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On Disk Allocation of Intermediate Query Results in
Parallel Database Systems
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Abstract. For complex queries in parallel database systems, substantial amounts
of data must be redistributed between operators executed on different processing
nodes. Frequently, such intermediate results cannot be held in main memory and
must be stored on disk. To limit the ensuing performance penalty, a data alloca-
tion must be found that supports parallel I/O to the greatest possible extent.

In this paper, we propose declustering even self-contained units of temporary
data processed in a single operation (such as individual buckets of parallel hash
joins) across multiple disks. Using a suitable analytical model, we find that the
improvement of parallel I/O outweighs the penalty of increased fragmentation.

1  Introduction

In parallel database systems used for advanced applications like data wareho
complex queries are performed on very large data sets, often in terabyte ranges. P
operators executed on different processing nodes exchange substantial amounts
termediate results, and when the processors' memory capacity is exceeded, tem
data must be stored on disk. The response time problems caused by slow disk acce
alleviated by parallel I/O, often using more disks than processors to avoid bottlen

In a shared-disk architecture, intermediate results can be written out by the se
nodes and read directly by the receivers. Suchdisk-based data transferis convenient
and reduces the overhead of communication between processors. But depending
operators' access patterns, a smart disk allocation is required to limit disk conten

In most algorithms, data fragments are stored on many disks, but each fragme
kept on a single device. Thus, when a receiver processes its fragments sequenti
can read from just one disk at a time and parallel I/O is not fully exploited. In this artic
we propose declustering individual data fragments across multiple disks to increas
performance of parallel database systems for complex queries on large amounts o
We develop an appropriate analytical model to show that the benefits of parallel I/O
the receiving operator usually outweigh the additional disk load due to increased
mentation. Our approach works for several operators and most system architectu

Our paper is structured as follows: Sect. 2 describes the processing model of a
allel hash join in a shared-disk system, which serves as a case study throughout th
Sect. 3 is devoted to finding the optimal degree of declustering and includes our an
ical model. In Sect. 4, we outline possible extensions of our method to different op
tors and architectures. Related work is discussed in Sect. 5, and we conclude in S
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2  Parallel Hash Joins in Shared-Disk Architectures

For a clear presentation, we restrict most of this paper to a concrete case: a paralle
way hash equi-join in a shared-disk environment. We now describe the basic proce
model before we give some heuristics for parameter selection and disk allocation

2.1  Processing Model

Let R andSbe the inner and outer relations of a join query, declustered acrossr ands
disks, respectively. In thescan phase, R is read byn scan nodes which apply a selectio
and partition their output intob buckets. If the scan result is very large, the buckets ca
not be held in main memory and are stored ond disks.Sis processed similarly, possibly
by a different number of scan nodes but with a corresponding partitioning of buck

In the join phase, m join nodes each process one bucket pair at a time, using h
joins in which a hash table is built from anR-bucket and the matchingS-bucket is
probed against it. The local results are merged at a specified processor. This mo
illustrated in Fig. 1. In the shared-disk environment we assume, the allocation of b
ets to processors can be chosen dynamically to balance the workload.

For large data sets, each join node processes several bucket pairs and each dis
hold several buckets. Also, any scan node can contribute to any bucket, creating
scan fragments. Consequently, disk contention between processors occurs. To l
contention while supporting parallel I/O, buckets must be properly allocated to di
We introduce the parameterv, denoting the degree of bucket declustering. With ea
bucket split across multiple disks, parallel reading is enabled. Assuming the sam
gree of declustering for all buckets, bucket fragments are stored on disk.

Thus, the parametersn, m, d, b, andv must be found for a two-way equi-join query

2.2  Selection of Basic Parameters and Disk Allocation

Our main concern is finding an optimal degree of declustering (v), which we discuss in
detail in Sect. 3. Before that, we provide a simple heuristic for the remaining parame
and a disk allocation scheme as a basis for further calculations.

R13R12R11 R23R22R21 S13S12S11 S23S22S21 S33S32S31

σσ σσ σ

R1 R2 S1 S2 S3

R•1 S•1 R•2 R•3S•2 S•3

R S
union of

partial results

local join on
pairs of buckets

scan fragments

scan (selection)

fragmented
base relations disks

disks

scan nodes

join nodes

merge node

Fig. 1.Processing model of a parallel hash join in a shared-disk architecture
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The numbers of processors and disks—n, m, andd—should be set so as to match
their processing rates as closely as possible, starting from the degree of decluster
of relation R. These calculations involve some information on system performa
(preferably reflecting the current load state) as well as the selectivity of the scan, w
is estimated by histograms or sampling. The number of buckets,b, should be large
enough to fit each bucket into a single node’s available memory (which may be ju
fraction of physical memory). When data skew occurs, bucket sizes will vary anb
must be selected high enough for the largest bucket to meet the memory restricti

Example.Let base relationR be scanned by six processors. If each node’s output r
is sufficient to keep two disks busy, twelve disks are used to store the buckets. If, in
join phase, one node can process the data delivered by three disks, only four join n
are required. Assuming a total scan result of 800 MB with 10 MB of memory availa
on each of the selected processing nodes, 80 buckets are created (no skew). This
ple is depicted in Fig. 2; the allocation and declustering applied are justified below❏

For a given selection of all five parameters, the following allocation scheme (also
emplified in Fig. 2) can be shown to yield the smallest number of processors acce
the same disks, thus minimizing disk contention. As in most studies, we assume in
proportions between some parameters for simplicity.
1. Arrange thed disks into a matrix ofv columns and  rows (one disk per cell).
2. Assign  buckets to each row, declustering every bucket acrossv disks.
3. Assign  scan nodes to each column; make them write to the  disks the
4. Assign  join nodes to each row; let them read from thev disks in that row.

scan nodes

join nodes

buckets

bucket fragments

disks

Fig. 2. Example of the processing model and the allocation scheme. Eighty buckets (no
shown) are processed using six scan nodes and four join nodes. The buckets are declu
across twelve disks with a degree of three. To minimize access conflicts, each disk is used b
two scan nodes and one join node. The parameters from Sect. 2.1 are set as follows:

n 6= m 4= d 12= b 80= v 3=

σ σ σ σ σ σ

d v⁄
b v d⁄⋅
n v⁄ d v⁄
m v d⁄⋅
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3  Determining the Degree of Declustering

In this section, which constitutes the core of our study, we trade off parallel I/O aga
disk contention to determine the optimal degree of bucket declustering,v. We define
and analyze basic indicators of processing performance before introducing our an
cal model that leads to the final solution. All of these considerations are based o
above allocation scheme. Details omitted due to space restrictions are discussed

3.1  Performance Indicators

Since disks are normally shared by several nodes, the available degree of I/O pa
ism cannot be measured simply by the number of disks a processor can access at
Rather, it must be interpreted as the number of disks available divided by the num
of nodes accessing them. With each scan node writing to disks and a disk sh
by nodes, the available degree ofwrite parallelismis , which is inde-
pendent ofv. In the join phase, each node reads fromv disks to assemble its curren
bucket. It may have exclusive access to these if ; otherwise, a disk is sh
by  processors. Thus, the degree ofread parallelism is .

Disk contention can be defined by the number of concurrent read and write op
tions per disk. Withk such operations running at a given time, the disk read-write he
will have to move betweenk different positions, and the resulting seek times constitu
the allocation-dependent share of I/O cost. In the scan phase,k is the number of bucket
fragments per disk. Thus,write contentionis measured as . During the
join, a disk is accessed by only one node if or shared by process
otherwise (as mentioned above). With each node reading from a single position,read
contention is .

In the example from Sect. 2.2 and Fig. 2, the performance indicators have the
lowing values: , , , .

Observations.Although these coefficients are not proportional to either performan
or response times (their precise effects are analyzed in Sect. 3.2), we can make
general observations: While both write and read contention are best avoided for
values ofv, higher degrees of bucket declustering are useful to support read paralle
Write parallelism, however, is constant; thus, we need not regardwp any further.

Let us examine three common-sense settings ofv, viz.: no declustering ( ),
full declustering ( ), andread-optimaldeclustering ( ). The latter is so
named because it just allows full read parallelism without introducing read conten
As can be inferred from Table 1, the optimal degree of declustering must be betwe
and . In this interval, there is a true trade-off between parallelism and conten
For , however, contention is increased without further gains in parallelism.
find the true optimum within the range of , we have devised an elabor
analytical model which is presented in the next section.

3.2  Analytical Model

We construct a cost function to capture the total disk response time for the I/O o
join buckets. comprises writing and reading in the scan and join pha
respectively. Letp be the total number of pages (or other suitable, uniform I/Ogran-

d v⁄
n v⁄ wp d n⁄=

m v⋅ d≤
m v d⁄⋅ rp min v d m⁄,( )=

wc b v d⁄⋅=
m v⋅ d≤ m v d⁄⋅

rc max1 m v d⁄⋅,( )=

wp 2= rp 3= wc 20= rc 1=

v 1=
v d= v d m⁄=

d m⁄
v d m⁄≥

v 1 d m⁄,[ ]∈

T Tw Tr+=
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ules) to be written into the buckets. If alld disks are busy all the time (neglecting skew
then , where is the average time for a single write operation, estim
ed as .

Here, denotes the number of disk access positions used at the time of wri
There is a probability of that the disk head neednot be moved because it is al-
ready in the right position from the previous access. This case causes a “short” dis
cess ( ); otherwise, a “long” access ( ), including a track seek operation, occurs.
is the most important distinction to make when modeling disk activity because s
times are known to dominate disk response times [11]. Note that average values
and are quite sufficient for our purposes since we are interested in the overall su
access times only. Defining , we can now simplify .

The number of access positions on each disk, , corresponds to the numb
bucket fragments per disk plus an adequate number of entry points for concurrent
ries in multi-user mode,x. The termx can be composed of arbitrary sub-terms; we a
only interested in its average total magnitude. While this model of multi-user mode
seem simplistic, we will see later that it is quite sufficient. For now,

Note that our formula does not include waiting times caused by write requests
being served immediately. Rather, we assume asynchronous access so that proc
can continue while data is (queuing to be) written. We further presume that the d
are kept busy but are not overloaded; this assumption is justified because we spec
ly selected the ratio of disks and processing nodes so as to match their processing
(cf. Sect. 2.2). Thus, our model need only capture the actual disk access times.

For read operations in the join phase, we can assume only disks to be us
the same time (each of them join nodes assembles its current bucket fromv disks). Note
that cannot exceedd because we have limitedv to a maximum of in the pre-
vious section. Now, we can define with , simila
to the scan phase. The number of access positions, however, is lower now becau
can exclude contention within the current join: .

We assumex to have the same value as in the scan phase to represent the sam
gree of inter-query contention. After some more transformations, we can write the c
plete cost formula as a function ofv:

. (1)

To find its minimum within the bounds of , we discern several case

Table 1.Development of performance indicators for different degrees of declustering

contention parallelism

declustering write read write read

none ( ) low none
constant

low

read-optimal ( ) medium none high

full ( ) high high high
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Single-User Mode.With  to represent single-user mode,T simplifies to

. (2)

The properties of this function depend on the relationship of to or,
arranging the terms, of to . If both should happen to be equal—in ot
words: if the number of buckets per join node corresponds to the ratio of disk seek
and short access time—the function is constant and all values ofv are equivalent.

If is greater (many buckets), total I/O cost strictly decreases withv because
the performance gains from parallel reading outweigh the losses due to write co
tion. In this case,v should be selected as large as possible, i. e. . If
less than (few buckets), the opposite applies and disk contention domin
Now, a small value ofv is appropriate, i. e. .

Multi-User Mode. In multi-user mode, the cost function cannot be simplified, an
lengthy calculations ensue. However, it can be shown that is strictly decreasin

. (3)

This condition is true for most sensible parameters (i. e. and ).
other words: Unless we are “almost” in single-user mode ( , meaning that the
just one competing operation per disk at any given time), or we process just one bu
per join node, we should decluster the buckets with a degree of .

If no such property can be ensured, more case distinctions are required. We f
that for all cases of , the degree of declustering should be set to . For s
very small values ofx, declustering should be avoided. This corresponds to “nea
single-user mode with few buckets per join node as above. There is only a very na
margin of values ofx for which the optimum ofv is within the interval .

Analysis.The results for both single- and multi-user mode can be interpreted as
lows: For a high number of buckets, disk contention in the scan phase is already s
because there are many fragments on each disk, causing a very low probabil
“short” write times. Thus, further increasing through declustering has little effect
the scan phase while the join phase is sped up considerably through parallel rea
This is true even when inter-query contention affects both phases. This result also
tifies our choosing a simple coefficient likex: It is unnecessary to use a more comple
term that will still exceed the boundary of 1 in any true multi-user system.

With few buckets, there is still a significant share of short write operations that
destroyed by declustering, outweighing the performance gain during the join. Note
the number of data pages,p, does not directly influence the number of seek positio
althoughb usually increases withp. Also, the ratio varies with the size of the
read/write granule; the larger the granule, the more useful bucket declustering wi

Summary. Looking for an optimal degree of bucket declustering, we found that in
practical cases, the read-optimal setting from Sect. 3.1 is favorable. The only no
exception is for small numbers of buckets in single-user mode; in this case, declust
should be avoided. Medium degrees of declustering are not useful to consider.
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4  Extensions

To account for the second relation,S, the computations ofn, d, andm work as in Sect.
2.2. However, the declustering of base relations they start from,r, must now be replaced
with , , or the like, depending on whetherRandSare stored on disjunct
disks. If R andS result from sub-queries, their processing rates must be used. Fo
number of bucket pairs,b, the previous heuristics must be applied to theinner relation
(usually the smaller one). To find an appropriate value ofv, we can also use the previous
rules but have to interpretv differently, e. g., (for separate scanning as i
standard hash joins) or (for simultaneous scanning as in sort-merge jo

Our approach is not restricted to two-way equi-joins. In principle, it is applicable
all blocking operators that exchange large amounts of data (exceeding main mem
in a many-to-many relationship. Possible applications include non-equi-joins, distr
tion sort (cf. Sect. 5), and several types of aggregation, especially when combined
group-by clauses. Some adaptations of the allocation scheme may be required for
ators with different access patterns.

Our approach assumes that every processor can access any disk. Thus, our m
can be used in shared-disk and shared-everything systems, some hybrid architec
or certain variants of NUMA. It can even be adapted to shared-nothing architecture
transferring the data through the network and having the receivers write the buc
back to their local disks as above, provided that each node owns at least d
However, shared-nothing architectures are less flexible in dynamic task alloca
complicating load balancing and/or causing a higher communication overhead [4

5  Related Work

While parallel I/O in general is naturally applied in parallel database systems, dec
tering of single data units such as join buckets has received little attention. Of the o
ators we mentioned, aggregation and grouping have not been associated with this

In the context of joins, most load balancing studies have focused on CPUs and
memory [1, 4, 8, 10, 13]. While the significance of I/O has been asserted, only its o
all reduction has actually been addressed [10]; declustering is either not perform
not discussed. For shared-nothing architectures,bucket spreading(full declustering)
was introduced to equalize skew effects [3], but optimizing I/O was not a primary g

Mergesort algorithms naturally provide for parallel reading; in addition, workfil
may be striped across disks. Full striping is indeed found useful [14] especially in m
user mode if the striping unit corresponds to the read granule; workload is bala
across disks by randomization. These results, however, cannot be easily generaliz
to the particular access patterns of the mergesort operator. For distribution sort, w
is more similar to joins and aggregation, full striping of single files is used to achi
parallel I/O [7]. Again, optimal declustering is not an aim.

Disk arrays automatically provide parallel I/O. But even though allocation strateg
have been developed for various applications [6, 12], disk arrays cannot address th
ticular allocation requirements of different algorithms. Specifically, independent j
buckets are best stored on disjunct devices to allow reading them without conten
automatic (possibly full) striping in disk arrays usually defeats this goal [2].

r s+ max r s,( )

vR vS v= =
vR vS+ v=

d m⁄
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6  Conclusion

In this paper, we have investigated ways of allocating intermediate results of large
tabase queries across the disks of a parallel system. Based on a well-founded ana
model for the sample case of join queries, we concluded that in most cases, it is u
to decluster even individual join buckets across several disks to enable parallel rea
in the subsequent query stage. The benefits of parallelism usually outweigh the pe
of disk contention. The optimal degree of declustering is such that the receiving pro
sors can keep all disks busy without introducing intra-query contention.

Our results are applicable to several different operators and largely independe
the underlying system architecture. To the best of our knowledge, this is the first s
that has considered bucket declustering in such a general context. In the future, we
to validate our results by simulation studies for various architectures and workloa
Acknowledgment.The author would like to thank Dr. Dieter Sosna for his help in ha
dling the cost function used in Sect. 3.2.
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