
Test Case Generation According to the Binary
Search Strategy?

Sami Beydeda and Volker Gruhn

University of Leipzig
Department of Computer Science

Chair of Applied Telematics / e-Business
Klostergasse 3

04109 Leipzig, Germany
{sami.beydeda,volker.gruhn}@informatik.uni-leipzig.de

http://www.lpz-ebusiness.de

Abstract. One of the important tasks during software testing is the
generation of test cases. Unfortunately, existing approaches to test case
generation often have problems limiting their use. A problem of dynamic
test case generation approaches, for instance, is that a large number of
iterations can be necessary to obtain test cases. This article introduces a
formal framework for the application of the well-known search strategy
of binary search in path-oriented test case generation and explains the
binary search-based test case generation (BINTEST) algorithm.

1 Introduction

This article presents a novel approach to automated test case generation. Several
approaches have been proposed for test case generation, mainly random, path-
oriented, goal-oriented and intelligent approaches [8]. Random techniques de-
termine test cases based on assumptions concerning fault distribution (e.g. [2]).
Path-oriented techniques generally use control flow information to identify a
set of paths to be covered and generate the appropriate test cases for these
paths. These techniques can further be classified in static and dynamic ones.
Static techniques are often based on symbolic execution (e.g. [9]), whereas dy-
namic techniques obtain the necessary data by executing the program under
test (e.g. [7]). Goal-oriented techniques identify test cases covering a selected
goal such as a statement or branch, irrespective of the path taken (e.g. [8]).
Intelligent techniques of automated test case generation rely on complex com-
putations to identify test cases (e.g. [10]). Another classification of automated
test case generation techniques can be found in [10].

The algorithm proposed in this article can be classified as a dynamic path-
oriented one. Its basic idea is similar to that in [7]. The path to be covered is
considered step-by-step, i.e. the goal of covering a path is divided into subgoals,
test cases are then searched to fulfill them. The search process, however, differs
? The chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG.

2 Sami Beydeda, Volker Gruhn

substantially. In [7], the search process is conducted according to a specific error
function. In our approach, test cases are determined using binary search, which
requires certain assumptions but allows efficient test case generation. Other as-
pects of the BINTEST approach are covered in [3, 4].

2 Terminology

The primary use of the BINTEST algorithm is in testing the methods of a class.
Before explaining the BINTEST algorithm, we first formally define the basic
terms.

Definition 1. Let M be the method under test and C the class providing this
method. Furthermore, let a1, . . . , al designate the arguments of M and attributes
of C, and Dai

with 1 ≤ i ≤ l be the set of all values which can be assigned to ai.

(i) The domain D of M is defined as the cross product Da1 × · · · ×Dal
,

(ii) an input of M as an element x in D and
(iii) a test case xO as an input which satisfies a testing-relevant objective O.

The BINTEST algorithm generates test cases with respect to certain paths
in the control flow graph of the method to be tested. It attempts to identify for
a path P a test case xP in the method’s domain appropriate for the traversal of
that path. The traversal of path P thus represents the testing-relevant objective
O referred to in Definition 1. A test case xP is characterized as traversing or
covering a path P if the blocks modeled by nodes constituting P are executed
in the sequence prescribed if the arguments of M and attributes of C are set to
the values specified by xP , and M is invoked. The definition below defines some
of the basic term required.

Definition 2. Let M be the method under test.

(i) The control flow graph G of M is a directed graph (V,E, s, e) where V is a
set of nodes, E ⊆ V 2 is a set of edges, and s, e ∈ V are the initial and final
node, respectively. The initial and final node in a control flow graph are the
only nodes having no predecessor and no successor, respectively.

(iii) A path P in G is defined as a tuple (v1, . . . , vm) ∈ V m of nodes with
(vj , vj+1) ∈ E for 1 ≤ j < m, v1 and vm being the initial node s and
final node s of G, respectively.

The nodes of a control flow graph represent basic blocks within the source
code of M , the edges control flow between basic blocks. A basic block is a se-
quence of consecutive statements in which flow of control enters at the beginning
and leaves at the end without halting or branching except at the end [1].

Lecture Notes in Computer Science 3

3 Test case generation strategy

The BINTEST algorithm employs a strategy similar to that of the test case
generation approach in [7]. In both approaches, the path to be covered is not
considered as a whole, but rather divided into its basic constituents, which are
then considered in the sequence respecting their order on the path. A test case
xP is approached by iteratively generating inputs successively covering each of
the edges of P . A particular edge is only traversed by a subset of all possible
inputs. The inputs need to fulfill the traversal condition of this edge.

Definition 3. Let M be the method under test, D its domain and (vj , vj+1) an
edge in its control flow graph. Let furthermore be IB the set of boolean values
{false, true}. The traversal condition T(vj ,vj+1) of edge (vj , vj+1) is a function
T(vj ,vj+1) : D → IB defined as

T(vj ,vj+1)(x) =
{

true if (vj , vj+1) is traversed by x,
false otherwise.

Traversal conditions associated with edges of a control flow graph link single
inputs in the method’s domain with paths in its control flow graph. Control flow
graphs as introduced so far do not relate inputs of the represented method with
paths and we thus cannot determine the path traversed for a certain input.

The BINTEST algorithm receives the initial input x0 from the tester and
evaluates the traversal condition of the first edge (v1, v2) of P with respect to
this value. Traversal condition T(v1,v2) is generally not met for all inputs in D but
for values in a certain subset D1 ⊆ D and the initial input is therefore changed to
a value x1 ∈ D1 ensuring the traversal of edge (v1, v2), i.e. T(v1,v2)(x1) = true.
In the next step, the traversal condition of the second edge (v2, v3) on P is
evaluated given that arguments of M and attributes of C are set to the values
specified by x1. Again, T(v2,v3) is generally only satisfied by a subset D2 ⊆ D1

and x1 needs to be modified if it does not lie in D2. Hence, D2 ⊆ D1 ⊆ D. This
procedure is continued for all edges on P until either an input is found fulfilling
all traversal conditions or a contradiction among these conditions is detected. In
such a case, the traversal conditions cannot be fulfilled entirely and the path is
infeasible [10].

4 Monotony

The BINTEST algorithm approaches to a test case xP traversing a path P by
iteratively generating a series of inputs x0, x1, x2, . . . , xP . In such a series, input
x0 is provided by the tester as the initial starting value, the others are calcu-
lated by the test case generation algorithm. Let ∆i be the necessary qualitative
modification in order to obtain xi+1 from xi. A possibility to determine ∆i is
using information concerning the monotony behavior of the traversal condition
under consideration.

4 Sami Beydeda, Volker Gruhn

Definition 4. Let ≤X and ≤Y be order relations defined on sets X and Y ,
respectively, and x, x′ be two arbitrary elements in a subset I of X with x ≤X x′.
A function f : X → Y is

(i) monotone increasing on I iff f(x) ≤Y f(x′),
(ii) monotone decreasing on I iff f(x) ≥Y f(x′) and
(iii) monotone on I iff it is either monotone increasing or decreasing on I.

Definition 5. Let X be a set and 2X its power set.

(i) A partition A of X is a subset of 2X with
⋃

a∈A = X and ∀a1, a2 ∈ A, a1 6=
a2 : a1 ∩ a2 = ∅. The single sets in A are also called blocks.

(ii) A function f : X → Y is called piecewise monotone iff it is monotone on
all blocks in a partition A.

The notion of monotony describes the behavior of a function in relation
to a change of the input. It gives a qualitative indication whether outputs of
the function move in the same direction as inputs or in the reverse direction.
Considering a traversal condition as a function whose monotony behavior is
known, the direction in which the input needs to be moved to satisfy the traversal
condition can be determined uniquely. Eventually, a traversal condition might
not be monotone on its entire domain. In such a case, consideration has to be
restricted to a subset on which it is monotone with the consequence that ∆i

can only be uniquely determined within this subset and might be different in
others. Depending on the size of these subsets, they can also be grouped together
according to the monotony behavior of the corresponding traversal condition to
avoid that test case identification degenerates to linear search. For instance, a
traversal condition defined on the set of integer numbers which maps even values
to true and odd values to false is only monotone on subsets containing two
elements. Instead of considering these subsets separately, they can be grouped to
a family such as ({i, i + 1})i is integer and, since the traversal condition possesses
the same monotony behavior on all subsets in the family, the family can be
considered as a whole.

However, the monotony behavior of arbitrary traversal conditions is usually
not known and suitable means are required to determine it. One solution is to
explicitly specify the monotony behavior of the traversal condition associated
with each edge in the control flow graph of a method. This solution is obviously
undesirable, since the control flow graph of a complex method can have a large
number of edges and the effort for monotony behavior specification can be sub-
stantial. The solution employed in the context of the BINTEST algorithm is to
deduce the monotony behavior of a traversal condition from those of the func-
tions of which the traversal condition is composed. The following lemma gives
the formal basis for this.

Lemma 1. Assume that (fk : Xk → Yk)1≤k≤n is a family of functions, with
fk being piecewise monotone with respect to order relations ≤Xk

and ≤Yk
, and

Yk ⊆ Xk+1. Let Fn : X1 → Yn be a function defined as the composition Fn =
fn ◦ · · · ◦ f1. Under this assumption, Fn is also piecewise monotone with respect
to order relation ≤X1 defined on its domain and ≤Yn defined on its codomain.

Lecture Notes in Computer Science 5

The proof of this lemma has been omitted due to space restrictions and can
be found in [3]. A function is referred to as atomic if it cannot be further decom-
posed. Such a function is typically implemented by the underlying programming
language as an operation or by a class or component as a method. The sin-
gle atomic functions of which a particular traversal condition is composed can
technically be determined using tracing. Tracing statements can be inserted into
the method under test which are executed immediately prior to the execution
of operations and methods corresponding to atomic functions, and the atomic
functions constituting a particular traversal condition can be identified.

5 Algorithm

Figure 1 shows the BINTEST algorithm. The BINTEST algorithm requires as
input the set of paths, P, to be traversed and computes an appropriate set of
test cases, T , as output. The algorithm executes three distinct phases during
its execution. These phase are the initialization phase (line 1), the test case
generation phase (lines 2–45) and the finalization phase (line 46). The essential
phase among them is obviously the test case generation phase. The algorithm
executes three nested loops during this phase, which are the following:

Outmost loop. The single paths in P are considered during respective iterations
of the outmost loop (lines 2–45). Each path P ∈ P is considered in an iteration,
during which set A is initialized (line 3), the second loop is entered to generate
an appropriate test case (lines 4–43) and the test case, if any could be generated,
is added to T (lines 44–45). For the path P = (v1, . . . , vm) considered, a set A is
constructed including all possible tuples (I1, . . . , Im−1) with Ij being a block in
the partition of T(vj ,vj+1)’s domain. Block Ij is a subset of the domain of traversal
condition T(vj ,vj+1) on which it is monotone and in which thus an appropriate
test case can be approached to. The traversal of a path requires that all traversal
conditions need to be considered in order to identify an input x satisfying all, or
formally

∧
1≤j<m T(vj ,vj+1)(x), the sufficient condition for the path’s traversal.

A block needs therefore to be specified for the traversal condition associated to
each edge on the path. An appropriate input x, if it exists, thus necessarily lies
in all of these blocks, i.e. x ∈

⋂
1≤j<m Ij .

Middle loop. The single tuples in A are considered during respective iterations
of the second loop (lines 4–43). This loop is executed until either a test case has
been found covering P or all elements in A have been considered and P is thus
infeasible. During an iteration of this loop, an element (I1, ..., Im−1) is selected
from A which has not been considered in an iteration before, and Dcur and jprev

are initialized (lines 5–7). Dcur gives the current search interval, whereas jprev

gives the index of the traversal condition considered in the previous iteration.
After these initialization steps, the third and innermost loop is entered (lines 8–
42).

6 Sami Beydeda, Volker Gruhn

1: T = ∅
2: for each path P = (v1, . . . , vm) ∈ P
3: A = A1 × · · · × Am−1, with Aj the partition of T(vj,vj+1)’s domain, 1 ≤ j ≤ m − 1

4: repeat
5: (I1, . . . , Im−1) = an arbitrary element in A not considered before
6: Dcur = D
7: jprev = 0
8: repeat
9: xmid = middle element of Dcur regarding to ≤D

10: jmin = least j with xmid 6∈ Ij or T(vj,vj+1)(xmid) 6= true, 0 if j does not exist

11: if jmin 6= 0
12: then
13: if xmid 6∈ Ijmin
14: then
15: if xmid <D lower boundary of Ij

16: then ∆ = increase
17: else ∆ = decrease
18: else
19: if jmin > jprev

20: then
21: monotony = increasing
22: ∆ = increase
23: Dbackup = Dcur

24: if jmin = jprev

25: then
26: if monotony = increasing
27: then ∆ = increase
28: else ∆ = decrease
29: if jmin < jprev

30: then
31: if monotony = increasing
32: then ∆ = decrease
33: else ∆ = increase
34: if ∆ = increase
35: then Dcur = {x ∈ Dcur | x 6≤D xmid}
36: else Dcur = {x ∈ Dcur | x ≤D xmid}
37: if Dcur = ∅ and monotony = increasing
38: then
39: monotony = decreasing
40: Dcur = Dbackup

41: jprev = jmin

42: until jmin = 0 or Dcur = ∅
43: until jmin = 0 or all elements in A have been considered
44: if jmin = 0
45: then add x to T
46: return T

Fig. 1. The BINTEST algorithm.

Innermost loop. The binary search strategy is implemented by the innermost
loop, which is executed until either an appropriate test case has been found or
the search interval is empty and thus cannot contain an appropriate test case
(lines 8–42). The first operation of an iteration is computation of the search in-
terval’s middle element xmid. The traversal conditions associated to edges on P
are then considered regarding to xmid starting with that of the first edge on P
and proceeding with respect to their ordering on P . Each traversal condition is
analyzed to determine whether xmid lies in the block specified by the tuple and
the traversal condition results true for that input. jmin gives either the index of
the first traversal condition for which one of these conditions is not satisfied, or

Lecture Notes in Computer Science 7

its has a value of 0 to indicate that both conditions are satisfied for all traversal
conditions. In the case of jmin 6= 0, i.e. P is not covered, lines 13–41 are exe-
cuted in order to approach to an appropriate input. Otherwise, a test case has
been found covering P and the inner two loops are left. The algorithm validates
if xmid is in the block Ijmin

specified by (I1, ..., Im−1) and sets ∆ accordingly
if it does not (lines 15–17). If xmid lies in the block specified, jmin necessarily
references the first traversal condition which is not satisfied by xmid and the
algorithm attempts to approach to an appropriate input (lines 19–33). For this
purpose, jmin is compared with jprev, the value of jmin during the last iteration.
jmin can be greater, equal to or less than jprev. The first case is given when the
traversal condition considered during the last iteration is now satisfied and the
algorithm considers in the current iteration the traversal condition associated to
one of the next edges on the path (lines 19–23). As the traversal condition is con-
sidered for the first time, its monotony behavior is not known and an assumption
is made. Based on this assumption ∆ is set accordingly and the current search
interval is stored in an auxiliary variable to allow the correction of the monotony
assumption later. The second case is given when the traversal condition consid-
ered during the last iteration is still not fulfilled (lines 24–28). Another iteration
is thereby necessary and ∆ is set according to the monotony assumption made
before. Finally, the third case occurs if a traversal condition satisfied before is
not satisfied anymore due to the modification of the input made during the last
iteration (lines 29–33). In this case, ∆ is set to the reverse of the value assigned
to it during the last iteration in order to approach to a value satisfying this
traversal condition again. After obtaining ∆, the current search interval is bi-
sected according to xmid and one of the halves is selected with respect to ∆
(lines 34–36). The iterations made, however, do not necessarily have to result in
a suitable test case. One reason for this can be a wrong monotony assumption.
The algorithm handles wrong monotony assumptions by reseting the search in-
terval to that when the monotony assumption has been made and correcting the
assumption (lines 37–40). Finally, the index of the traversal condition considered
is stored in an auxiliary variable.

Theorem 1. Let P = (v1, . . . , vm) be the path to be covered. Assume that the
domains of the the traversal conditions T(vj ,vj+1), 1 ≤ j < m, are each parti-
tioned in at most n blocks. The number of iterations conducted by the BINTEST
algorithm to identify a test case covering P is bounded by O(mn log |D|).

The proof of this theorem has been omitted due to space restrictions and can be
found in [3].

6 Conclusions

We have presented in this article a novel approach for test case generation based
on binary search. We are continuing our research on this approach, as it possesses
several benefits. One of these benefits is that it can be used to generate test cases
of any type as long as a total order exists on the search interval. Furthermore, the

8 Sami Beydeda, Volker Gruhn

success of some existing test case generation techniques often depends on certain
parameters and we can encounter the problem of calibration. Our approach
does not require parameter calibration. Another aspect is that path-oriented
test data generation is often carried out using optimizing techniques. Optimizing
techniques can suffer from the problem of local minima or the initial starting
point being too far from the solution [6]. Our approach does not suffer from
these problems.

One of the applications of the BINTEST algorithm is in testing COTS com-
ponents [3, 5]. We believe that the diverging needs of the two parties involved in
the development of a component-based system, component developers and devel-
oper of the system, can be met by self-testability. A possibility to achieve com-
ponent self-testability is to embed a test case generation technique, such as the
BINTEST approach, into the component. In this context, we would like to invite
the reader to participate in an open discussion started to gain a consensus con-
cerning the problems and open issues in testing components. The contributions
received so far can be found at http://www.stecc.de and new contributions
can be made by email to sami.beydeda@informatik.uni-leipzig.de.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, principles, tech-
niques, and tools. Addison Wesley, 1988.

2. Alberto Avritzer and Elaine J. Weyuker. The automatic generation of load test
suites and the assessment of the resulting software. IEEE Transactions on Software
Engineering, 21(9):705–716, 1995.

3. Sami Beydeda. The Self-Testing COTS Components (STECC) Method. PhD thesis,
Universität Leipzig, Fakultät für Mathematik und Informatik, 2003.

4. Sami Beydeda and Volker Gruhn. BINTEST – binary search-based test case gen-
eration. In Computer Software and Applications Conference (COMPSAC). IEEE
Computer Society Press, 2003.

5. Sami Beydeda and Volker Gruhn. Merging components and testing tools: The
self-testing COTS components (STECC) strategy. In EUROMICRO Confer-
ence Component-based Software Engineering Track. IEEE Computer Society Press,
2003.

6. Matthew J. Gallagher and V. Lakshmi Narasimhan. Adtest: A test data genera-
tion suite for ada software systems. IEEE Transactions on Software Engineering,
23(8):473–484, 1997.

7. Bogdan Korel. Automated software test data generation. IEEE Transactions on
Software Engineering, 16(8):870–879, 1990.

8. Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-data generation
using genetic algorithms. Software Testing, Verification and Reliability, 9(4):263–
282, 1999.

9. C. Ramamoorthy, S. Ho, and W. Chen. On the automated generation of program
test data. IEEE Transactions on Software Engineering, SE-2(4):293–300, 1976.

10. Nigel Tracey, John Clark, and Keith Mander. Automated program flaw finding
using simulated annealing. In SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), volume 23 of Software Engineering Notes, pages
73–81. ACM Press, 1998.

