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Abstract: We present a framework for extraction and prediction of online workload data from a workload manager of 
a mainframe operating system. To boost overall system performance, the prediction will be incorporated 
into the workload manager to take preventive action before a bottleneck develops. Model and feature 
selection automatically create a prediction model based on given training data, thereby keeping the system 
flexible. We tailor data extraction, preprocessing and training to this specific task, keeping in mind the non-
stationarity of business processes. Using error measures suited to our task, we show that our approach is 
promising. To conclude, we discuss our first results and give an outlook on future work. 

1 INTRODUCTION 

In a large system environment in mainframe 
computing like the IBM z-Series many different 
workloads of different types compete for the 
available resources. The types of workload cover 
things like online transaction processing, database 
queries or batch jobs as well as online timesharing 
users. The resources that are needed by these 
workloads are hard resources like CPU capacities, 
main memory or I/O channels as well as soft 
resources like available server processes that serve 
transactions (Vaupel et al., 2004). 

Every installation wants to make the best use of 
its resources and maintain the highest possible 
throughput. To make this possible the Workload 
Manager (WLM) was introduced into the z/OS 
operating system (Aman et al., 1997). With the 
Workload Manager, one defines performance goals 
and assigns a business importance to each goal. The 
user defines the goals for work in business terms, 
and the system decides how many resources, such as 
CPU and storage, should be given to it in order to 
meet the predefined goal. The Workload Manager 

will constantly monitor the system and adapt 
processing to meet the goals. 

Due to the growth and rapid change of the 
workload requirements in today’s information 
processing, the challenge for workload management 
is to assign the required resource to the correct 
workload exactly when it is needed – or even before 
it is needed – to avoid any delays. This is especially 
important as workload management nowadays not 
only assigns available resources, but increasingly 
provides additional resources when they are needed. 
Any over- or underprovisioning is a direct cost 
factor. 

Thus, a load prediction system that adapts itself 
to each customer's specific behaviour is required. 
Based on such load predictions the z/OS operating 
system could provide and assign the right resources 
to the important workload right in time instead of 
waiting until they are needed or even longer (Bigus 
et al., 2000) to improve performance and throughput 
while optimising resources usage and minimising 
costs. 

This paper describes the project and the results 
achieved regarding the prediction quality of the self-
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learning system. One has to take into account that 
the process being modelled is non-stationary. Future 
investigations will consider questions of re-learning 
when the customer's specific behaviour is changing, 
and how far explicit knowledge can be incorporated 
to improve the prediction quality. 

The paper is organised as follows: Section 2 
introduces the Workload Manager responsible for 
the resource allocation which will be influenced by 
the load prediction. Section 3 explains the data 
extraction and training process we use. Results are 
presented in Section 4, followed by a summary in 
Section 5. 

2 WORKLOAD MANAGER 

The z/OS Workload Manager (WLM) is a 
functionality of the base control program of the z/OS 
operating system for IBM Mainframes. Its basic 
functions are dynamic allocation and re-allocation of 
system resources to the different workloads running 
on clusters of z/OS driven systems, called Sysplex. 

Resources could be dispatching priorities of CPU 
access, real storage, software servers of transactions 
and so forth. They are permanently allocated and re-
allocated between the workloads based on a policy 
of business goals that was defined by the customer. 
Units of work could be things like batch jobs, online 

transactions like CICS, DB2 or web-transactions, or 
interactive TSO work (see Figure 1). 

The goals are defined in different service classes. 
Each incoming workload is classified into a service 
class, based on customer defined classification rules. 
An example is shown in Figure 2. Each service class 
has an importance between 1 (very important) and 5 
(very unimportant) or it is discretionary.  

The WLM tries to fulfil each service class’s goal 
by constantly allocating/reallocating resources to the 
workloads. More important goals are preferred over 
less important ones, when they compete for 
resources. The central measurement parameter of 
goal achievement is the so-called Performance Index 
(PI) for each service class. 

A PI of 1 means, that the goal of this service 
class is exactly met. If the goal is over achieved, the 
PI becomes less than 1. A PI > 1 indicates that the 
goal is not achieved. 

3 MODUS OPERANDI 

An overview of our data processing, feature 
selection, training, and prediction method is given in 
Figure 3. Detailed explanations of these methods can 
be found in the following subsections. 

3.1 Data 

The data gathering and feature extraction steps are 
specific to z/OS. The preprocessing methods are 
universal and applicable to other domains as well. 

3.1.1 Gathering 

The prediction of the PI of a selected service class 
must be based on those input data, which have the 
biggest influence on the achievement of the 
predefined goal of that service class. One important 
goal of this project was to find out, which features of 

Figure 1: z/OS Workload Manager. 

Figure 3: Classification of workloads into service classes.

       Figure 2: Overview of the training and prediction method.
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the data are the most relevant for the prediction 
quality. 

Some of the candidates for those data features 
are: 

• The historical time series of the PI that we 
want to predict itself. 

• The time series of the PIs of other service 
classes. 

• % CPU usage (% of total time where CPU 
was active) 

• % workflow (% execution speed) 
• % delay (% of time where processes waited 

for resources) 
• Number of (active) users 
• Unreferenced interval count (UIC, measure 

of memory contention) 
• Transaction ended rate 
• Number of CPUs 

 

Those data, the so called SMF Data, were gathered 
on repeating intervals by using a standard add-on 
product for z/OS, RMF (Resource Measurement 
Facility). RMF is able to gather data from each 

system of a Sysplex and consolidate the data 
Sysplex-wide into one data pool. It can make those 
consolidated data available through a TCP/IP 

interface by a component called RMF DDS 
(Distributed Data Server).  

In order to make the data available to the 
prediction system we have developed a JAVA based 
program, DDSMonitor, that takes the data from 
DDS and does some preprocessing and feature 
extraction. The architecture of the data gathering 
system can be seen in Figure 4. 

3.1.2 Preprocessing 

The data preprocessing has three major objectives:  
- Data reduction 
- Data smoothing 
- Data scaling 
Data reduction and smoothing were done by 

average downsampling and calculating a moving 
average. 

Average downsampling means that the data 
points of n intervals are replaced by one data point, 
which represents the average of n intervals. This 
reduces the data to 1/n. As a trade-off between data 
reduction and maintaining enough data precision a 
value of n=5 was obtained empirically and used. 

Calculating a moving average means that each 
data point is replaced by the average of itself plus 
the next m data samples. This smoothens the data 
series curves and reduces coincidental deviations 
from the main slope. A value of m=5 was used. 

Figure 5 shows the effect of applying down-
sampling and moving average to the original data for 
the “% CPU usage” time series.  

To obtain a limited range of data values as input 
to the prediction algorithm, a hyperbolic tangent 
function is used to scale the data d (see Equation 1). 

 
))4.1(5.0tanh(2 −⋅⋅= dscaled  (1) 

 

3.1.3 Manual Feature Extraction 

After the preprocessing step, we use our domain 
knowledge to manually discard some of the features 
which are known to be irrelevant for the PI 
prediction. This step speeds up the model selection 
phase, which includes an automated feature selection 
step (described in the following subsection). 

3.2 Feature Selection 

To reduce the number of features of the training data 
(which amounts to reducing the complexity of the 
problem), we employ Recursive Feature Elimination 
(Guyon et al., 2002), which is based on Support 
Vector methods. We have already employed feature 
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Figure 4: Resource Measurement Facility (RMF). 
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Figure 5: Original "% CPU usage" time series (left) and 
after downsampling and applying moving average (right). 
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selection successfully for quality control problems 
(Bensch et al., 2005). Since every load configuration 
is individual depending on the customer, this step 
should be repeated whenever load characteristics 
have changed significantly. The selected features 
(system parameters) are considered to be relevant for 
predicting the PI. 

As can be seen in Figure 6, many feature types 
are highly correlated over all service classes (dark 
bands) and thus do not contribute any additional 
information to the prediction. Ideally, the feature 
selection algorithm will retain only one feature of 
such a highly correlated set. 

Investigations showed that it suffices to merely 
take into account the features belonging to the same 
service class as the PI to be predicted (see Figure 
11). An example of the three most important features 
to predict the PI (except the PI itself) which were 
selected by Recursive Feature Elimination is shown 
in Figure 7. 

3.3 Self-learning Models 

To predict the PI time series, various prediction 
models are compared. Momentarily two artificial 
neural network (ANN) types are used, a feedforward 
topology and the FlexNet. In addition, Support 
Vector Regression (SVR) is employed. These 
prediction methods are introduced in the following 
subsections. 

3.3.1 Feedforward Network 

We use a standard multi-layer feedforward network 
(number of layers and neurons optimised by model 
selection) with a backpropagation learning method 
(Rumelhart et al., 1986). A regularised error 

measure is used to prevent overfitting, displayed in 
Equation 2. 
 

mswmsemsereg ⋅−+⋅= )1( γγ  (2) 
 
mse refers to the typically used mean squared error 
of prediction to true value during training, msw is 
the mean of the sum of squares of the network 
weights and biases and γ is the regularisation 
parameter. Our model selection generally found 
values for γ in the range 0.8 ≤ γ < 1. To speed up 
convergence, we use conjugate gradient descent with 
Polak-Ribière updates of the weights (Polak and 
Ribière, 1969). Figure 8 shows a typical configura-
tion of the feedforward network used. 

3.3.2 FlexNet Network 

FlexNet is a flexible, easy to use neural network 
construction and training algorithm. Starting with 
input and output neuron layers only, the network 
structure is incrementally defined during the training 
process. An example can be seen in Figure 9. 
FlexNet determines the best suited position/layers 
for competing groups of candidate neurons in the 
current network before adding them. As this allows 
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for new neurons being added to both, new and 
existing layers, the created networks are not 
necessarily as deep and narrow as networks 
constructed by Cascade Correlation. FlexNet creates 
networks with as many layers and hidden units as 
needed to solve a given problem (Mohraz and 
Protzel, 1996). The FlexNet allows us to skip some 
of our model selection steps (see Subsection 3.4.1). 

3.3.3 Support Vector Regression 

A standard ν-SVR algorithm was compared to the 
ANN approaches. First results did not reach the 
prediction accuracy of the ANN methods, as the 
regression did not predict the periods of high 
fluctuation of the PI. The reason for this will be the 
object of further investigation. 

3.4 Training Process 

Our training process consists of two phases: A 
model selection phase, in which we determine the 
prediction model best suited to the data available, 
and a final training phase in which the prediction 
method is trained for application to a future PI time 
series. Note that due to the non-stationarity of the 
underlying business processes, model selection and 
final training have to be repeated at regular intervals. 
The following two subsections explain the training 
phases. 

3.4.1 Model selection 

Model selection is a vital step for the accuracy of the 
later prediction. A review is given by (Kearns et al., 
1997). We estimate the prediction error of various 
prediction models for yet unknown data by a 

modified cross-validation. This method keeps the 
training data in chronological order and is called 
sliding window validation (see Figure 10). The 
models we tested were combinations of hyper-
parameters for the prediction methods (number of 
input/hidden neurons and γ for FF-net, ν and C for 
SVR), and the size of the input data window. The 
FlexNet does not require model selection for the 
number of input/hidden neurons since it develops its 
topology automatically.  

The model with the lowest validation error is 
used for the final training. 

3.4.2 Final Training 

The final training phase consists of training the 
model on all available data that were collected from 
the system. Typical load characteristics are repeated 
on a daily basis. However, their details differ by 
some amount from day to day. The first four 
weekdays were used as a training set to predict the 
fifth weekday, which thus was the test set. For 
online operation we would use all five days as 
training set. 

3.5 Prediction Method 

Our aim was to predict system workload over a time 
of 7 hours, i.e. 50 samples (after preprocessing, one 
sample holds data of 500 seconds). The system was 
trained with data vectors of length m = w × f, 
whereby w is the length of the input window, 
typically 20-40 samples, and f is the number of 
features (up to 5). 

Results are evaluated with two error measures: 
The number of predicted samples outside a 
predefined error band (Prediction Error or PE, 
defined in accordance with WLM experts), and the 
mean average percentage error (MAPE) commonly 
used for evaluating electricity load predictions 
(Ortiz-Arroyo et al., 2005). 

Figure 9: FlexNet topology. 
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4 RESULTS 

We present results for two data sets. Dataset A is a 
synthetic simulation of a 3-week load scenario and 
dataset B is a real-time measurement of system 
parameters during a realistic load scenario. All 
results were obtained with smoothed data as 
explained in Subsection 3.1.2. 

We first examined whether the prediction 
accuracy stays constant when only features from the 
batch to be predicted (batch2a in this example) are 
used. Apart from the fact that the use of more than 
1-2 additional features actually decreased the 
prediction accuracy, we could ascertain that there is 
only a minimal loss when limiting the features to a 
particular batch, as can be seen in Figure 11.  

The FlexNet returns better results on the 
synthetic data, whereas the FFN achieved 
improvement on the real data. Figure 12 shows the 
test result with a FFN trained on the first 4 days, 
using a 40-sample time lag, 20 hidden neurons, 
γ = 0.7 and a prediction over 50 samples into the 
future. Figure 13 zooms in on the last day to display 
the prediction and the fault tolerance band we use to 
evaluate the result. 

Regarding the PE and MAPE, the best results 
achieved with a single PI as training input and with 
additional features for a 7-hour prediction (50 
samples) are displayed in Table 1. 

Table 1: Results for 50-sample prediction. 

Features Data PE MAPE Method 
A 28 170 FlexNet PI only B 52 20.7 FFN 
A 54 57.9 FlexNet Many features B 34 12.6 FFN 

 
Table 2 shows the same results for an 8-minute 
(single-sample) prediction. As expected, the results 
for single-sample prediction are better than for the 
50-sample prediction. Note that prediction over 50 
samples is generally considered to be a difficult 
problem. In general, employing feature selection to 
select the best three features and adding these to the 
PI, improved prediction results. 

Table 2: Results for single-sample prediction. 

Features Data PE MAPE Method 
A 2.5 190 FlexNet PI only B 13 6 FFN 
A 5.6 28 FlexNet Many features B 14.4 6.7 FlexNet 

Figure 11: PE error (round markers) and MAPE error 
(square markers) in percent for various numbers of 
features shown on x-axis. The use of predicted batch2a 
features only (dotted lines) is compared to the use of 
features from all batches (solid lines). 
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5 CONCLUSION AND FURTHER 
WORK 

Early results seem promising, as the system could 
predict the tendencies of the workload behaviour as 
it changed over time. However, we will shorten the 
prediction horizon to gain higher prediction 
accuracy in future. A prediction horizon of 2-4 
hours, rather than the 7 hours used so far, is 
sufficient for the future applications that are planned 
to exploit that prediction system. We also plan to 
investigate the inclusion of calendaring data into the 
prediction method, to include prior knowledge about 
load peaks on special days of the month. 

The results of this project show that it is possible 
to predict the PI, as a relevant performance 
indicator, of a complex mainframe system cluster, 
like a z/OS Sysplex. This enables us to develop 
several functionalities that do resource assignment 
or resource provisioning to workloads right in time. 
This can avoid resource contention, like CPU or 
memory usage, significantly. Especially in big 
mainframe environments with very large numbers of 
competing workloads this can improve the 
throughput and optimal resource usage significantly 
and thus optimise data processing costs. 

Further work in this area is to analyse and 
develop an automatic relearning environment for the 
prediction of non-stationary processes. This way, the 
prediction system will be able to permanently 
improve its prediction quality for each customer by 
learning more and more about its particular 
environment and workload behaviour. As an 
additional benefit, relearning adjusts the prediction 
to changes in typical customer workloads, e.g. when 
business related changes take effect.  

We expect further improvements, when 
additional explicit knowledge is incorporated, e.g. 
changes or higher workload at special days of the 
month or upcoming events. 

No other results in the field of operating system 
workload management prediction are known to us, 
hindering the comparison of our early results with 
others. 
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