
Preface

One of the basic principles of software engineering is abstraction, which mainly
refers to separation of the essential from the non-essential. In terms of software de-
velopment, the essential usually refers to the functionality to be implemented and
the non-essential to aspects such as the technical platformon which the software
will eventually be deployed. However, non-essential aspects are not unimportant.
They also have to be considered when designing and developing a software system,
but they do not have to be considered at the very first stage when more fundamental
issues have to be considered.

Abstractions are provided by models. A model is mainly a representation of the
essential aspects of the underlying subject and thus contains less complexity. Less
complexity obviously allows the prediction of system characteristics, analyzing spe-
cific properties, and also communicating with the various roles involved in the devel-
opment process more easily. However, implementing a model means expressing it at
a very low level of abstraction, i.e. at a level at which it is understood by a computer.

Modeling and model transformation to the required abstraction level constitute
the core of model-driven development. In model-driven development, essential as-
pects of software are expressed in the form of models, and transformations of these
models are considered the core of software development. Models can particularly
be transformed into a technical implementation, i.e. a software system. Such an ap-
proach can avoid restricting oneself to a specific technology in the early stages of the
development process and can ensure a consistent architecture throughout the life-
cycle of a software system.

The aim of this book is to give an overview of the current achievements in model-
driven development. In the introductory chapterModels, Modeling, and Model-
Driven Architecture (MDA), Brown, Conallen and Tropeano first explain the ter-
minology used in the following chapters of the book and introduce basic principles
and methods in model-driven development. Achievements in model-driven develop-
ment are then considered from a conceptual point of view in Part I of the book that
comprises the following chapters:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VI Preface

• A Systematic Look at Model Transformations.Metzger focuses on model trans-
formations and presents a classification scheme to considerthe differences be-
tween the modeled system, the model itself and the formalismused.

• Tool-support for Model-Driven Development of Security-Critical Systems with
UML. Jürjens and Shabalin show the use of UML in model-driven development.
In particular, they give a formal semantics for a subset of UML which can be
used to analyze the interaction of a system with its environment and UML spec-
ifications.

• Caste-Centric Modeling of Multi-Agent Systems: The CAMLE Modeling Lan-
guage and Automated Tools.Zhu and Shan introduce the CAMLE approach to
model-driven development of multi-agent systems by combining graphical mod-
eling with formal specification.

• Using Graph Transformation for Practical Model Driven Software Engineering.
In this chapter, Grunske et al. consider model transformations using graph trans-
formation theory, in particular to specify and apply model transformations.

• A Generalized Notion of Platforms for Model Driven Development. Atkinson
and Kühne consider two of the basic terms in model-driven development, plat-
form and platform model. They show the origin of these terms and propose an
alternative definition for them.

Part II then considers technical achievements and technical infrastructures of model-
driven development in the following chapters:

• A Tool Infrastructure for Model-Driven Development Using Aspectual Patterns.
Hammouda introduces a concern-based approach to model-driven development
and presents a tool, called MADE, which particularly supports model generation,
checking and tracing.

• Automatically Discovering Transitive Relationships in Class Diagrams.Egyed
considers the problem of abstracting class diagrams of certain complexity with
tool support. The approach proposed uses a large number of abstraction rules and
is used for model understanding, consistency checking and reverse engineering.

• Generic and Domain-Specific Model Refactoring using a ModelTransformation
Engine.Zhang, Lin and Gray propose an approach for refactoring at the model
level with the use of behavior-preserving transformations. Their chapter also cov-
ers a model transformation engine for refactoring various types of models.

• A Testing Framework for Model Transformations.Lin, Zhang and Gray discuss
validation and verification of model transformation at the model level rather than
late in the development process at the source code level. Theframework pre-
sented is integrated in the transformation engine presented in the previous chapter
and provides means for typical testing activities.

• Parallax – An Aspect-Enabled Framework for Plug-in-Based MDA Refinements
Towards Middleware.Silaghi and Strohmeier present the Parallax framework,
an open and extensible tool which particularly supports configuring application
designs with regard to specific middleware concerns and adapting to different
middleware infrastructures.

Preface VII

• Evolution and Maintenance of MDA Applications.Seifert and Beneken investi-
gate the life cycle of applications developed according to the model-driven devel-
opment approach. They particularly focus on long-term aspects and consider the
maintenance of such applications and the progress in model-driven development.

The chapters in Part III finally summarize experience gainedin actual projects em-
ploying model-driven development:

• Intents and Upgrades in Component-Based High-Assurance Systems.Elmqvist
and Nadjm-Tehrani describe their experience using model-driven development
in the area of high-assurance components, particularly components used as part
of embedded systems.

• On Modeling Techniques for Supporting Model Driven Development of Proto-
col Processing Applications.Alanen et al. use model-driven development in the
area of protocol processing applications. They give an overview of a respective
method and summarize their experience.

• An Integrated Model-driven Development Environment for Composing and Val-
idating Distributed Real-time and Embedded Systems.Trombetti et al. employ
model-driven development in the area of distributed real-time and embedded ap-
plications. They present an integration of tool suites for model-driven develop-
ment and model checking in this area.

• A Model-Driven Technique for Development of Embedded Systems Based on the
DEVS formalism.Wainer, Glinsky and MacSween propose a model-driven ap-
proach to the development of embedded systems with real-time constraints based
on the formal technique of DEVS, and summarize their experience using this ap-
proach.

• Model Driven Service Engineering.Bræk and Melby consider problems associ-
ated with expressing platform-independent models and their behaviors, and also
discuss how to handle implementation and platform-dependent properties. They
suggest possible solutions to those problems based on theirexperience.

• Practical Insights into Model-Driven Architecture: Lessons from the Design and
Use of an MDA Toolkit.Brown, Conallen and Tropeano finally summarize their
experience in the design and use of a model-driven architecture toolkit at IBM.

Work on this book officially began in April 2004 with an email to theseworld
mailing list, which was followed by individual invitationssent to the leading ex-
perts of the field. Researchers and practitioners have been invited to summarize their
research results and experience in model-driven development in the form of book
chapters. Fortunately, we received a large number of very high-quality contributions,
which shows that model-driven development will not be a short-lived hype in soft-
ware engineering. We are very grateful for the contributions and would like to thank
all authors for their effort.

Leipzig and Bonn, Sami Beydeda
May 2005 Matthias Book

Volker Gruhn

Contents

Introduction: Models, Modeling, and Model-Driven Architectu re (MDA)
Alan W. Brown, Jim Conallen, Dave Tropeano. 1

Part I Conceptual Foundations of Model-Driven Development

A Systematic Look at Model Transformations
Andreas Metzger. 19

Tool Support for Model-Driven Development of Security-Critical
Systems with UML
Jan Jürjens, Pasha Shabalin. 35

Caste-centric Modelling of Multi-agent Systems: The CAMLE Modelling
Language and Automated Tools
Hong Zhu, Lijun Shan. 57

Using Graph Transformation for Practical Model-Driven Soft ware
Engineering
Lars Grunske, Leif Geiger, Albert Zündorf, Niels Van Eetvelde, Pieter Van
Gorp, Dániel Varró. 91

A Generalized Notion of Platforms for Model-Driven Development
Colin Atkinson, Thomas Kühne. 119

Part II Technical Infrastructure of Model-Driven Developme nt

A Tool Infrastructure for Model-Driven Development Using Aspectual
Patterns
Imed Hammouda. 139

XII Contents

Automatically Discovering Transitive Relationships in Class Diagrams
Alexander Egyed. 179

Generic and Domain-Specific Model Refactoring Using a Model
Transformation Engine
Jing Zhang, Yuehua Lin, Jeff Gray. 199

A Testing Framework for Model Transformations
Yuehua Lin, Jing Zhang, Jeff Gray. 219

Parallax – An Aspect-Enabled Framework for Plug-in-Based MDA
Refinements Towards Middleware
Raul Silaghi, Alfred Strohmeier. 237

Evolution and Maintenance of MDA Applications
Tilman Seifert, Gerd Beneken. 269

Part III Case Studies

Intents and Upgrades in Component-Based High-Assurance Systems
Jonas Elmqvist, Simin Nadjm-Tehrani. 289

On Modeling Techniques for Supporting Model-Driven Development of
Protocol Processing Applications
Marcus Alanen, Johan Lilius, Ivan Porres, Dragos Truscan. 305

An Integrated Model-Driven Development Environment for Composing
and Validating Distributed Real-Time and Embedded Systems
Gabriele Trombetti, Aniruddha Gokhale, Douglas C. Schmidt, Jesse
Greenwald, John Hatcliff, Georg Jung, Gurdip Singh. 329

A Model-Driven Technique for Development of Embedded Systems
Based on the DEVS Formalism
Gabriel A. Wainer, Ezequiel Glinsky, Peter MacSween. 363

Model-Driven Service Engineering
Rolv Bræk, Geir Melby. 385

Practical Insights into Model-Driven Architecture: Lessons from the
Design and Use of an MDA Toolkit
Alan W. Brown, Jim Conallen, Dave Tropeano. 403

References. 433

Index 459

