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Abstract

Development of a software system from existing compo-
nents can surely have various benefits, but can also entail
a series of problems. One type of problems is caused by
a limited exchange of information between the developer
and user of a component, i.e. the developer of a component-
based system. A limited exchange of information cannot
only require the testing by the user but it can also compli-
cate this tasks, since vital artifacts, source code in particu-
lar, might not be available. Self-testing components can be
one response in such situation. This paper describes an en-
hancement of the Self-Testing COTS Components (STECC)
Method so that an appropriately enabled component is not
only capable of white-box testing its methods but also ca-
pable of black-box testing.

1 Introduction

Quality assurance, including testing, conducted in devel-
opment and use of a component can be considered accord-
ing to [12, 11] from two distinct perspectives. These per-
spectives are those of thecomponent providerandcompo-
nent user. The component provider corresponds to the role
of the developer of a component and the component user to
that of a client of the component provider, thus to that of the
developer of a system using the component.

The use of components in the development of software
systems can surely have several benefits, but can also intro-
duce new problems. Such problems concern, for instance,
testing of components. The component user has often to test
a component, particularly a third-party component, prior to
its integration into the system to be developed. The various
reasons obligating the component’s testing by the compo-
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nent user are outlined in [7] with an overview of existing
approaches to testing components.

In this paper, we describe an enhancement of theSelf-
Testing COTS Components (STECC) Method[4, 6]. The
main idea of the STECC method is to augment a component
with self-testability, so that the component user can test it
thoroughly without necessitating the component provider to
disclose certain information. In particular, a STECC self-
testing component allows white-box tests without access to
the component’s source code. Source code information is
processed within the component in an encapsulated manner
not visible to the component user.

The enhancement of the STECC method addresses the
need that the component user often not only needs to white-
box test the component, but also black-box test according
to the component’s specification. For this purpose, the in-
ternal model encapsulated in a STECC self-testing compo-
nent, which is particularly used for test case generation, has
been augmented to also embrace information extracted from
its specification. We, however, have not developed a new
model, but rather use one which reached a certain matu-
rity in testing classes, theClass Implementation Specifica-
tion Graph (CSIG)[8]. Note that in the following a com-
ponent is assumed to be implemented as a class, such as
components according to the Enterprise JavaBeans Specifi-
cation [9]. A positive side effect of CSIGs is that they do
not only allow an integrated black- and white-box testing,
the total number of test cases required for black- and white-
box testing can be less than in the case when both tasks are
carried out separately [8].

2 Self-Testing COTS Components Strategy

The component provider and component user generally
need to exchange information during the various phases
of developing the component and a component-based sys-
tem [6]. Various factors, however, impact the exchange of



information between the component provider and compo-
nent user. The information requested by one role and deliv-
ered by the other can differ in various aspects, if it is deliv-
ered at all. It can differ syntactically insofar that it is, for
instance, delivered in the wrong representation and it can
also differ semantically in that it, for instance, is not in the
abstraction level needed.

A lack of information might require the testing of a
component by its user prior to its integration in a system,
and might significantly complicate this task at the same
time. The component user might not possess the informa-
tion required for this task. Theoretically, the component
user can test a component by making certain assumptions
and approximating the information required. Such assump-
tions, however, are often too imprecise to be useful. For
instance, control-dependence information can be approxi-
mated in safe-critical application contexts by conservatively
assuming that every component raises an exception, which
is obviously too imprecise and entails a higher testing effort
than necessary [12, 11].

Even though often claimed, source code as one type
of information often required for testing purposes is not
required by itself for testing purposes. It often acts as
the source for obtaining other information, such as that
concerning control-dependence. Instead making source
code available to allow the generation of such informa-
tion, the information required can also be directly deliv-
ered to the component user, obviating source code ac-
cess. This type of information is often referred to asmeta-
information [17]. Even though the information required
might already be available from own testing activities, the
component provider might nevertheless not deliver this in-
formation to the component user. One reason may be that
detailed information, including parts of the source code,
can be deduced from it depending on the granularity of the
meta-information. Therefore, there is a natural boundary
limiting the level of detail of the information deliverable to
the user. For some application contexts, however, the level
of detail might be insufficient and the component user might
not be able to test the component according to certain qual-
ity requirements.

The underlying strategy of the method proposed differs
from those discussed thus far. Instead of providing the com-
ponent user with information required for testing, compo-
nent user tests are supported by the component explicitly.
The underlying strategy of the method is to augment a com-
ponent with functionality specific to testing tools. A com-
ponent possessing such functionality is capable of testing
its own methods by conducting some or all activities of the
component user’s testing processes, it is thusself-testing.
The method is thereby called theSelf-Testing COTS Com-
ponents(STECC) method. Self-testability does not obviate
the generation of detailed technical information. In fact,

this information is generated by the component itself dur-
ing runtime and is internally used in an encapsulated man-
ner. The information generated is transparent to the com-
ponent user and can thus be more detailed than in the case
above. Consequently, tests carried out by the component
user through the self-testing capability can thereby be more
thorough as in the case of meta-information. Self-testability
allows the component user to conduct tests and does not
require the component provider to disclose source code or
other detailed technical information. It thereby meets the
demands of both parties. The STECC method does not only
benefit the user of a component in that the user can test
a component as required. It can also benefit its provider,
as self-testability provided by an appropriately augmented
component can be an advantage in competition.

From a technical point of view, a STECC self-testing
component maintains a model of its own and generates test
cases with regards to an adequacy criterion specified by the
tester, who can particularly be the component user. The
STECC framework, which implements the various relevant
algorithms, determines the paths to be traversed accord-
ing to the specified criterion and generates the necessary
test cases as possible. The test case generation algorithm
employed for this purpose is theBinary Search-based Test
Case Generation (BINTEST) Algorithm[5]. The internal
model used by the component is a control flow graph. It
can be replaced by another control flow graph as long as
its syntactical representation does not change. This is ex-
actly the enhancement of the STECC method described in
this paper. CSIGs are control flow graphs which also em-
brace specification information and thus allow generation of
black-box test cases.

3 Class Implementation Specification
Graphs

3.1 Motivation

Analysis and testing tasks are usually conducted using a
model of the program under consideration which abstracts
from certain aspects and focuses on others assumed to be
more significant. Typical examples of such models are con-
trol flow graphs or finite state machines. Models used in
analysis and testing are often constructed on the basis of the
implementation, such as control flow graphs, or the specifi-
cation, such as finite state machines, of the program under
consideration, they seldom cover both. However, we often
need to analyze and test a program according to both in-
formation sources. In the case of class-level analysis and
testing, one answer to this need areClass Specification Im-
plementation Graphs (CSIGs)[8].

The distinguishing feature of CSIGs from existing class
models is that they combine the specification and imple-



mentation of a class. Each method is represented by two
control flow graphs in possibly different abstraction lev-
els, i.e. control flow as specified and control flow as imple-
mented. We refer to the former as thespecification viewand
the latter as theimplementation viewof a method. There-
fore, this model is called theclass specification implementa-
tion graph(CSIG) of a class to emphasize the combination
of the two different views. Although the method views can
differ in abstraction level, the difference does not affect the
integration, as the integration is carried out at control flow
graph level. As control flow graphs are used to model spec-
ification and implementation, structural techniques, such as
the BINTEST algorithm, can be used for test case genera-
tion. An important feature of a CSIG is that generated test
cases can cover both specification and implementation.

3.2 A demonstrative example

The example consists of a component, calledaccount ,
which simulates a bank account. This component pro-
vides the appropriate methods for making bank account
deposits (deposit() ) and withdrawals (withdraw() ).
Furthermore, it provides methods for paying inter-
est (payInterest() ) and for printing bank statements
(printBankStatement() ).

Figure 1 shows the specification of componentaccount

in form of a class state machine(CSM) [14]. In this
figure each state of componentaccount is represented
by a circle, while each transition is depicted by an ar-
row leading from its source state to its target state.
These transitions are formally specified through 5-tuples
(source, target, event, guard, action) below this figure.
A transition consists – besides asource and atarget state –
of anevent causing the transition, a predicateguard which
has to be fulfilled before the transition can occur, and an
action defining operations on the attributes during the tran-
sition. There are also two special circles labeledinitial and
final. These two circles represent the state of a component
before its instantiation and after its destruction, respectively.
Thus, they represent states in which the attributes and their
values are not defined, meaning that these two states are not
concrete states of a component instance. For the sake of
brevity, below the CSM in figure 1 only the transitions with
event typedeposit() are given.

A possible implementation of methoddeposit() is:

33 public void deposit(double amount) {
34 balance += amount;
35 t[idx++] = new transaction("Deposit ",
36 amount, balance);
37 }

With transaction implementing a financial transac-
tion stored in an arrayt for later generation of bank state-
ments.
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t2 = (inCredit, inCredit, deposit(amount) ,
true , balance += amount; )

t7 = (overdrawn, inCredit, deposit(amount) ,
balance+amount >= 0 , balance += amount; )

t8 = (overdrawn, overdrawn, deposit(amount) ,
balance+amount < 0 , balance += amount; )

t14 = (blocked, overdrawn, deposit(amount) ,
limit <= balance+amount && balance+amount < 0 ,
balance += amount; )

t15 = (blocked, blocked, deposit(amount) ,
balance+amount < limit , balance += amount; )

t19 = (blocked, inCredit, deposit(amount) ,
balance+amount >= 0 , balance += amount; )

Figure 1. Specification of component account
by a class state machine

3.3 CSIG constituents

Figure 2 shows the CSIG of componentaccount . Each
method of a component is represented by two control
flow graphs in its CSIG. One of them is a control flow
graph generated on the basis of the method specification
(method specification graph), whereas the other is a control
flow graph determined using the method implementation
(method implementation graph). In figure 2, method speci-
fication graphs are drawn light gray whereas method imple-
mentation graphs are drawn dark gray. For convenience, the
two control flow graphs are calledmethod graphs, if they do
not have to be distinguished. Thus, the CSIG of a compo-
nent shows each method from two different perspectives,
namely what the method should do and what the method
actually does.

The two method graphs of each method are embedded
within a frame structure called aclass control flow graph
frame (CCFG frame). Generally, a component cannot be
tested without a test driver, which creates an instance of the
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Figure 2. Class specification implementation graph of component account

component, invokes the corresponding methods in a partic-
ular order, and finally deletes the instance. A CCFG frame
represents an abstract test driver fulfilling this task1. In fig-
ure 2, the CCFG frame nodes are drawn without shading.

Three types of edges can be distinguished within a CSIG:

1. Intra-method control and data flow edges
Intra-method control and data flow edges depict con-
trol and data dependencies within a single method
graph. For instance, an intra-method data flow edge
connects a node representing a definition of a local
variable with another node representing a use in the
same method (as a simple example of a def-use pair).
In figure 2, these edges are drawn as solid arrows.

2. Inter-method control and data flow edges
Edges of this type model control and data flow between
two method specification graphs and two method im-
plementation graphs, respectively. Assume thatG1

1A CCFG frame is a part of a CCFG suggested by Harrold et al. [13]
for class-level data flow testing. As we only need the frame structure as an
abstract test driver, we do not introduce CCFGs in this paper.

and G2 are the method implementation graphs of
methodsM1 and M2, respectively. Then, an invo-
cation of methodM2 within the implementation of
methodM1 is modeled by an inter-method control
flow edge leading from the corresponding node inG1

to the entry node ofG2. In figure 2, these edges are
shown as gray arrows. For the sake of simplicity, this
type of edges is only given for method specification
graphs.

3. CCFG frame edges
The third type of edges in a CSIG consists of nodes,
which either connect two CCFG frame nodes or the
CCFG frame with entry and exit nodes of method
graphs. In figure 2, this type of edges is shown as dot-
ted arrows.

Method implementation graphs are generated on the ba-
sis of the implementations of the respective methods. Con-
trol flow graph generation is, for instance, described in [1].
The generation of method specification graphs is conducted
on the basis ofmethod prototypes, which are constructed us-



ing the finite state machine specification of the component.
For the construction of method prototypes, a prototype is

generated for each transitiont = (source, target, event,
guard, action) in the form of a nestedif-then-else

construct:

if (source)
if (guard)

action;
else throw new ErrorStateException();

else throw new ErrorStateException();

source refers to the predicate of the source state. For
instance, the predicate of stateinCredit is defined as
balance ≥ 0.

After generating these prototypes, those having the same
event type are combined. For instance, transitionst2, t7, t8,
t14, t15 andt19 share the eventdeposit() . Their proto-
types can be merged to the following method prototype:

deposit(double amount) {
s2 if (balance >= 0)
g2 if (true)
a2 balance += amount;

else throw new ErrorStateException();
else

s7 if (balance < 0 && balance >= limit)
g7 if (balance + amount >= 0)
a7 balance += amount;

else
g8 if (balance + amount < 0)
a8 balance += amount;

else throw new ErrorStateException();
else

s14 if (balance < limit)
g14 if (limit <= balance + amount

&& balance + amount < 0)
a14 balance += amount;

else
g15 if (balance + amount < limit)
a15 balance += amount;

else
g19 if (balance + amount <= 0)
a19 balance += amount;

else throw new ErrorStateException();
else throw new ErrorStateException();

}

Generation of control flow graphs for method prototypes
can again be carried out as described in [1]. The process
of embedding the various control flow graphs into a CCFG
frame is explained in [13].

In the STECC method as initially designed, a compo-
nent encapsulates an ordinary control flow graph modeling
source code information. Tests as conducted by a STECC
self-testing component were therefore solely white-box ori-
ented. An enhancement of the STECC method to also cover
black-box tests can be achieved by using CSIGs instead of
ordinary control flow graphs. CSIGs also model specifica-
tion information and tests conducted are thus also black-
box oriented. Specifically, the total number of test cases re-
quired can even be less than in the case when black-box and
white-box testing separately. A suitable test suite reduction
technique is described in [8].

4 Related work

The STECC approach can be compared to built-in test-
ing approaches in the literature. A number of built-in testing

approaches have been proposed in the literature, e.g. [19],
[16, 18, 10, 3] and [15, 2]. Similar as the STECC approach,
built-in testing approaches aim at tackling difficulties in
testing components caused by a lack of information, diffi-
culties in test case generation in particular. The STECC ap-
proach has the same objective and the approaches can thus
be directly compared to it. A comparison of them highlights
several differences.

Firstly, the built-in testing approaches are static in that
the component user cannot influence the test cases em-
ployed in testing. A component which is built-in testing
enabled according to one of these approaches either con-
tains a predetermined set of test cases or the generation,
even if conducted on-demand during runtime, solely de-
pends on parameters which the component user cannot in-
fluence. However, the component user might wish to test
all components to be assembled with respect to an unique
adequacy criterion. Built-in testing approaches usually do
not allow this. The STECC approach does not have such a
restriction. Adequacy criteria, even though constrained to
control flow criteria, can be freely specified.

Secondly, built-in testing approaches using a predefined
test case set generally require more storage than the STECC
approach. Specifically, large components with high inher-
ent complexity might require a large set of test cases for
their testing. A large set of test cases obviously requires a
substantial amount of storage which, however, can be dif-
ficult to provide taking into account the storage required in
addition for execution of large components. This is also the
case if test cases are stored separately from the component,
such as proposed by component+ approach. In contrast, the
STECC strategy does not require predetermined test cases
and does also not store the generated test case.

Thirdly, built-in testing approaches using a predefined
test case set generally require less computation time at com-
ponent user site. In such a case, the computations for test
case generation were already conducted by the component
provider and obviously do not have to be repeated by the
component user, who thus can save resources, particularly
computation time, during testing. Savings in computation
time are even magnified if the component user needs to fre-
quently conduct tests, for instance, due to volatility of the
technical environment of the component. Storage and com-
putation time consumption of a built-in testing enable com-
ponent obviously depends on the implementation of the cor-
responding capabilities and the component provider needs
to decide between the two forms of implementation, pre-
defined test case set or generation on-demand, carefully in
order to ensure a reasonable trade-off.

Fourthly, none of the existing built-in testing approaches,
at least those known to the authors, are capable of providing
or generating test cases for both black- and white-box test-
ing. This is to our opinion the most significant difference.



5 Conclusions

The STECC strategy addresses the needs of both the
component provider and component user. A situation
particularly encountered in the case of commercial com-
ponents, thus COTS components, is that the component
provider might not wish to disclose information, particu-
larly source code, which the component user might require
for testing purposes. Our research started with the obser-
vation that existing approaches do not appropriately tackle
such a situation.

The STECC strategy is a response to such situations.
It allows the component user to test the component and
to ensure suitability of the component to the target appli-
cation context regarding its quality without requiring the
component provider to publish specific information. It thus
meets the demands of both parties. The STECC strategy
can lead to a win-win situation insofar that both the compo-
nent provider and component user can benefit from it. The
benefit of the component user is obvious. The STECC strat-
egy, or more clearly self-testability of a component, can
be a valuable factor in competition. This potential benefit
of the component provider from the STECC strategy be-
comes more obvious taking into account the specific type
of components which are the most appropriate candidates
for STECC self-testability, COTS components.

We have shown that an enhancement of the STECC
method is easily possible using CSIGs. CSIGs represent
both specification and implementation information and tests
conducted are thus black- and white-box oriented. Specif-
ically, the total number of test cases required can even be
less than in the case when black-box and white-box testing
separately.
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