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Abstract

There are three distinct processes that are predominant in models of flowing media with inter-

acting components: advection, reaction, and diffusion. Collectively, these processes are typically

modelled with partial differential equations (PDEs) known as advection-reaction-diffusion (ARD)

equations.

To solve most PDEs in practice, approximation methods known as numerical methods are

used. The method of lines is used to approximate PDEs with systems of ordinary differential

equations (ODEs) by a process known as semi-discretization. ODEs are more readily analysed

and benefit from well-developed numerical methods and software. Each term of an ODE that

corresponds to one of the processes of an ARD equation benefits from particular mathematical

properties in a numerical method. These properties are often mutually exclusive for many basic

numerical methods.

A limitation to the widespread use of more complex numerical methods is that the development

of the appropriate software to provide comparisons to existing numerical methods is not straight-

forward. Scientific and numerical software is often inflexible, motivating the development of a class

of software known as problem-solving environments (PSEs). Many existing PSEs such as Matlab

have solvers for ODEs and PDEs but lack specific features, beyond a scripting language, to readily

experiment with novel or existing solution methods. The PSE developed during the course of this

thesis solves ODEs known as initial-value problems, where only the initial state is fully known.

The PSE is used to assess the performance of new numerical methods for ODEs that integrate

each term of a semi-discretized ARD equation. This PSE is part of the PSE pythODE that uses

object-oriented and software-engineering techniques to allow implementations of many existing and

novel solution methods for ODEs with minimal effort spent on code modification and integration.

The new numerical methods use a commutator-free exponential Runge–Kutta (CFERK) method

to solve the advection term of an ARD equation. A matrix exponential is used as the exponential

function, but CFERK methods can use other numerical methods that model the flowing medium.

The reaction term is solved separately using an explicit Runge–Kutta method because solving it

along with the diffusion term can result in stepsize restrictions and hence inefficiency. The diffusion

term is solved using a Runge–Kutta–Chebyshev method that takes advantage of the spatially

symmetric nature of the diffusion process to avoid stepsize restrictions from a property known

as stiffness. The resulting methods, known as integrating-factor-based 2-additive-Runge–Kutta

methods, are shown to be able to find higher-accuracy solutions in less computational time than

competing methods for certain challenging semi-discretized ARD equations. This demonstrates the

practical viability both of using CFERK methods for advection and a 3-splitting in general.

ii



Acknowledgements

I offer special thanks to my supervisor Dr. Raymond J. Spiteri for his vision and for giving me

the opportunity to pursue this project. His instruction, guidance, patience, and financial support

made this thesis possible. I wish to thank the faculty in the Department of Computer Science

and the Department of Mathematics and Statistics for providing me with further instruction and

guidance. I am particularly grateful to the members of the Numerical Simulation Laboratory for

their support, helpful discussions, and friendship during the course of this thesis.

I wish to thank my parents for cultivating my interest in research and demonstrating to me

all that could be accomplished with hard work. My father, Paul Kroshko, for introducing me

to computer programming and giving me my first taste of numerical analysis at a young age. My

mother, Joan Krochko, for cultivating my lifelong passion for mathematics and the natural sciences.

Without their endless support, patience, and encouragement I could never have taken this path.

As well, I wish to thank my sister, Jeanette Kroshko, for her indispensable support as I pursued my

Masters degree. Lastly, I wish to thank my brother, Thomas Kroshko, for his day to day support

and friendship while finishing this thesis.

I wish to thank the friends and other family members who have given me their unwavering

support over the years. Finally, I wish to thank the members of running community in Saskatoon

for giving me an additional outlet for my energies while writing this thesis.

iii



To my parents.

iv



Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 ODE theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Numerical methods for ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Stiffness and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Runge–Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Additive Runge–Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Other IVP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Order conditions for Runge–Kutta methods . . . . . . . . . . . . . . . . . . . 19
2.4.2 Order conditions for additive Runge–Kutta methods . . . . . . . . . . . . . . 21

2.5 Error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 Step-doubling error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Error estimation via embedded methods . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Stepsize selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Dense output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Advection-reaction-diffusion equations . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 The method of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 A problem-solving environment for the numerical solution of IVPs 32
3.1 IVP software implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Problem-solving environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Architecture and design of pythODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 The Solution object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 The Solver class and control flow . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.3 SolverModule objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Statistics and error checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Integrating-factor-based 2-additive-Runge–Kutta methods for ARD equations 48
4.1 Semi-Lagrangian exponential integrators for advection . . . . . . . . . . . . . . . . . 49

4.1.1 Exponential Lie group methods . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Commutator-free Lie group exponential methods . . . . . . . . . . . . . . . . 52
4.1.3 Order conditions for CFERK methods . . . . . . . . . . . . . . . . . . . . . . 54

v



4.1.4 Krylov subspace approximations to the matrix exponential . . . . . . . . . . 56
4.1.5 Error control for CFERK methods . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Stabilized ERK methods for the diffusion term . . . . . . . . . . . . . . . . . . . . . 57
4.3 Integrating-factor-based 2-ARK methods . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Operator integrating factor splitting . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Format of IF-2-ARK methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 The Burgers equation with Brusselator reaction terms . . . . . . . . . . . . . . . . . 63
4.6 Proposed second-order IF-2-ARK methods . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Constituent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.2 10-Stage IF-2-ARK methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.1 Performance comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Contributions and future work 80
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 The pythODE PSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Improvements to the IF-2-ARK methods . . . . . . . . . . . . . . . . . . . . 82
5.3.2 More complex ARD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 High-order variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.4 Semi-Lagrangian methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.5 Further development of pythODE . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 86

A Examples related to the derivation of order conditions 92

B Representative Behaviour of the Burgers, Brusselator, and Burgers-Brusselator
Equations 102

C Details on the IF-2-ARK methods 110
C.1 Derivation of IF-2-ARK methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C.2 Tableaux of constituent methods used to propose IF-2-ARK methods . . . . . . . . . 112

vi



List of Tables

2.1 Total number of trees associated with derivatives of up to tenth order. . . . . . . . . 19
2.2 Total number of order conditions for RK methods up to tenth order. . . . . . . . . . 20
2.3 Minimum number of stages smin(p) required for ERK Methods of order p. . . . . . . 21
2.4 Total number of order and coupling conditions for N -ARK methods of up to N = 4

and fifth order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Coefficients used for the Brusselator and their steady state eigenvalues. . . . . . . . 65
4.2 Maximum eigenvalues and stable stepsizes for grid size ngrid = 100 and diffusion

values ε using the 10-stage ROCK2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



List of Figures

2.1 The region (shaded) of absolute stability for FE. . . . . . . . . . . . . . . . . . . . . 10

2.2 The region (shaded) of absolute stability for BE. . . . . . . . . . . . . . . . . . . . . 10

2.3 The region (shaded) of absolute stability for RADAU5. . . . . . . . . . . . . . . . . . 13

3.1 Flowchart of a linearly implicit Runge–Kutta solver. . . . . . . . . . . . . . . . . . . 34

3.2 Solution object with Solver object and two SolverModule objects . . . . . . . . . 41

4.1 Stability region of 10-stage ROCK2 (dark shading) and the embedded method (light
shading and dashed boundary). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Stability region of 14-stage ROCK4 (dark shading) and the embedded method (light
shading and dashed boundary). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Eigenvalues of the first-order upwind finite-difference operator (2.47) with ngrid =
100, x ∈ [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Eigenvalues of the second-order central finite-difference operator (2.45) with ngrid =
100, x ∈ [0, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 The region of absolute stability region for the 10-stage ERK method sharing b and
c with the ROCK2 method (C.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Convergence of the trial reference solutions in number of digits of accuracy as com-
pared to the reference solution with a tolerance of 10−10 for α = 0.2, β = 0.5 (4.29a)
(top), α = 2, β = 5 (4.29b) (middle), and α = 1, β = 3 (4.29c) (bottom). . . . . . . . 71

4.7 Computational time compared to the RMS error of the solution with ε = 0.005 (top),
ε = 0.002 (middle), ε = 0.001 (bottom), and for the Burgers equation with ngrid = 100. 74

4.8 Computational time compared to the RMS error of the solution with α = 0.5, β = 0.2
(4.29a) (top), α = 2, β = 5 (4.29b) (middle), α = 1, β = 3 (4.29c) (bottom) as
reaction coefficients for the Brusselator equation (4.24) with ε = 0.001 and ngrid = 100. 75

4.9 Computational time compared to the RMS error of the solution with α = 0.5, β = 0.2
(4.29a) (top), α = 2, β = 5 (4.29b) (middle), α = 1, β = 3 (4.29c) (bottom) as
reaction coeffcients for the Burgers–Brusselator equation (4.25) with ε = 0.001 and
ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.10 Computational time compared to the RMS error of the solution with ε = 0.002 (top),
ε = 0.001 (middle), and ε = 0.0005 (bottom) for the Burgers–Brusselator equation
(4.25) with Brusselator reaction coefficients α = 0.5, β = 0.2 (4.29a) and ngrid = 100. 77

4.11 Computational time compared to the RMS error of the solution with ε = 0.002 (top),
ε = 0.001 (middle), and ε = 0.0005 (bottom) for the Burgers–Brusselator equation
(4.25) with Brusselator reaction coefficients α = 2, β = 5 (4.29b) and ngrid = 100. . . 78

4.12 Computational time compared to the RMS error of the solution with ε = 0.002 (top),
ε = 0.001 (middle), and ε = 0.0005 (bottom) for the Burgers–Brusselator equation
(4.25) with Brusselator reaction coefficients α = 1, β = 3 (4.29c) and ngrid = 100. . . 79

B.1 Solutions to the Burgers equation (4.5) with the initial condition (4.28c), boundary
conditions (4.28d), ε = {0.005, 0.002, 0.001} (left to right), and ngrid = 100. . . . . . 103

B.2 Solutions to the Brusselator equation (4.24) with the initial condition (4.28c), bound-
ary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 0.5, β =
0.2 (4.29a) that have asymptotically decaying behaviour at the diffusion-free Brus-
selator steady state, and ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.3 Solutions to the Brusselator equation (4.24) with the initial condition (4.28c), bound-
ary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 2.0, β =
5.0 (4.29b) that are stable and oscillatory at the diffusion-free Brusselator steady
state, and ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



B.4 Solutions to the Brusselator equation (4.24) with the initial condition (4.28c), bound-
ary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 1.0, β =
3.0 (4.29c) that are unstable at the diffusion-free Brusselator steady state, and
ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.5 Solutions to the Burgers–Brusselator equation (4.25) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 0.5,
β = 0.2 (4.29a) that have asymptotically decaying behaviour at the diffusion-free
Brusselator steady state, and ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . 107

B.6 Solutions to the Burgers–Brusselator equation (4.25) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 2.0,
β = 5.0 (4.29b) that are stable and oscillatory at the diffusion-free Brusselator steady
state, and ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.7 Solutions to the Burgers–Brusselator equation (4.25) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 1.0,
β = 3.0 (4.29c) that are unstable at the diffusion-free Brusselator steady state, and
ngrid = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ix



List of Abbreviations

ARD Advection-Reaction-Diffusion
ARK Additive Runge–Kutta
BDF Backwards Differentiation Formula
BE Backward Euler
CFERK Commutator-Free Exponential Runge–Kutta
CFL Courant–Friedrichs–Lewy
DIRK Diagonally Implicit Runge–Kutta
ERK Explicit Runge–Kutta
FE Forward Euler
FSAL First Same as Last
GUI Graphical User Interface
IF-2-ARK Integrating-Factor-Based 2-Additive-Runge–Kutta
IMEX Implicit-Explicit Runge–Kutta
IRK Implicit Runge–Kutta
IVP Initial-Value Problem
MOL Method of Lines
NDF Numerical Differentiation Formula
ODE Ordinary Differential Equation
OIF Operator Integrating factor
PDE Partial Differential Equation
PSE Problem-Solving Environment
RHS Right-Hand Side
RKC Runge–Kutta–Chebyshev
RK Runge–Kutta
SDIRK Singly Diagonally Implicit Runge–Kutta

x



Chapter 1

Introduction

Many physical processes are modelled in terms of differential equations, i.e., equations for an

unknown function in terms of its derivatives. Examples of differential equations are found in many

of the mathematical models that are derived from fields such as physics, engineering, chemistry,

biology, and the earth sciences [51, p.1]. Many specific physical processes in these fields are modelled

as a flowing medium consisting of several interacting components. Examples include combustion

in a flame [8, p.33], relevant to chemistry and engineering applications, oceanic and atmospheric

models [79], relevant to current environmental issues such as climate change, and models of tumour

angiogenesis, relevant to medical research [51, p.134].

There are three distinct physical processes that are predominant in many models of flowing

media with interacting components: the motion of the flowing medium itself is a process known as

advection, the interactions of the different species is a process known as reaction, and the change

of concentrations due to gradients in the solution is a process known as diffusion. Collectively,

models that use these three processes are known as advection-reaction-diffusion models and are

expressed mathematically using differential equations [51, p.1]. The type of differential equations

used are known as partial differential equations, i.e., differential equations for an unknown function

of multiple independent variables in terms of its partial derivatives with respect to those variables.

In most applications, an analytical solution to the partial differential equation describing a partic-

ular model is unavailable; therefore approximation methods known as numerical methods are used

instead. Numerical methods discretize the variables of a differential equation; i.e., each variable

is approximated at only a finite number of points within its domain in space and time. A com-

mon methodology used to solve partial differential equations is the process known as the method

of lines, which approximates the partial differential equation by a system of ordinary differential

equations, i.e., a differential equation with derivatives in terms of only one independent variable,

typically time. Compared to partial differential equations, ordinary differential equations are more

readily analysed and benefit from well-developed algorithms and software. This thesis is concerned

with numerical methods for solving ordinary differential equations, mainly those derived from the

semi-discretization of advection-reaction-diffusion equations by the method of lines.

A significant barrier to solving many advection-reaction-diffusion equations efficiently is that
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each distinct process often requires a numerical method with different mathematical properties, and

those properties are often mutually exclusive among many basic numerical methods. For example,

one methodology for developing more complex numerical methods is known as splitting, where a

different numerical method is used for each distinct process and the results are periodically merged.

The three-component process of advection, reaction, and diffusion usually combines additively in

the expression of the differential equation that describes a particular model or the corresponding

terms of the ordinary differential equation after semi-discretization [51]. This motivates the de-

velopment of complex numerical methods that additively combine more basic numerical methods.

Crank–Nicolson-Leapfrog [51, p.387] is an example of a numerical method that is commonly used

for advection-reaction-diffusion models and splits the vector field into two parts for an efficient

solution. Because advection-reaction-diffusion equations model three processes, at least one of the

two components of a numerical method that splits the vector field into two parts must be used for

two physical processes at once. A potentially better solution is to use a distinct numerical method

for all three physical processes of an advection-reaction-diffusion, an example of which is given

in [8].

Mathematical analysis can typically give the general properties of a numerical method, such

as order of convergence or limits on stability. However, empirical experimentation is required to

determine which numerical methods are most practical and efficient for particular classes of ordinary

differential equations. A major barrier to the widespread use of more complex numerical algorithms

is the effort required to develop software that implements new numerical methods and compares

them with existing methods.

To overcome the limitations of using traditional scientific software, software known as problem-

solving environments are used [81]; well-known examples of problem-solving environments are

Matlab, Maple, and Mathematica. These problem-solving environments implement numer-

ical methods for solving partial differential equations and ordinary differential equations, often

with uniform interfaces to allow the user to easily experiment with the various solvers. However,

except for the embedded scripting languages, existing problem-solving environments do not have

specific features to allow detailed experimentation with the wide range of ordinary differential

equation methods that have been proposed and developed. In particular, the scripting language

within Matlab is used extensively in the literature to perform numerical experiments. However,

a problem-solving environment that allows the user to design algorithms without extensive code

modification is desirable in order to easily experiment with specific algorithms for specific classes of

ordinary differential equations, including semi-discretized advection-reaction-diffusion equations.

The problem-solving environment pythODE has been developed specifically to experiment with

a wide variety of numerical methods for ordinary differential equations, including novel solution

methods. Modern object-oriented and software-engineering techniques are used to create a modular
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framework that allows the components of an ordinary differential equation solver to be added or

interchanged with minimal code modification. Additional features allow for the design of experi-

ments involving many different solver components and their parameters, as well as detailed analysis

of those experiments. The part of pythODE developed specifically for this thesis solves initial-value

problems, which are ordinary differential equations where the state, typically at the initial time, is

fully known. The typical solution method for an initial-value problem is to take a finite number

of timesteps from the initial time until the final time where a solution is desired. The initial-value

problems considered in this thesis are advection-reaction-diffusion equations semi-discretized by the

method of lines.

The class of advection-reaction-diffusion equations of interest are advection-dominated ; i.e.,

where the behaviour of the advection process is dominant over the diffusion and reaction processes.

The problem-solving environment pythODE is used to test a composite numerical method that treats

the three terms of an advection-reaction-diffusion equation with separate methods. Many numerical

methods have stepsize restrictions due to stability or accuracy, as a result of properties such as

stiffness and the Courant–Friedrichs–Lewy condition, when solving the initial-value problems from

the semi-discretization of advection-reaction-diffusion equations. When present, these restrictions

potentially require a computational cost many orders of magnitude higher for some classes of

numerical methods than for others. Although a general-purpose implicit initial-value problem

method typically solves most semi-discretized advection-reaction-diffusion equations accurately,

there exist specialized methods considered in this thesis to overcome stepsize restrictions due to

stiffness and the Courant–Friedrichs–Lewy condition more efficiently.

All three processes of an advection-reaction-diffusion equation can cause numerical methods to

have some form of stepsize restriction after semi-discretization. The advection term is generally not

considered stiff; however, stepsize restrictions due to the Courant–Friedrichs–Lewy condition are

important. The diffusion term is generally considered stiff because, with most practical spatial grids,

the corresponding initial-value problem term is stiff. The reaction term can either be stiff or non-

stiff, depending on the specific advection-reaction-diffusion problem. However, the stiffness of the

reaction term of the semi-discretized advection-reaction-diffusion is typically problem dependent. In

the case of a stiff reaction term, typically there are no specialized methods to solve it more efficiently

than a general-purpose implicit initial-value problem method. However, because the reaction term

is not typically spatially coupled, i.e., it does not have partial derivatives with respect to the spatial

variable, using splitting to solve it with a separate initial-value problem method from the advection

and diffusion terms results in many smaller systems of equations. These can often be solved more

efficiently than the large coupled system of equations that would result from solving the entire

initial-value problem with an implicit initial-value problem method [89]. Even for the non-stiff

case, solving the reaction term along with the other terms can interfere with finding the solution
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of a semi-discretized advection-reaction-diffusion.

In general, numerical methods known as Eulerian methods, which observe the flowing medium

from a fixed spatial grid, have many unsatisfactory characteristics when used to solve the ad-

vection term, including stepsize restrictions and poor qualitative behaviour. More suitable are

semi-Lagrangian methods, which follow the fluid particles in the flowing medium and map the

solution back to the fixed grid periodically. Semi-Lagrangian methods have enhanced stability and

can exhibit superior qualitative behaviour to Eulerian methods [96, p.2207]. A connection has been

made between semi-Lagrangian methods and exponential maps, such as the matrix exponential, by

using Lie group theory [18, 22]. This theory gives a mathematical framework to construct numeri-

cal methods for advection-reaction-diffusion equations that incorporate semi-Lagrangian methods,

which are specific only to the advection term, along with numerical methods suitable for the semi-

discretized reaction and diffusion terms. The numerical methods of interest in this thesis are known

as Runge–Kutta methods. High accuracy is achieved by approximating the solution at intermediate

times and using these approximations to find the numerical solution at the end of the timestep.

Numerical methods known as additive Runge–Kutta methods [7, 89] combine Runge–Kutta meth-

ods, typically two, for different terms of an additive vector field and have commonly been used for

semi-discretized advection-reaction-diffusion equations.

A class of numerical methods that use exponential maps for the advection term are known as

commutator-free exponential Runge–Kutta methods and can be viewed as generalizations of the

well-known classic Runge–Kutta methods. When the diffusion process occurs isotropically, i.e., it

occurs symmetrically with respect to each spatial dimension, this structure can be exploited by

specific Runge–Kutta methods to overcome stiffness in the diffusion term. In the case of many

advection-dominated advection-reaction-diffusion problems, the stiff diffusion term can be solved

efficiently without requiring the solution of systems of implicit equations by using a class of Runge–

Kutta methods known as Runge–Kutta–Chebyshev methods.

A simplified advection-dominated advection-reaction-diffusion equation is proposed and is shown

to cause numerical difficulties with some existing initial-value problem methods. It is constructed as

a combination of the well-studied Burgers equation (4.5), which has advection and diffusion, along

with the well-studied Brusselator equation (4.24), which has diffusion and a nonstiff oscillatory

reaction. This makes for an ideal initial-value problem to test 3-additive splitting methods. A

new class of methods that we call integrating-factor-based 2-additive-Runge–Kutta methods is

developed that combines a commutator-free exponential Runge–Kutta method for advection, a

Runge–Kutta–Chebyshev method for diffusion, and a classic explicit Runge–Kutta method for the

non-stiff reaction term. Although a semi-Lagrangian integrator could in principle be used for the

exponential map of the commutator-free exponential Runge–Kutta method, a method based on the

matrix exponential to approximate the exact flow is used instead as a proof of concept.
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It is shown through numerical experiments with pythODE that integrating-factor-based 2-additive-

Runge–Kutta methods can have lower computational cost than other methods such as Runge–

Kutta–Chebyshev or 2-additive Runge–Kutta, which are known to solve some advection-reaction-

diffusion equations more efficiently than fully implicit numerical methods. The integrating-factor-

based 2-additive-Runge–Kutta methods are also shown to find numerical solutions with smaller

errors than is feasible with the other methods tested.

1.1 Structure of the thesis

The remainder of the thesis is divided into the following chapters. The theory of numerical meth-

ods for the classic Runge–Kutta and additive Runge–Kutta methods, advection-reaction-diffusion

equations, and the method of lines is covered in Chapter 2. A survey of existing software for

solving semi-discretized advection-reaction-diffusion equations and an overview of the design of

the problem-solving environment pythODE is covered in Chapter 3. Commutator-free exponential

Runge–Kutta methods, Runge–Kutta–Chebyshev methods, and the new integrating-factor-based

2-additive-Runge–Kutta methods that treat each process of an advection-reaction-diffusion equa-

tion separately are covered in Chapter 4, with experiments to show that for specific semi-discretized

advection-reaction-diffusion equations, these methods can outperform existing methods in terms of

both efficiency and accuracy. The contributions and proposed future work based on the results from

testing the new integrating-factor-based 2-additive-Runge–Kutta methods as well as additional de-

tail on the current state of development of pythODE are covered in Chapter 5.
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Chapter 2

Background

2.1 ODE theory

The material in this section is largely adapted from [15] and [43].

An equation for an unknown function y in terms of its derivatives is known as a differential

equation. If the unknown function y depends on only one independent variable t, i.e., y = y(t),

then the equation is known as an ordinary differential equation (ODE) and has the general form

F

(
t,y,

d

dt
y,

d2

dt2
y, . . . ,

dM

dtM
y

)
= 0. (2.1)

A solution of (2.1) is a function y = y(t) that satisfies (2.1). This thesis is primarily concerned

with ODEs of the form
d

dt
y(t) = f(t,y(t)), (2.2a)

where y(t) : R→ Rm is a function with independent variable time t ∈ R and f : R× Rm → Rm is

typically called the right-hand side (RHS) of the ODE. Under suitable assumptions, ODEs of the

form (2.1) can be converted to a system of first-order equations of the form (2.2a) for convenience

in the use of software and analysis. An initial-value problem (IVP) is an ODE (2.2a) together with

additional information about the solution known as the initial condition

y(t0) = y0, (2.2b)

where t0 ∈ R is known as the initial time and y0 ∈ Rm is known as the initial value.

In order to further simplify the analysis of (2.2a), the RHS can be converted into autonomous

form by defining a new dependent variable, t = Ym+1(t),

Y(t) =

y(t)

t

 =

 Ȳ(t)

Ym+1(t)

 ,

where Ȳ(t) represents the first m components of Y(t). The autonomous form allows the RHS to
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be considered without the explicit dependence on t, i.e.,

d

dt
Y(t) = F(Y(t)),

where

F(y(t)) =

f(Ym+1(t), Ȳ(t))

1

 .

Without loss of generality, the autonomous form of an ODE (2.2a) can be stated as

d

dt
y(t) = f(y(t)), (2.3)

which is the notation used for the autonomous form of an ODE in this thesis with initial condition

(2.2b) in the case of an IVP.

A function f(y(t)) is said to be Lipschitz continuous [15, p.5] on D ⊆ Rm if for some R > 0, a

constant L can be chosen such that

||f(u)− f(v)|| ≤ L||u− v|| ∀ ||u− v|| ≤ R, (2.4)

for any u,v ∈ D. If f(y) is Lipschitz continuous, then if a solution to (2.2) exists at some time, it

is guaranteed to be unique [61, p.5]. Lipschitz continuity does not necessarily guarantee a solution

exists on all of D [87, p.7].

2.1.1 Numerical methods for ODEs

Analytical methods exist for solving particular classes of ODEs, but these classes do not encompass

many problems in practice, specifically large, complex, or nonlinear problems. Problems for which

an analytical solution does not exist or is infeasible to use can generally be approximated using

numerical methods.

Numerical methods for IVPs typically compute a solution sequentially by taking one or more

steps in time t from the initial time t0 to the final time tf . In order to apply numerical methods

effectively in general, it is necessary to estimate the accuracy of the solution that is computed.

The global error of the numerical solution of an IVP at time tn+1 is defined as

eglobal,n+1 = y(tn+1)− yn+1,

where y(tn+1) is the exact solution at tn+1 and yn+1 is the numerical solution at step n + 1 with

a corresponding time of tn+1. The global error is the net error accumulated during the solution,

and in practice it cannot be calculated exactly because the exact solution is not generally known.

7



However, even in the case where an analytical solution is not known, the exact solution can be

shown to exist and be unique [61, p.5].

An alternative to finding global error is to use the concept of local error or local truncation error,

which in fact can be estimated in practice. The local solution ỹ(t) is the exact solution of (2.2a)

over one timestep ∆tn given the numerical solution yn as the initial condition. The numerical

solution can be stated in terms of the local solution as

elocal = ỹ(tn+1)− yn+1, (2.5)

where ỹ(tn+1) : R→ Rm is the local solution at tn+1, yn+1 ∈ Rm is the numerical solution at tn+1,

and ∆tn = tn+1 − tn is the stepsize. The asymptotic behaviour of the local error is O(∆tn
p+1),

where p is known as the order of convergence of the numerical method. The asymptotic behaviour

of the global error is O(∆tn
p) because a numerical method takes O

(
tf−t0

∆t

)
steps in total over the

solution interval and under the assumption tf − t0 = O(1) [86].

The most basic method for finding the numerical solution of an IVP is Euler’s method, also

known as Forward Euler (FE). One step of FE is given by

yn+1 = yn + ∆tnf(tn,yn), (2.6)

representing a constant approximation of f in (2.2a) over one timestep. The approximate solution

given by FE is the union of these approximations over the entire solution interval. Although in

theory as ∆tn → 0+, FE approaches the exact solution, in practice the accuracy is limited by the

finite amount of precision associated with computer arithmetic. The asymptotic behaviour of the

local truncation error of FE after one step is O(∆t2n), and the order of convergence is one. This

is generally too low to solve problems efficiently in practice; obtaining a highly accurate solution

requires a considerable computational effort because stepsizes must be made small.

FE is also an example of an explicit method. A numerical method is said to be explicit if all

quantities involved in taking a step are given in terms of known (past) quantities. Otherwise, the

method is said to be implicit; i.e., there is at least one quantity given in terms of itself or unknown

(future) quantities. The most basic implicit method is known as Backward Euler (BE), with one

step given by

yn+1 = yn + ∆tnf(tn+1,yn+1). (2.7)

Finding a solution using this method requires the solution of m simultaneous equations and hence

for a given stepsize is more computationally expensive than FE. The asymptotic behaviour of the

local truncation error of BE after one step is O(∆t2n), and the order of convergence is one. This

is the same order of convergence as FE, but in the next subsection we show why this method can
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take much larger steps than FE for some problems, making it a useful method in practice.

2.1.2 Stiffness and stability

The material in this subsection is largely adapted from [15, 44, 61].

For some stepsizes that are small enough for a desired accuracy, FE is unstable for some IVPs;

i.e., the numerical solution exponentially accumulates error. When a numerical method is con-

strained to use a stepsize that is excessively small relative to the accuracy required, it is said that

the problem is stiff in the interval where this occurs. Stiff regions have large Lipschitz constants

(2.4) that cause some numerical methods to become unstable, therefore resulting in an exponen-

tial accumulation of error and hence a “blow up” of the solution. The stepsize needed to yield

a sufficiently accurate solution of stiff problems can be so small that solving the IVP becomes

prohibitively expensive.

In order to study the stability of numerical methods, we first consider the linearization of (2.2a)

at tn as a system of linear constant-coefficient ODEs [44, p.15] given by

d

dt
ŷ(t) = Jf (y(tn))ŷ(t), (2.8)

where ŷ(t) is the solution to the linearized system of ODEs and Jf ∈ Rm×m is known as the

Jacobian matrix, given by

Jf =


∂f1

∂y1
· · · ∂f1

∂ym
...

. . .
...

∂fm
∂y1

· · · ∂fm
∂ym

 . (2.9)

For the purposes of stability analysis, Jf is assumed to be diagonalizable; i.e., there exists an

invertible matrix P such that Λ = diag(λ1, λ2, . . . , λm) = P−1JfP. The case where Jf is not

diagonalizable is covered in [46] but is beyond the scope of this thesis. A change of variables

u(t) = P−1ŷ(t) results in
d

dt
u(t) = Λu(t), (2.10)

which is equivalent to (2.8). This change of variables decouples the ODEs and allows (2.3) to be

considered as m scalar test problems of the form

d

dt
u(t) = λu(t), (2.11)

where λ ∈ C is the eigenvalue associated with a particular component of the ODE in (2.10).

Decoupling the variables in (2.2a) allows the stability of a numerical method to be studied

using (2.11). If <(λ) ≤ 0, then the exact solution of the scalar test problem remains bounded as
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t → +∞. It is therefore desirable that any numerical method applied to (2.11) also produces a

bounded solution. Applying FE (2.6) to (2.11) yields

un+1 = un + λ∆tnun. (2.12)

It is easily seen that (2.12) remains bounded if and only if |1 + λ∆tn| ≤ 1. The values for λ∆tn

for which a numerical method remains bounded when solving (2.11) define the region of absolute

stability. Letting z = λ∆t, there exists a function R(z) such that the region of absolute stability in

the complex plane is given as |R(z)| ≤ 1. In the case of FE, this region is defined by R(z) = 1 + z,

a region that is a circle of radius 1 centred at (−1, 0) as shown in Figure 2.1. Applying BE (2.7) to

(2.11) yields

un+1 = un + λ∆tnun+1. (2.13)

It is seen that (2.13) remains bounded if and only if R(z) = 1
1−z . In this case, the region of

absolute stability is the whole complex plane excluding a circle of radius 1 centred at (1,0) as

shown in Figure 2.2. BE has an unbounded region of stability, and it is stable when solving stiff

IVPs [44, p.3].

-2 -1 1 2

-i

i

Figure 2.1: The region (shaded) of abso-
lute stability for FE.

-2 -1 1 2

-i

i

Figure 2.2: The region (shaded) of abso-
lute stability for BE.

Several types of stability are defined based on the geometry of the stability region. Any method

for which |R(z)| ≤ 1 ∀ <(z) ≤ 0 is said to be absolutely stable; this property is also known as

A-stability. A less restrictive form of stability is A(α)-stability, which is the region defined by

|R(z)| ≤ 1 if −α < π − arg(z) < α, α ∈ (0, π/2]. When α = π/2 this corresponds to A-stability.

A stronger form of stability is L-stability, which implies A-stability with the additional condition

that |R(z)| → 0 as <(z) → −∞ [61, p.225]. Although L-stability is effective for many types

of IVPs because it rapidly dampens stiff components of the ODE, this property is not always

desirable [44, p.44; 61, p.227–231].

Bounded stability regions constrain many numerical methods to a small stepsize when solving

stiff problems. If this relatively small step size occurs because the solution is not smooth, this is to
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be expected due to accuracy considerations, so the problem is not considered stiff in that interval.

In general, numerical methods with unbounded stability regions are able to solve stiff problems

more efficiently than those with bounded stability regions [61, p.220].

A good working definition of stiffness is that an IVP is stiff in an interval if it can be solved

more efficiently in that interval with an implicit method designed for stiff problems, i.e., a stiff

method, than with a method not suitable for stiff problems, i.e., a non-stiff method, such as an

explicit method. There are specific explicit methods that can solve particular classes of stiff IVPs

efficiently, but in general many practical problems are stiff and require the development of implicit

methods for their efficient solution.

2.2 Runge–Kutta methods

The material in this section is largely adapted from [15] and [43].

Runge–Kutta (RK) methods are a generalization of FE and BE that use multiple function

evaluations to obtain higher orders of convergence. The general form of an RK method is

ki = f

tn + ∆tnci,yn + ∆tn

s∑
j=1

aijkj

 , i = 1, 2, . . . , s, (2.14a)

yn+1 = yn + ∆tn

s∑
i=1

biki, (2.14b)

where aij are the elements of a matrix A ∈ Rs×s, bi, and ci are elements of the vectors b, c ∈ Rs

respectively, with A,b, c forming the Butcher tableau that characterizes a specific RK method.

The ki are the s intermediate stages produced by the RK method and represent approximations

to the derivative of y(tn + ∆tnci). The Butcher tableau is often displayed graphically as follows

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

or

c A

bT
(2.15)

If A is a strictly lower-triangular matrix, then the method is known as an explicit Runge–Kutta

(ERK) method; i.e., each stage can be found sequentially without the need to solve systems of
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simultaneous equations. The general form of an ERK method is given by

ki = f

tn + ∆tnci,yn + ∆tn

i−1∑
j=1

aijkj

 , i = 1, 2, . . . , s, (2.16a)

yn+1 = yn + ∆tn

s∑
i=1

biki. (2.16b)

An example of an ERK method that is presented in many textbooks, is “the” RK method [43, p.138],

which has a Butcher tableau of

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

(2.17)

This method is fourth-order accurate and requires four evaluations of the RHS per step.

If A is not strictly lower triangular then the method is called an implicit Runge–Kutta (IRK)

method. IRK methods require the solution of systems of simultaneous equations because in principle

the stages cannot be found explicitly. An example of an IRK method is the 3-stage Radau IIA

method of fifth order, commonly known as RADAU5, that has a Butcher tableau of

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
360

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

(2.18)

RADAU5 requires the solution of 3m simultaneous equations for each step, making the implemen-

tation significantly more complicated than for an ERK method. RADAU5 has a stability function

R(z) = 1+2z/5+z2/20
1−3z/5+3z2/20−z3/60 , which implies L-stability and gives the unbounded stability region that

is shown in Figure 2.3. In general, R(z) for IRK methods is a rational function [43, p.41]. General

IRK methods like the Radau IIA family can have arbitrarily high orders of convergence and still

possess properties such as L-stability.

IRK methods that have a lower-triangular matrix A are known as diagonally implicit Runge–

Kutta (DIRK) methods. These methods allow the stages to be evaluated sequentially and require

the solution of only m simultaneous equations for each stage. Therefore their implementation is
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Figure 2.3: The region (shaded) of absolute stability for RADAU5.

simplified over a general IRK method with a full A matrix. Furthermore, if all of the aii are equal,

the same iteration matrix can be used for each stage when using Newton’s method, an algorithm

that requires the Jacobian (2.9) to solve the systems of simultaneous equations. The resulting

methods are known as singly diagonally implicit Runge–Kutta (SDIRK) methods. An example of

an SDIRK method is the L-stable SDIRK of fourth order [44, p.100], which has a Butcher tableau

of
1
4

1
4

3
4

1
2

1
4

11
20

17
50 − 1

25
1
4

1
2

371
1360 − 137

2720
15
544

1
4

1 25
24 − 49

48
125
16 − 85

12
1
4

25
24 − 49

48
125
16 − 85

12
1
4

(2.19)

RK methods applied to extremely stiff problems exhibit order reduction: they behave as though

they have a lower order of convergence than that implied by the asymptotic behaviour of the local

error (2.5). For stiff problems, all RK methods exhibit order reduction, ultimately being reduced to

their stage order in the case of extremely stiff problems. The stage order is the minimum order of

convergence of the method and its constituent stages. The constituent stages of an ERK or SDIRK

method have an order of convergence of one, whereas general IRK methods can have higher stage

orders. For example, s stage IRK methods of the Radau family have stage order s; hence RADAU5

(2.18) has a stage order of three [44, p.237; 61, p.282].

2.2.1 Additive Runge–Kutta methods

The material in this subsection is largely adapted from [7], [51], and [55].

Some ODEs have a RHS that can be decomposed additively. An N -additive ODE has an RHS
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of the form

f(t,y) =

N∑
ν=1

f [ν](t,y). (2.20)

In many cases, each f [ν](t,y) has unique characteristics, often arising from distinct physical pro-

cesses, such as in the case of semi-discretized advection-reaction-diffusion equations that are further

described in Section 2.7, that can be more efficiently solved using distinct numerical methods [55].

ARK methods treat the N terms (2.20) with N separate RK methods, allowing the use of an

optimal method for each term. The general form of an additive Runge–Kutta (ARK) method is

given by

k
[ν]
i = f [ν]

tn + ∆tnc
[ν]
i ,yn + ∆tn

N∑
ν=1

s∑
j=1

a
[ν]
ij k

[ν]
j

 , i = 1, 2, . . . , s,

yn+1 = yn + ∆tn

N∑
ν=1

s∑
j=1

b
[ν]
i k

[ν]
i ,

where the variables are defined as for standard RK methods (2.14), except that there are N Butcher

tableaux and Ns stage values. The Butcher tableaux for ARK methods then consist of N individual

tableaux

c[1] A[1]

b[1]T
,

c[2] A[2]

b[2]T
, . . . ,

c[N ] A[N ]

b[N ]T

In practical implementations, there are often simplifying assumptions, e.g., b[µ] = b[ν], c[µ] =

c[ν], µ 6= ν, µ, ν = 1, 2, . . . , N . These assumptions reduce the number of remaining order conditions

to be satisfied by the remaining free method coefficients required for the method to have a given

order; this topic is discussed in Section 2.4.

The ARK methods most commonly used in practice are 2-ARK methods. Methods that are

composed of an ERK method and an IRK method are known as implicit-explicit (IMEX) Runge–

Kutta methods. These methods are commonly designed for 2-additive ODEs, where one term f [1]

is nonlinear or non-stiff and the other term f [2] is linear or stiff [7]. The general form of a linearly
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implicit IMEX method that uses an SDIRK method to solve f [2] is

k
[1]
i = f [1]

tn + ∆tnc
[1]
i ,yn + ∆tn

i−1∑
j=1

(
a

[1]
ij k

[1]
j + a

[2]
ij k

[2]
j

) , i = 1, 2, . . . , s,

(2.21a)

(
I−∆t a

[2]
ii J
)

k
[2]
i = f [2]

tn + ∆tnc
[2]
i ,yn + ∆tn

i−1∑
j=1

(
a

[1]
ij k

[1]
j + a

[2]
ij k

[2]
j

) , i = 1, 2, . . . , s,

(2.21b)

yn+1 = yn + ∆tn

s∑
i=1

(
b
[1]
i k

[1]
i + b

[2]
i k

[2]
i

)
, (2.21c)

where a system of linear equations (2.21b) must be solved for each k
[2]
i . An advantage of IMEX

methods based on SDIRK is that for additive ODEs with a (stiff) linear term, each of the stages

can be found sequentially with only one solution of a linear system, whereas a non-additive IRK

method would generally require the solution of a nonlinear system.

An example of an IMEX method is IMEX(4,4,3) [7], which is third-order accurate with an

L-stable SDIRK method, given by

0 0 0 0 0 0

1
2

1
2 0 0 0 0

2
3

11
18

1
18 0 0 0

1
2

5
6 − 5

6
1
2 0 0

1 1
4

7
4

3
4 − 7

4 0

1
4

7
4

3
4 − 7

4 0

0 0 0 0 0 0

1
2 0 1

2 0 0 0

2
3 0 1

6
1
2 0 0

1
2 0 − 1

2
1
2

1
2 0

1 0 3
2 − 3

2
1
2

1
2

0 3
2 − 3

2
1
2

1
2

2.3 Other IVP methods

Multistep methods are a class of IVP methods that use information from multiple previous steps to

obtain a high order of convergence. Explicit multistep methods are generally more efficient for high-

accuracy solutions when function evaluations are expensive because they only require one function

evaluation per step for any order, in contrast to the multiple function evaluations per step required

by ERK methods [43, p.427]. Implicit multistep methods have the disadvantage of not being A-

stable at orders of convergence higher than two, a consequence known as the second Dalhquist

barrier. The highest known order of convergence for A(α)-stable implicit multistep methods is
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six using BDF-based methods [44, p.247], but in practice the order is limited to five. General

linear methods are a generalization of both multistep and RK methods, including ARK methods.

They use both past values and multiple function evaluations per step to achieve a high order of

convergence; they are further described in [15, 16, 43, 44, 53].

2.4 Order conditions

The material in this section is largely adapted from [15, 43, 61].

Numerical methods with high orders of convergence can reduce the computational cost of solving

an IVP compared with low-order methods by many orders of magnitude, especially when high

accuracy is desired [43, p.130]. High-order methods require careful choices for the values of A, b,

and c in the Butcher tableaux. The relationships between these coefficients that determine the

order of a method are known as the order conditions.

The Taylor series [43, p.46] of y(tn + ∆t) satisfying (2.2a) at tn is given by

y(tn + ∆t) = y(tn) +

∞∑
i=1

(∆t)i

i!

d(i−1)

dt(i−1)
f(y(tn)). (2.22)

The Taylor series of a numerical method at yn is defined as the Taylor series of the function that

results when the local solution ỹn(t) is substituted into the numerical method. The truncation

error (2.5) of a numerical method is equivalent to the terms of (2.22) that have i > p+1, where p is

the order of convergence. Thus for a method to have an order of convergence of p, the Taylor series

of the numerical method must match the Taylor series of the local solution up to and including

term p+ 1. The order conditions required for an order of convergence of p are derived by matching

the derivatives up to and including those of order p of the numerical solution with those of the local

solution. Therefore if a numerical method satisfies all order conditions up to order p, then it has

an order of convergence of p [43, p.144].

To describe the structure of higher derivatives of y(t), constructs known as elementary differ-

entials are used, a term first introduced by John Butcher [13, 41]. The first derivative of y(t) is

associated with an elementary differential given by

G1(f(y(t))) := f(y(t)). (2.23a)

The elementary differentials associated with higher-order derivatives form a set of expressions,

where the set of elementary differentials associated with derivative q of y(t) is the set Gq(y(t))
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that contains a representative of each equivalent expression in the set Ḡq(y(t)) given by

Ḡq(f(y(t))) :=

gq :=
∑m
i=1

(∑m
h1,h2,...,hσ=1

∂σfi(y(t))

∂yh1∂yh2 . . . ∂yhσ
(gδ1)h1(gδ2)h2 . . . (g

δσ )hσ

)
ei

q = 1 + δ1 + δ2 + . . .+ δσ

σ ∈ 1, 2, . . . , q − 1

δj ∈ 1, 2, . . . , q − 1

gδj ∈ Gδj (y(t))


, (2.23b)

where gq = gq(f(y(t))) : Rm → Rm is an elementary differential of order q, yhi is component hi of

y(t), (gδj )hi is component hi of the elementary differential gδj , and ei ∈ Rm, i ∈ 1, 2, . . . ,m, are

the standard basis vectors [43, 145-150; 61, p.157-162].

Derivative q of y(t) is given in terms of elementary differentials by

dq

dtq
y(t) =

∑
gq∈Gq(f(y(t)))

α(gq)gq, (2.24)

where α(gq) is a factor expressing the number of times each elementary differential gq appears in

the expression of the derivative. This representation corresponds to a special case of Faá di Bruno’s

formula for the Taylor series of the exact solution y(t) from (2.2a) [43, p.150].

The increasing complexity of these expressions and the requirement to derive values such as

α(gq) from (2.24) make it advantageous to use a graphical representation in the form of rooted

trees. A rooted tree has one vertex that is known as the root. The vertices are connected via

branches, and a vertex that does not have branches extending away from the root is a leaf. Let the

mapping ψ(v) take the vertex v to the next vertex closer to the root of the tree. The number of

vertices of a rooted tree is known as its order.

The first-order elementary differential G1(f(y(t))) ∼ r is represented as a single vertex. The

elementary differential of gq ∈ Gq(f(y(t))) is represented as a rooted tree with σ branches ex-

tending from the root and constructed recursively by joining the roots of the trees representing

gδ1 ,gδ2 , . . . ,gδσ from (2.23b). When gδi = G1(f(y(t))), the branch terminates in a leaf. Any

rooted tree τ ∼ gq has α(τ) = α(gq), which corresponds to the number of topologically unique

labellings of the non-root vertices of τ . For example, the rooted tree ��AAr r
rr

has three topologically

unique labellings of the non-root vertices, given by

��AA irh1 rh2r
h3r
, ��AA irh3 rh3r

h2r
, ��AA irh2 rh3r

h1r
.
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An example of a rooted tree and the corresponding elementary differential is

��AA rirh2 rh1r h3

rh4

∼
m∑
i=1

 m∑
h1,h2,h3=1

∂3fi(y(t))

∂yh1
∂yh2

∂yh3

fh1
(y(t))fh2

(y(t))

(
m∑

h4=1

∂fh3
(y(t))

∂yh4

fh4
(y(t))

) ei,

that has σ = 3, δ1, δ2 = 1, and δ3 = 2. The elementary differential represented by gδ3 has σ = 1 and

δ1 = 1. The first four derivatives of the exact solution of (2.2a) in terms of elementary differentials

and rooted trees are as follows

r ∼ d

dt
y(t) = f(y(t)), (2.25a)

rr ∼ d2

dt2
y(t) =

m∑
i=1

(
m∑
h=1

∂fi(y(t))

∂yh
fh(y(t))

)
ei, (2.25b)

AA��r rr
+ rr

r
∼ d3

dt3
y(t)

=

m∑
i=1

 m∑
h1,h2=1

∂2fi(y(t))

∂yh1∂yh2

fh1
(y(t))fh2

(y(t))

 ei

+

m∑
i=1

 m∑
h1,h2=1

∂fi(y(t))

∂yh1

∂fh1
(y(t))

∂yh2

fh2(y(t))

 ei, (2.25c)

r rrrAA�� + 3 ��AAr r
rr

+
AA��rr

rr
+ rr

rr
∼ d4

dt4
y(t)

=

m∑
i=1

 m∑
h1,h2,h3=1

∂3fi(y(t))

∂yh1
∂yh2

∂yh3

fh1
(y(t))fh2

(y(t))fh3
(y(t))

 ei

+ 3

m∑
i=1

 m∑
h1,h2,h3=1

∂2fi(y(t))

∂yh1
∂yh2

fh1
(y(t))

∂fh2
(y(t))

∂yh3

fh3
(y(t))

 ei

+

m∑
i=1

 m∑
h1,h2,h3=1

∂fi(y(t))

∂yh1

∂2fh1
(y(t))

∂yh2
∂yh3

fh2
(y(t))fh3

(y(t))

 ei

+

m∑
i=1

 m∑
h1,h2,h3=1

∂fi(y(t))

∂yh1

∂fh1
(y(t))

∂yh2

∂fh2
(y(t))

∂yh3

fh3
(y(t))

 ei, (2.25d)

The expression corresponding to the tree τ = ��AAr r
rr

in (2.25d) has a coefficient of 3 because there
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are three topologically unique labellings of the non-root vertices of τ , therefore in (2.24) α(τ) = 3.

Higher derivatives result in a combinatorial explosion of the number of trees needed for a

representation of a particular derivative. Table 2.1 gives the number of topologically unique trees

associated with each order of derivative q.

q 1 2 3 4 5 6 7 8 9 10
number of unique trees 1 1 2 4 9 20 48 115 286 719

Table 2.1: Total number of trees associated with derivatives of up to tenth order.

2.4.1 Order conditions for Runge–Kutta methods

The derivatives of the numerical solution from an RK method can be represented in terms of rooted

trees in a similar manner to the exact solution. In this thesis it is assumed that the following holds

s∑
j=1

aij = ci, (2.26)

allowing the autonomous form of an ODE (2.3) to be used in the analysis of RK methods [43, p.143].

The derivatives of the numerical solution of an RK method satisfy

Φv1
(τ) =

s∑
v2,v3,...,vq=1

aψ(v2),v2
aψ(v3),v3

. . . aψ(vq),vq ,

dq

dtq
ỹn(t) =

∑
τ∈T q

α(τ)γ(τ)

s∑
i=1

biΦi(τ)gqτ , (2.27)

where v1, v2, . . . , vq are the q vertices of the rooted tree τ with v1 representing the root, γ(τ) is

the product of the number of vertices of τ with the number of vertices of the resulting rooted trees

when the roots are removed one by one from τ , T q is the set of rooted trees of order q, and aψ(v),v

is the value at row ψ(v) and column v in the matrix A from the Butcher tableau where the vertices

are labelled with the set {1, 2, . . . , s} based on the summations in (2.27) [43, p.151], and gqτ is the

elementary differential from Gq(f(yn)) equivalent to the tree τ .

For example, the fifth order tree τ = ��AA rirh2 rh1r h3

rh4

, gives Φi(τ) from (2.27) as

Φi(τ) =

s∑
h1,h2,h3,h4=1

ai,h1
ai,h2

ai,h3
ah3,h4

=

s∑
i,h3=1

c2i ai,h3
ch3

,
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This procedure is then repeated for all rooted trees of fifth order to form the fifth-order derivative

of the numerical solution from (2.27).

The order conditions for order p are constructed by ensuring the expressions for the derivative

and the numerical solution match up to order p. The number of order conditions that need to be

satisfied for an order of convergence of p is the same as the number of rooted trees corresponding

to that order. The total number of order conditions for an RK method to be of up to tenth order

are given in Table 2.2.

p 1 2 3 4 5 6 7 8 9 10
conditions for order p 1 2 4 8 17 37 85 200 486 1205

Table 2.2: Total number of order conditions for RK methods up to tenth order.

Derivative q of (2.27) can be made equal to (2.24) if the additional terms in (2.27) are made

equal to one by satisfying the expression

γ(τ)

s∑
i=1

biΦi(τ) = 1. (2.28)

The expressions (2.28) derived from derivative q constitute the order conditions for order q.

The order conditions up to an order of convergence of four follow, where (2.26) is used to simplify

them where necessary [43, p.137,145]. The order condition that ensures a RK method has an order

of convergence of one is

s∑
i=1

bi = 1. (2.29)

The additional order condition that ensures an RK method has an order of convergence of two is

2

s∑
i=1

bici = 1. (2.30)

The two additional order conditions that ensure an RK method has an order of convergence of

three are

3

s∑
i=1

bic
2
i = 1, (2.31a)

6

s∑
i,j=1

biaijcj = 1. (2.31b)

The four additional order conditions that ensure an RK method has an order of convergence of four
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are

4

s∑
i=1

bic
3
i = 1,

8

s∑
i,j=1

biciaijcj = 1,

12

s∑
i,j=1

biaijc
2
j = 1,

24

s∑
i,j,k=1

biaijajkck = 1. (2.32)

The maximum attainable order for an RK method is p = 2s using the implicit Gaussian meth-

ods [44, p.71]. An ERK method requires smin(p) ≤ p2−2p+4
2

stages to achieve an order of convergence

of p. Table 2.3 shows the bounds for the minimum number of stages for ERK methods of various

orders [14, 27, 37, 40].

p ≤ 4 p = 5, 6 p = 7 p = 8
smin(p) = p smin(p) = p+ 1 smin(p) = 9 smin(p) = 11

p = 9 p = 10 p = 11, 12 p = 13, 14
12 ≤ smin(p) ≤ 17 13 ≤ smin(p) ≤ 17 p+ 3 ≤ smin(p) ≤ 25 p+ 3 ≤ smin(p) ≤ 35

Table 2.3: Minimum number of stages smin(p) required for ERK Methods of order p.

2.4.2 Order conditions for additive Runge–Kutta methods

The material in this subsection is largely adapted from [7, 51, 55].

The order conditions for an ARK method include the order conditions for the constituent RK

methods as well as coupling conditions, which are order conditions that involve more than one of the

constituent RK methods. They are represented by N -colourings of the rooted trees corresponding

to the elementary differentials.

Each of the N colours corresponds to one of the constituent methods. The derivatives of the

numerical solution of an ARK method satisfy

Φv1(τ) =

s∑
v2,v3,...,vq=1

a
[µ2]
ψ(v2),v2

a
[µ3]
ψ(v3),v3

. . . a
[µq ]

ψ(vq),vq
, (2.33a)

dq

dtq
ỹn(t) =

∑
τc∈T q

∑
τ∈τc

α(τ)γ(τ)

s∑
i=1

∑
µ1∈M

b
[µ1]
i Φi(τ)gqτ , (2.33b)

where v1, v2, . . . , vq are the q vertices of the coloured rooted tree τ with µ1 the colour of the root v1
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and µ2, µ3, . . . , µp the corresponding colours of the rest of the vertices, M is the set of N colours, τc

is a set of N -coloured trees of the same topology, T q is the set of all rooted coloured trees of order

q, and a
[µ]
ψ(v),v is the value at row ψ(v) and column v in the matrix A from the Butcher tableau of

the method corresponding to the colour µ.

It is often assumed that

b[µi] = b[µj ], c[µi] = c[µj ], ∀ µi, µj ∈ N, (2.34)

because then only coupling conditions based on colourings of the internal vertices of the rooted

trees need to be considered, i.e., those that are not a root or leaf [55]. These coupling conditions

are the expressions from the order conditions for standard RK methods (2.28) with aij in Φ(τ)

replaced by a
[µj ]
ij as in (2.33a).

For example, the fourth-order coloured tree ��AA irh1 bh3r
h2b
, gives a coupling condition of

12

s∑
i,h1,h2,h3=1

b
[1]
i a

[2]
i,h1

a
[2]
i,h2

a
[1]
h1,h3

= 12

s∑
i,h1=1

b
[1]
i a

[2]
i,h1

c
[2]
i c

[1]
h1

= 1,

where N = 2 with r and b corresponding to the colours 1 and 2 respectively.

The total number of conditions, both order and coupling, for N -ARK methods up to N = 4

and fifth order are given in Table 2.4. The number of order and coupling conditions increases very

rapidly with increasing p and N due to the combinatorial explosion in the number of colourings of

the associated rooted trees [55].

p 1 2 3 4 5
N = 2 2 4 18 60 230
N = 3 3 12 51 258 1509
N = 4 4 20 112 768 6028

Table 2.4: Total number of order and coupling conditions for N -ARK methods of up to
N = 4 and fifth order.

2.5 Error control

The material in this section is largely adapted from [15] and [43].

Although the global error reflects the accuracy of the solution to (2.2), in general, it is only
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possible to control the local error directly. In practice, the global error can be indirectly controlled

by limiting the local error at each step. The solution of an IVP generally requires different stepsizes

at various times to limit the error to a certain level. To minimize computational cost, an IVP solver

must have a method of estimating the error and predicting the optimal stepsize. Ideally, the estimate

should be done with minimal extra cost over that needed to find the numerical solution.

2.5.1 Step-doubling error estimation

Step-doubling error estimation is a method to estimate the local error based on Richardson extrap-

olation [43, p.156]. It can be used with any numerical method for which the order of convergence

is known. It requires three steps to be taken from the current time tn, two regular steps of size

∆tn, and one double step of size 2 ∆tn for the purposes of error estimation. The error in the first

regular step is

en+ 1
2

= y(tn + ∆tn)− yn+ 1
2

= C∆tp+1
n +O(∆tp+2

n ),

where y(tn + ∆tn) is the local solution at tn + ∆tn, yn+ 1
2

is the numerical solution at the first

regular step, and p is the order of convergence of the numerical method. The error after the second

regular step, taking into account the error after the first regular step, is

en+1 = y(tn + 2 ∆tn)− yn+1 = 2C(∆tp+1) +O(∆tp+2
n ).

The error after the double step is

ên+1 = y(tn + 2 ∆tn)− ŷn+1 = Ĉ(2 ∆tn)p+1 +O(∆tp+2
n ),

where ŷn+1 is the numerical solution of the double step. If the constants C and Ĉ are taken to be

equal, the estimate to the local error is

y(tn + 2 ∆tn)− yn+1 =
yn+1 − ŷn+1

2p − 1
+O(∆tp+2

n ), (2.35)

which has an order of convergence of p+ 1 [43, p.164].

A disadvantage of step-doubling error estimation is that it incurs the expense of 3 steps in order

for the numerical solution to advance 2 steps. However, one step used in step-doubling is indepen-

dent of the other two; therefore parallel computing can be used to mitigate this disadvantage.

2.5.2 Error estimation via embedded methods

Because finding the stage values is the most expensive part of an RK method, the computational

cost of finding an error estimate can be minimized by reusing the stage values. Embedded methods
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use the stage values with additional sets of quadrature weights to produce numerical solutions with

differing orders of accuracy. The local error estimate for embedded RK methods is

en+1 = ỹ(tn + ∆tn)− yn+1 = ŷn+1 − yn+1 +O(∆tp+2
n ), (2.36)

where ỹ(tn + ∆tn) is the local solution, yn+1 is the numerical solution generated by the lower-

order method, ŷn+1 is the numerical solution generated by the higher-order method, en+1 is the

local error estimate, and p is the order of convergence of the numerical solution of the higher-order

method. The Butcher tableau for an embedded RK method is written as

c A

b̂T

bT

where b̂ contains the quadrature weights of the embedded method. An RK method can contain

more than one embedded method. An example is DOPRI853, an eighth-order method plus third-

order and fifth-order embedded methods. Desirable properties cannot be found in a sixth-order

embedded method without additional function evaluations, so the fifth-order embedded method

estimates the error, and the third-order method is used to correct overestimation of the error; this

is described in [43, p.243].

Although embedded methods often have more stage values than regular RK methods for a

particular order of convergence, this approach is less costly than step-doubling. When the higher-

order method is used to advance the integration, this is known as local extrapolation. When the

coefficients of the truncation error (2.5) are too large for the higher-order method, using local

extrapolation results in the estimated error becoming much smaller than the true error [43, p.178].

When local extrapolation is used and the error coefficients of the higher-order method are optimized,

the estimate does not make sense in terms of a local error estimate but still produces a useful stepsize

selection scheme [43, p.171]. This is because the local error generally has little in common with the

global error, and the value produced is adequate for stepsize selection [43, p.168].

An example of an embedded RK method is Dormand–Prince 5(4) pair, which uses local extrap-
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olation with methods of fifth and fourth order. The Butcher tableau is given by

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372/6561 −25360/2187 64448/6561 −212/729

1 9017/3168 −355/33 46732/5247 49/176 −5103/18686

1 35/384 0 500/1113 125/192 −2187/6784 11/84

35/384 0 500/1113 125/192 −1287/6784 11/84 0

5179/57600 0 7591/16695 393/640 −92097/339200 187/2100 1/40

(2.37)

A concept known as First Same As Last (FSAL) is used to further reduce the number of func-

tion evaluations. The sixth stage of (2.37) at tn+1 is the fifth-order method used to advance the

integration. The fourth-order method is a seven-stage method using the fifth-order method as

its final stage. However, because the final stage is an RHS evaluation at tn+1, it can be used as

the first stage for the following step. In practice the seven stages of Dormand–Prince 5(4) now

have no additional RHS evaluations over the minimum six stages necessary for a fifth-order ERK

method [43, p.178]. Dormand–Prince 5(4) has proven to be extremely successful and is used in the

Matlab ode45 code [88] and the Fortran software package DOPRI5 [43, p.475].

2.5.3 Stepsize selection

Stepsize selection is used to estimate the optimal stepsize during the integration such that the

estimated local error remains below a user specified tolerance. The acceptable tolerances for the

local error estimate for a numerical method are given by

τn+1,i = τrel,i max(yn,i, yn+1,i) + τabs,i, (2.38)

where τrel,i and τabs,i are relative and absolute tolerances respectively for each component i of y.

The overall measure of the error is given by

εn+1 =

√√√√ 1

m

m∑
i=1

(
en+1,i

τn+1,i

)2

, (2.39)

where en+1,i is component i of en+1 from (2.36). If εn+1 > 1, the estimated value of the local error

is deemed to be unacceptably large, the step is rejected, and a new step is attempted from tn. If

εn+1 ≤ 1, the estimated value of the local error is deemed to be acceptable, the step is accepted,
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and a new step is attempted from tn+1.

The new optimal stepsize is estimated by

∆topt = ∆tn(1/εn+1)(1/p+1), (2.40)

where p is the minimum order of convergence of the methods used. Heuristics are often applied to

the optimal stepsize to minimize the probability the next step will be rejected. A common way of

doing this is

∆tnew = αmin(amax∆tn,max(∆topt, amin∆tn)),

where amax and amin are values representing the maximum amount the stepsize can increase and

decrease respectively, and α is a safety factor. These values are generally different based on whether

the step has been accepted or rejected, for example, to avoid a stepsize increase after a step is

rejected. Typical values are α = 0.9, amin = 0.2, and amax = 5.0 for an accepted step and

amax = 1.0 for a rejected step.

Control-theoretic stepsize selection

Principles from control theory can be used for stepsize selection; an example is the proportional-

integral (PI) stepsize controller of [39]. This error controller is designed specifically for the stepsize

changes that occur when stiff problems are solved with IRK methods. Changes in stepsize that are

too large can result in large numbers of rejected steps; this stepsize controller uses control-theoretic

techniques to avoid this situation. The estimate for the optimal stepsize after an accepted step,

other than the first accepted step, is

∆topt =
∆tn

∆tn−1

(
εn
ε2n+1

) 1
p+1

,

where ∆tn−1 is the stepsize of most recent accepted step and εn is the measure of the error (2.39)

calculated from that step. After a rejected step, the optimal stepsize is calculated from (2.40).

2.6 Dense output

Strictly speaking, the numerical solution of (2.2) only exists at discrete points on the solution

interval [t0, tf ]. For many applications it is desirable to estimate the solution at arbitrary points;

this is accomplished using dense output formulae. The estimates are often of a lower order of

accuracy than the main numerical method.
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A dense output formula for an RK method takes the form

yn(θ) = yn + ∆tn

s∗∑
i=1

bi(θ)ki,

where there are s∗−s additional stages over the regular RK method, the ki are the stages from the

regular RK method plus any additional stages, θ = t−tn
∆tn
∈ [0, 1] indicates the relative time when a

solution is desired, and bi(θ) are the quadrature weights. The order conditions for the dense output

satisfy

s∗∑
j=1

bj(θ)Φj(τ) =
θ(|τ |)

γ(τ)
,

that uses the notation of (2.28) and must satisfy the order conditions associated with all trees τ up

to order p∗ for the dense output to have an order of convergence of p∗.

An example of a fourth-order dense output formula for Dormand–Prince 5(4) (2.37) is

b1(θ) = θ2(3− 2 θ) b1 + θ(θ − 1)2 − θ2(θ − 1)2 5 (2558722523− 31403016 θ)/11282082432,

b3(θ) = θ2 (3− 2 θ) b3 + θ2(θ − 1)2 100 (88272551− 15701508 θ)/32700410799,

b4(θ) = θ2 (3− 2 θ) b4 − θ2(θ − 1)2 25 (443332067− 3143016 θ)/1880347072,

b5(θ) = θ2 (3− 2 θ) b5 + θ2(θ − 1)2 32805 (23143187− 3489224 θ)/199316789632,

b6(θ) = θ2 (3− 2 θ) b6 − θ2(θ − 1)2 55 (29972135− 707673 θ)/822651844,

b7(θ) = θ2 (θ − 1) + θ2(θ − 1)2 10 (741447− 829305 θ)/29380423.

This method is designed to minimize the coefficients of the truncation error of the dense output esti-

mate. The coefficients of the truncation error (2.5) are found by evaluating the derivatives greater

than p or p∗ for the main method and dense output formula respectively, using the elementary

differentials (2.23), and comparing them to those of the exact solution.

2.7 Advection-reaction-diffusion equations

The material in this section is adapted largely from [51].

A partial differential equation (PDE) is an equation for an unknown function of at least two

independent variables involving the partial derivatives with respect to those variables. This thesis

is primarily concerned with IVP methods that are part of the integration process for a class of

PDEs known as advection-reaction-diffusion (ARD) equations. ARD equations typically represent

a physical process that models the time evolution of a chemical or biological system in a flowing

medium. The distinct chemical or biological components within the model are known as the species.
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These systems are often modelled by looking at the behaviour of a small cell within a larger system.

The advection term of the PDE models the mass balance of the cell due to a flowing medium.

The conservation of mass requires that the net change in concentration in a cell to be the sum of

the net inflow and outflow. Thus, the advection term satisfies

∂

∂t
u(t,x) +

∂

∂x
(A(t,x,u(t,x)) u(t,x)) = 0, (2.41)

where u(t,x) ∈ R×Rd → Rq is the vector of concentrations of the q species at time t and a spatial

position of x ∈ Rd and A(t,x,u(t,x)) ∈ R× Rd × Rq → Rq is known as the advection coefficient.

The diffusion term of the PDE models the change in u(t,x) due to gradients in the solution

and the fluxes across cell boundaries. The diffusion term satisfies

∂

∂t
u(t,x) =

∂

∂x

(
D(t,x,u(t,x))

∂

∂x
u(t,x)

)
, (2.42)

where D(t,x,u(t,x)) ∈ R× Rd × Rq → Rq is the diffusion coefficient.

The reaction term of the PDE models the change in u(t,x) due to sources, sinks, and chemical

reactions. The reaction term satisfies

∂

∂t
u(t,x) = r (t,x,u(t,x)) , (2.43)

where r(t,x,u(t,x)) ∈ R× Rd × Rq → Rq models the reaction terms in one cell.

The general form of ARD equations modelling the net effect of the three processes is therefore

given by

∂

∂t
u(t,x)+

∂

∂x
(A(t,x,u(t,x)) u(t,x)) =

∂

∂x

(
D(t,x,u(t,x))

∂

∂x
u(t,x)

)
+r (t,x,u(t,x)) . (2.44)

The boundary conditions are given by

B0(t,x(t),u(t,x)) u(t,x) + B1(t,x(t),u(t,x))
∂

∂x
u(t,x) = γ(t,x), x ∈ Γ,

where B0(t,x(t),u(t,x)), B1(t,x(t),u(t,x)) ∈ R × Rd × Rq → Rq are coefficients, Γ is a set rep-

resenting the spatial boundary, and γ(t,x) is an arbitrary function of the spatial variables. The

initial condition is given by

u(0,x) = u0(x).
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2.8 The method of lines

The method of lines (MOL) is the process of semi-discretizing PDEs and leaving a single continuous

dependent variable, typically time, resulting in a coupled system of ODEs (2.2a) of dimension

m = q × ngrid with y(t) = {ui(t)}ngrid

i=1 ∈ Rm, where ui(t) ∈ u(t,xi), i = 1, 2, . . . , ngrid are the

concentrations at time t for the spatial locations xi corresponding to the ngrid grid points. Fully

discrete approximations can now be obtained by integrating in time with a suitable timestepping

method.

In the case of a semi-discretized system of ARD equations, the advection terms tend to have

predominantly imaginary eigenvalues, whereas the reaction and diffusion terms tend to have pre-

dominantly real eigenvalues, with those from the diffusion terms tending to be relatively large and

those from the reaction terms tending to be problem dependent. In this application, different

numerical methods can be optimal for integrating each term of (2.44) [51].

The methods used for semi-discretization in this thesis are finite-difference methods on a grid

that is uniform in each spatial dimension with a spacing given by ∆x. The methods in the following

examples use only one spatial dimension, one species, and periodic boundary conditions, i.e., in

calculations u0 and ungrid+1 are identified with um and u1 respectively.

An example of central differences being used to semi-discretize the second-order partial deriva-

tive associated with a constant coefficient diffusion term (2.42) is given by

∂

∂x

(
D ∂

∂x
u(t, x)

)
≈ Dui−1(t)− 2ui(t) + ui+1(t)

(∆x)2
=

D
(∆x)2

D0
2y(t), (2.45a)

D0
2 =



−2 1 1

1 −2 1

. . .
. . .

. . .

. . .
. . .

. . .

1 −2 1

1 1 −2


, (2.45b)

where ui(t) corresponds to spatial point i and time t, y(t) : R→ Rm is the solution of the system

of ODEs (2.2a) at time t from the semi-discretization, D ∈ R is the constant diffusion coefficient,

and there is an order of convergence of two with respect to ∆x.

An example of central differences being used to semi-discretize the first-order spatial derivative

29



associated with a constant coefficient advection term (2.41) is given by

A ∂

∂x
u(t, xi) ≈ A

ui−1(t)− ui+1(t)

2 ∆x
=
A

2 ∆x
D0

1y(t),

D0
1 =



0 −1 1

1 0 −1

. . .
. . .

. . .

. . .
. . .

. . .

1 0 −1

−1 1 0


,

where 0 ≥ A ∈ R is the constant advection coefficient and there is an order of convergence of two

with respect to ∆x. Central differencing introduces artificial dispersion from the different Fourier

modes traveling at different speeds, leading to oscillations not present in the exact solution of the

underlying PDE.

Finite differences for the advection term benefits from upwind-biasing for stabilization [77]. A

first-order upwind discretization can also be used for the first-order spatial derivative associated

with the advection term. An example of first-order upwind discretization with constant advection

coefficients is given by

A ∂

∂x
u(t, xi) ≈ A

ui−1(t)− ui(t)
∆x

=
A

∆x
D−1 y(t), (2.47a)

D−1 =



−1 1

1 −1

. . .
. . .

. . .
. . .

1 −1

1 −1


, (2.47b)

which has an order of convergence of one with respect to ∆x. Despite the lower order of conver-

gence, upwind-biased schemes are often more satisfactory in practice because they do not introduce

dispersion; however they can introduce artificial diffusion [51, p.56].

To illustrate the MOL applied to an ARD equation, consider the constant-coefficient ARD

equation with one spatial dimension and one species given by

d

dt
u(t, x) +A ∂

∂x
u(t, x) = D ∂2

∂x2
u(t, x) + r(u(t, x)),

where A,D ∈ R are the constant advection and diffusion coefficients. The advection and diffu-

sion term are semi-discretized with upwind (2.47) and central (2.45) discretizations respectively,
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therefore obtaining
d

dt
y(t)− A

∆x
D−1 y(t) =

D
(∆x)2

D0
2y(t) + r(y(t)),

where y(t) : R → Rm is the spatial discretization of u(x, t), r(y(t)) = {r(ui)}ngrid

i=1 : Rm → Rm is

the reaction term, and the resulting system can be trivially converted into a system of ODEs of the

form (2.2a).
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Chapter 3

A problem-solving environment for the numeri-

cal solution of IVPs

Numerical integration of IVPs using FE (2.6) dates back to the foundation of differential calcu-

lus. The first numerical methods with an order of convergence higher than one were the multistep

methods published in 1883 by Adams [43, p.356]. RK methods were developed at the beginning

of the twentieth century by Runge, Heun, and Kutta [43, p.134]. The development of computers

allowed these calculations to take place electronically, with Fortran becoming the first dominant

language for numerical computing.

The methods most commonly used for solving IVPs are FE (2.6) and “the” fourth-order ERK

method (2.17). These methods are so ubiquitous that they are often the only RK methods known

to many practitioners [61, p.183]. Although FE is commonly used because of its simple imple-

mentation, it is generally inefficient due to its low order of convergence; therefore fourth-order

ERK methods are more suitable for non-stiff problems. Because the size of the stability region

generally scales sublinearly with increasing order of convergence, the low cost of each step using

FE generally means less computational cost overall in comparison to ERK methods when solving

stiff problems [44, p.58; 61, p.221]. ERK methods are often used to solve stiff problems by many

practitioners due to their simplified implementation even if the computational cost is greatly in-

creased. An exception where a fourth-order ERK can be more efficient for stiff problems is when

eigenvalues from (2.9) have significant imaginary parts, such as for the semi-discretized advection

equation (2.41). This is because four-stage, fourth-order ERK methods have stability regions that

cover a significant portion of the imaginary axis, unlike methods with s ∈ {1, 2} stages [51, p.170]

and p = s.

When used alone, RK methods lack error control such as that described in Section 2.5. Although

any integration method of known order can use step-doubling error control from Section 2.5.1, if

no error control is provided then a constant stepsize might as well be used. However, the efficient

solution of IVPs requires different stepsizes at different times to limit local error; use of a constant

stepsize restricts the stepsize to the smallest value required in the solution interval. Sophisticated

non-stiff IVP solvers use error control. The Fortran software package DOPRI5 [43, p.475] and
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the Matlab function ode45 [88] both use the explicit Dormand–Prince 5(4) scheme (2.37). The

Fortran software package DOPRI853 uses the eighth-order DOPRI853 ERK method described in

Section 2.5.2, and it is used extensively for high-precision computations due to its high order of

convergence [43, p.243]. Multistep methods are popular for non-stiff problems with costly evalua-

tions of the RHS. The Matlab solver ode113 is a representative example of a non-stiff multistep

solver and uses methods of orders 1 to 13 [88].

When the MOL is applied to ARD equations, the resulting IVP is often stiff due to fine grid

sizes and the inherent properties of the reaction and diffusion terms [51, p.64, 144]. Stiff solvers

are implicit in most cases and therefore require the solution of systems of simultaneous equations.

This makes them expensive to execute, but the stable steps are generally much larger than for

an explicit method when solving a stiff problem [61, p.189]. Due to the larger stepsizes, a stiff

solver can solve stiff problems with many orders of magnitude less computational cost than a

non-stiff solver [44, p.143]. For moderately stiff problems, it is still practical to use explicit meth-

ods [33, p.36–39] when computational cost is not of utmost importance because non-stiff methods

are less costly per step. Runge–Kutta–Chebyshev methods are an example of explicit methods

designed for moderately stiff problems. They have an extended stability region for problems when

the eigenvalues from (2.10) are mostly large, real, and negative such as the semi-discretized diffu-

sion equation (2.42) [44, p.31; 51, p.419]. Runge–Kutta–Chebyshev methods are further discussed

in Chapter 4. Even relatively small ODE systems can be extremely stiff and require a stiff solver

in practice [85].

Multistep methods have commonly been used for stiff IVP solvers, with variable-order BDFs

(Backwards Differentiation Formulae) being popular [88]. These methods are A(α)-stable, with

higher-order methods having smaller stability regions. Methods with orders of convergence be-

tween 1 and 5 are used, with the lower-order methods being used to start the integration and

accommodate IVPs that need a larger stability region. Commonly used software packages im-

plementing BDF methods include LSODE [80] and VODE [12]. LSODE can detect if a problem is

stiff and apply BDF methods rather than high-order explicit multistep methods when appropriate.

The Matlab function ode15s [88] implements an extension of BDF methods, known as NDFs

(Numerical Differentiation Formulae).

General IRK methods can have many desirable properties such as A-stability and often retain

these properties at arbitrarily high orders. Stability when the eigenvalues of (2.9) are imaginary

is important for ARD equations; therefore stiff solvers using IRK methods are often preferred over

other stiff solvers such as the A(α)-stable multistep solvers. The Fortran package RADAU5 uses the

Radau IIA method of order five (2.18) [44, p.568]. The Fortran package RADAUP [44, p.574], which

allows the user to select an order of five, nine, or thirteen, provides higher-order methods while still

allowing lower-order methods because they are more efficient at crude tolerances. The Fortran
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package SDIRK4 implements the fourth-order SDIRK method (2.19). The software package RODAS

and the ode23s [88] function from Matlab implement Rosenbrock methods [44, p.102], i.e., linearly

implicit Runge–Kutta methods, which only require the solution of a linear system of equations, even

for problems with a nonlinear RHS [44, p.102]. The Fortran package IRKC is designed for stiff

reaction-diffusion problems. It uses an IMEX method with a Runge–Kutta–Chebyshev method

as the explicit method for the diffusion term and an implicit method for the reaction term. The

software package odeToJava uses the IMEX methods of [55] for solving stiff problems and Dormand–

Prince 5(4) (2.37) for solving non-stiff problems. The Matlab functions ode23t and ode23tb are

also used for stiff problems and are described in [88].

3.1 IVP software implementation

The material in this section is largely adapted from [87].

This section outlines how the methods from Chapter 2 are used to construct IVP software. A

flowchart showing the sequence of the components from a linearly implicit RK IVP solver is shown

in Figure 3.1.

Initial Values

Calculate Jacobian

LU Decomposition

Evaluate Stages

Estimate Error

Step Accepted?
Estimate Repeated

Stepsize

Estimate New

Stepsize
Last Step?

Final Values

Yes

No

Yes

No

Figure 3.1: Flowchart of a linearly implicit Runge–Kutta solver.

IVP solvers are initialized with user-supplied initial time and initial values. In the case of

a constant-stepsize solver, the initial stepsize is used for the whole integration, often requiring
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considerable experimentation to ensure the solution is reliable. Although an initial stepsize is often

provided for variable-stepsize solvers, there are algorithms to estimate an optimal value [43, p.169].

An improper estimate is not generally costly in this case because in practice the number of rejected

or undersized steps at the start is small compared to the total number of steps.

One-step methods can start the integration immediately, but multistep methods require simpler

methods to build up enough past solution values. This can be done by repeatedly using a one-step

method or by using a variable-order multistep method. As the first-order method in variable-order

multistep software, either FE (2.6) is used for non-stiff solvers or a one-step implicit method such

as BE (2.7) is used for stiff solvers. The second step can now be computed with a two-step method

if the solver finds this appropriate. This is continued until the solver has enough past steps for

all of its methods, after which time it can choose whichever method it deems appropriate. Other

methods that require past quantities, such as the PI stepsize controller described in Section 2.5.3,

have their own methods of handling the beginning of the solution.

RK methods require the evaluation of the stages (2.14a) before finding the solution at the

end of the step using the quadrature weights (2.14b). ERK methods and DIRK methods do this

sequentially, with DIRK methods requiring the solution of simultaneous equations for each stage.

General IRK methods such as RADAU5 (2.18) require the evaluation of all of the stages at once.

Solving the systems of simultaneous nonlinear equations requires Newton’s method because many

other methods such as functional iteration are not robust enough for this application; this is because

achieving convergence with functional iteration requires a restriction on the stepsize that is similar

to the one for stability [44, p.119]. If the Jacobian (2.9) is evaluated at each step and stage, this

maximizes the stability of the numerical method. Due to the expense of Jacobian evaluations,

however, the Jacobian is often frozen; i.e., it is used beyond the time and solution values for which

it was evaluated. This is an effective tradeoff when the computational savings from the reduction

in stability from a frozen Jacobian offsets the computational cost of repeatedly evaluating and

factoring it. Additional information on the solution of systems of simultaneous equations can be

found in [54, 97].

Error estimation for each step, as described in Section 2.5, takes place after the integration has

been attempted for that step. This estimate is then used in conjunction with stepsize selection

like that from Section 2.5.3 to estimate the optimal stepsize. Additional information on stepsize

selection for multistep methods can be found in [43]. If a step is rejected due to a level of error

higher than the specified tolerances, the next step then proceeds using the same initial time and

solution values used in the current step with the estimated optimal stepsize.

If the estimated error is within the specified tolerances, then the step is accepted, and the next

step uses the time and solution values from the current step as its initial solution values. After a

step has been accepted, dense output formulae may be applied in order to estimate the solution at
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off-step times contained within the current step. At this point the solution values may be written

to a data structure or file, if desired.

At the beginning of each new step, a check is made to see if that step is expected to reach the

final time. Accordingly, the last step in the solution may be adjusted if appropriate. It is safely

assumed that shortening the last step decreases the estimated error, as can easily be seen from the

asymptotic behaviour of the truncation error (2.5). In many implementations, the last step may

also be stretched by a small factor in order to reach the final time, thus avoiding an extra step.

3.2 Problem-solving environments

Many methods for solving IVPs (2.2) are implemented only in certain software packages and in a

particular language. Some of the software packages described in this chapter are the only available

implementations of the constituent methods. Porting each IVP to a different software package can

can make experimenting with a wide range of solution methods a substantial development effort.

An example of where methods are compared can be found in [33, p.37], where a comparison is made

of the computational cost of various software packages on a target set of problems. Experimentation

with a method unavailable in existing software packages is done in [93], where the RADAU5 method

was modified to use a digital filter, one that is more sophisticated than the control-theoretic method

described in Section 2.5.3, for stepsize control. Typically this type of modification requires a

significant development effort, limiting the type and scope of experimentation that has been done.

The Fortran solvers described in this chapter are used as library functions and require the

user to write a driver for a particular IVP. Many of these software packages have been in wide use

for a substantial amount of time; for instance, a common version of LSODE dates back to 1981. A

reason for this is because the exact solutions to scientific computing problems are not generally

known, even if the methods used are theoretically sound, and incorrect solutions due to bugs or

poor implementation are not always obvious. Therefore it can take a substantial amount of time

for a software package to become trusted within the community. Reasons for the popularity of

Fortran are the suitability when computational cost is important, domain-specific syntax for

manipulating floating-point arrays, an extensive selection of high-performance numerical libraries,

and the most commonly available implementations of many scientific problems, e.g., the code

FUNWAVE for simulating shallow water equations using the fully nonlinear Boussinesq model that

is further described in [59].

These types of issues with numerical software have led to development of problem-solving envi-

ronments (PSEs). Rice and Boisvert have given the following description of a PSE [81]:

A PSE is a computer system that provides all the computational facilities necessary
to solve a target class of problems efficiently. The facilities include advanced solution
methods, automatic or semi-automatic selection of solution methods, and ways to easily
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incorporate novel solution methods. They also include facilities to check the formula-
tion of the problem posed, to automatically (or semi-automatically) select computing
devices, to view or assess the correctness of solutions, and to manage the overall com-
putational process. Moreover, PSEs use the terminology of the target class of problems,
therefore users can solve them without specialized knowledge of the underlying com-
puter hardware, software, or algorithms. In principle, PSEs provide a framework that
is all things to all people; they solve simple or complex problems, support both rapid
prototyping and detailed analysis, and can be used both in introductory education or
at the frontiers of science.

Matlab is an example of a PSE for scientific computing problems. It has a scripting language

with special features for matrix operations and includes an extensive library of mathematical func-

tions, an interactive command prompt for easy prototyping, graphical user interfaces (GUIs) for

tasks such as plotting data, and toolboxes for special functionality such as signal processing. The

Matlab IVP solvers described in this chapter can be interchanged easily, a significant advantage

given that many problems are more amenable to certain integration methods [61, p.226-231]. De-

spite the ease of scripting MATLAB, it is still not straightforward to experiment with substantially

different IVP methods beyond those that are already implemented.

Other PSE-like approaches include odeToJava, which has a similar interfaces for each of its

different IVP solvers, allows arbitrary Butcher tableaux, and includes several options for error

control and input/output. VFGEN is a front end that allows a common input file to be used for

for 11 different ODE solvers, including the Fortran ones mentioned in this chapter, as well as

other applications such as automatic differentiation or generating LATEX code [104]. These PSE-

like approaches make it easier to experiment with different methods, but they still tie the user to

existing solvers and methodologies.

Due to the restrictions on available software, it can be necessary to compare across different

software packages and programming languages, as is done in [33, p.37]. Although this type of

comparison is useful for finding the best software package for a target problem class, it only indi-

rectly compares the underlying methods. Many published comparisons between numerical methods

are not rigorous but rather are a “mathematical demonstration” [93, p.245] to show the theoret-

ical properties and practical viability of the methods being tested. Code comparisons such as

those in [33, p.37] are not performed ceteris paribus, i.e., testing only one aspect of a method at

a time with all other things being equal. Differences in implementation and non-uniformities in

performance across programming environments mean that testing across software packages intro-

duces many additional variables and therefore cannot be performed ceteris paribus. To rigorously

evaluate numerical methods empirically requires a large number of precisely controlled experi-

ments [93, p.245], a requirement that is often impractical within existing software packages. A PSE

is the ideal environment for this type of experimentation between different numerical methods.
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3.3 Architecture and design of pythODE

The pythODE PSE is designed to be modular and based on accepted software engineering principles

rather than being optimized for performance. The component of pythODE developed specifically

for this thesis solves IVPs, another component solves boundary-value problems, where information

about the solution is given at times other than the initial time. In order to facilitate experimentation

with IVP methods, pythODE allows the different components of an IVP solver to be integrated

without modifying the numerical code, therefore easily allowing a user to perform a wide range

of experimentation. The object-oriented architecture of pythODE offers an abstraction of common

algorithms for IVPs that include Runge–Kutta methods as well as the multistep and general linear

methods from Section 2.3, which together constitute a large family of methods that have been the

subject of active research for over 100 years [43, p.134]. Additional numerical methods for IVPs

have been be identified that fit within the general architecture of pythODE. If a front end such as

a graphical user interface were developed, no programming would be strictly required to construct

new solvers from existing components.

The pythODE PSE is also a platform to facilitate computational experimentation. For example,

pythODE could be used to compare stepsize selection methods, such as the control-theoretic method

described in Section 2.5.3 and the more sophisticated digital filter methods described in [92, 93].

In [93], a more sophisticated digital filter method was only used with the integration methods in

RADAU5 and those in another package, DASPK. Despite using only two integration methods, this

experiment likely required a substantial development effort on the part of the authors. In a mod-

ular software environment, these digital filter methods could be compared rigorously with another

stepsize selection method using a wider range of integration methods. Each constituent method

would only have to be written once but then could be reused in many combinations. The only

component that would change within the solver would be the integration module, therefore exper-

imentation can easily be performed ceteris paribus. In the case where the user is only interested

in the solution to an IVP, computational experimentation is still necessary because even well-used

methods can exhibit unexpected behaviour [17, 91]. To have confidence in the solution to an IVP,

it is generally necessary to solve it with various solver parameters such as stepsize when constant

or error tolerance (2.38).

The pythODE PSE could also be used as a classroom tool due to the ease of comparing and

demonstrating different methods for solving IVPs. This would provide more flexibility than other

PSEs commonly used for this purpose such as Matlab, Maple, and Mathematica. An example

of this usage is changing a Butcher tableau to easily demonstrate the differences between the

members of a family of methods.

The pythODE PSE provides testing and statistics components to facilitate the development of

38



new modules. An important component is a test suite that can help to verify the functionality of

the whole package. It can detect abnormal behaviour by verifying standard methods against a test

suite of IVPs, allowing continued development while keeping pythODE trustworthy. Furthermore,

although existing software packages provide statistics on the solution process, they tend to be basic

and differ between software packages. An important feature of pythODE is that it provides extensive

statistics about all IVP methods and incorporates them without code modification.

Python is the language of choice for the pythODE PSE. It provides access to a wide variety

of language paradigms including imperative, object-oriented, and functional programming. The

overhead from the modularity and the relative slowness of Python compared to languages such as

Fortran and C [82] make pythODE unsuitable if performance is of utmost importance. Despite

this, the ease with which it allows testing of new methods means it can provide information for

the development of high-performance IVP solvers. Python includes features such as operator

overloading, which allows the programmer to use a more domain-specific notation when coding

mathematical expressions [82]. It also includes a large standard library, giving access to a large

amount of functionality. C and Fortran code can be easily called from Python, thus allowing

access to a large amount of existing software. However, mixing languages may interfere with

performing tests ceteris paribus because C and Fortran generally execute the same operations

significantly faster than does Python.

The main numerical libraries used in pythODE are NumPy and SciPy. NumPy provides mul-

tidimensional arrays of arbitrary data types, including real and complex floating-point numbers as

well as basic linear algebra operations. SciPy uses NumPy for fundamental operations and adds

functionality such as sparse linear algebra, special functions, and statistics. The library SymPy

allows symbolic manipulation of mathematical expressions. Symbolic manipulation is generally too

inefficient to be used during the numerical solution process, but it is used to derive the coeffi-

cients of some numerical methods. The matplotlib library provides plotting and visualization of

data in NumPy arrays. Together these libraries add a domain-specific functionality for Python

comparable to commercial PSEs such as Matlab, Maple, and Mathematica.

3.3.1 The Solution object

Distributing the behaviour of software amongst objects results in many connections between those

objects. This can reduce the re-usability of those objects because in the worst case, every object

knows about every other object. With so many interconnections, these objects cannot act without

the support of other objects, making the system behave as if it were monolithic. The degree to which

components of a system rely on other components is known as coupling. A high degree of coupling

can make it difficult to change the behaviour of the system in any significant way [38, p.273]. The

IVP software packages described in this chapter are generally monolithic and have a high degree of
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coupling amongst the various components; therefore they are not readily modified.

A mediator pattern is an object that encapsulates how a set of other objects interact, keeping

them from referring to each other explicitly. Rather than interact directly with each other, the

objects now interact indirectly through the mediator. When the objects no longer have to refer to

each other explicitly, the system is known as loosely coupled. A loosely coupled system allows the

interaction of an object to be varied independently without affecting the other objects [38, p.273].

In pythODE, an object known as Solution, an example of which is shown in Figure 3.2, acts

as a mediator between the different components of an IVP solver. This type of abstraction is less

common in scientific computing than other types of computing. Solution holds all current and past

solution points, their stage values, as well as any other information required, for example, stepsize,

or information from the error controller. The numerical solution is stored in NumPy arrays on a

per-step basis, but other types of information, such as strings to record information such as errors or

reasons for step rejections or integers are also accommodated. This allows single-step methods such

as RK, as well as multistep methods and general linear methods [15, 16, 43, 53], to be implemented

in the same framework. Past solution values may still be required for single-step methods because

error control such as the PI error controller from Section 2.5.3 or FSAL use past information. If

applicable, higher derivatives can be stored in order to allow the implementation of methods such

as Runge–Kutta–Nyström [43, p.284] and Taylor-series methods [28]. When each component can

be modified completely independently of the others, this readily allows changing the behaviour of

the solver. Easy modification allows the large number of carefully controlled experiments needed

to make empirical claims [93]. Even components that are functionally dependent, such as error

estimation and stepsize selection, still integrate well into this framework.

A new construct called subsolutions are provided for the Solution objects in order to accom-

modate composite methods such as step-doubling and extrapolation methods [43, p.129; 44, p.131].

These are IVP solutions that branch off from the main solution at a particular step but use solution

values from the main solution prior to this step. This behaviour is transparent to solver compo-

nents and allows the same modules to operate on both the main solution and its subsolutions. An

example of where subsolutions are applied is in the context of step-doubling error control. The

regular steps operate on the main solution because they are used to advance the solution, and a

subsolution is created for the double-sized step. In this case the module used for integration does

not have to know about step-doubling error control.
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Figure 3.2: Solution object with Solver object and two SolverModule objects

Solution has a compact and intuitive syntax that allows its interface to resemble mathematical

notation. To extend the dynamic language paradigm used in Python, stage and solution points do

not have to be explicitly allocated. They are allocated by referencing; therefore no prior knowledge

of the structure of a particular Solution object is necessary.

The following is an example of accessing the current value of Solution and storing it in the

variable z1: the first zero indicates that this is the current step, the second zero indicates that this

is derivative zero, i.e., the solution itself.

z1 = example so lu t i on [ 0 ] [ 0 ]

The following is an example of setting the second derivative of the solution point two steps prior

to the current solution point to the variable z2.

example so lu t i on [ −2 ] [ 2 ] = z2

The following is an example of accessing the first derivative of stage four of the solution point

prior to the current solution point and storing it in the variable z3.

z3 = example so lu t i on [ −1 ] [ ’ s tage ’ ] [ 1 ] [ 4 ]

The use of the key ’stage’ gives an example of how metadata can be stored and accessed on a

per-step and per-stage basis. Arbitrary keys can be used to store data without prior declaration.

The method step for Solution objects shifts the solution points so the current solution point

becomes the previous solution point to the current solution point, the previous solution point to the
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current solution point is shifted to a point two points previous to the current solution point, etc.

This accomplishes stepping in time of the IVP solver, and step can be called with an argument to

step more than one solution point. The following is an example of stepping the Solution object

example solution two points forward.

example so lu t i on . s tep (2 )

This keeps the previously computed values but allows them to be referenced differently as each

subsequent timesteps requires. In the general case this is stateful, i.e., information about what has

previously occurred is maintained.

For IVPs that require many steps or are of a significant size, it is generally not desirable to

store all past solution points due to memory limitations. Therefore Solution includes methods to

remove old values. It is unknown how many previous solution points each solver module may need;

therefore this must be declared for each module. The method keep is called at the initialization of

each solver module, then the maximum value from all calls to keep is used as the number of steps

to save. After each step, the unneeded solution values are removed, thus saving resources. If more

past values than are required for the integration are needed, it is advisable to use a module to write

the solution values to a data structure or a file.

3.3.2 The Solver class and control flow

The class in pythODE that coordinates program flow and stepping is Solver. Solver is subclassed

for different types of stepping such as with constant stepsize (no error estimation), with step-

doubling error estimation (2.35), and with embedded error estimation (2.36). In this case, these

subclasses can be behavioural subtypes and avoid violating the Liskov substitution principle, which

states that any property true for a type (or class) must also be true for its subtypes (or sub-

classes) [63]. The Liskov substitution principle can easily be violated when using object-oriented

techniques in the design of mathematical software because there exist many analogous cases of the

classic circle-ellipse problem from [67] when implementing mathematical structures using object-

oriented design. The circle-ellipse problem is used to show that although a circle is a type of ellipse,

in general, a circle that is represented as a subtype of an ellipse may not be a behavioural sub-

type; i.e., a property provable for a type of objects should be true for its subtypes. For example,

an ellipse type may contain a method to stretch one of the principle axes but not the other. A

circle subtype would therefore not be able to satisfy both its own invariant, that both axes are

equal, and at the same time satisfy the behavioural requirements of the method to stretch one

axis inherited from the ellipse type. Failure to respect the Liskov substitution principle is known

to cause difficulty in the overall implementation, interoperability, and maintainability of complex

object-oriented systems [67], such as pythODE.
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Solver is divided into three main parts, which do not consist of any numerical code but rather

coordinate the other parts of the program. The interface for Solver is shown in Listing 3.1 and

includes the following methods.

• The initialize method runs prior to the first step of the IVP solver.

• The step method runs for the first step and every subsequent step of the solution of the IVP.

• The finalize method runs when the solver is finished solving the IVP.

• The reset method returns the solver to its initial state.

• The run method starts the integration after all objects have been initialized.

Solver also coordinates information that must be passed between different components of an IVP

solver but is not supported using Solution. An example of where information must be shared

between different components is when the error controller requires the order of convergence of

the integration method. A more complex example is when a component wants to force a rejected

timestep, for instance, in the case of an error. This is done by communicating directly with Solver.

Ambiguity is avoided by developing standard nomenclature and interfaces for these types of data

and actions.

Listing 3.1: The interface for Solver objects.

class So lve r :
def i n i t i a l i z e ( s e l f , s o l v e r , s o l u t i o n ) :

# code t ha t runs b e f o r e s o l v i n g the IVP
pass

def s tep ( s e l f , s o l v e r , s o l u t i o n ) :
# code t ha t runs f o r each t imes t ep
pass

def f i n a l i z e ( s e l f , s o l v e r , s o l u t i o n ) :
# code t ha t runs a f t e r s o l v i n g the IVP
pass

def r e s e t ( s e l f ) :
# re s e t the s o l v e r back to the i n i t i a l s t a t e
pass

def run ( s e l f ) :
# run the s o l v e r to s t a r t the t imes t epp ing
pass
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3.3.3 SolverModule objects

The primary location of the numerical code of an IVP solver in pythODE is within SolverModule

objects. These objects interact with each other through the Solution object and are coordinated

with the Solver object. SolverModule objects have the same initialize, step, and finalize

methods from Solver, as shown in Listing 3.2. The particular method from a SolverModule object

is run from the analogous methods in Solver. An example of a Solver object coordinating two

SolverModule objects is shown in Figure 3.2.

The interface for a SolverModule is shown in Listing 3.2. An example of functionality appropri-

ate for the initialize method is pre-processing applied to the initial values or writing the header

of an output file. Examples of functionality appropriate for the step method are the integration

itself, error control, and output to a file or data structure. Examples of functionality appropriate

for the finalize method are post-processing of the final solution and closing output files.

In general, each of the methods in a SolverModule includes code to read from the Solution

object at the beginning of its execution and to write to the Solution object when it is finished

executing.

Listing 3.2: The interface for SolverModule objects.

class SolverModule :
def i n i t i a l i z e ( s e l f , s o l v e r , s o l u t i o n ) :

# code t ha t runs b e f o r e s o l v i n g the IVP
# e . g . , opening f i l e s f o r output , i n pu t t i n g data from a f i l e , e t c .
pass

def s tep ( s e l f , s o l v e r , s o l u t i o n ) :
# code t ha t runs f o r each s t ep
# e . g . , i n t e g ra t i on , er ror cont ro l , e t c .
pass

def f i n a l i z e ( s e l f , s o l v e r , s o l u t i o n ) :
# code t ha t runs a f t e r s o l v i n g the IVP
# e . g . , c l o s i n g f i l e s , output f i n a l va lues , e t c .
pass

3.3.4 Statistics and error checking

Decorator patterns are used to dynamically and transparently attach additional responsibilities

to objects without inheritance or code modification. Inheritance requires a new class for each

combination of extensions and can become complex. Decorators add responsibilities by enclosing

an object and performing operations before and after forwarding requests to the decorated object,

therefore depending only on the interface rather than the implementation of the object. This allows
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code reuse because functionality can be in a single place when it would not be otherwise possible

when using behavioural subtyping [38, p.175].

Decorators are also the name of a feature in the core functionality of Python that can be used to

implement decorator patterns. In pythODE, decorators are used for tasks such as gathering statistics

and error checking. As an example, an important metric to determine the relative performance of

IVP methods is the total number of RHS evaluations during the solution. Unlike computational

time, the number of RHS evaluations is independent of many low-level implementational details or

the programming platform. IVP software often allows counting the number of RHS evaluations.

The counters for RHS evaluations are typically scattered throughout the program; for instance

in the RADAUP solver there are six calls to incrementing the global RHS evaluation counter. In

pythODE, a decorator can be added to the RHS itself to count the number of evaluations without

any code modification of the solver components themselves. An example of a decorator being used

for this is shown in Listing 3.3.

Listing 3.3: Applying a decorator to count evaluations of an already existing function.

# the g l o b a l v a r i a b l e f o r count ing
count = 0

def c oun t rh s eva l ua t i on s ( f ) :
# add the decora tor to the new func t i on
def count f ( f ) :

return f ( t , f )
# t h i s f unc t i on i s not seen e x t e r n a l l y
def decorato r (∗ args ,∗∗ kwds ) :

# opera t i ons b e f o r e forward ing the arguments
# i . e . , count ing the func t i on c a l l s wi th a g l o b a l v a r i a b l e
count += 1

# c a l l the decora ted func t i on
r e s u l t = f (∗ args ,∗∗ kwds )

# opera t i ons a f t e r forward ing the arguments

# re turn the r e s u l t from the decora ted func t i on
return r e s u l t

# return the new func t i on
return decorato r

# decora to r ing the RHS
@count rhs eva luat i ons
def f ( t , y ) :

# de f i n e the RHS here and re turn
pass

Using decorators to implement this functionality means the numerical code is less cluttered and
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the function counter only needs to be in one location. If modules are added or code is modified

so RHS evaluations occur in additional locations, no additional development is required to record

this statistic accurately. An example of where this may occur is that some dense output formulae

require additional RHS evaluations for each evaluation of the solution at off-step times.

Another example of the usage of decorators is checking for exceptional floating point values such

as infinity (Inf) or not a number (NaN). These can interfere with many floating point operations

and need to be identified and handled. If they are not properly handled the solver may be forced to

terminate when appropriate corrective action could be taken instead. Using decorators, the solver

can perform and respond to these checks from only one location. Sometimes there is also problem-

specific error checking that needs to be performed. For instance, some ARD equations should not

produce negative values in the numerical solution because such values are non-physical and may

result in instability. A decorator could check for negative values and take an appropriate action

such as rejecting the current step, even if the local error (2.5) itself is within tolerances (2.38).

Other examples of where decorators could be used include counting accepted and rejected steps

and recording the optimal parameters of heuristics that could have been used to avoid a rejected

step. The eigenvalues of the Jacobian matrix could be determined at arbitrary solution or stage

values in order to help diagnose problematic IVPs [61, p.224]. This is a computationally expensive

statistic to record, but using decorators allows it to be added or removed easily.

3.3.5 Testing

Testing is a critical part of developing any software package. PSEs like pythODE are under constant

development as new numerical methods are proposed and analyzed. Therefore verification must

occur on a regular basis to ensure errors are not introduced. A standard method for testing IVPs is

to compare the numerical solution from a particular software package to a reference solution, which

is a numerical solution to a particular IVP that has been solved to high accuracy with proven

numerical software. Sets of test problems and software for generating reference solutions can be

found in [35, 50, 68]. The pythODE PSE has an automatic test suite to check against a large number

of problems with reference solutions. This test suite is run periodically to find errors that may have

been introduced, allowing both continued development and trust in the solver.

Another method of testing IVP software is to ensure the integration methods match the theoret-

ical order of convergence from the asymptotic behaviour of (2.5). This is necessary because with a

small enough stepsize, an “incorrect” method can still produce an accurate solution. An empirical

method of calculating the order of convergence is to find the error with a constant-stepsize solver.

The stepsize is then halved, and the integration is then repeated until the asymptotic behaviour

can be observed. Testing the order of convergence can find errors in the implementation, such as

incorrect coefficients in the Butcher tableau, that may be missed with accuracy tests alone.
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The testing code includes methods to generate reference solutions and compare different pa-

rameters for solvers and IVPs. Typically a reference solution is found by solving the IVP with

decreasing error tolerances (2.38) until successive solutions change by less than a desired amount.

The solution with the smallest tolerances is then taken to be the reference solution. The code

to compare sets of parameters includes methods for extracting the dependent variables for each

experiment and comparing them against the independent variables. This allows the testing code

to be used for computational experiments as well.

47



Chapter 4

Integrating-factor-based 2-additive-Runge–Kutta

methods for ARD equations

Optimal methods for solving the ODE systems (2.2a) from the semi-discretization of ARD

equations (2.44) are dependent on the properties of the underlying ARD system. This can be

illustrated by examining the error bound of a uniformly semi-discretized ARD equation, given by

||u∆x(tn)− yn|| ≤ ||u∆x(tn)− y(tn)||+ ||y(tn)− yn|| ≤ C∆x |∆x|p(∆x) + C∆t ∆tp(∆t) , (4.1)

where u∆x(tn) is the exact solution of the PDE (2.44) restricted to the grid used for semi-

discretization, y(tn) is the exact solution of the semi-discretized ARD system, yn is the numerical

solution of the semi-discretized ARD system, p(∆x) is the order of convergence in space with an

associated constant C∆x, and p(∆t) is the order of convergence in time with an associated constant

C∆t. The semi-discrete system forms a family of ODE systems parametrized by ∆x; therefore it

requires additional analysis in comparison to the non-parametrized ODE system (2.2a). The overall

order of convergence in time of the IVP (2.2a) resulting from semi-discretization of the ARD sys-

tem as ∆t→ 0+ with ∆x fixed is different from the case when ∆t→ 0, |∆x| → 0+ simultaneously

because the constant C∆t in (4.1) is generally dependent on the choice of ∆x [51, p.95].

The behaviour of the error bound (4.1) motivates the development of ODE solution methods

based on knowledge of the underlying ARD equations (2.44) as well as the semi-discretization

methods used for them. In this chapter we introduce IVP methods that are optimal for each of the

three terms of a semi-discretized ARD equation,

d

dt
y(t)−A(t,y(t)) · y(t) = D(t,y(t)) · y(t) + r(t,y(t)), (4.2)

A(t,y(t)) : R×Rm → Rm×m is the advection operator, D(t,y(t)) : R×Rm → Rm×m is the diffusion

operator, and r(t,y(t)) : R × Rm → Rm is the reaction term composed of ngrid decoupled vector

functions of size q each. The size of the ODE system is m where m = q × ngrid, q is the number of

species, and ngrid is the number of spatial grid points.

The dependence of the error terms of the semi-discretized system (4.1) on ∆x leads to stepsize

48



restrictions based on the size of the spatial grid when using an explicit method to solve (4.2). For

certain problems, the stepsize restrictions are not severe enough to require stiff methods for the

semi-discretized system, but this is problem dependent [51, p.149].

ARD equations are often solved to only moderate accuracy in time because the primary source of

error is due to the relatively coarse accuracy in space. Therefore higher-order ODE methods do not

always give higher accuracy; i.e., the extra computational work to achieve high order does not give

a more accurate solution to the underlying PDE. Higher-order ODE methods for semi-discretized

PDEs are advantageous for transient phenomena and fluid mechanics applications [51, p.440]. Im-

provements in modelling physical phenomena by ARD systems also make finding high-accuracy

solutions more important. The increase in computational resources due to Moore’s law makes high

accuracy more practical and thus higher-order algorithms more important [45, 84].

4.1 Semi-Lagrangian exponential integrators for advection

A well-known condition that restricts ∆t due to stability for explicit methods when solving the semi-

discretized advection equation (2.41) is the Courant–Friedrichs–Lewy (CFL) condition [29, 30], with

the one-dimensional constant-coefficient case given by

ν =
∆t |a|
∆x

≤ C,

where ν is known as the Courant number, a is the advection coefficient, and C is a positive constant

dependent on the particular advection problem but independent of ∆t and ∆x.

The mathematical domain of dependence of a solution point u(t,x) of a PDE is the set of all

points (t,x) such that u(t,x) is dependent on the data at those points. The numerical domain

of dependence of a numerical solution point u∆x(tn,xi) is the set of all points (tj ,xk) such that

u∆x(tn,xi) is dependent on the data at those points. The CFL condition reflects that the mathe-

matical domain of dependence must lie within the numerical domain of dependence as a necessary

condition for stability. Otherwise points of the numerical solution do not have the necessary knowl-

edge of previous solution points for a stable solution [34, p.422; 51, p.102,149].

Methods such as finite differences that model advection by using a fixed grid to observe the

flowing medium are known as Eulerian methods. Eulerian methods typically suffer from numerical

issues such as artificial diffusion, artificial dispersion, and stepsize restrictions on explicit methods

due to the CFL condition. Lagrangian methods model advection as fluid particles that are followed

through space rather than being observed from a fixed grid as with Eulerian methods. They do not

have stability restrictions, such as the CFL condition, when using explicit timestepping methods

and have reduced artificial dispersion. A disadvantage of Lagrangian methods is that the grid

typically becomes highly irregular during timestepping [32, p.936; 96, p.2207].
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Semi-Lagrangian methods, also known as Eulerian–Lagrangian methods, observe the flowing

medium from a Lagrangian perspective but model different fluid particles at each timestep. This

approach achieves the stability of Lagrangian schemes but maintains the regular grid of Eulerian

schemes [96, p.2207]. The first-order upwind scheme (2.47) is in fact equivalent to the simplest semi-

Lagrangian methods in one dimension [96, p.2212]; this explains the excellent qualitative behaviour

in comparison to the second-order central difference scheme as shown in [51, p.54].

Characteristics are curves along which the solution of a PDE reduces to the solution of an ODE.

In the case of the advection equation (2.41) characteristics satisfy IVPs of the form

dX(τ)

dτ
= A(τ,X(τ)), X(tn+1) = xi, (4.3)

where X(τ) : R → Rq is the characteristic that maps spatial positions to time τ ∈ R [22, p.141;

72, p.86]. Semi-Lagrangian methods follow characteristics from a grid point xi at tn+1 to a spatial

location at tn, generally an off-grid point. Interpolation between grid points is used to find the

concentration at the spatial location for tn corresponding to the characteristic [105, p.660]. This

interpolated value is then used to find numerical solution for the grid point xi at tn+1. Char-

acteristic equations (4.3) do not generally have analytical solutions, especially for problems with

multiple spatial dimensions and variable coefficients. Instead, characteristics are found by interpo-

lation, e.g., using finite elements [8, 9, 77], or solved using IVP methods such as RK [6, 22, 103].

Semi-Lagrangian methods can nearly eliminate artificial dispersion [22, p.157] but exhibit artificial

diffusion, have difficulty with boundary conditions, have a high computational cost relative to other

methods, and do not conserve mass [6, 103, 105]. Semi-Lagrangian localized adjoint methods are

an improvement of semi-Lagrangian methods that conserve mass and are able to handle general

boundary conditions [36, 103]. Solving for each characteristic and performing the associated inter-

polation can be done independently; therefore semi-Lagrangian methods are suitable for parallel

computing [66].

4.1.1 Exponential Lie group methods

Exponential methods for solving ODEs use an exponential map, such as the matrix exponential of

the Jacobian (2.9), to advance the integration. Certain exponential integrators are formally explicit

but avoid stepsize restrictions due to stability when solving stiff IVPs because exponential maps can

follow rapidly changing solution curves better than linear approximations can [76]. In practice, al-

though exponential methods are not a new idea [62, 78], they are not mainstream methods because

they have been considered to be less efficient than IRK and BDF methods due to the high cost of

computing the required functions such as matrix exponentials. The development of lower-cost algo-

rithms to compute, in particular, matrix exponentials, such as the Krylov subspace approximations
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described in Section 4.1.4 below, has brought renewed interest to exponential methods [71, p.1].

A family of exponential methods known as exponential Lie group methods can preserve the

qualitative behaviour of an ODE system, such as conserving energy or angular momentum when

simulating rigid bodies or other problems from classical mechanics [24; 42, p.127,169; 74]. A Lie

group G is a smooth differentiable manifoldM that is closed under a group operation G×G→ G.

A Lie algebra g is the tangent space at the identity of G and is closed under an operation known as

the Lie bracket [·, ·] : g× g→ g. Lie groups that are known as matrix Lie groups, where the group

elements are finite-dimensional vector spaces, are a common class. The Lie algebra of a matrix Lie

group is a vector space, with a Lie bracket that is the matrix commutator [A,B] := AB −BA. An

exponential map exp : g→ G, that is a matrix exponential in the case of matrix Lie groups, takes

the members of the Lie algebra to the members of the Lie group [76]. Matrix Lie group differential

equations that remain on M have the form

d

dt
Y(t) = J(Y(t)) ·Y(t), (4.4a)

Y(0) = Y0, (4.4b)

where Y(t) ∈ G and J(Y(t)) ∈ g are locally Lipschitz continuous to ensure existence and unique-

ness [42, p.118]. In the context of differential equations defined on Lie groups, G is the space of

solutions and the group operation × maps the whole solution space to itself [52, p.15].

One of the simplest equations containing a nonlinear advection term is the Burgers equation.

When coupled with diffusion, it is used to simulate fluid flow containing shocks, which are sharp

transitions in a fluid flow. The one-dimensional Burgers equation with diffusion is given by

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
, (4.5)

where u = u(t, x) : R × R → R is a concentration and ε ∈ R is the diffusion coefficient. The Lie

group operation for the Burgers equation can be defined from the following transformations:

Spatial translation G1 : (x, t, u) −→ (x+ κ1, t, u), (4.6a)

Time translation G2 : (x, t, u) −→ (x, t+ κ2, u), (4.6b)

Projection G3 : (x, t, u) −→
(

x

1− κ3t
,

t

1− κ3t
, (1− κ3t)u+ κ3x

)
, (4.6c)

Scale transformation G4 : (x, t, u) −→ (xeκ4 , te2κ4 , ue−κ4), (4.6d)

Galilean boost G5 : (x, t, u) −→ (x+ κ5t, t, u+ κ5), (4.6e)

where κ1, κ2, . . . , κ5 are parameters for the transformations andM∼ R3. Most classical numerical

schemes, which include Eulerian methods, respect (4.6a), (4.6b), and (4.6d). In general (4.6c) and
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(4.6e) are not respected [25]. Many aspects of qualitative behaviour are generally not preserved by

the IVP methods or the finite difference methods of Chapter 2 because the only possible action of

these methods is to evolve using linear approximations, which generally do not reflect these types

of properties of the exact solution [60].

This motivates a search for numerical methods that better preserve qualitative behaviour such as

the Lie group structure. Numerical methods for (4.4) can preserve qualitative behaviour by ensuring

the numerical solution stays on M. This is usually accomplished by solving (4.4) in the context of

g, then mapping the result back to G by using the exponential map in the solution formula [20].

For many practical problems such as the Burgers equation (4.5), the manifold isM∼ Rm, but Lie

group methods are still useful because they can evolve in the same qualitative manner as the exact

solution [60]. The most basic exponential Lie group method for (4.4), considered analogous to FE,

is given by

Yn+1 = exp(J(Yn)) ·Yn, (4.7)

where Yn+1,Yn ∈ G and J(yn) ∈ g. In [18, 22] it is shown that by taking the exact flow of the

of the advection term (2.41) from Yn using characteristics (4.3) and solving with (4.7), a semi-

Lagrangian integrator is obtained. However, although there does not yet appear to be a rigorous

justification for the connection to Lie group theory, published results show excellent qualitative

behaviour of high-order exponential Lie group methods that use the exact flow of the advection

term (2.41) of the underlying PDE compared to the corresponding Eulerian methods, which use

the matrix exponential of A(t,y(t)) from (4.2), in [18, 22].

4.1.2 Commutator-free Lie group exponential methods

Higher-order exponential Lie group methods typically require a relatively large number of exponen-

tial calculations, e.g., fifteen exponentials in the case of a fourth-order Crouch–Grossman method,

each taking approximately 25m3 floating-point operations when solving an ODE on a matrix Lie

group and the exponential calculation used is a matrix exponential [24, 31]. The formula for explicit

Crouch–Grossman methods for ODEs with the form (4.4) is given by

Yi = exp (∆tnai,i−1Ki) · . . . · exp (∆tnai,2Ki) · exp (∆tnai,1Ki) ·Yn, i = 1, 2, . . . , s,

Ki = J(Yi), i = 1, 2, . . . , s,

Yn+1 = exp (∆tnbsKs) · . . . · exp (∆tnb2K2) · exp (∆tnb1K1) ·Yn,

where ai,j and bi correspond to the A and b values of a classic RK Butcher tableau (2.15) re-

spectively, and Yi is the solution at stage Ki [24]. To obtain an order of convergence greater
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than three, additional order conditions are required for Crouch–Grossman methods in comparison

to the classic RK methods [24, 31, 76]. To reduce the number of matrix exponentials required,

Munthe-Kaas methods use commutators, each taking approximately 4m3 floating-point operations

when solving an ODE on a matrix Lie Group and the commutator operation used is a matrix

commutator [24, 73]. The formula for explicit Munthe-Kaas methods for ODEs with the form (4.4)

is given by

Yi = exp
(
Ỹi

)
·Yn, Ỹi = ∆tn

i−1∑
j=1

ai,jKi, i = 1, 2, . . . , s,

Ki = π(K̃i) = K̃i + π1[Ỹi, K̃i] + π2[Ỹi, [Ỹi, K̃i]] + . . . , K̃i =

i−1∑
j=1

J(Yi), i = 1, 2, . . . , s,

Yn+1 = exp

(
∆tn

s∑
i=1

biKs

)
·Yn,

where ai,j and bi correspond to the A and b values of a classic RK Butcher tableau (2.15) respec-

tively, Yi is the solution at stage Ki, and π(Z) is a sufficiently high-order polynomial approximation

to Z/(exp(Z) − 1) with coefficients π1, π2, . . . [24]. If π(Z) is a sufficiently high-order approxima-

tion, then explicit Munthe-Kaas methods will have the same order of convergence as the classic RK

method with the same A and b coefficients, with no additional order conditions [24, 73]. Lie group

methods that use commutators have stepsize restrictions due to stability when solving stiff differen-

tial equations [24]. This motivates the search for commutator-free Lie group methods that reduce

the numbers of exponentials compared to Crouch–Grossman methods or similar methods [24, 75].

Commutator-free exponential Runge–Kutta (CFERK) methods, which can be configured to use

a minimal number of exponentials, take the form

Yi = exp

∆tn

i−1∑
j=1

α
[J]
i,jKj

 · . . . · exp

∆tn

i−1∑
j=1

α
[2]
i,jKj

 · exp

∆tn

i−1∑
j=1

α
[1]
i,jKj

 ·Yn, (4.8a)

Ki = J(Yi), i = 1, 2, . . . , s, (4.8b)

Yn+1 = exp

(
∆tn

s∑
i=1

β
[K]
i Ki

)
· . . . · exp

(
∆tn

s∑
i=1

β
[2]
i Ki

)
· exp

(
∆tn

s∑
i=1

β
[1]
i Ki

)
·Yn, (4.8c)

where
∑J
k=1 α

[k]
i,j = ai,j and

∑K
j=1 β

[j]
i = bi correspond to the A and b values of the classic RK

Butcher tableau (2.15) respectively, and Yi is the solution at stage Ki [18, p.9; 22, p.141; 24, 75].

The Crouch–Grossman methods from are a special case of (4.8) with J = s and α
[k]
i,j = δjkaij where

aij are the A values for Crouch–Grossman methods and δjk is the Kronecker delta [24]. Crouch–

Grossman, Munthe-Kaas, and CFERK methods in principle could use an implicit Butcher tableau,

which would require the solution of systems of implicit equations to find the stage values [24]. It

can easily be seen that the exponential methods described in this section can be reduced to classic
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RK methods if the matrix exponential is approximated by the translation exp(tY)z ≈ tY + z [75].

4.1.3 Order conditions for CFERK methods

The classic RK order conditions from Section 2.4.1 form a subset of the order conditions for CFERK

methods. Additional order conditions arise because of more method coefficients, and when finding

higher derivatives of (4.4), the evaluation of elementary differentials (2.23) involves matrix multi-

plication, which is not commutative. Evaluating higher derivatives involves more Lie group theory

than that which is presented here, but it can be found in [19, 22, 24, 75, 76].

Similar to the classic RK methods, visualizing the order conditions of CFERK methods can be

accomplished using rooted trees. This is done by visualizing methods of order p using rooted trees

of order p+1, but there is no precise analogy with the use of rooted trees to derive the methods from

Chapter 2. In addition, the rooted trees for CFERK are known as ordered ; i.e., the specific branch

to which a subtree is attached while constructing the rooted tree is important [75, 76]. For example,

two rooted trees that correspond to different elementary differentials for CFERK methods, but not

to classic RK methods, are given by

��AA irh1 rh2r
h3r
, ��AA irh1 rh2r

h3r
, (4.9)

where the ordering is because the subtree rr that terminates with the vertex labelled h2 can be

attached to either of the vertices labelled with h1 or h3 on the subtree AA��r rr
.

There are no additional order conditions for second-order CFERK methods (4.8) compared

to classic RK methods, and thus any second-order classic RK Butcher tableau (2.15) can be used.

Beginning with third-order CFERK methods, additional order conditions and at least one additional

exponential evaluation are required. The augmented Butcher tableau for a third-order explicit

CFERK method is given by

c A

bT
:=

c1 0 0 · · · 0 0

c2 a2,1 0 · · · 0 0

c3 a3,1 a3,2 · · · 0 0
...

...
...

. . .
...

...

cs as,1 as,2 · · · as,s−1 0

β
[1]
1 β

[1]
2 · · · β

[1]
s−1 β

[1]
s

β
[2]
1 β

[2]
2 · · · β

[2]
s−1 β

[2]
s

(4.10)
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where the parameters from (4.8) are J = 1,K = 2. The additional order condition is given by

s∑
i=1

β
[1]
i ci +

1

2
β

[2]
i =

1

3
, (4.11)

that is derived from the two different ordered trees given in (4.9) [24]. To obtain fourth order, at

least one additional exponential is required over third order [24], the augmented Butcher tableau

for a fourth-order CFERK method is given by

c A

bT
:=

c1 0 0 · · · 0 0

c2 a
[1]
2,1 0 · · · 0 0

c3 a
[1]
3,1 a

[1]
3,2 · · · 0 0

...
...

...
. . .

...
...

cs a
[1]
s,1 a

[1]
s,2 · · · a

[1]
s,s−1 0

β
[1]
1 β

[1]
2 · · · β

[1]
s−1 β

[1]
s

β
[2]
1 β

[2]
2 · · · β

[2]
s−1 β

[2]
s

c1 0 0 · · · 0 0

c2 a
[2]
2,1 0 · · · 0 0

c3 a
[2]
3,1 a

[2]
3,2 · · · 0 0

...
...

...
. . .

...
...

cs a
[2]
s,1 a

[2]
s,2 · · · a

[2]
s,s−1 0

β
[1]
1 β

[1]
2 · · · β

[1]
s−1 β

[1]
s

β
[2]
1 β

[2]
2 · · · β

[2]
s−1 β

[2]
s

(4.12)

where the parameters from (4.8) are J = 2, K = 2. It appears (4.12) requires s additional

exponentials in comparison to a classic non-augmented Butcher tableau; however practical methods

are constructed so the exponentials are reused wherever possible. Four additional order conditions

are given by

s∑
i=1

1

6
β

[1]
i ci +

1

18
β

[2]
i =

1

24
, (4.13a)

s∑
i=1

1

4
β

[1]
i c2i +

1

12
β

[2]
i =

1

24
, (4.13b)

s∑
i=1

1

2
β

[1]
i aijci +

1

12
β

[2]
i =

1

24
, (4.13c)

which result from different orderings of the subtrees for the set of fifth-order rooted trees. A further

order condition

1

2

 2∑
i,j=1

bici α
[1]
i,jcj +

s∑
i,j,k=1

biai,jcj α
[2]
j,k

 =
1

24
, (4.13d)

is required because of the coupling between the two tableaux of α
[k]
i,j for this method [24, 76].
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4.1.4 Krylov subspace approximations to the matrix exponential

Krylov subspace approximations to the matrix exponential are iterative methods that approximate

the action of the matrix exponential as

exp(tA) · v ≈ pη−1(t ·A) · v, (4.14)

where t ∈ R, A ∈ Rm×m, v ∈ Rm, and pη−1(t ·A) is a matrix polynomial of degree η − 1. The

approximation (4.14) is an element of the Krylov subspace Kη of dimension η [83] defined by

Kη := span(v,A · v,A2 · v, . . . ,Aη−1 · v).

Krylov subspace approximations of a matrix function ρ(A) use successive evaluations of ρ(·)
on smaller matrices than A [83]. The iterations resulting from Krylov subspace approximations

exhibit superlinear convergence under appropriate conditions and have been shown for some stiff

IVPs to be a viable alternative to solving the same IVP with IRK methods that use Newton’s

method to solve the systems of simultaneous nonlinear equations at each step [47, 48].

The stopping criterion for the iterations of the Krylov subspace approximations is given by

||d||tol < 1, with the same norm used by the integrator

||d||tol =

√√√√ 1

m

m∑
i=1

(di/τn,i)2,

where d is an estimation of the residual internal to the Krylov approximation method and τn,i are

the tolerances for the local error estimate given in (2.38). This stopping criterion avoids excessive

computational cost for approximating the action of the matrix exponential. More details on the

algorithm for Krylov subspace approximations can be found in [47].

4.1.5 Error control for CFERK methods

In [24], CFERK methods are used to solve a PDE derived from heat conduction using the step-

doubling error estimation from Section 2.5.1 and the stepsize control from Section 2.5.3. We are

unaware of embedded error estimation being used for CFERK methods or how many additional

exponential or RHS evaluations would be required. The Matlab software package EXP4 described

in [47] uses embedded error estimation with a fourth-order exponential main method and a third-

order exponential embedded method; however it is not a Lie group method, despite its use of the

matrix exponential of the Jacobian. The stepsize controller in EXP4 uses the predictive stepsize

controller described in Section 2.5.3. Krylov subspace methods, for example, use a variable number

of iterations to evaluate the matrix exponential. Therefore the cost and accuracy of evaluating the
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matrix exponential should be taken into account when selecting stepsize for error control. EXP4 is

an example of a software package that uses this type of stepsize selection strategy [47].

4.2 Stabilized ERK methods for the diffusion term

The semi-discretized diffusion operator D(t,y(t)) of an ARD equation (4.2) typically gives a Ja-

cobian (2.9) that is negative semi-definite and symmetric; therefore the eigenvalues are real and

non-positive [51, p.64]. ODEs with these types of eigenvalues normally require a stiff solver. Sta-

bilized ERK methods have an extended stability region to accommodate the eigenvalues from an

ODE system that is moderately stiff. Stabilized ERK methods can achieve better computational

efficiency on some large systems compared to an IRK solver such as RADAU5 [3]. Their implemen-

tation is simplified over an IRK method because it is not necessary to evaluate the Jacobian or

solve systems of equations when using an ERK method. The large stability regions are achieved by

additional stages relative to the number required to achieve the order of convergence of the method.

Stabilized ERK methods designed for the diffusion term have stability regions that contain a rela-

tively large interval of the negative real axis [94, p.317; 101, p.2].

When solving semi-discretized diffusion problems with explicit methods, there are stepsize re-

strictions due to the CFL condition. Diffusion problems have a mathematical domain of dependence

encompassing the whole problem domain; in the one-dimensional constant-coefficient case this leads

to stepsize restrictions of the form

ν =
∆t |ε|
(∆x)2

≤ C, (4.15)

where ε is the diffusion coefficient, C is a positive constant that is problem dependent but inde-

pendent of ∆t and ∆x. Conditions such as (4.15) can lead to complications in advection-diffusion

equations because each term may impose significantly different timestep restrictions.

Runge–Kutta–Chebyshev (RKC) methods, named because the stability polynomial of the pro-

totypical method is based on Chebyshev polynomials, are an example of stabilized ERK methods.

The Chebyshev polynomials of the first kind are given recursively by

T0(z) = 1,

T1(z) = z,

Tj(z) = 2z Tj−1(z)− Tj−2(z),

Tj(z) = cos(j arccos(z)),

where Tj(z) is the Chebyshev polynomial of the first kind of degree j. Optimal first-order RKC
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methods use a shifted Chebyshev polynomial as the stability polynomial, which is given by

Rs(z) = Ts(1 + z/s2), (4.16)

where the method has a stability interval of ls = [−0.821842s2, 0] along the negative real axis when

using s stages.

The stability polynomials of RKC methods with maximal stability interval ls have a stability

region of width zero at some points within ls. The stability polynomials of practical methods

are dampened ; i.e., a dampening parameter η is introduced such that |Rs(z)| ≤ η ≤ 1 instead of

|Rs(z)| ≤ 1 in the case of the undampened stability polynomials. This reduces ls slightly but ensures

eigenvalues that lie a relatively small distance from the negative real axis fall within the stability

region [44]. Stabilized ERK methods such as RKC methods must ensure the large number of stages

do not excessively accumulate round-off error [94, p.317]. It can be seen from Section 2.7 that the

dimension of the ODE system (4.2) can become extremely large in the case of fine meshes, multiple

spatial dimensions, and many species; therefore another requirement for practical stabilized ERK

methods is to use a minimal amount of storage.

The methods from the Fortran codes ROCK2 [4] and ROCK4 [2] have an order of convergence

of two and four, respectively, and possess embedded methods. The stability polynomials of these

methods approximate closely the optimal stability polynomials with the maximum possible ls. The

stability polynomials do not have an analytical form [2, 4] but can be stated as

Rs(z) = wp(z)Ps−p(z), (4.17)

where wp(z) is a polynomial of degree p having only complex zeros, Ps−p(z) is a polynomial of

degree s− p, and p is the order of convergence of the resulting method. The stability polynomials

are orthogonal polynomials satisfying

∫ ls

0

Ri(z)Rj(z)W (z)dz = 0,

where Ri(z), Rj(z) are two orthogonal stability polynomials and W (z) =
wp(z)2

√
1−z2

is a weighting

function. A well-known result is that orthogonal polynomials possess a three-term recursion rela-

tion [4, p.13]; the recursion for (4.17) is

Pi(z) = (µiz − νi)Pi−1(z)− κiPi−2(z), (4.18)

where µi, νi, κi are recursion parameters [2]. The recursion parameters of (4.18) are found by solving

a system of nonlinear equations as described in [1, 2, 4]. These types of stability polynomials exist

58



for an arbitrarily large even order of convergence [1]. The three-term recursion leads to a recursive

formula for methods based on stability polynomials of (4.17) with p = 2 given by

Y0 = yn, (4.19a)

Y1 = Y0 + ∆t µ1f(Y0), (4.19b)

Yj = ∆t µjf(Yj−1)− νjYj−1 − κjYj−2, j = 2, 3, . . . , s− 2, (4.19c)

and is followed by a finishing procedure derived from wp(z) for the final values given by

Ys−1 = Ys−2 + ∆t σ f(Ys−2), (4.20a)

Y?
s = Ys−1 + ∆t σ f(Ys−1), (4.20b)

Ys = Y?
s −∆t σ

(
1− τ

σ2

)
(f(Ys−1)− f(Ys−2)) , (4.20c)

where Ys is the result yn+1 and Y?
s is a first-order embedded method that can be used to produce

an estimate for ŷn+1 in the error controllers described in Section 2.5. A damping factor represented

by η = 0.95 shortens the stability interval only marginally from the near optimal ls ≈ 0.82s2 to

ls ≈ 0.81s2 in the case of p = 2 and a moderately sized s [4]. The stability region for ROCK2 with

10 stages is shown in Figure 4.1.
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Figure 4.1: Stability region of 10-stage ROCK2 (dark shading) and the embedded method
(light shading and dashed boundary).

In [2] the coefficients for ROCK4 with p = 4 and a different finishing procedure are derived by

composing RK methods with stability polynomials of Ps−4 and w4(z) respectively. The stability

region for ROCK4 is shown in Figure 4.2. Methods that use a three-term recursion (4.19) can

be converted to a conventional Butcher tableau (2.15) for the purposes of analysis; in practical
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Figure 4.2: Stability region of 14-stage ROCK4 (dark shading) and the embedded method
(light shading and dashed boundary).

implementations these representations have increased computational and storage requirements.

4.3 Integrating-factor-based 2-ARK methods

In this section the general form of integrating-factor-based 2-ARK (IF-2-ARK) methods based on

those from [18, 22] are derived. These new methods use a CFERK method for advection and RK

methods for reaction and diffusion.

4.3.1 Operator integrating factor splitting

ARK methods are a type of splitting method where the vector field of an ODE system is additively

decomposed, then each part of the vector field is integrated separately. These individual solutions

are then combined to give an integration of the complete system. Splitting is mainly used to improve

the feasibility of integrating a system compared to a single integration method for the entire system.

For example, this situation occurs in the context of semi-discretized ARD equations (4.2) if the

reaction term is extremely stiff but the diffusion term is only modestly stiff. A single stiff integration

method applied to (4.2) generally leads to extremely large systems of simultaneous equations that

must be solved using Newton’s method. The cost of solving large systems of equations is extremely

high; however, using a splitting method to solve the reaction terms separately avoids spatial coupling

and results in many relatively small systems of equations that are generally not as costly to solve

[69, 89, 101].

Operator splitting is a type of splitting where the operators applied to the vector field, such as

the advection, reaction, and diffusion operators from (4.2), are isolated so they can be integrated
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in time separately [51, 69]. Operator integrating factor (OIF) splitting [65] is a type of operator

splitting that is used to generate numerical methods for systems of ODEs by finding an integrating

factor, a function that is chosen to facilitate the solution of an ODE [5]. In [18, 22] OIF splitting,

using integrating factors based on A(t,y(t)) from (4.2), generate CFERK-based matrix-matrix

multiplications, and matrix-vector multiplications. OIF splitting reformulates (4.2) in the form

y(t) =W(t) · z(t), (4.21a)

d

dt
W(t) = A(t,W(t) · z(t)) · W(t), (4.21b)

d

dt
z(t) =W−1(t) · D(t,W(t) · z(t)) · W(t) · z(t) +W−1(t) · r(t,W(t) · z(t)), (4.21c)

W(t0) = I, z(t0) = y0, (4.21d)

where W(t) ∈ Rm×m is the integrating factor, z(t) ∈ Rm is an auxiliary variable, and I is the

identity matrix [18, 22, 65]. A full derivation of (4.21) is given in Appendix C. The splitting (4.21)

effectively decouples the advection term from the reaction and diffusion terms of (4.2). Numerical

schemes known as transport-diffusion schemes [77], where advection of the flowing medium is mod-

eled before applying diffusion, can be viewed in the context of OIF splitting [65]. The CFERK-based

methods presented in this section, as well as those in [18, 19, 22], can be viewed as higher-order

generalizations of the transport-diffusion algorithm.

4.4 Format of IF-2-ARK methods

The integrating factor W(t) from (4.21) corresponds to exp(A(y(t))) when A(·) is not explicitly

dependent on time [65], thus providing motivation to use a CFERK method to integrateW(t). The

variable z(t), corresponding to a reaction-diffusion problem, is integrated with a 2-ARK method

such as the IMEX methods (2.21) in [7, 55, 101]. Timestep restrictions from the diffusion term

(4.15) are still present in advection-dominated problems where ||D(y(t))|| � ||A(y(t))|| [22]. Using

a stabilized ERK method from Section 4.2 for a moderately stiff diffusion term requires only that

the solution of small systems of non-spatially coupled equations for the reaction term.

The formula for IF-2-ARK methods up to fourth order used to solve (4.2), when the coefficients

are not explicitly dependent on t, is derived in Appendix C by eliminating the auxiliary variables
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and given by

ρi = exp

∆tn

i−1∑
j=1

α
[2]
i,j A(Yj)

 · exp

∆tn

i−1∑
j=1

α
[1]
i,j A(Yj)

 , i = 1, 2, . . . , s, (4.22a)

ρi,j := ρi · ρ−1
j , (4.22b)

Yi = ρi · yn + ∆tn

s∑
j=1

(AD)i,j ρi,j · D(Yj) ·Yj + ∆tn

s∑
j=1

(Ar)i,j ρi,j · r(Yj), i = 1, 2, . . . , s,

(4.22c)

ρn+1 = exp

(
∆tn

s∑
i=1

β
[2]
i A(Yi)

)
· exp

(
∆tn

s∑
i=1

β
[1]
i A(Yi)

)
, (4.22d)

ρn+1,i := ρn+1 · ρ−1
i , (4.22e)

yn+1 = ρn+1 · yn + ∆tn

s∑
i=1

(bD)i ρn+1,i · D(t,Yi) ·Yi + ∆tn

s∑
i=1

(br)i ρn+1,i · r(Yi), (4.22f)

where s is the number of stages, (AA)i,j = α
[1]
i,j + α

[2]
i,j , (bA)i = β

[1]
i + β

[2]
i , and cA correspond to

the tableau of the CFERK (4.8) used to integrate the advection term. AD, bD, and cD correspond

to the tableau of the RK method (2.14) used to integrate the diffusion term, and Ar, br, and

cr correspond to the tableau of the RK method (2.14) used to integrate the reaction term. If a

non-additive RK method is used to solve for z(t), the formula (4.22) corresponds to the methods

given in [18, 19, 22]. The tableau of (4.22) is given by

cA AA

bA
T
,

cD AD

bD
T
,

cr Ar

br
T

(4.23)

Eigenvalues of the reaction terms of semi-discretized ARD equations (4.2) do not in general

follow the regular patterns of those from the advection and diffusion terms. Therefore the stability

requirements for the reaction term may be different from those of the other terms. For instance,

a general-purpose method for the reaction term may require a stability region that contains eigen-

values with both significant complex and negative real parts.

In other cases, a method that has significant stability along the imaginary axis may be most

suitable, especially if extra stages are available because of the RKC method for the diffusion term.

Optimization of enhanced stability ERK methods is discussed in [56, 57, 58, 100].

4.4.1 Order conditions

In addition to the order conditions (2.28), (4.11), and (4.13), the constituent methods must sat-

isfy coupling conditions similar to those of the ARK methods from Section 2.4.2. The coupling

conditions for classic ARK methods from Section 2.4.2 form a subset of those for the IF-2-ARK
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methods derived in this chapter. Up to third order, no additional coupling conditions are required

for integrating-factor-based methods. Exponential ARK methods of fourth order and above require

additional coupling conditions [18, 21, 22].

If the RKC methods from Section 4.2 are used for the diffusion term of (4.2) and condition (2.34)

holds, the values of b and c of (4.23) as well as the number of stages s are fixed. The number of

stages for the RKC method is typically higher than necessary for the other constituent methods of

(4.22); however, as a proof of concept, the other methods are constructed to have the same number

of stages as in the RKC method.

For production software that incorporates exponential ARK methods, it would be advantageous

to use a recursive form (4.18) like in [101] to reduce the storage requirements and computational

cost. Further analysis is required to determine if it is possible to find higher-order methods that

minimize RHS evaluations and computational work for the matrix exponentials while using the

recursive formula (4.18).

4.5 The Burgers equation with Brusselator reaction terms

The simplicity and the well-studied, but complex behaviour make the Burgers equation (4.5) im-

portant for testing numerical methods for a flowing medium [49]. When ε� 1 the shocks become

more prominant as can be seen in Figure B.1 and spatial discretization results in a more difficult

IVP to solve. The spatially discretized Burgers equation is commonly used to test IVP solvers

[2, 7, 101, 102].

The Brusselator equation [98, 99] describes an oscillatory chemical system coupled with diffu-

sion. The Brusselator equation is the only known chemical scheme with just two reactants that can

possess self-sustaining oscillations [98]. Many of the nonlinear oscillations exhibited by chemical

systems can be readily studied using the Brusselator equation [99]. There is no known analytical

solution to the Brusselator equation [90], making it interesting for numerical studies. The one-

dimensional form of the Brusselator reaction with a diffusion term for spatial coupling is given by

∂u

∂t
= ε

∂2u

∂x2
+ α+ u2v − (β + 1)u (4.24a)

∂v

∂t
= ε

∂2v

∂x22 + βu− u2v, (4.24b)

where u = u(t, x), v = v(t, x) : R × R → R are the concentrations of the two chemical species,

α, β ∈ R are reaction coefficients, and ε ∈ R is the diffusion coefficient. Like the Burgers equation

(4.5), the spatially discretized Brusselator equation (4.24) is commonly used to test IVP solvers

[4, 10, 39; 44, p.148].
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The IVP used to test the new IF-2-ARK methods that are introduced in Section 4.6 is a semi-

discretized ARD equation combining the terms of the Brusselator and Burgers equations. We have

not found any instances of this equation in the literature, but combining a basic nonlinear advection

term and a basic oscillatory reaction term with diffusion is a logical method to construct a model

problem for studying numerical methods for ARD equations. The Burgers–Brusselator equation is

thus defined by

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
+ α+ u2v − (β + 1)u, (4.25a)

∂v

∂t
+ v

∂v

∂x
= ε

∂2v

∂x2
+ βu− u2v, (4.25b)

where the variables are defined as in the Brusselator equation (4.24). The Burgers equation can

be semi-discretized with the upwind operator (2.47) in the one-dimensional case because, if the

initial condition is positive, the solution and therefore the advection coefficient remains positive.

The central differencing operator (2.45) is used to semi-discretize the diffusion term.

The diffusion-free Brusselator equation is the Brusselator equation (4.24) with the spatial cou-

pling from diffusion removed by setting ε = 0. The Jacobian of the scalar diffusion-free Brusselator

reaction is given by 2uv − β + 1 u2

β − 2uv −u2

 ,
where u, v ∈ R correspond to the values of one of the spatially decoupled reaction systems. The

diffusion-free Brusselator equation contains a steady state found by solving the linear system that

results from setting
∂u

∂t
=
∂v

∂t
= 0. The steady state of the diffusion-free Brusselator is then given

by

lim
t→∞

u = α, lim
t→∞

v =
β

α
.

The Jacobian of the diffusion-free Brusselator at the steady state isβ − 1 α2

−β −α2

 ,
with a characteristic polynomial of λ2 + (1 − β + α2)λ + α2β = 0 [98]. A set of coefficients for

the diffusion-free Brusselator, each of which has eigenvalues at the the steady state belonging to

different regions of the complex plane, is given in Table 4.1. These coefficients each represent a

particular type of dynamical behaviour of the diffusion-free Brusselator reaction and are further

described in [98]. When the eigenvalues at the steady state have positive real components, the steady
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state is unstable and self-sustaining oscillations exist for the diffusion-free Brusselator. When the

eigenvalues at the steady state have negative real components, the steady state is stable [98].

α β λ Steady state stable?

0.5 0.2 − 21
40 ±

√
41

40 yes

1 1 −0.5±
√

3
2 i yes

2 5 ±2i yes

1 3 0.5±
√

0.5i no

1 5 1.5±
√

5
2 no

Table 4.1: Coefficients used for the Brusselator and their steady state eigenvalues.

The eigenvalues of the one-dimensional first-order upwind finite-difference operator 1
∆xD−1

from (2.47) are λk = cos(2πk∆x)−1
∆x − i sin(2πk∆x)

∆x , k = 1, 2, . . . , ngrid [51, p.56], the eigenvalues

for ngrid = 100 in a spatial domain of x ∈ [0, 1] are depicted in Figure 4.3. The eigenval-

ues of the one-dimensional second-order central finite-difference operator 1
∆x2 D0

2 from (2.45) are

λk = − 4 sin2(πk∆x)
∆x2 , k = 1, . . . , ngrid [51, p.63]; the eigenvalues for ngrid = 100 in the complex plane

are shown in Figure 4.4. In practical problems, the magnitude of the advection coefficient A(y(t))

and diffusion coefficient D(y(t)) are not generally constant with respect to the spatial variable.

In this case, the structure of the eigenvalues does not follow the patterns in Figures 4.3 and 4.4,

but the assumption that the eigenvalues from advection have large imaginary parts and that the

eigenvalues from diffusion remain close to the real axis still holds in general. An example of an

advection-diffusion equation where the advection coefficient is not constant with respect to the spa-

tial variable is the Burgers equation (4.5), and an example of an ARD equation where the diffusion

coefficient is not constant with respect to the spatial variable is found in [55].

-200 -150 -100 -50

-100i

-50i

50i

100i

Figure 4.3: Eigenvalues of the first-order
upwind finite-difference operator (2.47)
with ngrid = 100, x ∈ [0, 1].

-40000 -30000 -20000 -10000

-100i

-50i

50i

100i

Figure 4.4: Eigenvalues of the second-
order central finite-difference operator
(2.45) with ngrid = 100, x ∈ [0, 1].
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4.6 Proposed second-order IF-2-ARK methods

In this section IF-2-ARK methods with an order of convergence of two are proposed. The proposed

methods are based on the general form of IF-2-ARK methods in Section 4.3.

4.6.1 Constituent methods

For the purposes of analysis and ease of implementation, the ROCK2 methods from Section 4.2

have been converted into a conventional Butcher tableau. The number of stages is fixed at 10, with

the Butcher tableau given in (C.3) and the stability region shown in Figure 4.1.

ROCK2 is an ERK method (2.16) with a large but bounded stability region; therefore fine

enough spatial grids lead to stepsize restrictions. Using the second-order central difference operator

(2.45), the maximum eigenvalues and maximum stable stepsize for ngrid = 100 with the 10-stage

ROCK2 method are shown in Table 4.2. The Jacobian of the diffusion operator is constant; therefore

the stepsize restrictions for (4.5), (4.24), and (4.25) can be estimated in this manner.

ε max(|λ|) max(∆t)

0.005 200 64
200

0.002 80 64
80

0.001 40 64
40

0.0005 20 64
20

Table 4.2: Maximum eigenvalues and stable stepsizes for grid size ngrid = 100 and diffusion
values ε using the 10-stage ROCK2.

The eigenvalues of the reaction term are harder to analyse, and for the Brusselator coefficients

(4.29b), the eigenvalues are generally close to the imaginary axis. It can be seen from Figure 4.1

that ROCK2 does not have good stability near the imaginary axis. Therefore an ERK method

(2.16) with a stability region that captures a large interval of the imaginary axis but shares the

b and c values with the 10-stage ROCK2 (C.3) method is derived. The stability polynomial of

R(z) = 1 + z + z2

2 + 3z3

16 + z4

32 + z5

128 and a stability region shown in Figure 4.5 is chosen; this is

the stability polynomial with the largest stability interval for the imaginary axis for a five-stage

second-order ERK method with free b and c coefficients [100]. To find the Ar that gives the chosen

stability polynomial, a tableau with 8 free coefficients is constructed. The terms of the stability

polynomial as a function of the Butcher tableau are given in [44, p.16], and the resulting nonlinear

system is solved for the free coefficients. The tableau of this enhanced stability ERK method is

given in (C.2). Further analysis may yield a larger stability region or a smaller leading error term

for the method (C.2).
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Figure 4.5: The region of absolute stability region for the 10-stage ERK method sharing b
and c with the ROCK2 method (C.2).

4.6.2 10-Stage IF-2-ARK methods

An IF-2-ARK method (4.22) that uses the tableaux (4.23) to efficiently solve specific advection-

dominated semi-discretized ARD problems is proposed. The ROCK2 tableau (C.3) is used for

both the CFERK method (4.8) for the advection operator AA and the ERK method (2.16) for

the diffusion operator AD. Using the ROCK2 tableau (C.3) for a CFERK method does not take

advantage of the extended stability region but is used because it is second order and has the same

b and c coefficients. The ERK method (C.2) with enhanced imaginary stability is used as the

tableau Ar for the reaction terms. The combination of methods is referred to by a triple of Butcher

tableaux with advection first, reaction second, and diffusion third. The method just described is

referred to as (C.3,C.2,C.3) in this notation.

Th method (C.3,C.2,C.3) is inefficient because all methods have 10 stages, and that is more than

the minimum necessary for a second-order CFERK method or an ERK method with the stability
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region in Figure 4.5. A practical IF-2-ARK method should take full advantage of the extra stages

or use a strategy to save computational cost for the constituent methods where the extra stages

are unnecessary.

A strategy to reduce the cost of the exponentials is to not enforce the condition (2.34) but still

achieve second order by satisfying the coupling conditions. The tableaux (C.1) satisfy the second-

order coupling conditions when used for the CFERK method along with the 10-stage ERK method

(C.2) for reaction and ROCK2 (C.3) for diffusion. The resulting method (C.1,C.2,C.3) reduces the

number of exponential evaluations per step from 31 to 5 by introducing stages that are redundant.

The redundant stages occur because exponential evaluations are only required for the first and last

stage of the CFERK. The intermediate expression ρi · ρ−1
j from (4.22) evaluates to the identity

matrix for stages s = 1, 2, . . . , 9 for a 10-stage method; therefore these quantities do not have to

be computed. Likewise, ρi evaluates to the identity matrix for these stages because the matrix

exponential of the zero matrix is the identity matrix and does not have to be computed.

4.7 Experimental results

In order to measure the accuracy of numerical solutions generated from the numerical methods

being tested, an approximation to the error is made from a comparison to a reference solution.

The measure used is the root-mean-sequare (RMS) error eRMS of each numerical solution point

generated by the method being tested with respect to the reference solution and given by

eRMS =

√√√√ 1

nstepsm

nsteps∑
n=1

m∑
i=1

(yn,i − yref,i(tn))2, (4.26)

where m is the size of the ODE system, yn,i is component i of the solution at step n of the numerical

solution of the method being tested, nsteps is the number of steps taken by that numerical solution,

and yref,i(tn) is component i of the reference solution at step n corresponding to time tn.

The reference solutions are generated using the ARK5(4) method from [55], which is an eight-

stage IMEX method with third-order dense output. The reference solutions are stored in files

that include the stage values at each step. Therefore a dense reference solution that is third-order

accurate can be produced for any time in the domain; this is sufficient to test second-order methods.

ARK5(4) is used as a linearly implicit RK method by using a splitting of the RHS into linear and

nonlinear parts f = f [1] + f [2], where

f [1](y(t)) = f(y(t))− f [2](y(t)), (4.27a)

f [2](y(t)) = Jf (y(t)) · y(t), (4.27b)
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where f(y(t)) is the RHS of the ODE (2.2a), Jf (y(t)) is the Jacobian (2.9) of the ODE, and

f [1](y(t)), f [2](y(t)) correspond to those in an IMEX method (2.21) [26]. The ideal IVP method

for generating reference solutions for stiff problems is a fully implicit RK method, such as the

Radau IIA methods, due to the excellent behaviour on most stiff problems, low long-term storage

requirements for the reference solution from taking large steps and having a relatively low number

of stages, and dense output with an order of convergence equal to that of the main method.

The spatial and temporal domains, initial condition, boundary conditions, final time, and dif-

fusion parameters used experimentally for the Burgers (4.5), Brusselator (4.24), and Burgers–

Brusselator (4.25) equations are given by

x ∈ [0, 1], (4.28a)

t ∈ [0, 10], (4.28b)

u(0, x) = v(0, x) = 1 + sin(2πx), (4.28c)

u(t, 0) = u(t, 1), v(t, 0) = v(t, 1), (4.28d)

ε = {0.005, 0.002, 0.001, 0.0005}, (4.28e)

which correspond to the same spatial domain (4.28a), and time domain (4.28b), but an initial

condition (4.28c) that is a modification of the Brusselator (4.24) IVP in [44, p.6]. Periodic bound-

ary conditions (4.28d) are used because this generated interesting behaviour with the Burgers–

Brusselator equation (4.25). The sets of reaction coefficients for the Brusselator equation (4.24)

and Burgers–Brusselator equation (4.25) used are

α = 0.2, β = 0.5, (4.29a)

α = 2, β = 5, (4.29b)

α = 1, β = 3. (4.29c)

We are unaware of any analytical solutions to the Burgers–Brusselator equation (4.25). As

an alternative to an analytical solution, the reference solutions to the semi-discretized Burgers

(4.5), Brusselator (4.24), and Burgers–Brusselator (4.25) equations are found with ngrid = 100 grid

points. A reference solution to the IVP is generated by solving it numerically with successively

finer error tolerances until the difference between successive solutions falls below a chosen level.

The tolerances (2.38) used by the step controller for generating reference solutions are τabs = τrel =

{10−7, 10−8, 10−9, 10−10}, with 10−10 being taken as the tolerance for the reference solution and

the other tolerances used to judge the accuracy of the reference solution. The digits of accuracy

of the solutions with respect to τabs = τrel = 10−10 for various diffusion and Brusselator reaction
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coefficients are shown in Figure 4.6. It can be seen that the Brusselator reaction coefficients (4.29b)

are more difficult to find high-accuracy solutions for than the other reaction coefficients, with a

mean number of digits of accuracy of approximately 7 compared to 9 to 10 for the other Brusselator

reaction parameters (4.29a) (4.29c).

Sharp transitions that are characteristic of the Burgers equation (4.5) are shown in Figure B.1

at t = 2.0. The Brusselator reaction coefficients (4.29a) have negative real eigenvalues at the steady

state, causing any oscillations to rapidly decay, as shown in Figure B.2. The Brusselator reaction

coefficients (4.29b) have complex eigenvalues at the steady state that tend to cause any oscillations

to be self-sustaining, as can be seen in Figure B.3. The Brusselator reaction coefficients (4.29c)

have eigenvalues with positive real parts at the steady state that tend to amplify oscillations. When

used for the Brusselator equation (4.24) the amplifying effect of the Brusselator reaction coefficients

(4.29c) can offset the dampening effect of diffusion, leading to long-term oscillations, as shown in

Figure B.4 and the example in [44, p.6].

The Brusselator reaction coefficients (4.29b) produce long-term oscillations and include sharp

transitions, which are characteristic of the Burgers equation (4.5) but not of the Brusselator equa-

tion (4.24), when used with the Burgers–Brusselator equation (4.25), as shown in Figure B.6.

Conversely, the coefficients (4.29c) that produce long-term oscillations in the Brusselator equation

(4.24) do not produce these oscillations when used in the Burgers–Brusselator equation (4.25), as

also shown in Figure B.7. The strong dampening effect of the negative real eigenvalues of the reac-

tion term with Brusselator reaction coefficients (4.29a) can be seen in Figure B.5. The Brusselator

reaction coefficients (4.29b) are most interesting when used with the Burgers–Brusselator equation

(4.25) because they give a stepsize restriction despite being non-stiff. Moreover, there is a lack of

a stepsize restriction of similar magnitude in the Burgers equation (4.5) or Brusselator equation

(4.24) with the corresponding set of Brusselator reaction or diffusion coefficients.

4.7.1 Performance comparisons

To show that new numerical methods perform well in practice, the most effective measure is a

comparison of computational work, such as the time to perform a computation for a given measure

of the accuracy, such as the RMS error (4.26), relative to a reference solution.

We are unaware of any studies comparing the computational cost of the CFERK methods [24]

or the integrating-factor-based methods that incorporate CFERK methods [18, 22] to mainstream

IVP methods. The matrix exponential using Krylov subspace methods has a computational cost

of O(ngrid
2) for a grid size of ngrid, in comparison to a cost of O(ngrid

3) for semi-Lagrangian

methods, when used for the advection flow calculation [24]. Therefore the IF-2-ARK methods

(C.3,C.2,C.3) and (C.1,C.2,C.3) are used with the matrix exponential of A(t,y(t)) for the advection
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Figure 4.6: Convergence of the trial reference solutions in number of digits of accuracy as
compared to the reference solution with a tolerance of 10−10 for α = 0.2, β = 0.5 (4.29a)
(top), α = 2, β = 5 (4.29b) (middle), and α = 1, β = 3 (4.29c) (bottom). ε = 0.002 (– –),
ε = 0.001 (– ·–), ε = 0.0005 (—).
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flow calculation as an initial experiment in order to find if CFERK-based methods can have a lower

computational cost than mainstream IVP methods.

The IF-2-ARK methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are compared to IMEX(2,3,2) (C.4),

that is used as a linearly implicit RK method with the splitting (4.27). They are also compared to

the 10-stage ROCK2 method (C.3), which is an optimal ERK method (2.16) in the sense that the

main source of stiffness for the advection-dominated Burgers–Brusselator equation (4.25) with the

nonstiff Brusselator reaction coefficients (4.29) is the diffusion term. The IF-2-ARK method with

a reduced number of exponentials (C.1,C.2,C.3) described in Section 4.6 is also used a comparison.

Both IF-2-ARK methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are tested with the PI stepsize controller

from Section 2.5.3 because this strategy was found to be successful with EXP4 from [47, p.1565].

The tolerances (2.38) used are τrel = τabs = 10(−2− i
2 ), i = {0, 1, 2, . . . , 10}. The maximum num-

ber of steps allowed to find a solution is 300000; any computations requiring more steps are deemed

infeasible. Step-doubling error estimation from Section 2.5.1 in conjunction with the conventional

stepsize control (2.40) from Section 2.5.3 is used for all methods to ensure a uniform comparison.

Where indicated, the methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are also tested using PI instead of

the conventional stepsize control (2.40) from Section 2.5.3. Other ERK methods including (C.2)

were tried individually, but they all took a much greater number of steps than the 10-stage ROCK2

method (C.3) and were not able to reasonably find a solution for most sets of parameters.

It can be seen from Figure 4.7 that when solving the Burgers equation (4.5), as ε decreases from

0.005 to 0.001, the advantage of IMEX(2,3,2) (C.4) over ROCK2 (C.3) increases. The Burgers

equation (4.5) generally becomes more difficult numerically as advection dominates [49], and this

favours a method with a stability region covering the imaginary axis such as the explicit method

from IMEX(2,3,2) (C.4) [7].

It can be seen from Figure 4.8 that IMEX(2,3,2) (C.4) generally has a slight advantage over

ROCK2 (C.3) when solving the Brusselator equation (4.24). The Brusselator reaction coefficients

(4.29b) and (4.29c) that have complex eigenvalues at the steady state result in these methods

finding a less-accurate solution than for the case of the reaction coefficients with only negative

real eigenvalues (4.29a). IMEX(2,3,2) (C.4) and ROCK2 (C.3) perform equally well for these

parameters.

It can be seen from Figure 4.9 that the Burgers–Brusselator equation (4.25) is a more difficult

problem numerically, and that IMEX(2,3,2) (C.4) is the most efficient in nearly all cases, showing

the smoothest graph and the most stable behaviour. ROCK2 (C.3) is no longer competitive with

IMEX(2,3,2) (C.4) in terms of computational cost and has more difficulty giving a high-accuracy

solution. For this problem, the IF-2-ARK methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are not com-

petitive to either ROCK2 or IMEX (C.4) in terms of computational cost. However, the IF-2-ARK

method (C.3,C.2,C.3) easily gives high-accuracy solutions. The IF-2-ARK methods (C.1,C.2,C.3)
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with only 5 exponential evaluations per step has a poor performance in comparison to the one with

31 exponential evaluations per step (C.3,C.2,C.3) when finding high-accuracy solutions, but it has

a reduced computational cost for moderate accuracies. The PI step controller performs no better

than conventional step control (2.40) for the IF-2-ARK methods in all cases.

It can be further seen from Figure 4.9 that the Brusselator reaction coefficients (4.29b) are

the most costly of the tested Brusselator reaction coefficients (4.29) when finding a solution of a

given accuracy. These reaction coefficients (4.29b) are the ones that have complex eigenvalues at the

Brusselator steady state and self-sustaining oscillations for the Burgers–Brusselator equation (4.25).

In this case, the computational cost is most similar between the IF-2-ARK and non-exponential

methods. This motivates a comparison of the IF-2-ARK methods (C.3,C.2,C.3) to IMEX(2,3,2)

(C.4) at higher precisions. The 10-stage ROCK2 (C.3) method is not included because it has

difficulty producing high-accuracy solutions.

A comparison of the IF-2-ARK method (C.3,C.2,C.3) and IMEX(2,3,2) (C.4) is shown in Fig-

ures 4.10, 4.11, and 4.12 for the three sets of Brusselator reaction coefficients tested. The diffusion

coefficients used are ε = 0.002, 0.001, 0.0005 and the error tolerances are τrel = τabs = 10(−4− i
2 ), i =

{0, 1, 2, . . . , 12}. It can be seen from Figure 4.11 that the IF-2-ARK method (C.3,C.2,C.3) outper-

forms IMEX(2,3,2) (C.4) for ε = 0.0005 and the Brusselator reaction coefficients (4.29b). It can

also be seen that with fine tolerances and all of the Brusselator reaction coefficients tested, the

IF-2-ARK method (C.3,C.2,C.3) is able to give solutions with accuracies that are not feasible with

IMEX(2,3,2) (C.4).

In summary, the Burgers–Brusselator (4.25) is introduced as a simple test problem with a

non-constant advection coefficient and an oscillatory reaction term. It is a combination of two

classical equations, the Burgers equation (4.5) and the Brusselator equation (4.24). The combined

coefficients create behaviour not observed in the constituent equations. The combined system is an

ARD equation that is usually solved efficiently by implicit-explicit splitting. Two new 3-additive

splittings are proposed, combining 2-ARK methods with CFERK methods to handle advection, and

it is found that when finding high-accuracy solutions in the regime where the problem is hardest

to solve, one of the new 3-additive splittings (C.3,C.2,C.3) outperforms standard solvers. This

is a promising result in that high-accuracy solutions are expected to become more important as

the demand for increased model fidelity rises. This is the first study that we know of that shows

CFERK methods can be computationally efficient in comparison to existing methods. It also gives

definite future directions for research into improved time-integration methods for ARD equations.
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Figure 4.7: Computational time compared to the RMS error of the solution with ε = 0.005
(top), ε = 0.002 (middle), ε = 0.001 (bottom), and for the Burgers equation with ngrid = 100.
IMEX (2,3,2) (C.4) H, ROCK2 (C.3) n.
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Figure 4.8: Computational time compared to the RMS error of the solution with α =
0.5, β = 0.2 (4.29a) (top), α = 2, β = 5 (4.29b) (middle), α = 1, β = 3 (4.29c) (bottom)
as reaction coefficients for the Brusselator equation (4.24) with ε = 0.001 and ngrid = 100.
IMEX (2,3,2) (C.4) H, ROCK2 (C.3) n.
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Figure 4.9: Computational time compared to the RMS error of the solution with α =
0.5, β = 0.2 (4.29a) (top), α = 2, β = 5 (4.29b) (middle), α = 1, β = 3 (4.29c) (bot-
tom) as reaction coeffcients for the Burgers–Brusselator equation (4.25) with ε = 0.001 and
ngrid = 100. IMEX (2,3,2) (C.4) H, ROCK2 (C.3) n, IF-2-ARK (C.3,C.2,C.3) l, IF-2-ARK
(C.3,C.2,C.3) and PI step control u, IF-2-ARK (C.1,C.2,C.3) with reduced exponentials s,
IF-2-ARK (C.1,C.2,C.3) with reduced exponentials and PI step control t.
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Figure 4.10: Computational time compared to the RMS error of the solution with ε = 0.002
(top), ε = 0.001 (middle), and ε = 0.0005 (bottom) for the Burgers–Brusselator equation
(4.25) with Brusselator reaction coefficients α = 0.5, β = 0.2 (4.29a) and ngrid = 100. IMEX
(2,3,2) (C.4) H, IF-2-ARK (C.3,C.2,C.3) l.
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Figure 4.11: Computational time compared to the RMS error of the solution with ε = 0.002
(top), ε = 0.001 (middle), and ε = 0.0005 (bottom) for the Burgers–Brusselator equation
(4.25) with Brusselator reaction coefficients α = 2, β = 5 (4.29b) and ngrid = 100. IMEX
(2,3,2) (C.4) H, IF-2-ARK (C.3,C.2,C.3) l.
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Figure 4.12: Computational time compared to the RMS error of the solution with ε = 0.002
(top), ε = 0.001 (middle), and ε = 0.0005 (bottom) for the Burgers–Brusselator equation
(4.25) with Brusselator reaction coefficients α = 1, β = 3 (4.29c) and ngrid = 100. IMEX
(2,3,2) (C.4) H, IF-2-ARK (C.3,C.2,C.3) l.
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Chapter 5

Contributions and future work

5.1 Contributions

The Burgers–Brusselator equation (4.25) is introduced as a simple test problem with non-constant

advection coefficients. This is a contribution because many problems used to test CFERK and other

exponential methods generally have constant advection coefficients, e.g., [18, 48]. The Burgers–

Brusselator equation (4.25) also has an oscillatory reaction term. The combined coefficients create

behaviour not in the constituent equations that leads to interesting behaviour and numerical diffi-

culties with certain values of coefficients, as shown in Figures B.6 and 4.9, respectively.

The results presented in this thesis are the first known study of the performance of the integrating-

factor-based methods incorporating CFERK methods such as those in [18, 22] and CFERK methods

in general [24]. This is also the first study to show the practicality of CFERK methods. The meth-

ods introduced, called IF-2-ARK methods, show the potential viability of 3-additive splitting for

certain ARD systems that cause difficulty with more conventional methods when high-accuracy so-

lutions are desired. Further study is required to refine these types of methods to determine whether

they can be competitive with existing methods for IVPs in practice.

Figure 4.11 shows that the IF-2-ARK method (C.3,C.2,C.3) introduced in Section 4.6 can have

a lower computational cost than other second-order methods for a certain combination of diffusion

and reaction parameters when solving the Burgers–Brusselator equation (4.25). The particular

coefficients are ε = 0.0005, leading to dominance of the advection term, and the Brusselator reaction

coefficients (4.29b) that are more costly to solve than the other tested reaction coefficients in

(4.29). The high cost to solve the Burgers–Brusselator equation (4.25) with the Brusselator reaction

coefficients (4.29b) is shown in Figure 4.9. Figure 4.11 shows that (C.3,C.2,C.3) can solve the

Burgers–Brusselator equation (4.25) with a lower computational cost than IMEX (2,3,2) (C.4) as

advection becomes increasingly dominant and high accuracy is desired.

The IF-2-ARK method can provide solutions with accuracies that are infeasible with the other

methods tested. In addition, the IF-2-ARK methods proposed (C.3,C.2,C.3) and (C.1,C.2,C.3) use

an RKC method for the diffusion term; therefore they can easily be used to solve problems with

nonlinear diffusion.
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5.2 The pythODE PSE

The IVP component of the pythODE PSE developed during the course of this thesis allows the

construction of many numerical methods including RK, multistep, and general linear methods

as well as the exponential and additive variants of these methods. The particular abstraction

using object-oriented programming with the Solution objects, Solver objects, and SolverModule

objects described in Chapter 3 can also incorporate other families of numerical methods. This allows

experimentation with many different numerical methods in a single software package. Examples in

this thesis include using a number of RK methods, along with additive and exponential variants,

that share code for the definition of the IVP and step control strategies, and to perform and analyse

the numerical experiments.

The development work on the part of the pythODE PSE for solving IVPs is currently at an

advanced stage. The general architecture and feature set described in Chapter 3 have been imple-

mented in pythODE. However, many features are incomplete, and further testing of the software for

stability and usability is required.

The features for large-scale testing and experimentation described in Section 3.3.5 are used to

create an extensive test suite that includes IVPs published in [44] and [68] as well as the Luo–Rudy

cardiac cell model from [64]. The test suite is executed regularly, and the report generated is stored

in a version-control system. The same testing and experimental features were used for many of

the preliminary experiments that led up to the results in Chapter 4; those results required many

independent aspects from many of the components of an IVP solver to be tested against each other

in order to obtain an overview of the behaviour of the new IF-2-ARK methods in comparison to

other methods.

The PSE pythODE has a large selection of RK and ARK methods with which to solve IVPs.

A hindrance is that at present the stiff IVP solvers used in pythODE are linearly implicit. If

efficiency measurements are not important, the nonlinear systems of equations required by fully

implicit numerical methods can be solved through the PSE pythNon [95]. In the case of methods

such as RADAU5 (2.18) or SDIRK4 (2.19), an efficient implementation suitable for comparing CPU

times between fully implicit numerical methods requires special treatment of the resulting nonlinear

systems of equations. For example, RADAU5 (2.18) makes use of complex arithmetic, which is well

supported by Python, NumPy, and SciPy using operator overloading. The methods used as

comparisons in the experiments in Chapter 4 are considered the most effective that exist in the

current implementation in pythODE.

It is possible to perform experiments with large numbers of controlled parameters using pythODE;

however, a significant limitation is the lack of more advanced features to record the observed values

in long-term storage, perform analysis, and visualize the results. An example of some of the more
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advanced features is that the figures of the stability regions of RK methods in this thesis, such as

Figures 2.3, 4.1, and 4.2, were generated with pythODE. In general, for observed values other than

stepsize, CPU time, and accuracy, it is necessary to do a significant amount of development to

record a particular observed value of interest and to manually analyse the results from the report

generated. This process will be automated in the future with formats such as XML [11] or software

such as a relational database used to record experimental results for future analysis. This will

make conducting numerical experiments more efficient and enhance reproducibility, which has been

increasingly identified as a limitation to progress in scientific computing [70].

5.3 Future work

5.3.1 Improvements to the IF-2-ARK methods

The IF-2-ARK method (C.3,C.2,C.3) has a high computational cost for each time step due to the

large number of exponential calculations, i.e., 31 in the case of the 10-stage method presented. The

primary source of computational cost for the IF-2-ARK methods (4.22) is the need to compute

ρij · D(Yi) and ρij · r(Yi), which transport the derivative of the constituent methods for diffusion

and reaction. The method (C.3,C.2,C.3) derived by not enforcing the condition (2.34) to introduce

redundant stages and reduce the number of exponential calculations to 5 per step did not produce

enough of a reduction in computational cost at moderate accuracies and was not suitable for high-

accuracy solutions.

Another strategy that may reduce the cost of the exponentials is to use a constant advection

coefficient when evaluating the stages of a CFERK method. It is shown in [48] that with a constant

Jacobian matrix there are savings of up to 80–90% in computational cost from reusing information

from previous matrix exponential evaluations (4.14) for multiple but similar vectors v. It is also

possible to use a linearly implicit or fully implicit method for the diffusion term rather than an

RKC method, thus avoiding the high number of stages assoicated with using an RKC method as a

constituent of a IF-2-ARK method. Further study may identify other potential strategies to reduce

the cost of the exponentials.

A variable number of stages for the RKC constituent method of a IF-2-ARK method can ensure

the method is optimal for the characteristics of the diffusion term at each step. This strategy is

used in the RKC, IRKC, and ROCK2 codes where the spectral radius of the Jacobian is estimated at

each step. This type of adaptive strategy is essential for nonlinear diffusion, where the spectral

radius of the Jacobian of the diffusion term is unlikely to be predictable in advance. It is essential

to ensure the variable number of stages RKC method does not incur excessive computational cost

for the additional exponential evaluations that is required.

A further strategy to reduce computational cost is to develop an embedded method for the
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IF-2-ARK methods. We do not know of any CFERK methods that have embeddded methods. It

is therefore unknown if this is a viable strategy in comparison to step-doubling error control. For

instance, it was found that the PI step controller was suitable for the non-exponential methods but

not for the CFERK methods. An embedded method would likely reduce computational cost of the

methods by 33% by eliminating the error control step. With an embedded method, more promising

step controllers such as a variant of PI step control could be studied.

Once optimal IF-2-ARK methods have been developed, they should be compared to fully implicit

RK methods for the purpose of generating high-accuracy solutions. Fully implicit RK methods

typically have an extremely high cost per step; however, the problem-specific nature of IF-2-ARK

methods may offer some savings.

The reaction terms of an ARD equation are spatially decoupled; therefore, they are suitable

for parallelism. The independent nature of the computations for each grid point makes this type

of computation suitable for accelerated platforms such as graphics processing units, which are

becoming more common for high-performance computing.

5.3.2 More complex ARD systems

Many ARD systems of interest are more complex than the Burgers–Brusselator system (4.25).

It is possible that the IF-2-ARK methods may be more suitable on these more complex ARD

systems than the Burgers–Brusselator system (4.25), which was used for this proof-of-concept study.

The Burgers–Brusselator system (4.25) is suitable for this type of study because it is one of the

simplest ARD systems with nonlinear advection and an oscillatory reaction term. Examples of

more complex ARD systems are found in [8, p.33; 51, p.18-22,134; 79]. Further study may identify

the characteristics of ARD systems where 3-additive splitting is advantageous.

5.3.3 High-order variants

Satisfactorily solving the sets of simultaneous nonlinear algebraic equations derived from order

conditions and coupling conditions has proven to be a hindrance in the design of practical RK and

ARK methods [43, p.175; 55]. Most methods of sufficient complexity, such the high-order ARK

methods in [55], DOPR54 (2.37), or SDIRK4 (2.19), use simplifying assumptions similar to (2.34)

to reduce the complexity of the simultaneous nonlinear algebraic equations that must be solved.

The simplifying assumptions do not necessarily imply the numerical method is not optimal because

in many cases it is not necessary to use the full number of degrees of freedom provided by the order

conditions and coupling conditions to achieve the desired properties in a numerical method.

Table 2.4 shows that for second-order IF-2-ARK methods, the coupling conditions are still rela-

tively small in number even if (2.34) is not satisfied, with six coupling conditions for a second-order

method. A third-order IF-2-ARK method is required to satisfy 12 standard RK order conditions
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in total for the three constituent methods, 39 standard ARK coupling conditions, and the addi-

tional order condition (4.11) for a third-order CFERK method. A fourth-order IF-2-ARK method

is required to satisfy 24 standard RK order conditions in total for the three methods, 234 standard

ARK coupling conditions, the four additional order conditions (4.13) for the fourth-order CFERK

method, and a minimum of four additional coupling conditions given in [21].

High-order IRK methods are commonly used to find high-accuracy solutions to difficult stiff

IVPs. Therefore, it is essential to develop high-order IF-2-ARK methods and compare the efficiency

with existing high-order methods such as the IMEX methods ARK5(4) [55] and fully implicit RK

such as RADAU5 (2.18).

5.3.4 Semi-Lagrangian methods

The feasibility of using a matrix exponential in a CFERK method (4.8) for advection flow calcula-

tions has been shown in this thesis. However, semi-Lagrangian methods have a computational cost

of O(ngrid
3) for grid size ngrid, compared to O(ngrid

2) for Krylov subspace methods [24]. Semi-

Lagrangian methods better capture the qualitative behaviour of the underlying model. Therefore,

due to improvements in physical models, they may be better suited for finding high-accuracy solu-

tions. It may also be possible to use a coarser grid with higher-order semi-Lagrangian methods to

achieve high accuracy. Semi-Lagrangian methods can capture the behaviour of the underlying PDE

on coarser grids better than Eulerian methods can, as can be seen in [22]. Memory usage can be a

significant limitation to the accuracy of simulations in a high-performance computing environment,

coarse grids can reduce memory usage in some cases.

There are various methodologies of developing semi-Lagrangian methods [96]. However, the

method of characteristics described in Section 4.1 is suitable for parallelism because it converts

the advection term into many non-stiff IVPs, and the interpolation is done independently as well.

Therefore, even if the overall computational cost of the semi-Lagrangian methods is higher, they

may be may yield a solution in less time on parallel computers.

In [23] semi-Lagrangian methods are implemented using integrating-factor-based multistep meth-

ods that solve differential-algebraic equations (DAEs), which are generally more complex to solve

than ODEs. DAEs arise from the semi-discretization of problems similar to ARD equations that in-

corporate conditions such as incompressibility for the flowing medium. These methods are suitable

for study in pythODE, and it remains to be seen if they are suitable for practical problems.

5.3.5 Further development of pythODE

The experimental capabilities of pythODE allow the design of experiments to determine the optimal

values of the independent aspects of the solution process such as the numerical methods, heuristics,

and method parameters, all of which may have complex interactions with each other. The mea-
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sured CPU time using pythODE does not correspond exactly with an eventual high-performance

implementation using a language such as Fortran. However, these comparisons give a reasonable

estimate to motivate future development. An example of this type of comparison is in [48], where

methods are compared in Matlab, which has many of the same non-uniformities relative to a

high-performance computing environment as Python does.

Many other numerical studies other than those performed in this thesis are suitable for pythODE.

With further use, the applicability of results from the PSE to an HPC environment will become

apparent. In particular, numerical experiments such as those in [43] and [44] can be easily replicated.

Ultimately a PSE like pythODE could generate code for a high-performance computing environment

as well.

High-priority development tasks for pythODE are to further automate and reduce the develop-

ment cost of conducting numerical experiments through improvements in the test suite. Expansion

of the number of IVPs in the test suite and automating checking will help guard against code regres-

sions as development proceeds. Finally, development of a GUI interface for pythODE will eventually

allow many of the potential numerical experiments to be conducted with little to no programming

on the part of the user.
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Appendix A

Examples related to the derivation of order

conditions

The rooted trees and corresponding elementary differentials corresponding to the fifth derivative
of the RHS of an ODE (2.2a) are given by

d5

dt5
f(y) =

∑
g5∈G5(f(y(t)))

α(g5)g5 ∼ ��DD��TTr rr rr
+6 ��AArr rr r

+6 ��AA
��AAr rr r r
+4 ��AAr rrr r

+3 ��AAr rr rr
+4
AA��rr

rrr
+3

��AArr
rr r
+

AA��r
rr
r rr

+ rr
rr
r

See Section 2.4 for description of the notion and theory. The expansion of the elementary differen-
tials for certain trees with m = 2 are given below.
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��DD��TTr rr rr
∼

2∑
i=1

 2∑
h1,h2,h3,h4=1
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(y(t))fh2
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) ei
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f1(y(t))f1(y(t))f2(y(t))f1(y(t)) +
∂4f1(y(t))

∂y1∂y1∂y2∂y2

f1(y(t))f1(y(t))f2(y(t))f2(y(t))+

∂4f1(y(t))

∂y1∂y2∂y1∂y1

f1(y(t))f2(y(t))f1(y(t))f1(y(t)) +
∂4f1(y(t))

∂y1∂y2∂y1∂y2

f1(y(t))f2(y(t))f1(y(t))f2(y(t))+

∂4f1(y(t))

∂y1∂y2∂y2∂y1

f1(y(t))f2(y(t))f2(y(t))f1(y(t)) +
∂4f1(y(t))

∂y1∂y2∂y2∂y2

f1(y(t))f2(y(t))f2(y(t))f2(y(t))+

∂4f1(y(t))

∂y2∂y1∂y1∂y1

f2(y(t))f1(y(t))f1(y(t))f1(y(t)) +
∂4f1(y(t))

∂y2∂y1∂y1∂y2

f2(y(t))f1(y(t))f1(y(t))f2(y(t))+

∂4f1(y(t))

∂y2∂y1∂y2∂y1

f2(y(t))f1(y(t))f2(y(t))f1(y(t)) +
∂4f1(y(t))

∂y2∂y1∂y2∂y2

f2(y(t))f1(y(t))f2(y(t))f2(y(t))+

∂4f1(y(t))

∂y2∂y2∂y1∂y1

f2(y(t))f2(y(t))f1(y(t))f1(y(t)) +
∂4f1(y(t))

∂y2∂y2∂y1∂y2

f2(y(t))f2(y(t))f1(y(t))f2(y(t))+

∂4f1(y(t))

∂y2∂y2∂y2∂y1

f2(y(t))f2(y(t))f2(y(t))f1(y(t)) +
∂4f1(y(t))

∂y2∂y2∂y2∂y2

f2(y(t))f2(y(t))f2(y(t))f2(y(t))+

∂4f2(y(t))

∂y1∂y1∂y1∂y1

f1(y(t))f1(y(t))f1(y(t))f1(y(t)) +
∂4f2(y(t))

∂y1∂y1∂y1∂y2

f1(y(t))f1(y(t))f1(y(t))f2(y(t))+

∂4f2(y(t))

∂y1∂y1∂y2∂y1

f1(y(t))f1(y(t))f2(y(t))f1(y(t)) +
∂4f2(y(t))

∂y1∂y1∂y2∂y2

f1(y(t))f1(y(t))f2(y(t))f2(y(t))+

∂4f2(y(t))

∂y1∂y2∂y1∂y1

f1(y(t))f2(y(t))f1(y(t))f1(y(t)) +
∂4f2(y(t))

∂y1∂y2∂y1∂y2

f1(y(t))f2(y(t))f1(y(t))f2(y(t))+

∂4f2(y(t))

∂y1∂y2∂y2∂y1

f1(y(t))f2(y(t))f2(y(t))f1(y(t)) +
∂4f2(y(t))

∂y1∂y2∂y2∂y2

f1(y(t))f2(y(t))f2(y(t))f2(y(t))+

∂4f2(y(t))

∂y2∂y1∂y1∂y1

f2(y(t))f1(y(t))f1(y(t))f1(y(t)) +
∂4f2(y(t))

∂y2∂y1∂y1∂y2

f2(y(t))f1(y(t))f1(y(t))f2(y(t))+

∂4f2(y(t))

∂y2∂y1∂y2∂y1

f2(y(t))f1(y(t))f2(y(t))f1(y(t)) +
∂4f2(y(t))

∂y2∂y1∂y2∂y2

f2(y(t))f1(y(t))f2(y(t))f2(y(t))+

∂4f2(y(t))

∂y2∂y2∂y1∂y1

f2(y(t))f2(y(t))f1(y(t))f1(y(t)) +
∂4f2(y(t))

∂y2∂y2∂y1∂y2

f2(y(t))f2(y(t))f1(y(t))f2(y(t))+

∂4f2(y(t))

∂y2∂y2∂y2∂y1

f2(y(t))f2(y(t))f2(y(t))f1(y(t)) +
∂4f2(y(t))

∂y2∂y2∂y2∂y2

f2(y(t))f2(y(t))f2(y(t))f2(y(t))



93



��AArr rr r
∼

2∑
i=1

 2∑
h1,h2=1

 ∂3fi(y(t))

∂yh1
∂yh2

∂yh3

fh1
(y(t))fh2

(y(t))
∑

h3,h4=1

∂fh3
(y(t))

∂yh4

fh4
(y(t))

 ei

=



∂3f1(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f1(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f1(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂3f2(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂3f2(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))



94



��AA
��AAr rr r r
∼

2∑
i=1

 2∑
h1,h2=1

∂2fi(y(t))

∂yh1
∂yh2

fh1
(y(t))

2∑
h3,h4=1

∂2fh2
(y(t))

∂yh3
∂yh4

fh3
(y(t))fh4

(y(t))

 ei

=



∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))
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2∑
i=1

 2∑
h1,h2=1

∂2fi(y(t))

∂yh1
∂yh2

∑
h3=1

(
∂fh2

(y(t))

∂yh3

fh2
(y(t))

) ∑
h4=1

(
∂fh3

(y(t))

∂yh4

fh4
(y(t))

) ei

=



∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))
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2∑
i=1

 2∑
h1,h2=1

∂2fi(y(t))

∂yh1
∂yh2

fh1
(y(t))

2∑
h3=1

∂fh2
(y(t))

∂yh3

2∑
h4=1

∂fh3
(y(t))

∂yh4

fh4
(y(t))

 ei

=



∂2f1(y(t))

∂y1∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y1∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y1∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y1∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y1∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f1(y(t))

∂y2∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f1(y(t))

∂y2∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y1∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y1∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y1

∂f1(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y1

∂f1(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y2

∂f2(y(t))

∂y1

f1(y(t))
∂f1(y(t))

∂y2

f2(y(t))+

∂2f2(y(t))

∂y2∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y1

f1(y(t)) +
∂2f2(y(t))

∂y2∂y2

∂f2(y(t))

∂y2

f2(y(t))
∂f2(y(t))

∂y2

f2(y(t))



97



AA��rr
rrr
∼

2∑
i=1

 2∑
h1=1

∂fi(y(t))

∂yh1

2∑
h2,h3,h4=1

∂3f1(y(t))

∂yh2
∂yh3

∂yh4

fh2
(y(t))fh3

(y(t))fh4
(y(t))

 ei

=



∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))f2(y(t))+

∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))f2(y(t))+

∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))f2(y(t))+

∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1∂y1

f1(y(t))f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1∂y2

f1(y(t))f1(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2∂y1

f1(y(t))f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2∂y2

f1(y(t))f2(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1∂y1

f2(y(t))f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1∂y2

f2(y(t))f1(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2∂y1

f2(y(t))f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2∂y2

f2(y(t))f2(y(t))f2(y(t))
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2∑
i=1

 2∑
h1=1

∂fi(y(t))

∂yh1

2∑
h2,h3

∂3f1(y(t))

∂yh2
∂yh3

fh2
(y(t))

2∑
h4

∂f3(y(t))

∂yh4

fh4
(y(t))

 ei

=



∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂3f1(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y1

f1(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y1∂y2

f1(y(t))
∂f2(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y1

f2(y(t))
∂f1(y(t)

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂3f2(y(t))

∂y2∂y2

f2(y(t))
∂f2(y(t)

∂y2

f2(y(t))
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2∑
i=1

 2∑
h1=1

∂fi(y(t))

∂yh1

2∑
h2=1

∂f1(y(t))

∂yh2

2∑
h3,h4=1

(
∂f2(y(t))

∂yh3
yh4

fh3
(y(t)fh4

(y(t)

) ei

=



∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂2f1(y(t))

∂y2∂y2

f2(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y1∂y1

f1(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y1∂y2

f1(y(t))f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y2∂y1

f2(y(t))f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂2f2(y(t))

∂y2∂y2

f2(y(t))f2(y(t))
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2∑
i=1

 2∑
h1=1

∂fi(y(t))

∂yh1

2∑
h2=1

∂f1(y(t))

∂yh2

2∑
h3=1

∂f2(y(t))

∂yh3

2∑
h4=1

(
∂f3(y(t))

∂yh4

fh4
(y(t))

) ei

=



∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

∂f1(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y2

∂f2(y(t))

∂y2

f2(y(t))+

∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1

∂f1(y(t))

∂y1

f1(y(t)) +
∂f2(y(t))

∂y2

∂f2(y(t))

∂y2

∂f2(y(t))

∂y1
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Appendix B

Representative Behaviour of the Burgers, Brus-

selator, and Burgers-Brusselator Equations

The following figures are representative of the time evolution of the Burgers (4.5), Brusse-
lator (4.24), and Burgers-Brusselator (4.25) equations with some parameters of interest for this
thesis.
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Figure B.1: Solutions to the Burgers equation (4.5) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.005, 0.002, 0.001} (left to right), and ngrid = 100.
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Figure B.2: Solutions to the Brusselator equation (4.24) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 0.5, β =
0.2 (4.29a) that have asymptotically decaying behaviour at the diffusion-free Brusselator
steady state, and ngrid = 100.
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Figure B.3: Solutions to the Brusselator equation (4.24) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 2.0, β =
5.0 (4.29b) that are stable and oscillatory at the diffusion-free Brusselator steady state,
and ngrid = 100.

105



0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 2.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 3.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 4.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 5.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 6.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 8.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 9.0

0 50 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0

u
(—

),
v

(–
–

–
)

t = 10.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 2.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 3.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 4.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 5.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 6.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 8.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 9.0

0 50 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 10.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 0.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 2.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 3.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 4.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 5.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 6.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 7.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 8.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 9.0

0 50 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0
t = 10.0

Figure B.4: Solutions to the Brusselator equation (4.24) with the initial condition (4.28c),
boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 1.0, β =
3.0 (4.29c) that are unstable at the diffusion-free Brusselator steady state, and ngrid = 100.
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Figure B.5: Solutions to the Burgers–Brusselator equation (4.25) with the initial condition
(4.28c), boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 0.5,
β = 0.2 (4.29a) that have asymptotically decaying behaviour at the diffusion-free Brusselator
steady state, and ngrid = 100.
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Figure B.6: Solutions to the Burgers–Brusselator equation (4.25) with the initial condition
(4.28c), boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 2.0,
β = 5.0 (4.29b) that are stable and oscillatory at the diffusion-free Brusselator steady state,
and ngrid = 100.
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Figure B.7: Solutions to the Burgers–Brusselator equation (4.25) with the initial condition
(4.28c), boundary conditions (4.28d), ε = {0.002, 0.001, 0.0005} (left to right), α = 1.0, β =
3.0 (4.29c) that are unstable at the diffusion-free Brusselator steady state, and ngrid = 100.
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Appendix C

Details on the IF-2-ARK methods

C.1 Derivation of IF-2-ARK methods

The full derivation of the method (4.22) based on the OIF splitting of Section 4.3.1 is covered in
this section. Substitute the auxiliary variables into (4.2) based on OIF splitting:

y(t) =W(t) · z(t),

d

dt
y(t) =

d

dt
W(t) · z(t) +W(t) · d

dt
z(t),

d

dt
W(t) = A(W(t) · z(t)) · W(t), W(t0) = I,

d

dt
z(t) =W−1(t) · D(W(t) · z(t)) · W(t) · z(t) +W−1(t) · r(W(t) · z(t)),

with further details given in Section 4.3.1 and [22]. Applying a CFERK method to W(t) and a
2-ARK method to z(t) yields

Qi = exp

∆t

i−1∑
j=1

α
[2]
ij A(Qj · Zj)

 · exp

∆t

i−1∑
j=1

α
[1]
ij A(Qj · Zj)

 · Wn, i = 1, 2, . . . , s,

Zi = zn + ∆t

s∑
j=1

(AD)ijQ−1
j · D(Qj · Zj) · Qj · zj + ∆t

s∑
j=1

(Ar)ijQ−1
j · r(Qj · Zj), i = 1, 2, . . . , s.

Wn+1 = exp

(
∆t

s∑
i=1

β
[2]
i A(Qi · Zi)

)
· exp

(
∆t

s∑
i=1

β
[1]
i A(Qi · Zi)

)
· Wn, i = 1, 2, . . . , s,

zn+1 = zn + ∆t

s∑
i=1

(bD)iQ−1
i · D(Qi · Zi) · Qi · zi + ∆t

s∑
i=1

(br)iQ−1
i · r(Qi · Zi), i = 1, 2, . . . , s,

where (AA)i,j = α
[1]
i,j + α

[2]
i,j , (bA)i = β

[1]
i + β

[2]
i and the rest of the variables are given in the

definition of (4.22).

Some further variable substitutions yield

Yi := Qi · Zi, ρi := Qi · W−1
n , yn+1 :=Wn+1 · zn+1, ρn+1 :=Wn+1 · W−1

n , i = 1, 2, . . . s,

110



which results in a method free of the auxiliary variables and given by

ρi · Wn = exp

∆t

i−1∑
j=1

α
[2]
ij A(Yj)

 · exp

∆t

i−1∑
j=1

α
[1]
ij A(Yj)

 · Wn, i = 1, 2, . . . , s,

ρi = exp

∆t

i−1∑
j=1

α
[2]
ij A(Yj)

 · exp

∆t

i−1∑
j=1

α
[1]
ij A(Yj)

 , i = 1, 2, . . . , s,

ρi,j := ρi · ρ−1
j ,

Q−1
i ·Yi =W−1

n · yn + ∆t

s∑
j=1

(AD)i,j Q−1
j · D(Yj) ·Yj + ∆t

s∑
j=1

(Ar)i,j Q−1
j · r(Yj), i = 1, 2, . . . , s,

Yi = Qi · W−1
n · yn + ∆t

s∑
j=1

(AD)i,j Qi · Q−1
j · D(Yj) ·Yj + ∆t

s∑
j=1

(Ar)i,j Qi · Q−1
j · r(Yj),

i = 1, 2, . . . , s,

Yi = ρi · yn + ∆t

s∑
j=1

(AD)i,j ρi,j · D(Yj) ·Yj + ∆t

s∑
j=1

(Ar)i,j ρi,j · r(Yj), i = 1, 2, . . . , s,

ρn+1 · Wn = exp

(
∆t

s∑
i=1

β
[2]
i A(Yi)

)
· exp

(
∆t

s∑
i=1

β
[1]
i A(Yi)

)
· Wn.

ρn+1 = exp

(
∆t

s∑
i=1

β
[2]
i A(Yi)

)
· exp

(
∆t

s∑
i=1

β
[1]
i A(Yi)

)
,

ρn+1,i := ρn+1 · ρ−1
i ,

W−1
n+1 · yn+1 =W−1

n · yn + ∆t

s∑
i=1

(bD)iQ−1
i · D(Yi) ·Yi + ∆t

s∑
i=1

(br)iQ−1
i · r(Yi).

yn+1 =Wn+1 · W−1
n · yn + ∆t

s∑
i=1

(bD)iWi · Q−1
i · D(Yi) ·Yi + ∆t

s∑
i=1

(br)iWi · Q−1
i · r(Yi).

yn+1 = ρn+1 · yn + ∆t

s∑
i=1

(bD)i ρn+1,i · D(Yi) ·Yi + ∆t

s∑
i=1

(br)i ρn+1,i · r(Yi).
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C.2 Tableaux of constituent methods used to propose IF-2-
ARK methods
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The linearly implicit IMEX (2, 3, 2) from [7], used in the experiments in Section 4.7, is given by

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

0 1− γ γ

(C.4)

where γ = (2−
√

2)/2, δ = −2
√

2/3. These parameters give the explicit method the stability region
of a three-stage, third-order method, and an L-stable implicit method.
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