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ABSTRACT

Motivation: Recently novel classes of functional RNAs,
most prominently the miRNAs have been discovered,
strongly suggesting that further types of functional RNAs
are still hidden in the recently completed genomic DNA
sequences. Only few techniques are known, however, to
survey genomes for such RNA genes. When sufficiently
similar sequences are not available for comparative
approaches the only known remedy is to search directly
for structural features.

Results: We present here efficient algorithms for comput-
ing locally stable RNA structures at genome-wide scales.
Both the minimum energy structure and the complete ma-
trix of base pairing probabilities can be computed in O(N x
L?) time and O(N + L?) memory in terms of the length N of
the genome and the size L of the largest secondary struc-
ture motifs of interest. In practice, the 100Mb of the com-
plete genome of Caenorhabditis elegans can be folded
within about half a day on a modern PC with a search
depth of L = 100. This is sufficient e.g. for a survey for
mMiRNAs.

Availability: The software described in this contribution
will be available for download at
http://www.thi.univie.ac.at/~ivo/RNA/ as part of the Vi enna
RNA Package.
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INTRODUCTION

Structural genomics, the systematic determination of all
macro-molecular structures represented in a genome,
is at present focused almost exclusively on proteins.
Although it is common place to speak of *““genes and their
encoded protein products”, thousands of human genes
(THE GENOME SEQUENCING CONSORTIUM, 2001)
produce transcripts that exert their function without ever
producing proteins. The list of functional non-coding
RNAs (ncRNAs) includes well-known key players in the
biochemistry of the cell, such as tRNAs, rRNAs, tmRNA,

and the RNA components of RNAseP and signal recog-
nition particles, as well as recently discovered functional
RNAs such as the miRNAs (Lagos-Quintana et al., 2001;
Lau et al., 2001; Lee & Ambros, 2001) that regulate gene
expression by regulating mRNA expression. Many of
these RNAs have characteristic secondary structures that
are highly conserved in evolution.

Another level of RNA function is presented by func-
tional motifs within protein-coding RNAs. A few of the
best-understood examples of structurally conserved RNA
motifs are found in viral RNAs such as the TAR and RRE
structures in HIV and the IRES regions in Picornaviridae
and many Flaviviridae. A textbook example of a functional
RNA secondary structure is the Rho-independent termina-
tion in E.coli. The newly synthesized mRNA forms a hair-
pin in the 3’UTR that interacts with the RNA polymerase
causing a change in conformation and the subsequent dis-
sociation of the Enzyme-DNA-RNA complex.

It is not hard to argue therefore that RNomics, i.e., the
understanding of functional RNAs (both ncRNA genes
and functional motifs in protein-coding RNAs) and their
interactions at a genomic level, is of utmost practical
and theoretical importance in modern life sciences:
The comprehensive understanding of the biology of a
cell obviously requires the knowledge of identity of all
encoded RNAs, the molecules with which they interact,
and the molecular structures of these complexes (Doudna,
2000).

This ambitious goal requires first of all the development
of versatile and reliable computational methods that can
detect and classify functional RNAs, preferably within a
single genome. An necessary prerequisite is the compu-
tation of locally stable secondary structures. This can be
achieved by folding sub-sequences of length L in a win-
dow sliding along the genomic sequence nucleotide by
nucleotide. In practice, however, the sequence windows
have to be shifted by a substantial fraction of L in order
to keep the CPU requirements manageable. As a conse-
quence, a large number of relevant local structures are ig-
nored. In this contribution we report a computationally ef-
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ficient method for surveying all thermodynamically favor-
able local RNA structures at a genome-wide scale.

A MODIFIED FOLDING ALGORITHM

The RNA folding problem is complicated considerably
by the details of the modern energy model (Mathews
et al., 1999) which is based upon interactions of adjacent
base pairs and loop contributions. Dynamic programming
solutions were described by Zuker & Stiegler (1981);
McCaskill (1990). Efficient implementations are available
e.g. in the Vi enna RNA Package (Hofacker et al.,
1994) and nf ol d (Zuker, 1989).

Maximum Circular Matching

While in practice all computations are performed using
the full loop based energy model, the logic of the folding
problem and its solution is much easier to explain in terms
of a simplified model, the so-called Maximum Circular
Matching Problem (MCMP), that considers only base
pairing strength. We therefore use this simplified version
to explain the modifications to the folding algorithm that
are necessary to find locally optimal structures.

Given a sequence x we define the matrix IT with entries
II;; = 1 when z; and x; can form a base pair and I;; = 0
otherwise. In the MCMP we arrange the sequence x along
a circle and ask for the maximum matching 9t such that
(1) {i,7} € 9t implies II;; = 1 and such that (2)
two chords do not cross. This no-crossing condition is
equivalent to the “no-pseudoknots” condition in nucleic
acid folding. In fact, MCMP can be interpreted as the
problem of finding the secondary structure that maximizes
the number of base pairs. In order to stay closer to the
folding algorithm we define £;;, the energy of the most
stable structure on the subsequence from ¢ to j (inclusive)
as the negative of the maximal number of base-pairs that
can be formed on this subsequence.

The MCMP is then solved by the dynamic programming
recursion (Nussinov et al., 1978)

E;; = min {Ei,jh ki{,ni]nigi,k—l + Egy1,5-1 +e(k, 5)

1)
with the initial conditions £; ;. = 0 for0 < d < m,
where m denotes the minimum unpaired segment in a hair-
pin loop, usually m = 3. Here (4, j) is the energy contri-
bution for forming the base pair (4, 7), in the simplest case
e(i,j) = —1iffII,; = 1. The secondary structure graph
can be retrieved by straightforward backtracking from the
(E;;) array.

Forward Recursion

Restricting the maximum span of a base-pairto L < n
poses no problem. For the optimal energy subject to this
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Fig. 1. The array Efj is needed only close to the diagonal. [...]

restriction, we have

min Eil:k—l + Ezf+1,j71 +e(k, )

k=j—L...j—m
ijzl
. - (2
Define f;, = E,fn to be the minimal energy on the tail of
the sequence starting at position k. It is clear that

L .
Eij = min {Ei,j—h

fr = min {fk+17 d:HIﬁ“LE’I?«rLk«rd—l +elk,k+d) + frotatt
Mg, ka=1
(3)

since the structures beginning with base pairs at position &
can be decomposed into the optimal structure with a base
pair from k to k£ + d and the tail beyond this pair. The
span d of the pair is of course constrained by d < L.
The optimal folding energy is E,,; = fi. It follows from
equ.(3) that f; can be computed if all f; and E,§+1,k+d_1
are known. Since the computation of f;, only requires f;
with [ > k and the part of the (E;;)-array in the triangle
between E ., and the diagonal we need to store only
O(L?) entries of the (E;;)-array and the (f;.)-array, see
Fig. 1.

We shall see below that the backtracking step can
be partitioned such that no further information has to
be stored. The forward step of the algorithm therefore
requires O(nL?) operations and O(n + L?) memory, see
Fig. 2.




Backtracking

The array (fx) contains the energies of locally optimal
components that begin at position k. Since there are no
energy contributions in the “out-side loop”, i.e., of the
joints connecting structural components, we know that a
locally optimal component begins at position & if and only
if fu < fry1. The pairing partner can now be obtained
by backtracking within the E* array. This backtracking
step works on the sub-sequence z[k ...k + L] as in the
standard MCMP (Nussinov et al., 1978). As a result we
obtain a list of locally optimal components C(k) together
with their position in the full sequence and the energy of
the optimal “tail structure” on z[k ... N]. Frequently, a
component C'(I) consists simply of a smaller (previously
detected) locally optimal component C'(k) enclosed by
one additional base pair. The size of the output can be
removed considerably if we store only the locally optimal
components that are also maximal w.r.t. inclusion.

If desired, the optimal structure of the complete se-
guence can be reconstructed from this list of components
C(k) starting now at the 5” end.

Perfor mance

The | f ol d algorithm has been implemented in Cas vari-
ant of the f ol d routine of the Vi enna RNA package.
To assess the performance we applied the algorithm to
several viral and bacterial genome, as well as the complete
genome of Caenorhabditis elegans. Figure 1 shows the
| f ol d performance as a function of sequence length n
and maximum pair span L. Typical bacterial genomes can
be handled with moderate computer requirements even
when using a span of L = 1000. Extrapolating from the
data shown even the human genome n ~ 3 - 10° should
be doable with L = 100 and a week’s computer time.

As another test case we have predicted secondary
structures with L. = 100 for all six chromosomes
Caenorhabditis elegans, total size about 100Mb. The span
size was chosen so that it should be possible to search the
predicted structures for small temporal RNAs (stRNA),
the precursors of miRNAs. C. elegans chromosomes
consist of 14 to 21 million bases and folding took between
1.5 and 2.5 hours. The resulting list of locally optimal
components contained between 700000 and 1 million
structures per chromosome. The results of the rather
tedious analysis of these data will be reported elsewhere.

BASE PAIRING PROBABILITIES

At physiological temperatures an RNA molecule may
exhibit an ensemble of structures with similar, near
optimal, energy. Therefore, as well as because of the
unavoidable inaccuracies of predicted structures, it is
often insufficient to describe an RNA molecule by a
single optimal secondary structure. An elegant way to
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Fig. 2. Performance of RNALf ol d. Upper panel: search depths L
are 50, 70, 100, 200, 300, 500, 1000, and 2000, from bottom to top.
The dashed line is t = 10~5n sec. Data are with the - noLP option,
i.e., excluding isolated base pairs, timings are for a LINUX PC with
2.2GHz pentium4 processor.

Lower panel: Folding times for test genomes: Ebola virus n =
18890, o; Sulfolobus virus n = 35450, [J; Halovirus HF2 n =
77670, <; Variola major n = 186103, A; Ectocarpus siliculosus
virus n = 335593, v; Mycoplasma genitalium G37 n = 580074,
v; Ureaplasma urealyticum n = 751739, A; Aeropyrum pernix K1
n = 1669695, ¢; Bacillus subtilis n = 4214814, W; Streptomyces
coelicolor n = 8667507, . The dashed line is ¢ = 10~* L ?sec.




Fig. 3. Example of a base pairing probability matrix obtained from solving the partition function version of the MCMP with ¢ = —3 and
L = 40 for a sequence from the aster yellows phytoplasma (AY191296). The dot plot depicts each possible base pair by a square with an area
proportional to the pairing probability. Helical regions therefore appear as vertical “lines”, structural alternatives as fuzzy clouds of points.

describe the ensemble of plausible structures is given by
McCaskill’s partition function algorithm, which allows
to compute the probabilities of all possible base pairs in
thermodynamic equilibrium. Again restricting the span of
base pairs yields an O(n x L?) algorithm, as shown below.

Let Z;; be the partition function of the substructures
from ¢ to 7, and denote by Zﬁ the partition function of
the substructures from ¢ to j that have a base pair from ¢
to j. We have

J
Ziy=Zisrj+ Y, ZhZiny
k=i+m
j @
=Yl + Z Zi+1,kflzk+1,j6_8(i’k)

k=i+m

In order to incorporate the restriction of range d of a base
pair we first note that Z% , ; = 0 for d > L. This yields

L
_ —e(2,i+d
Zij = Zis1,;+ g Zii1,itd—1Zitd+1,;€ ( )(5)
d=m+1

which can be evaluated in O(L) time. Furthermore we
introduce the abbreviation Z;; = Z,,, and observe

Zy =2y + Z ZitvvaZisr - (6)

d=m+1

Again, only on the most recent triangular part of the matrix
Z B needs to be stored. The partition function Z = Z,,, =
Z; can therefore be evaluated in O(nL?) time and O(L?)
memory.

The probability Py, that the bases k and [ are pairing
in thermodynamic equilibrium can be computed from the
partition function Z;,; of structures outside the sequence
interval [k, (] and Z[ as the ratio

Py =ZwZE|Z 7)

The exterior partition functions Z satisfy the recursion

Zkl =Zik1Z141nt
Z ZUZHl,kflZl+1,j716_8(i’j) (8)

i<k;l<j

Note that the sum in equ.(8) vanishes if [ > k + L which
defines the initial values Zy xi1 = Zix-1Zkin+1.n-
Recall that we do not consider base pairs spanning more
than L bases, i.e., e (») = 0 for j > i + L. We can
reduce the computational complexity by introducing the
auxiliary L x L field

min{i+L,n}
Zy' = > ZiyZigjae 9)
j=l+1

Equ.(8) can now be rewritten in the form

k—1

Zkl = ZkAZl*H + Z ZfluZz'H,kq (10)

i=l—L

where Z; is the partition function of the initial subse-
quence, which satisfies the recursion

RV

d=m+1

]j dijdl (11)

Both Z)/ and Z,, can be obtained in O(L) time because
the sums span at most L index values. Furthermore, we
only need matrix entries Z} and Z,, withl —k < L, i.e.,
O(n x L) matrix entries. The algorithm therefore requires
O(n x L?) steps and O(L? + n) storage, where the O(n)
contribution is used to store the input and the arrays Z and
Z*, respectively.

Tools for the analysis of very large base pairing prob-
ability matrices are not yet available. We have therefore
refrained from implementing the complete energy model
at this time and use the partition function version of the
MCMP to demonstrate the feasibility of the approach.




Fig. 3 gives a small example. It is clear that this type
of data is not amenable to manual analysis; the design
of corresponding data-mining tools hence is ongoing
research.

DISCUSSION

We have presented here an efficient algorithm for sur-
veying local RNA secondary structures at genome-wide
scales. At least for the minimum free energy problem, we
also describe a versatile implementation that makes use of
the full RNA energy model.

The use of structural information appears to be neces-
sary. Various groups have tried to detect functional RNA
structures based on local thermodynamical stability alone,
see e.g. (Le et al., 1988; Huynen et al., 1996). While such
procedures are capable of detecting some particularly sta-
ble features, a recent study of Rivas & Eddy (2000) con-
cludes that “although a distinct, stable secondary structure
is undoubtedly important in most noncoding RNAs, the
stability of most noncoding RNA secondary structures is
not sufficiently different from the predicted stability of a
random sequence to be useful as a general genefinding ap-
proach.” Thus, the explicit usage of structural information
is indispensable.

The list of locally optimal components produced by
| f ol d is therefore a necessary first step for approaches
to search for both known and novel functional RNA
structures. This is most obvious when searching for a class
of functional RNAs for which information on conserved
structural features is already known, such as stRNAs. In
these cases one can obtain a structural model from known
instances of the RNA in question, and simply search the
list for the reference structure, possibly using a local
structural alignment algorithm (Héchsmann et al., 2002).

In principle one can also hope to identify novel func-
tional RNAs based on predicted structures. To this end
the frequencies of structural motifs are correlated with
their genome context. Such an approach could detect both
potential regulatory features in mRNAs and new func-
tional RNAs depending on whether ones searches near or
far away from protein-coding genes. The computational
methods for such comparisons, however, go beyond the
scope of this contribution.
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