
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2004; 9: 229–238
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spip.208

Dynamic Evolution of
Software Processes to
Evolve Software Systems
during their Development‡

Research Section
Sami Beydeda1*,† and Volker Gruhn2

1 Bundesamt für Finanzen, Abteilung Informationsverarbeitung,
Friedhofstr. 1, 53225 Bonn, Germany
2 University of Leipzig, Chair of Applied Telematics/e-Business,
Klostergasse 3, 04109 Leipzig, Germany

A software system, once deployed into its target environment, might need to be modified for
various reasons. The reasons might be specific to that software system, such as failures, or,
more general, such as changes in the environment in which the software system is embedded.
Depending on the reason, a modification might obviously not only be restricted to a particular
software system. It might also concern other existing software systems and particularly also
software systems under development.

The modification of a software system under development is merely a problem of modifying
its development process, also called software process. Such modifications generally cannot
be automatically carried out by autonomous process support systems due to the complexity
inherent in software processes and in the necessary modifications. It usually needs to be guided
by a human process manager. A process support system can, however, offer the human process
manager certain services to assist in modifying a software process. One of these services is that
of decision support.

This article describes a decision support system developed in the ESPRIT project Process
Instance Evolution (PIE). One of the features of the decision support system is an extendable
database of decision models, each of which is capable of generating specific information to assist
the process manager. One of these models is that of risk analysis. Risk analysis, as used in this
context, encompasses assessment of the impact of a possible modification on certain software
process attributes before actually changing a software process. Copyright 2004 John Wiley &
Sons, Ltd.

KEY WORDS: process evolution; decision support; risk analysis

∗ Correspondence to: Sami Beydeda, Bundesamt für Finanzen, Abteilung Informationsverarbeitung, Friedhofstr. 1, 53225 Bonn,
Germany
†E-mail: sami.beydeda@bff.bund.de
‡ The chair of Applied Telematics/e-Business is endowed by Deutsche Telekom AG.

Copyright 2004 John Wiley & Sons, Ltd.

Research Section S. Beydeda and V.Gruhn

1. INTRODUCTION

One of the objectives of software engineering
research is to obtain means of decreasing time
to market of software products. A motivation of
this type of research is that nowadays time to
market is one of the main competition factors in the
software industry. A software company intending
to differentiate from its competitors can achieve
this by such means. Another motivation to decrease
time to market, or, more generally, to decrease the
throughput time of a software process is a decrease
of process risk. The development of a software
system is generally based on certain assumptions
concerning the customers, competitors, markets
etc. Many of these assumptions have a specific
reference date in the future, particularly at the end of
development, and can therefore be subject of interim
change. Even though the likelihood that such an
assumption changes during development generally
decreases with the throughput time of the software
process, it cannot be totally removed. We thus
require the means to tackle changes in assumptions.
Such a change in the assumptions of a software
process can also impact the software system as
the product to be developed. For instance, existing
software systems are often changed in response to
altered customers’ quality requirements, and this
in turn can require a software company to change
accordingly software systems under development.

The modification of a software system under
development is merely a problem of modifying its
development process. Such modifications generally
cannot be automatically carried out by autonomous
process support systems due to the complexity
inherent in software processes and in the neces-
sary modifications. A process support system can,
however, offer a human process manager certain
services to assist in modifying a software process.

Basic services for modifying software processes
include the following (Alloui et al. 2000):

1. Monitoring support. The software process has to
be monitored together with its environment in
order to detect internal and external problems.
A software process-internal problem may be
that of staff reduction, while a software process-
external problem may be that of changes in
customers’ quality requirements.

2. Decision support. After identifying the need to
evolve a software process, solutions eliminating

the problems detected have to be generated. For
instance, in the case of the software process-
external reason given above, a solution could
be to insert activities in the software process
improving test data generation. Furthermore,
these solutions have to be compared with
each other according to a specific criterion in
order to select the most promising alternative.
A criterion suitable for this purpose is, for
instance, risk minimization.

3. Change support. After having selected a par-
ticular alternative, it has to be implemented,
requiring actual change of the software process.
Generally, the modification necessary is decom-
posed into single atomic modifications, and the
software process is modified according to them.

4. Evolution strategy support. The single activities as
a whole necessary to modify a software process
can be considered as a process, the change
meta-process. A process support system can
support the change meta-process by offering
an evolution strategy support.

The objective of this article is twofold. We have
seen that in some cases software has to be evolved
even during its development and that this can be
addressed by evolving its development process.
Firstly, this article technically describes a concrete
system for software process evolution with empha-
sis on decision support aspects. This is covered in
Section 2. Secondly, the article conceptually con-
siders decision support aspects by explaining a
technique that can be used to assess the risk inherent
in a possible modification of the development pro-
cess. This is covered in Section 3. Section 4 shows
the application of the risk assessment technique by
example and Section 5 finishes the article with our
conclusions.

2. GENERIC DECISION SUPPORT

The approach of model-based decision support
was developed during a project, Process Instance
Evolution (PIE) (Cunin 2000, Cunin et al. 2001), an
ESPRIT Framework IV LTR project supported by
the European Community. The main part of the
project started in February 1999 and finished in July
2001. One of the objectives of the PIE project was the
development of a system supporting the evolution
of human-intensive, long-living, and distributed
processes.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

230

Research Section Dynamic Evolution of Software Process

PIE applications

PIE services

PIE infrastructure

Modeling Evolution
strategy

Decision
& change

Monitoring

Automotive industry Insurance

Execution

Figure 1. Overall architecture of the PIE system (Dami et al. 2001)

Decision support framework

Model1 Model2

Modeln

Model
Model

Modelk

...

Decision model
database

Figure 2. Conceptual architecture of the decision support component

2.1. Overall Architecture of the PIE System

The system developed in the PIE project consists of
three levels, as shown in Figure 1 (Dami et al. 2001):

1. The top level consists of the application sup-
ported by the system. Besides software develop-
ment, we, in particular, considered applications
from the insurance and automotive industry.

2. The middle level, called service layer, includes
the services provided by the system for sup-
porting the application at the top level. The
services mainly consist of Monitoring Support,
Decision Support, Change Support and Evolution
Strategy Support. Furthermore, this level also
includes services for modeling and execution
(enactment) of processes.

3. The bottom level, called infrastructure layer, rep-
resents the PIE infrastructure providing general
services required by components at the ser-
vice layer. The infrastructure layer particularly
addresses process interoperability and mobil-
ity issues, often encountered in federations of
heterogeneous and distributed components.

2.2. Decision Support Component

The Decision Support component is designed
according to the client/server paradigm. In the
following, we explain the conceptual and technical
architecture of the Decision Support server and
show an example of a Decision Support client.

2.2.1. Decision Support Server
The underlying concept of model-based decision
support is to have a generic decision support
framework that includes an extendable database of
decision models. Examples of such decision models
are those for generating alternatives or models for
risk analysis. As new requirements can arise during
the use of such decision support tools, a feature
of model-based decision support is its extensibility;
new models can be added to the database if needed.

Conceptually, the Decision Support server main-
tains a database of models that includes the algo-
rithm explained later as well as other algorithms
for decision and risk analysis, as shown in Figure 2.
These models can be loaded into the Decision Sup-
port server during runtime if needed and can be

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

231

Research Section S. Beydeda and V.Gruhn

C
om

m
un

ic
at

io
n

la
ye

r

Persistent store layer

G
U

I l
ay

er

Model layer

Kernel

Communication Data flow

HTTP-
Server

Middle-
ware

Figure 3. Technical architecture of the decision support server

executed with the necessary data. This data, spec-
ified by the corresponding model, can be accessed
via the PIE Infrastructure.

The functionality of the Decision Support com-
ponent strongly depends on the models available
through its model database. Existing models not
involved in a decision can be exchanged by newer
versions and new models can be registered without
recompiling or stopping the whole component.

Figure 3 shows the technical architecture of the
Decision Support server consisting of five layers,
namely, Communication layer, Persistent store layer,
Graphical user interface layer, Model layer and Kernel:

• The Communication layer provides the necessary
means for the communication of the Decision
Support server to clients as well as to other PIE
components. It implements interfaces providing
different protocols. Clients can connect to the
server through RMI either as a Java applet
or a stand-alone Java application. The server
computes the data related to the current query
and sends a response to the client, which
displays the data

• The Graphical user interface layer contains graphi-
cal elements to allow the models creating appro-
priate graphical user interfaces to display data.

• The Model layer implements the conceptual
database shown in Figure 2. As the models are
represented by Java classes.

• The Persistent store layer provides the necessary
services for storing data obtained by other PIE
components or computed by decisions models.
The reason for storing the data computed by
models is to facilitate learning. Even though
the models available do not employ learning
techniques yet, the project manager can use this
data as experience for future decisions.

• The Kernel mainly executes the models available
via the Model layer. It gathers the necessary
data using services of other PIE components
and invokes the corresponding model with the
required data.

2.2.2. Decision Support Client
As mentioned before, services provided by the
Decision Support server can be accessed by various
types of clients. Figure 4 shows the user interface
of a client implemented as a Java applet. This
figure shows a client used for decision making in
software development. In this particular scenario,
two alternatives have been analyzed with respect to
throughput time. Two alternatives were available,
namely, the alternatives Planning Amendment and
Recovery Process. A probability distribution was
computed for each of them and was shown
graphically by the client. Furthermore, the client
determined that alternative Recovery Process entails
less risk with respect to throughput time and
suggested selecting it according to the Min Risk
criterion.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

232

Research Section Dynamic Evolution of Software Process

Figure 4. Decision support client implemented as Java applet

3. DECISION MODEL FOR RISK ANALYSIS

The decision model developed for risk analysis
can be used for comparing possible alternatives
with respect to the risk of two process parameters,
throughput time and total costs. Throughput time
refers to the time needed to finish a process. Total
costs refer to the costs incurred by the process
until its completion. The main concept of our risk
analysis is to determine probability distributions
of these parameters for the various alternatives
based on their process models. These probability
distributions can be used to compute simple
risk measures such as the expected value and the
variance (Allen 1978) of the distribution, or the more
complex value-at-risk measure (Jorion 1997) used
in finance. Having computed such risk measures,
the utility (Pratt 1964) of each alternative can be
determined, taking into account the preferences of
the process manager. A useful side effect of the
algorithm is information indicating opportunities

for process optimization and also the likelihood of
such undesirable situations as a deadlock.

3.1. Related Work

Almost every decision problem is associated with
risk due to the uncertainty of the real world. Despite
its importance, there is no standard definition of
the term risk and its interpretation depends on
the context (Fishburn 1984, Luce 1980, Jorion 1997).
In this paper, we interpret the notion of risk in
accordance with Moskowitz and Bunn (Moskowitz
and Bunn 1987) as the likelihood of an unfavorable
outcome.

Researchers have long considered risk analy-
sis and decision problems under conditions of
uncertainty. Bernoulli and Bayes developed a for-
mal framework which was further developed by
Ramsey (Ramsey 1931), von Neumann, and Mor-
genstern (von Neumann and Morgenstern 1947),
Arrow (Arrow 1963) and others. The method used
in this paper is based on this formal framework.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

233

Research Section S. Beydeda and V.Gruhn

Unfortunately, existing process support systems
do not sufficiently check process models before
enacting. This means that after its enactment, a
process can enter a deadlock state, causing serious
problems van der Aalst 1998, Hofstede et al. 1998.
The situation becomes even worse after changing
a process. Although process changes can be asso-
ciated with unpredictable side effects and risks,
there are few publications addressing this prob-
lem. Tarumi, Matsuyama, and Kambayashi (Tarumi
et al. 1999) have proposed a cycle of Business Process
Tactics/Business Process Reengineering/Business
Process Simulation with emphasis on simulation.
In their approach, simulation is used to evaluate
processes and agents before introducing them to
the real work place.

3.2. Representation of a Process

The decision model for analyzing a process requires
a process model that does not necessarily need
to include information concerning data flow. The
algorithm rather requires as input a process model
that only defines the control flow of the process
and additional information describing its current
state. Therefore, the graphical representation of the
process model used is quite simple, consisting of
rectangles and edges between them. Nodes in the
graph represent activities of the process. Each node
possesses two attributes. One of which represents
the costs of the resources required for the execution
of the activity. The other represents the time needed
to finish the activity under consideration.

Control flow within the process is represented
by edges connecting the nodes. Since an activity
can have different outcomes and the subsequent
activity may depend on the outcome, a node can
have more than one outgoing control flow edge. In
these cases, each outgoing edge is augmented with
a probability to indicate the likelihood of taking
a particular branch. Obviously, the sum of the
probabilities attached to the outgoing edges of one
activity has to be exactly 1, and, in the case of only
one succeeding activity, the probability attached to
the edge corresponds to 1. In our approach, the
state of a process is represented by a set consisting
of the currently executed activities. Activities that
are not contained in this set are not executed and
are considered to be idle. In addition to the two
parameters, time and costs of an activity, the set
of currently executed activities also maintains two

other parameters for each activity. One of these
parameters is the probability of entering the activity
and the other the costs incurred by the process
enactment until entering the activity. Thus, the
cost and the probability parameters attached to an
exit node in the set of executed activities give the
corresponding values for finishing the process at
that particular node.

3.3. Process Time Schedule

The technique proposed is based on an algorithm to
gather process time schedule information. A process
instance time schedule is a set consisting of items
that indicate the end of process enactment. The
items have attributes for total costs and for the
probability of finishing at the corresponding time.
The algorithm generating the time schedule is given
in Figure 5. The basic idea of the algorithm is to
consider every possible execution thread of the
process simultaneously. Starting with the set of
executing activities characterizing the current state
of the process, the currently terminated activity is
deleted from this set. Its subsequent activities are
inserted either in the set of executed or waiting
activities, depending on the availability of the
required products and resources. Each time the
final activity of the process is deleted from the
set of executed activities, an item indicating this
event is inserted into the time schedule. The item
contains information concerning the total costs and
the probability of that event. After finishing the
execution of an activity, the set of waiting activities
is searched for activities that have become ready
to start, i.e. the required products and resources
have become available. This loop is executed until
the set of executed activities is empty, i.e. there
are no further threads of execution in the process.
At this point, a nonempty set of waiting activities
indicates a deadlock situation. The probability
attached to each activity in the nonempty set gives
the likelihood of the particular deadlock situation.

3.4. Computation of Probability Distributions
and Risk Measures

The output of the above algorithm, i.e. the time
schedule for a particular process, can be used to
determine the probability distribution of both the
throughput time and the total costs. In order to
obtain the probability for a particular time or cost

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

234

Research Section Dynamic Evolution of Software Process

Figure 5. Algorithm for analyzing process instances

value, the time schedule is queried for that value. If
the time schedule contains several entries with this
particular value, their probabilities are summed up
to compute its probability.

After having identified a probability distribu-
tion, statistical measures can be used to define
appropriate risk measures. As mentioned above,
the expected value and the variance (Allen 1978)

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

235

Research Section S. Beydeda and V.Gruhn

of the distribution, or the more complex value-
at-risk (Jorion 1997) defined on the basis of the
distribution, can be used as risk measures. On the
basis of such risk measures, a utility function (Pratt
1964) can be defined, taking into account the prefer-
ences and the risk aversion of the process manager.
Thus, selecting an alternative involves computing
the utility of all available alternatives and then
selecting that alternative that dominates all oth-
ers.

3.5. Process Optimization

The results of the algorithm can be used for three
kinds of optimization. Firstly, the set of waiting
activities of an optimal process instance should
always be empty. Generally, a waiting activity indi-
cates that the throughput time of a process instance
can be decreased by synchronizing predecessor
activities. Secondly, optimization can be achieved
by analyzing the set of executed activities. A process
instance can be effectively improved with respect to
throughput time and total costs by improving those
activities that appear frequently in this set. Thirdly,
the parameters of a process instance that deter-
mine the shapes of the probability distributions for
throughput time and total costs are known. Thus,
the shapes of these probability distributions can be
formed as intended by altering these parameters.
Specifically, this optimization can be automated if
symbolic expressions are computed for the various
probabilities.

4. EXAMPLE: SOFTWARE TESTING

4.1. Scenario Description

The example used to explain the algorithm is a
software process model covering test activities.
The process model is given in Figure 6 in the

form required by the algorithm. This figure shows
the process in its initial form (solid drawn lines)
together with an extension (dashed lines), which
aims at improving the initial process. Each activity
in this figure is augmented with two values: the
first (second) indicates the time consumed by the
corresponding activity within the initial (revised)
process. Obviously, since activity Determine Test
Adequacy did not exist in the initial version, only
one time value is given. Furthermore, probabilities
are attached to edges. Again, the first probability
gives that of the initial process and the second that
of the revised process. The objective of the analysis
is to compare these two versions of the process,
the initial process and the extended process, with
regard to the time required for testing.

The initial process consists of five activities:
Seeding artificial Errors, Generating Test Cases, Testing,
Counting Artificial Errors, and Debugging. The initial
process starts with seeding artificial errors into
the program under test. The objective of seeding
artificial errors is to obtain an estimate of the
number of errors remaining in the program after
testing (Zhu et al. 1997). After seeding errors, test
cases are generated. In the initial process, test cases
are generated randomly, which, although cheap in
terms of cost and time, are inefficient in terms of
detecting errors. After generating test cases, the
program under test is executed with these test
inputs and failures are registered. To determine
the quality of the test cases, the artificial errors
detected are counted. Depending on the number
of the detected artificial errors, either test case
generation is repeated or the testing process is
finished by debugging, i.e. removing all detected
faults.

After carrying out several test processes accord-
ing to the initial model, the tester recognizes that
test case generation has to be repeated several times
in order to achieve a sufficient quality. The reason is

Seeding
artificial
errors

Generating
test cases

Testing Debugging
Determine
test
adequacy

(1,1) (1,1.5) 2 (1,1) (0.5,0.5) (3,2)

(10%,
60%)

(90%,40%)

70%

30%

Counting
artificial
errors

Figure 6. A software testing process

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

236

Research Section Dynamic Evolution of Software Process

obvious, generating test cases randomly. Therefore,
the tester tries to optimize the process by generating
test cases systematically by white-box techniques.
Generally, white-box techniques require generating
test cases on the basis of the source code, which
fulfill a certain control or data flow criterion.

But, before changing the process, the tester has
to determine which process will lead to savings,
at least in time. Even in this simple example, it
is almost impossible to predict which alternative
dominates the other.

4.2. Determining the Probability Distributions

As explained above, the basic idea of the algorithm
in Figure 5 is to consider all possible threads of
the process enactment simultaneously. Since the
number of all possible threads might be very large,
only those that can occur with at least a probability
pthres are considered. In our case, pthres was set to 0.01
for the analysis of the processes.

After calculating the process time schedules of
both processes, probabilities of equal time values
are cumulated to a single value. The probability
distributions obtained in this way are depicted in
Figure 7.

4.3. Using the Risk Measures for Decision
Making

In our simple example, the revised process domi-
nates the initial process by shorter throughput times
being more likely than in the initial process and high
throughput times being less likely as in the other
case, as shown by the probability distributions. This
is also expressed by the expected value µ and the
variance σ 2 of the distributions.

In this simple case, a decision can be induced
solely on the basis of the expected value and the
variance, since the revised process dominates the
initial process in both parameters. However, it is
also possible that one alternative dominates the
other with respect to one parameter and vice versa
with respect to the other parameter. In these cases,
preferences of the process manager can be used
to calculate the utility (Pratt 1964) of an alternative
to compare with those of other alternatives. For
instance, the process manager might be risk averse,
i.e. the process manager would prefer the alternative
having the least risk, although other alternatives
can dominate this alternative with respect to the
expected throughput time or total costs.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 10 20 30 40 50 60

P
ro

ba
bi

lit
y

Time in hours

Initial process
Revised process

Alternative
µ
σ2

Initial process
20.728
181.295

Revised process
14.863
82.365

Figure 7. Probability distributions and statistical measures of the alternative processes

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

237

Research Section S. Beydeda and V.Gruhn

5. CONCLUSIONS

A problem often encountered in practice is that
software, even though still being in development,
needs to be evolved due to various reasons such
as changes in user requirements. The evolution of
software under development is merely an issue of
software process evolution, and we therefore need
the appropriate means to change software processes
during their enactment.

We have described model-based decision support
as a generic approach to supporting the decision
process. The underlying idea of model-based deci-
sion support is to have a generic framework that
is capable of loading the necessary decision models
from an extendable model database and executing
them with the required data. The benefit of this
approach is that the framework can be adapted to
requirements of changing decision processes.

Furthermore, we have explained a decision model
for analyzing processes to determine the risk of
certain process parameters and to support the
process manager in decisions related to process
evolution. The technique requires a process model
that only defines control flow within the process.
Since this information can be easily provided for
most processes, the technique is applicable to a wide
variety of processes. Furthermore, the technique
is automatable. After having entered the process
model to be considered, analysis of the process is
carried out automatically.

REFERENCES

Allen AO. 1978. Probability, Statistics, and Queueing Theory.
Academic Press, New York, USA.

Alloui I, Beydeda S, Cimpan S, Gruhn V, Oquendo F,
Schneider C. 2000. Advanced services for process
evolution: Monitoring and decision support. In European
Workshop on Software Process Technology (EWSPT),
Springer Verlag: Berlin, 21–37.

Arrow KJ. 1963. Social Choice and Individual Values, 2nd
edn. Wiley, New York, USA.

Cunin P-Y. 2000. The PIE project: an introduction. In 7th
EWSPT European Workshop on Software Process Technology,
Springer Verlag: Kaprun, Austria, 1–5.

Cunin P-Y, Greenwood RM, Francou L, Robertson I,
Warboys B. 2001. The PIE methodology – concepts and
application. EWSPT European Workshop on Software Process
Technology, Springer Verlag: Witten, Germany, 3–26.

Dami S, Cunin P-Y, and Francou L. 2001. Opera-
tion manual of the PIE system – consolidated ver-
sion. Technical report, ESPRIT Project Process
Instance Evolution (PIE). Techreport number D1.10,
http://www.cs.man.ac.uk/ipg/pie/public-e.htm.

Fishburn PC. 1984. Foundations of risk management: risk
as a probable loss. Management Science 30: 396–406.

Greenwood M, Robertson I, Warboys B. 2000. A support
framework for dynamic organizations. In 7th EWSPT
European Workshop on Software Process Technology, Springer
Verlag: Kaprun, Austria, 6–20.

Hofstede A, Orlowska M, Rajapakse J. 1998. Verification
problems in conceptual workflow specifications. Data and
Knowledge Engineering 24(3): 239–256.

Jorion P. 1997. Value at Risk: A New Benchmark for
Measuring Derivatives Risk. Irwin Professional Publishing,
Chicago, USA.

Luce RD. 1980. Several possible measures of risk. Theory
and Decision 12: 217–228.

Moskowitz H, Bunn D. 1987. Decision and risk analysis.
European Journal of Operational Research 28: 247–260.

Pratt J. 1964. Aversion in the small and in the large.
Econometrica 32: 122–136.

Ramsey FP. 1931. Truth and probability. In The
Foundations of Mathematics: Collected Papers of Frank
P. Ramsey, Routledge and Kegan Paul: London, UK,
156–198.

Tarumi H, Matsuyama T, Kambayashi Y. 1999. Evolution
of business processes and a process simulation tool. In
APSEC Asia-Pacific Software Engineering Conference, IEEE
Computer Society Press: Takamatsu, Japan, 180–187.

van der Aalst WMP. 1998. The application of petri nets
to workflow management. The Journal of Circuits, Systems
and Computers 8(1): 21–66.

von Neumann J, Morgenstern O. 1947. Theory of Games and
Economic Behaviour. Princeton University Press, Princeton,
USA.

Zhu H, Hall PAV, May JHR. 1997. Software unit test
coverage and adequacy. ACM Computing Surveys 29(4):
366–427.

Copyright 2004 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2004; 9: 229–238

238

