
urces.
,
aus-

eth-
one
sible

l than

. In-
ach
inde-
ased
ance.

assifi-
ed in
ested

kew-
cess-

nd
w’
hat
ons
[10]

rchers

ns
ed
for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig
A Classification of Skew Effects
in Parallel Database Systems

Holger Märtens

Universität Leipzig, Institut für Informatik, Postfach 920, D–04009 Leipzig, Germany
maertens@informatik.uni-leipzig.de

1  Introduction

A major performance barrier in parallel database systems (PDBS) areskew effects, char-
acterized by an uneven distribution of data and/or workload across the system's reso
Despite numerous proposedload balancingstrategies, this problem is far from solved
partly because there is no well-structured model of the different types of skew, their c
es, consequences, and interdependencies, and the methods to combat them.

This paper aims to help understand how to find the appropriate load balancing m
ods for different forms of skew. We present a classification of skew effects on the
hand and of load balancing approaches on the other, then match the two to find sen
pairs. This will allow us to state why some previous approaches are less successfu
they should be and to propose some required capabilities of future algorithms.

Our study is on a purely qualitative level and makes no architectural assumptions
stead, we focus on the fundamental relationships of different types of skew, with e
other and with the various load balancing techniques, to reach general conclusions
pendent of numerical parameters. We find that highly dynamic scheduling methods b
on observed execution times are superior in both complexity and attainable load bal
We also suggest the tuning of database schemata as a new anti-skew measure.

We first discuss some related research in Sect. 2. Sects. 3 and 4 present our cl
cations of load balancing methods and skew effects, respectively. These are match
Sect. 5, and Sect. 6 offers our conclusions and outlook on the future. The reader inter
in more detail is referred to an extended version of this article [9].

2  Related Work

Skew effects have been widely studied in the literature, and a large number of s
aware load balancing algorithms have been developed, some of which are quite suc
ful. However, a systematic analysis and classification of skew does not yet exist.

A taxonomy of data skew in parallel joins [14] includes the aspects of intrinsic a
partition skew. It also defines redistribution and join product skew similar to ‘plane ske
and ‘solid skew’ from [15]. [16] uses the notions of single, double, and ‘messy’ skew t
intermingle attribute value skew and correlation (cf. Sect. 4). Attribute value distributi
have been modeled in many complex ways [1, 3, 10]. They are used with histograms
or sampling methods [12] to predict result sizes and processing costs. Some resea
have studied the correlation between value distributions of different attributes [11].

Load balancing has been classified as ‘static’ and ‘dynamic’ with varying definitio
[2, 16]. We have further differentiated dynamic methods [7], while [5] distinguish
skew avoidance from skew resolution. ‘Adaptive’ query processing was surveyed

https://core.ac.uk/display/226135714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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wide-area networks [4]. Load balancing was also classified outside the DBS field [1
These approaches are commonly limited to subsets of the different skew types a

not capture the complex interactions between them.

3  Classification of Load Balancing Paradigms

We understand load balancing to comprise the following four steps (some of which
be integrated into a single operation):

Load Partitioning. The workload is partitioned intoload units that have two properties:
thepartitioning dimension reflecting the intended type(s) of parallelism (inter- and in
tra-transaction, -query, and -operator parallelism), and theload granule, i.e., the size of
single load units. Thus, load units can range from a single sub-operator to a pipelin
several operators to a batch of multiple transactions. Load partitioning may be pred
mined by thedata allocation, prior processing steps or logical dependencies in the da

Choice of Degree of Parallelism.The degree of parallelism (DP)is primarily deter-
mined by the total amount of load and its overall resource demands. Other aspects in
the current load situation in the system (both globally and locally) and the relative pe
mance of different resources, e.g., of disks vs. CPUs.

Selection of Processing Nodes.The set ofeligible processorsthat can truly process a
load unit similarly depends on the load situation, but also on the system architecture
pecially for shared-nothing). Ineligible nodes may imply a reduction of the DP.

Load Assignment (Scheduling).Finally (and perhaps most importantly), load units ar
assigned to processing nodes, determining the final load distribution and balancing
above, it may be predetermined by data allocation, system architecture, previous pro
ing, or data dependencies. Scheduling primarily equalizes CPU and main memory
but also affects disk and network utilization, e.g., by selecting the order of data acces

3.1  Classification

Our classification, summarized in Fig. 1, is tailored to the purpose of matching a
rithms with the types of skew they are capable of resolving. It has three main criter

Thescopeof optimization is the portion of load that the algorithm can simultaneous
oversee, ranging from one operator to one query to (rarely) the entire system. It ref
the types of parallelism and the load partitioning dimensions given above.

Themeasureof system load can refer either to a single type of resource (CPU, me
ory, disks, network) or to a compound load measure. Furthermore, the load situation

Fig. 1.Overview of load balancing classification
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be regarded either for individual resources or for the overall system.
Thedynamism of an algorithm denotes the time when load balancing decisions

taken.Static methods use, e.g., constant load granules and DPs with random or ro
robin load assignment.Predictive techniques assign all load in advance for their sco
and then strictly execute the resulting schedule [2].Reactivemethods use a predictive
schedule that is later adapted as needed [5, 6, 15].On-demandalgorithms avoid advance
planning and assign one load unit at a time as execution proceeds [7, 16]. The latte
are calledruntime  techniques; runtime and predictive methods are labeleddynamic.

These criteria are not totally independent of each other. For instance, a static
rithm will not have a complex load measure at runtime, and a ‘high’ ranking in all ca
gories would pose a prohibitively complex optimization problem. Tuning the sche
definition and data allocation may be understood as static actions.

4  Classification of Skew Effects

Our classification is depicted in Fig. 2. Intrinsic, query, and partition skew are su
marized asdata skew (DS)[14], as they all relate to the distribution of (values within
data. Capacity and execution skew refer to the processing performance of the syst

4.1  Intrinsic Skew (IS)

Intrinsic skew broadly denotes an uneven distribution of attribute values within the d
Attribute value skew (AVS) refers to a single attribute of a single relation.
Correlation skew (CoS) depends on the logical correlation of value distribution

from more than one attribute. CoS may span several attributes and can be eitherintra-
relational or inter-relational  (concerning attributes of one or several relations).

Intrinsic skew can occur in both base relations and intermediate results. It does
depend on the storage or processing methods applied and is caused only by the pro
of the world modeled and by the schema definition that maps them into the databa

4.2  Query Skew (QS)

This term denotes the bias in query predicates, which normally tend to select certa
lations, attributes, or values more frequently than others. Like intrinsic skew, it der
from the logical view of the data independent of the storage or processing appro
Though query skew is not strictly a property of the data, it qualifies as a type of data s
because the queries asked by a user depend of the contents and semantics of the da
IS, QS may also partially depend on the definition of the database schema.

4.3  Partition Skew (PS)

This is the type of skew most widely studied in the literature. It is characterized by an
even distribution of data across physical resources (processors, disks, main me
and/or load units. We generalize the categorization by Walton et al. [14] as follows

Tuple placement skew (TPS)concerns the initial distribution of raw input data (i.e.
the base relations) across the disks and processing nodes in the system.

Selectivity skew (SS)is defined by varying selectivity rates for sub-scans on differe
partitions of data.

Redistribution skew (RS)occurs due to different amounts of data being transferr
between different processors.
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Result size skew (RSS) denotes disparate result sizes for concurrent load units.
Within queries, TPS and SS refer to load units that scan base relations, wherea

and RSS can occur only in operations that use intermediate results. This distinction i
portant because the allocation of base data cannot be changed at query runtime. T
ferent types of PS are related with each other and with intrinsic skew in various wa
• Tuple placement skew can occur if data allocation is based on attribute values a

the partitioning attribute is burdened with AVS.
• For scans, selectivity skew is likely if a selection involves a partitioning attribute.
• For data redistribution, the distribution key may again refer to the selection attrib

from the previous step, or to one having AVS on it, leading to redistribution skew
• RS alone may lead to result size skew simply because a load unit's output depen

the size of its input. But even with balanced input sizes, result sizes may vary stro
if the redistribution key is referenced by the operation.

If several of these effects occur, they may either amplify or assuage each other. In th
three steps, query skew is also involved through selection and join predicates. All p
are also valid for correlated attributes instead of selection or redistribution keys.

4.4  Capacity Skew (CS)

Capacity skew refers to the amount of work a processor is capable of performing and
comprises those effects whose cause lies outside the data distribution:

System skew (SyS)consists in heterogeneities of the hardware and the operating
tem, such as different processors, memory sizes, or OS versions.

External skew (ExtS) denotes skew effects due to workloads outside the datab
system, especially application programs on non-dedicated servers.

Multi-processing skew (MPS)comprises the effects caused within the DBS, but ou
side the current scope of load balancing. Like ExtS, it can denote a skew in the availa
of resources to the load units under consideration.

Task skew (TS)is present when two load units work on equal amounts of data
have different tasks to perform (e.g., a scan and a sort operation, or a simple and a
plex query), causing disparate resource consumption.

Both multi-processing and task skew may stem from query skew, as the type an
der of queries submitted to the system determine the basic sequence of tasks requ

A query optimizer can develop execution plans that may or may not cause cap
skew. For instance, partial parallelism – though often beneficial to reduce the total w
load for small queries – is far more likely than full parallelism to lead to multi-process
skew. MPS will turn into PS for load balancing methods with system scope.

Fig. 2.Overview of skew classification
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4.5  Execution Skew (ES)

Execution skew denotes the disparate execution times of concurrent tasks within th
tabase system. Strictly speaking, ES is the only type of skew that is truly a problem
PDBS. It exists purely as a consequence of other skew types since both the amount o
processed (PS) and the availability of resources (CS) determine the execution spee
given load unit. The effects of intrinsic and query skew on execution times are indir

4.6  Analysis of Causal Relationships

The network of dependencies is illustrated in Fig. 3, which is based on Fig. 2 but
hanced with the causal relationships between the various skew types. The graph a
us to identify three categories of skew types that seem to be the cause of all others
• intrinsic skew of all shades, due to the properties of the world modeled in the DB
• query skew, based on the users' demands;
• system and external skew, which are caused outside the DBMS.
The figure also contains the database and allocation schemata as well as the quer
mizer, portrayed as system-inherent components that influence the likelihood of ske
the time of processing. It is these elements in which load balancing can be enact
combat skew. The system architecture is also shown but must be assumed as fixe

5  Matching the Classifications

We now compare the two classifications of skew effects and load balancing techniq
proceeding along the categories of skew as given above, in order to analyze which m
ods are generally capable of alleviating which types of skew. This naturally leads to a
of characteristics that we deem sensible for future load balancing algorithms.

5.1  Intrinsic and Query Skew

As intrinsic and query skew are both caused by the world model itself, they can be tre
only by manipulating the database schema. This type of manipulation would be class
as static, with a systemwide scope of optimization. Since it would not be concerned
system load at runtime, the category of measure is irrelevant here.

The chances of tuning the database schema to avoid IS and QS are limited by th
herent biases of the world itself and by the requirements of a ‘natural’ view allowing c
venient querying. Still, routine modeling steps such as(de)normalization and

Fig. 3.Overview of skew causes
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materialized view selectionmight be extended to account for skew effects. We are n
aware of any existing solution of this kind.

5.2  Partition Skew

The variety of subclasses of PS can be tackled in different ways.
Tuple placement skewis treated statically during data allocation, using either syste

or query scope to optimize throughput or response times, respectively. Like in Sect
the load measure is irrelevant. Simple approaches try to decluster the raw data in eq
sized disk partitions, others aim to balance the I/O expected at runtime. The latter re
some knowledge of query skew (e.g., through traces of past activity) and a load me
reflecting individual disks.

Selectivity skewis also remedied by data allocation, with the same classification
algorithms, usually by random or hash-based declustering. Range declustering, o
other hand,intentionally causesSS in order to restrict range queries to a subset of dis
avoiding full parallelism that can be inefficient.

Redistribution skew andresult size skeware often inevitable due to intrinsic skew
and thus call for dynamic techniques that may be predictive, reactive, or on-demand.
tem scope has been implemented only for limited workloads, and most solutions w
rather well with query or even operator scope. The load measure should comprise a
tential bottlenecks, but actual implementations are often limited to CPU load or use
amount of data as representative for overall resource consumption. In all cases, esti
of future load are notoriously error-prone despite the efforts described in Sect. 2, th
ening the success of load balancing [6, 16].

5.3  Capacity Skew

By definition, system, external, and multi-processing skew cannot beavoidedby any load
balancing algorithm. Still, they should beaccounted forby monitoring resource capacity
and routing workloads accordingly. This is easier for SyS than for fluctuating ExtS
MPS. In contrast, task skew can be treated by the optimizer through performance
models, although inaccuracies will multiply with the errors in size estimates noted
Sect. 5.2. On the whole, capacity skew is far more difficult to handle than partition s
and has mostly been passed over in the literature, with most studies addressing s
user mode only and neglecting the problems of multi-user processing.

In any case, a wide scope of optimization and a comprehensive load measure will
efit the treatment of capacity skew. Most importantly, however, load balancing mus
highly dynamic to respond to unforeseen changes in processor capacity.

5.4  Execution Skew

Being ‘only’ the consequence of PS and CS, execution skew might not be conside
problem in its own right, but treating it directly instead of its underlying causes can h
several advantages. Specifically, a runtime algorithm (re)assigning single load
based on the progress of execution (cf. Sect. 3.1) could largely do without prediction
data and capacity skew because load balancing would depend on actual resourc
sumption instead. This would reduce the complexity of load balancing itself by elimin
ing the work of obtaining cost estimates. More importantly, the workload can be balan
better because in contrast to vague cost estimates, observed execution times are a
by definition. The benefit increases with more complex and irregular load.
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A load balancing technique addressing execution skew is always of the runtime
ety. Observed execution times constitute a compound measure including CPU lo
well as, for instance, delays caused by disk contention and memory shortage. A larg
timization scope may be beneficial by reducing interference between load units.

5.5  Analysis

Our summary of requirements in Table 1 shows a clear analogy between the causal
of skew types and the temporal order of the load balancing steps where they ca
amended. The latter in turn mirrors the dynamism needed for the associated anti-
techniques, revealing that only highly dynamic methods can successfully treat ske
complex environments. This seemingly simple perception challenges the majority o
isting load balancing methods. We think most studies have achieved too optimistic re
by neglecting aspects such as correlation and capacity skew or multi-user mode.

Surprisingly, dynamic load balancing need not be excessively complex. While s
methods require system scope to account for all possible future load, dynamic algori
can work well on the query or even operator level. Runtime techniques also work w
single, compound, easily gathered load measure (i.e., actual execution times) while
ers are enhanced with ever more complex measures and estimates.

Since on-demand schemes cannot analyze the exact cause of processing delay
should be complemented to observe, for instance, certain memory and I/O limits, pos
based on rough load estimates far less complex than in predictive algorithms. Delay
then be assumed as CPU-based and scheduling can proceed accordingly.

Recommendation.For the development of future load balancing algorithms, we sugg
the following twofold strategy that combines static and dynamic aspects:
1. Use static methods to prepare the data in such as way as to limit data skew occu

at the time of query processing. This exploits known techniques of data allocation
should also include some skew-aware schema tuning as outlined in Sect. 5.1.

2. In query processing, employ an on-demand load balancing scheme. Use its red
complexity either to keep the algorithms lean or to allow for a greater optimizat
scope. Supplement this with aspects like memory restrictions and disk contentio

Table 1.Overview of load balancing requirements for different skew types

skew type
time of

correction
scope of

optimization
load

measure
dynamism

intrinsic
attribute value

schema design system — static
correlation

query schema design system — static

partition

tuple placement
data allocation system individual disks static

selectivity
redistribution load balancing

(steps 1 – 4)
operator/query/
system

CPU, memory dynamic
result size

capacity

system
— — — —external

multi-processing
task load balancing (2 – 4) query CPU dynamic

execution load balancing (2 – 4)
operator/query/
system

compound runtime
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6  Conclusions and Future Work

In this paper, we developed classifications for both skew effects and load balancing
niques, then compared the two to achieve a conceptual framework for the assessm
existing processing approaches and for the development of new algorithms.

We found that highly dynamic techniques have great advantages with respect to
own complexity as well as to the expected success of load balancing because they r
observed execution times rather than inaccurate cost estimates. We particularly favo
demand scheduling methods treating execution skew and strongly recommend to p
this approach further. In addition, we noted an unexplored potential for skew treatme
the design of database schemata and materialized views. We consider this an inter
line of research for efficient parallel query processing.

Our own future work will primarily concern the development of new, on-demand lo
balancing methods. In addition, we will continue our quest for suitable data alloca
schemes and proceed with our investigations into the nature of skew effects.
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