning the problems
and open issues in testing components. The contributions
received so far can be found athttp://www.stecc.de
and new contributions can be made by email tosami.
beydeda@informatik.uni-leipzig.de .

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers, princi-
ples, techniques, and tools. Addison Wesley, 1988.

[2] A. Avritzer and E. J. Weyuker. The automatic generation of
load test suites and the assessment of the resulting software.
IEEE Transactions on Software Engineering, 21(9):705–
716, 1995.

[3] S. Beydeda.The Self-Testing COTS Components (STECC)
Method. PhD thesis, Universität Leipzig, Fakulẗat für Math-
ematik und Informatik, 2003.

[4] S. Beydeda and V. Gruhn. Merging components and testing
tools: The self-testing COTS components (STECC) strategy.
In EUROMICRO Conference Component-based Software
Engineering Track. IEEE Computer Society Press, 2003.

[5] S. Beydeda and V. Gruhn. Test case generation according
to the binary search strategy. InInternational Symposium
on Computer and Information Sciences (ISCIS), LNCS.
Springer Verlag, 2003.

[6] S. Beydeda and V. Gruhn. Test data generation based on
binary search for class-level testing. InACS/IEEE Interna-
tional Conference on Computer Systems and Applications
(AICCSA). IEEE Computer Society Press, 2003.

[7] M. J. Gallagher and V. L. Narasimhan. Adtest: A test data
generation suite for ada software systems.IEEE Transac-
tions on Software Engineering, 23(8):473–484, 1997.

[8] B. Korel. Automated software test data generation.
IEEE Transactions on Software Engineering, 16(8):870–
879, 1990.

[9] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data genera-
tion using genetic algorithms.Software Testing, Verification
and Reliability, 9(4):263–282, 1999.

[10] C. Ramamoorthy, S. Ho, and W. Chen. On the automated
generation of program test data.IEEE Transactions on Soft-
ware Engineering, SE-2(4):293–300, 1976.

[11] N. Tracey, J. Clark, and K. Mander. Automated program
flaw finding using simulated annealing. InSIGSOFT Inter-
national Symposium on Software Testing and Analysis (IS-
STA), volume 23 ofSoftware Engineering Notes, pages 73–
81. ACM Press, 1998.


