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Abstract

In many situations, automated multi-alignment programs are not able to correctly align families of nucleic
acid or protein sequences. Difficult cases comprise not only distantly related sequences but also tandem du-
plications independent of their evolutionary age. Frequently, additional biological information is available
that establishes homologies at least in parts of the sequences based on structural or functional consideration.
In the present paper, we describe a semi-automatic approach to multiple sequence alignment in which the
user can explicitly specify parts of the sequences that are biologically related to each other. Our software
program uses these sites as anchor points and creates a multiple alignment that respects these user-defined
constraints and hence should be biologically more plausible than alignments produced by fully automated
procedures. We apply our approach to genomic sequences adjacent to the Hox genes. As a by-product, we
obtain not only useful insights for the further development of alignment algorithms, but also an improved
approach to phylogenetic footprinting.

Introduction

A large number of multi-alignment programs have been developed during the last twenty years, e.g. [31, 16,
23,14, 10]; see [22] for an overview. The performance of these tools has been studied extensively [13, 24, 32].
Whatever their respective advantages and shortcomings are, it should be clear that no automatic alignment
method can be expected to produce biologically meaningful alignments in all possible situations. At best,
these methods can give us a good guess about possible homologies in a given set of sequences. Therefore, it
is common practice to manually improve alignments produced by standard software tools and/or to compare
the output from different software programs [19].

Practically all existing alignment methods are fully automated, i.e., they construct alignments following a
fixed set of algorithmical rules. For most software tools, a number of program parameters such as gap
penalties can be adjusted, but usually there is no way of directly influencing the alignment procedure. Such
automatic alignment methods are clearly necessary and appropriate where large amounts of data are to be pro-
cessed or in situations where no additional expert information about the sequence data is available. However,
if a researcher is familiar with a specific sequence family under study, he or she may already know cer-
tain parts of the sequences that are functionally or phylogenetically related and should therefore be aligned
to each other. In situations where automated programs fail to align these regions correctly, it is useful to
have an alignment method that can incorporate user-defined homology information and would then align the
remainder of the sequences automatically, respecting these user-specified constraints.

Multiple alignment under constraints has been proposed by Myers et al. [21] and Sammeth et al. [28]. The
multi-alignment program di al i gn [18, 16] has a new option that can be used to calculate alignments under
pre-defined constraints. Originally, this program feature has been introduced to reduce the alignment search
space and program running time for large genomic sequences [4, 20]. Herein, we describe our constrained-
alignment approach in detail using a previously introduced set-theoretical alignment concept. We apply our
method to genomic sequences of the Hox gene clusters. For these sequences, the default version of di al i gn
produces serious mis-alignments where entire genes are incorrectly aligned but meaningful alignments can
be obtained if the known gene boundaries are used as anchor points. Interestingly, our anchoring proce-
dure not only improves the biological quality of the output alignments but can also lead to alignments with
significantly better numerical scores. This demonstrates that the heuristic optimization procedure used in
di al i gn may produce alignments that are far below the optimal alignment for given data set. The latter
result has important implications for the further development of alignment algorithms.
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Alignment of tandem duplications

There are typical situations where automated alignment procedures tend to produce biologically incorrect
aligments. The most obvious case is alignment of distantly related sequences where similarity at the primary
sequence level is low and homologies can be obscured by spurious similarities. Moreover, most existing
alignment programs can be confused by duplications within the input sequences. Here, tandem duplications
are particularly hard to align, see e.g. [3]. Specialized software tools have been developed to cope with the
problems caused by sequence duplications [11]. For the segment-based alignment program di al i gn, the
situation is as follows. As described in previous publications, the program constructs pairwise and multiple
alignments from pairwise local sequence similarities, so-called fragment alignments or fragments[16, 18]. A
fragment is defined as an un-gapped pair of equal-length segments from two of the input sequences. Based
on statistical considerations, the program assigns a weight score to each possible fragment and tries to find a
consistent collection of fragments with maximum total score. For pairwise alignment, a chain of fragments
with maximum score can be identified [17]. For multiple sequence sets, all possible pairwise alignments
are performed and fragments contained in these pairwise alignments are integrated greedily into a resulting
multiple alignment.

As indicated in Figure 1, tandem duplications can create various problems for the above outlined alignment
approach. In the following, we consider a motif that is duplicated in one or several of the input sequences
S1,...,Sk. For simplicity, let us assume that our sequences do not share any significant similarity outside
the motif. Moreover, we assume that the degree of similarity among all instances of the motif is roughly
comparable. There are no difficulties if the motif duplicated in a pair of input sequences, i.e if one has
instances (") and M? of the motif in sequence S; and instances A" and M of the same motif in a
sequence .S,. In such a situation, the segment approach will correctly align Ml(l) to Mél) and M1(2) to MQ(Q).
A correct alignment will be produced even if 17" exhibits stronger similarity to AZ{? than to 2" since,
for pairwise alignment, the program identifies a chain with maximum total score and a greedy heuristics is
applied only for multiple alignment where an exact solution is not feasible. The trouble starts if a tandem
duplication Mf”, Ml(2> occurs in Sy but only one instance of the motif A/, is present in So. Here, it can
happen that the beginning of M, is aligned to the beginning of Ml(l) and the end of M5 is aligned to the end
of Ml(Q) as in Figure 1 (B).

The situation is even worse for multiple alignment. Consider, for example, three sequences S, Sa, S3, where
two instances Ml(l), Ml(Q) of our motif occur in S; while S, and S5 each contain only one instance of the
motif M5 and M3, respectively. Under the above assumptions, a biologically meaningful alignment of these
sequences would certainly align S5 to S3, and both motifs would be aligned either to Ml(l) or to Ml(2> -

depending on the degree of similarity of S and S5 to Ml(l) and M1(2), respectively. Note that such an
alignment would also receive a high numerical score since it would involve three pairwise alignments of
motifs. However, since the pairwise alignments are carried out independently for each sequence pair, it may
happen that the first instance of the motif in sequence 5, Ml(l) is aligned to M5 but the second instance M1(2)
is aligned to M3 in the respective pairwise alignments of .S; with Sy and S5 as in Figure 1 (C). Thus, the
correct alignment of M5 and M3 will be inconsistent to the first two pairwise alignments. Depending on the
degree of similarity among the motifs, alignment of MI(Q) and M3 may be rejected in the greedy algorithm,
so these motifs may not be aligned in the resulting multiple alignment. It is easy to see that the resulting
multiple alignment would not only be biologically questionable, but would also obtain a numerically lower
score as it would involve only two pairwise alignments of the motif.

Multiple alignment with user-defined anchor points

To overcome the above mentioned difficulties, and to deal with other situations that cause problems to align-
ment programs, we use a semi-automatic anchored alignment procedure where the user can specify an arbi-
trary number of anchoring points in order to guide the subsequent alignment procedure. Each anchor point
consists of a pair of equal-length segments of two of the input sequences. An anchor point is therefore charac-
terized by five coordinates: the two sequencesinvolved, the starting positionsin the sequences and the length
of the anchored segments. As a sixth parameter, our method requires a score that determines the priority of
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Figure 1: Possible mis-alignments caused by tandem duplications in the segment-based alignment approach
(di al i gn). We assume that various instances of a motif are contained in the input sequence set and that the
degree of similarity among the different instances is approximately equal. For simplicity, we also assume that
the sequences do not share any similarity outside the conserved motif. (A) If a tandem duplication occurs in
two sequences, the correct alignment will be found since the algorithm identifies a chain of local alignments
with maximum total score. (B) If a motif is duplicated in one sequence but only one instance M is contained
in the second sequence, it may happen that M, is split up and aligned to different instances of the motif in
the first sequence. (C) If the motif is duplicated in one sequences and one instance is contained in sequences
two and three, respectively, consistency conflicts can occur. In this case, local similarities identified in the
respective pairwise alignments cannot be integrated into one single output alignment. Here, DIALIGN uses
a greedy heuristics to select a consistent subset of these pair-wise similarities. Depending on the degree of
similarity among the instances of the motif, the greedy approach can lead to serious mis-alignments (D).

the anchor point. The latter parameter is necessary, since it is in general not meaningful to use all anchors
proposed by the user so the algorithm needs to select a suitable subset of the proposed anchor points.

The selected anchor points are used to constraint the subsequent alignment procedure in the following way.
If a position x in sequence .S; is anchored with a position y in sequence S; through one of the anchor points
this means that y is the only position from .S; that can be aligned to «. Whether or not « is will actually
be aligned to y depends on the degree of local sequence similarity among the sequences around positions x
and y. If no statistically significant similarity can be detected, « and y may remain un-aligned. Moreover,
anchoring = and y means that positions strictly to the left (or strictly to the right) of « in S; can be aligned
only to positions strictly to the left (or strictly to the right) of y in S; — and vice versa. Obviously, these
relations are transitive, so if position z is anchored with position y1, y; is to the left of another position y-
in the same sequence, and y-, in turn, is aligned to a position z, then positions to the left of 2 can be aligned
only to positions to the left of z etc.

Algorithmically , anchor points are treated by di al i gn in the same way as fragments ( = segment pairs) in
the greedy procedure for multi-alignment. By transitivity, a set Anc of anchor points defines a quasi partial
order relation <a,c 0n the set X of all positions of the input sequences - in exactly the same way as an
alignment Ali induces a quasi partial order relation <a; on X as described in [18, 1]. Formally, we consider
an alignment Ali as well as a set of anchor points Anc as an equivalence relation defined on the set X of all
positions of the input sequences. Next, we consider the partial order relation < on X that is given by the
‘natural’ ordering of positions within the sequences. In order-theoretical terms, < is the direct sum of the
linear order relations defined on the individual sequences. The partial order relation <, is then defined as
the transitive closure of the union < UAnc.

It makes sense to require a set of anchor points for a given data set to be consistent. Informally, this means,
that it would be possible to align the anchored segment pairs to each other without leading to contradictions.
In our set-theoretical setting, a relation R on X is called consistent if all restrictions of the tansitive closure of
=< UR to the idividual sequences coincides with their respective ‘natural’ linear orderings. In our anchored-
alignment approach, we are looking for an alignment Ali such that the union Ali U Anc is consistent. Thus,
our optimization problem is to find an alignment Ali with maximum score — under the additional condition
that the set-theoretical union Ali U Anc is consistent. This makes sense only if the set Anc of anchor points
is consistent itself. Since a user-defined set of anchor points cannot be expectd to be consistent, the first step



in our anchoring procedure is to select a consistent subset of the anchor points proposed by the user. To this
end, the program uses the same greedy approach that it applies in the optimization procedure for multiple
alignment. That is, each anchor point is associated with some user-defined score, and the program accepts
input anchor points in order of decreasing scores — provided they are consistent with the previously accepted
anchors.

The greedy selection of anchor points makes it possible for the user to prioritize potential anchor points

according to arbitrary user-defined criteria. For example, one may use known gene boundaries in genomic
sequences to define anchor points as we did in the Hox gene example described below. In addition, one may
want to use automatically produced local alignments as anchor points to speed up the alignment procedure

as outlined in [4]. While the set of gene boundaries should be consistent — as long as the relative ordering

among the genes is conserved — the automatically created anchor points may well be inconsistent with those

‘biologically defined’ anchors (or inconsistent with each other). In this situation, it would make sense to first
accept the known gene boundaries as anchors and then to use the automatically created local alignments,

under the condition that they are consistent with the known gene boundaries. So in this case, one could use

local alignment scores to score the automatically created anchor points, while one would assign (arbitrary)

higher scores to the biologically verified gene boundaries.

Applications to Hox gene clusters

As explained above, tandem duplications pose a hard problem for automatic alignment algorithms. Clusters
of such paraloguous genes are therefore particularly hard to align. As a real-life example we consider here
the Hox gene clusters of vertebrates. Hox genes code for homeodomain transcription factors that regulate
the anterior/posterior patterning in most bilaterian animals [7, 15]. This group of genes, together with the
so-called ParaHox genes, arose early in metazoan history from a single ancestral “UrHox gene” [8]. Their
early evolution was dominated by a series of tandem duplications. As a consequence, most bilaterians share
at least eight distinct types (in arthropods, and 13 or 14 in chordates), usually referred to as paralogy classes.
These Hox genes are usually organized in tightly linked clusters such that the genes at the 5’end (paralogy
groups 9-13) determine features at the posterior part of the animal while the genes 3’end (paralogy groups
1-3) determine the anterior patterns.

In contrast to all known invertebrates, all vertebrate lineages investigated so far exhibit multiple copies of
Hox clusters that presumably arose through genome duplications in early vertebrate evolution and later in the
actinopterygian (ray finned fish) lineage [12, 9, 2]. These duplication events were followed by massive loss
of the duplicated genes in different lineages, see e.g. [27] for a recent review on the situation in teleost fishes.

The individual Hox clusters of gnathostomes have a length of some 100,000nt and share besides a set of
homologous genes also a substantial amount of conserved non-coding DNA [5] that predominantly consists
of transcription factor binding sites. Most recently, however, some of these “phylogenetic footprints” were
identified as microRNAs [33].

Fig. 2 shows four of the seven Hox clusters of the pufferfish Takifugu rubripes. Despite the fact that the Hox
genes within a paralogy group are significantly more similar to each other than to members of other paralogy
groups, there are several features that make this dataset particularly difficult and tend to mislead automatic
alignment procedures: (1) Neither one of the 13 Hox paralogy groups nor the Evx gene is present in all four
sequences. (2) Two genes, HoxC8a and HoxA2a are present in only a single sequence. (3) The clusters have
different sizes and numbers of genes (33481nt to 125385nt, 4 to 10 genes).

We observe that without anchoring di al i gn mis-aligns many of of the Hox genes in this examples by match-
ing blocks from one Hox gene with parts of a Hox gene from a different paralogy group. As a consequence,
genes that should be aligned, such as HoxA10a and HoxD10a, are not aligned with each other. Anchoring
the alignment, maybe surprisingly, increases the number of columns that contain aligned sequence positions
from 3870 to 4960, i.e., by about 28%, see Tab. 1. At the same time, the CPU time is reduced by almost a
factor of 3.

We investigated not only the biological quality of the anchored and non-anchored alignments but also looked
at their numerical scores. Note that in di al i gn, the score of an alignment is defined as the sum of weight
scores of the fragments it is composed of. For some sequence sets we found that the score of the anchored
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Figure 2: (top) The pufferfish Takifugu rubripeshas 7 Hox clusters of which we use four in our computational
example. The Evx gene, another homedomain transcription factor is usually liked with the Hox genes and
can be considered as part of the Hox cluster. The paralogy groups are indicated. Filled boxes indicates intact
Hox genes, the open box indicates a HoxA7a pseudogene [6].

(bottom) Result of a di al i gn2 run on the nucleic acid sequences without anchoring. The diagram repre-
sents sequences and gene positions to scale. All incorrectly aligned segments (defined as parts of a gene that
are aligned with parts of gene from a different paralogy group) are indicated by lines between the sequences.

alignment was above the non-anchored alignment while for other sequences, the non-anchored score ex-
ceeded the anchored one. For example, with the sequence set shown in Figure 2, the alignment score of
the — biologically more meaningful — anchored alignment was > 13% below the non-anchored alignment
(see Table 2). In contrast, another sequence set with five HoxA cluster sequence (TrAa, TnAa, DrAb, TrAb,
TnAb) from three teleost fishes (Takifugu rubripes, Tr; Tetraodon nigroviridis, Tn; Danio rerio, Dr), yields
an anchored alignment score that is some 15% above the non-anchored score.

Anchored Alignments for Phylogenetic Footprinting

Evolutionarily conserved non-coding genomic sequences represent a potentially rich source for the discov-
ery of gene regulatory regions. Since these elements are subject to stabilizing selection they evolve much
more slowly than adjacent non-functional DNA. These so-called phylogenetic footprints can be detected by

Table 1: Aligned sequence positions that result from fragment aligments in the Fugu Hox cluster example.
We count here the numbers of columns containing uppercase letters in the di al i gn output. The number
of columns in which two or three sequences are aligned increases when more anchors are used, while the
number of columns in which all sequences are aligned decreases because the biologically correct alignment
should not contain such columns. CPU times are measured on a PC with two Intel Xeon 2.4GHz processors
and 1Gbyte of RAM.

anchor alignment | aligned sequences. | CPU time | score
length 2 3 4

none 281759 | 2958 668 244 4:22:07 | 1166

genes 252346 | 3674 1091 195 1:18:12 | 1007

genes + bl ast z hits 239326 | 4036 1139 33 0:19:32 | 742




Table 2: Aligned sequence positions outsidethe coding regions and introns (first column) in the Fugu example
of Fig. 2. The second column gives the number of sequence positions to which di al i gn adds an additional
sequencetoat r acker footprint cluster. The third column lists new footprints, from which, asint r acker,
low complexity regions were removed.

anchor aligned positions

noncoding addt’l seq. new footprint
none 1546 0 618
genes 1686 39 694
genes + bl ast z hits 2433 39 841

comparison of the sequences surrounding orthologous genes in different species [30]. Alignment algorithms,
including di al i gn, were advocated for this task. As the example in the previous section shows, however,
anchoring the alignments becomes a necessity in applications to clusters of paralogous genes.

Interspersed repeats pose an additional problem for unconstrained alignments. While these are normally
removed (“masked”) using e.g. Repeat Masker , they need to be taken into account in the context of phylo-
genetic footprinting: if a sequence motif is conserved hundreds of millions of years it may well have become a
regulatory region even if it is (similar to) a repetitive sequence in some of the organisms under consideration.

The programt r acker [26] was designed specifically to search for conserved non-coding sequences in large
gene clusters. It is based on a similar philosophy as segment based alignment algorithms. The t r acker

program uses bl ast z [29] with non-stringent settings and restricted to homologous intergenenic regions
and parallel strands to compute pairwise local alignments of all input sequences. These are post-processed
to remove e.g. low-complexity regions. Effectively, t r acker thus computes alignments anchored at the
genes. The pairwise alignments are then combined into overlapping cluster based on their positions alone.
Here the approach suffers from the same problem as di al i gn, which is, however, resolved in a different
way: instead of producing a single locally optimal alignment, t r acker lists all maximal compatible sets of
pairwise alignments. For the case of Fig. 1(C), for instance, we obtain both MY A, M and M2 My M.
Since this step is performed based on the overlap of sequence intervals without explicitly considering the
sequence information at all, t r acker is very fast as long as the number of conflicting pairwise alignments
remains small. In the final step di al i gn is used to re-calulate sequence alignments from the subsequences
that belong to individual clusters.

The combination of bl ast z and an anchored version of di al i gn appears to be a very promising approach
for phylogenetic footprinting. We have noticed in ref. [25] that di al i gn is more sensitive than t r acker

in general. A combination of anchoring at appropriate genes (with maximal weight) and bl ast z hits (with
smaller weights proportional e.g. to — log F values) reduces the CPU requirements by more than an order
of magnitude. While this is still much slower than t r acker (20min vs. 40s) it increases the sensitivity
of the approach by about 30 — 40% in the Fugu example, Tab. 2. Work in progress aims at improving the
significance measures for local multiple alignments. A more thorough discussion of anchored segment-bases
alignments to phylogenetic footprinting will be published elsewhere.

Conclusions

Automated alignment procedures are based on simple algorithmical rules. For a given set of input sequences,
they try to find an alignment with maximum score in the sense of some underlying objective function. The two
basic questions in sequence alignment are therefore (a) to define an appropriate objective function and (b) to
design an efficient optimization algorithm that finds optimal or at least near-optimal alignments with respect
to the chosen objective function. Most multi-alignment programs are using heuristic optimization algorithms,
i.e. they are, in general, not able to find the mathematically optimal alignment with respect to the objective
function. An objective function for sequence alignment should assign numerically high scores to biologically
meaningful alignments. However, it is clearly not possible to find a universally applicable objective function
that would give highest numerical scores to the biologically correct alignments in all possible situations. This
is the main reason why alignment programs may fail to produce biologically reasonable output alignments.



In fact, the impossibility to define a universal objective function constitutes a fundamental limitation for all
automated alignment algorithms.

Often a user is already familiar with a sequence family that he or she wants to align, so some knowledge
about existing sequence homologies may be available. Such expert knowledge can be used to direct an
otherwise automated alignment procedure. To facilitate the use of expert knowledge for sequence alignment,
we proposed an anchored alignment approach where known homologies can be used to restrict the alignment
search space. This clearly improves the quality of the alignments and reduces the program running time, in
particular in situations where automatic procedures are unlikely to produce meaningful alignments. For the
Hox gene clusters that we analyzed, the non-anchored version of di al i gn produced serious mis-alignments.
Using the anchored alignment approach with the known gene boundaries as anchor points guarantees a correct
alignment of these genes and at the same time reduces the running time by almost a factor of 4.

There are two possible reasons why automated alignment procedures may fail to produce biologically correct
alignments:

(a) The chosen objective function may not be in accordance with biology, i.e., it may assign mathematically
high scores to biologically wrong alignments. In this case, even efficient optimization algorithms would
lead to meaningless alignments.

(b) The mathematically optimal alignment is biologically meaningful, but the employed heuristic opti-
mization procedure is not able to find the alignment with highest score.

For the further development of alignment algorithms, it is crucial to find out which one of these reasons is to
blame for mis-alignments produced by existing software programs. If (a) is often observed for an alignment
program, efforts should be made to improve its underlying objective function. If (b) is the case, the biological
quality of the output alignments can be improved by using a more efficient optimization algorithm. For
di al i gn, itis unknown how close the produced alignments come to the numerically optimal alignment — in
fact, it is possible to construct example sequences where di al i gn’s greedy heuristics produces alignments
with arbitrarily low scores compared with the possible optimal alignment.

In the Fugu example, Figure 2, the numerical alignment score of the (anchored) correct alignment was 13%
below the score of the non-anchored alignment. All sequences in Figure 2 contain only subsets of the 13 Hox
paralogy groups, and different sequences contain different genes. For such a data set, it is unlikely that any
reasonable objective function would assign an optimal score to the biologically correct alignment. The only
way of producing good alignments in such situations is to force a program to align certain known homologies
to each other. With our anchoring approach we can do this, for example by using known gene boundaries as
anchor points. In contrast, in the teleost HoxA cluster example the numerical score of the anchored alignment
was around 15% higher than the score of the non-anchored alignment. This demonstrates that the greedy
optimization algorithm used by di al i gn can lead to results with scores far below the optimal alignment for
a given data set. In such situations, improved optimization algorithms may lead not only to mathematically
higher-scoring alignments but also to alignments that are closer to the biologically correct alignment. This
latter example suggests that much can be gained by developing more efficient optimization strategies for
di al i gn, i.e. optimization algorithms that come closer to the mathematically optimal alignment. We
will use our anchored-alignment approach systematically to study the efficiency of objective functions and
optimization algorithms for the segment-based approach to multiple sequence alignment.
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