
SELF-LEARNING PREDICTION SYSTEM FOR OPTIMISATION
OF WORKLOAD MANAGEMENT IN A MAINFRAME

OPERATING SYSTEM

Michael Bensch1, Dominik Brugger1, Wolfgang Rosenstiel1, Martin Bogdan1,2, Wilhelm Spruth1,2
1Department of Computer Engineering, Tübingen University, Sand 13, Tübingen, Germany

2Department of Computer Engineering, Leipzig University, Johannisgasse 26, Leipzig, Germany
{bensch,brugger,rosenstiel,martin.bogdan,spruth}@informatik.uni-tuebingen.de

Peter Baeuerle
IBM Germany Development Lab, Schönaicher Str. 220, 71032 Böblingen, Germany

baeuerle@de.ibm.com

Keywords: Workload management, time series prediction, neural networks, feature selection.

Abstract: We present a framework for extraction and prediction of online workload data from a workload manager of
a mainframe operating system. To boost overall system performance, the prediction will be incorporated
into the workload manager to take preventive action before a bottleneck develops. Model and feature
selection automatically create a prediction model based on given training data, thereby keeping the system
flexible. We tailor data extraction, preprocessing and training to this specific task, keeping in mind the non-
stationarity of business processes. Using error measures suited to our task, we show that our approach is
promising. To conclude, we discuss our first results and give an outlook on future work.

1 INTRODUCTION

In a large system environment in mainframe
computing like the IBM z-Series many different
workloads of different types compete for the
available resources. The types of workload cover
things like online transaction processing, database
queries or batch jobs as well as online timesharing
users. The resources that are needed by these
workloads are hard resources like CPU capacities,
main memory or I/O channels as well as soft
resources like available server processes that serve
transactions (Vaupel et al., 2004).

Every installation wants to make the best use of
its resources and maintain the highest possible
throughput. To make this possible the Workload
Manager (WLM) was introduced into the z/OS
operating system (Aman et al., 1997). With the
Workload Manager, one defines performance goals
and assigns a business importance to each goal. The
user defines the goals for work in business terms,
and the system decides how many resources, such as
CPU and storage, should be given to it in order to
meet the predefined goal. The Workload Manager

will constantly monitor the system and adapt
processing to meet the goals.

Due to the growth and rapid change of the
workload requirements in today’s information
processing, the challenge for workload management
is to assign the required resource to the correct
workload exactly when it is needed – or even before
it is needed – to avoid any delays. This is especially
important as workload management nowadays not
only assigns available resources, but increasingly
provides additional resources when they are needed.
Any over- or underprovisioning is a direct cost
factor.

Thus, a load prediction system that adapts itself
to each customer's specific behaviour is required.
Based on such load predictions the z/OS operating
system could provide and assign the right resources
to the important workload right in time instead of
waiting until they are needed or even longer (Bigus
et al., 2000) to improve performance and throughput
while optimising resources usage and minimising
costs.

This paper describes the project and the results
achieved regarding the prediction quality of the self-

212

learning system. One has to take into account that
the process being modelled is non-stationary. Future
investigations will consider questions of re-learning
when the customer's specific behaviour is changing,
and how far explicit knowledge can be incorporated
to improve the prediction quality.

The paper is organised as follows: Section 2
introduces the Workload Manager responsible for
the resource allocation which will be influenced by
the load prediction. Section 3 explains the data
extraction and training process we use. Results are
presented in Section 4, followed by a summary in
Section 5.

2 WORKLOAD MANAGER

The z/OS Workload Manager (WLM) is a
functionality of the base control program of the z/OS
operating system for IBM Mainframes. Its basic
functions are dynamic allocation and re-allocation of
system resources to the different workloads running
on clusters of z/OS driven systems, called Sysplex.

Resources could be dispatching priorities of CPU
access, real storage, software servers of transactions
and so forth. They are permanently allocated and re-
allocated between the workloads based on a policy
of business goals that was defined by the customer.
Units of work could be things like batch jobs, online

transactions like CICS, DB2 or web-transactions, or
interactive TSO work (see Figure 1).

The goals are defined in different service classes.
Each incoming workload is classified into a service
class, based on customer defined classification rules.
An example is shown in Figure 2. Each service class
has an importance between 1 (very important) and 5
(very unimportant) or it is discretionary.

The WLM tries to fulfil each service class’s goal
by constantly allocating/reallocating resources to the
workloads. More important goals are preferred over
less important ones, when they compete for
resources. The central measurement parameter of
goal achievement is the so-called Performance Index
(PI) for each service class.

A PI of 1 means, that the goal of this service
class is exactly met. If the goal is over achieved, the
PI becomes less than 1. A PI > 1 indicates that the
goal is not achieved.

3 MODUS OPERANDI

An overview of our data processing, feature
selection, training, and prediction method is given in
Figure 3. Detailed explanations of these methods can
be found in the following subsections.

3.1 Data

The data gathering and feature extraction steps are
specific to z/OS. The preprocessing methods are
universal and applicable to other domains as well.

3.1.1 Gathering

The prediction of the PI of a selected service class
must be based on those input data, which have the
biggest influence on the achievement of the
predefined goal of that service class. One important
goal of this project was to find out, which features of

Figure 1: z/OS Workload Manager.

Figure 3: Classification of workloads into service classes.

 Figure 2: Overview of the training and prediction method.

Preprocessing
Manual
Feature

Extraction

Validate
 Model

Train Selected
Model

on all Data

Feature
Selection

Train
Model

Data
Gathering

Predict
Workload

Test Error
Interpret
Result

Model Selection

SELF-LEARNING PREDICTION SYSTEM FOR OPTIMISATION OF WORKLOAD MANAGEMENT IN A
MAINFRAME OPERATING SYSTEM

213

the data are the most relevant for the prediction
quality.

Some of the candidates for those data features
are:

• The historical time series of the PI that we
want to predict itself.

• The time series of the PIs of other service
classes.

• % CPU usage (% of total time where CPU
was active)

• % workflow (% execution speed)
• % delay (% of time where processes waited

for resources)
• Number of (active) users
• Unreferenced interval count (UIC, measure

of memory contention)
• Transaction ended rate
• Number of CPUs

Those data, the so called SMF Data, were gathered
on repeating intervals by using a standard add-on
product for z/OS, RMF (Resource Measurement
Facility). RMF is able to gather data from each

system of a Sysplex and consolidate the data
Sysplex-wide into one data pool. It can make those
consolidated data available through a TCP/IP

interface by a component called RMF DDS
(Distributed Data Server).

In order to make the data available to the
prediction system we have developed a JAVA based
program, DDSMonitor, that takes the data from
DDS and does some preprocessing and feature
extraction. The architecture of the data gathering
system can be seen in Figure 4.

3.1.2 Preprocessing

The data preprocessing has three major objectives:
- Data reduction
- Data smoothing
- Data scaling
Data reduction and smoothing were done by

average downsampling and calculating a moving
average.

Average downsampling means that the data
points of n intervals are replaced by one data point,
which represents the average of n intervals. This
reduces the data to 1/n. As a trade-off between data
reduction and maintaining enough data precision a
value of n=5 was obtained empirically and used.

Calculating a moving average means that each
data point is replaced by the average of itself plus
the next m data samples. This smoothens the data
series curves and reduces coincidental deviations
from the main slope. A value of m=5 was used.

Figure 5 shows the effect of applying down-
sampling and moving average to the original data for
the “% CPU usage” time series.

To obtain a limited range of data values as input
to the prediction algorithm, a hyperbolic tangent
function is used to scale the data d (see Equation 1).

))4.1(5.0tanh(2 −⋅⋅= dscaled (1)

3.1.3 Manual Feature Extraction

After the preprocessing step, we use our domain
knowledge to manually discard some of the features
which are known to be irrelevant for the PI
prediction. This step speeds up the model selection
phase, which includes an automated feature selection
step (described in the following subsection).

3.2 Feature Selection

To reduce the number of features of the training data
(which amounts to reducing the complexity of the
problem), we employ Recursive Feature Elimination
(Guyon et al., 2002), which is based on Support
Vector methods. We have already employed feature

 DDSMonitor

Distributed Data Server (DDS)

Sysplex Data Server

RMF Data Gatherer

RMF Data Gatherer

RMF Data Gatherer

TCP/IP

Figure 4: Resource Measurement Facility (RMF).

12 24 36
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 C
P

U
 u

sa
ge

Hours
12 24 36

0

10

20

30

40

50

60

70

80

90

100

Hours

P
er

ce
nt

 C
P

U
 u

sa
ge

Figure 5: Original "% CPU usage" time series (left) and
after downsampling and applying moving average (right).

ICEIS 2007 - International Conference on Enterprise Information Systems

214

selection successfully for quality control problems
(Bensch et al., 2005). Since every load configuration
is individual depending on the customer, this step
should be repeated whenever load characteristics
have changed significantly. The selected features
(system parameters) are considered to be relevant for
predicting the PI.

As can be seen in Figure 6, many feature types
are highly correlated over all service classes (dark
bands) and thus do not contribute any additional
information to the prediction. Ideally, the feature
selection algorithm will retain only one feature of
such a highly correlated set.

Investigations showed that it suffices to merely
take into account the features belonging to the same
service class as the PI to be predicted (see Figure
11). An example of the three most important features
to predict the PI (except the PI itself) which were
selected by Recursive Feature Elimination is shown
in Figure 7.

3.3 Self-learning Models

To predict the PI time series, various prediction
models are compared. Momentarily two artificial
neural network (ANN) types are used, a feedforward
topology and the FlexNet. In addition, Support
Vector Regression (SVR) is employed. These
prediction methods are introduced in the following
subsections.

3.3.1 Feedforward Network

We use a standard multi-layer feedforward network
(number of layers and neurons optimised by model
selection) with a backpropagation learning method
(Rumelhart et al., 1986). A regularised error

measure is used to prevent overfitting, displayed in
Equation 2.

mswmsemsereg ⋅−+⋅=)1(γγ (2)

mse refers to the typically used mean squared error
of prediction to true value during training, msw is
the mean of the sum of squares of the network
weights and biases and γ is the regularisation
parameter. Our model selection generally found
values for γ in the range 0.8 ≤ γ < 1. To speed up
convergence, we use conjugate gradient descent with
Polak-Ribière updates of the weights (Polak and
Ribière, 1969). Figure 8 shows a typical configura-
tion of the feedforward network used.

3.3.2 FlexNet Network

FlexNet is a flexible, easy to use neural network
construction and training algorithm. Starting with
input and output neuron layers only, the network
structure is incrementally defined during the training
process. An example can be seen in Figure 9.
FlexNet determines the best suited position/layers
for competing groups of candidate neurons in the
current network before adding them. As this allows

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 6: Cross-correlation of features numbered 1 to 50.
A dark block indicates high correlation of the
corresponding feature on the y-axis with another feature
on the x-axis. Thus, the diagonal shows a feature's
correlation with itself.

24 48 72
-1

-0.5

0

0.5

1

24 48 72
-1

-0.5

0

0.5

1

Hours

TCPU%

TAEndedRateSCP_CICS

UsingSCP%_BATCH

LPI_BATCH

Figure 7: Performance index of one week (top) with 3
important features selected for the prediction (bottom).

PI (t, ...)
CPU (t,

...)
Usage (t,

...)

Inp
ut:

Performance
Index
Series

Neural
Network:

Outp
ut:

Figure 8: Feedforward network.

SELF-LEARNING PREDICTION SYSTEM FOR OPTIMISATION OF WORKLOAD MANAGEMENT IN A
MAINFRAME OPERATING SYSTEM

215

for new neurons being added to both, new and
existing layers, the created networks are not
necessarily as deep and narrow as networks
constructed by Cascade Correlation. FlexNet creates
networks with as many layers and hidden units as
needed to solve a given problem (Mohraz and
Protzel, 1996). The FlexNet allows us to skip some
of our model selection steps (see Subsection 3.4.1).

3.3.3 Support Vector Regression

A standard ν-SVR algorithm was compared to the
ANN approaches. First results did not reach the
prediction accuracy of the ANN methods, as the
regression did not predict the periods of high
fluctuation of the PI. The reason for this will be the
object of further investigation.

3.4 Training Process

Our training process consists of two phases: A
model selection phase, in which we determine the
prediction model best suited to the data available,
and a final training phase in which the prediction
method is trained for application to a future PI time
series. Note that due to the non-stationarity of the
underlying business processes, model selection and
final training have to be repeated at regular intervals.
The following two subsections explain the training
phases.

3.4.1 Model selection

Model selection is a vital step for the accuracy of the
later prediction. A review is given by (Kearns et al.,
1997). We estimate the prediction error of various
prediction models for yet unknown data by a

modified cross-validation. This method keeps the
training data in chronological order and is called
sliding window validation (see Figure 10). The
models we tested were combinations of hyper-
parameters for the prediction methods (number of
input/hidden neurons and γ for FF-net, ν and C for
SVR), and the size of the input data window. The
FlexNet does not require model selection for the
number of input/hidden neurons since it develops its
topology automatically.

The model with the lowest validation error is
used for the final training.

3.4.2 Final Training

The final training phase consists of training the
model on all available data that were collected from
the system. Typical load characteristics are repeated
on a daily basis. However, their details differ by
some amount from day to day. The first four
weekdays were used as a training set to predict the
fifth weekday, which thus was the test set. For
online operation we would use all five days as
training set.

3.5 Prediction Method

Our aim was to predict system workload over a time
of 7 hours, i.e. 50 samples (after preprocessing, one
sample holds data of 500 seconds). The system was
trained with data vectors of length m = w × f,
whereby w is the length of the input window,
typically 20-40 samples, and f is the number of
features (up to 5).

Results are evaluated with two error measures:
The number of predicted samples outside a
predefined error band (Prediction Error or PE,
defined in accordance with WLM experts), and the
mean average percentage error (MAPE) commonly
used for evaluating electricity load predictions
(Ortiz-Arroyo et al., 2005).

Figure 9: FlexNet topology.

Output

Hidden Unit 1

Input1

Input2

Bias +1

Hidden Unit 2

train val.

train val.

train val.

10x

Length of PI measurement

testtrain

Figure 10: Sliding window validation.

ICEIS 2007 - International Conference on Enterprise Information Systems

216

4 RESULTS

We present results for two data sets. Dataset A is a
synthetic simulation of a 3-week load scenario and
dataset B is a real-time measurement of system
parameters during a realistic load scenario. All
results were obtained with smoothed data as
explained in Subsection 3.1.2.

We first examined whether the prediction
accuracy stays constant when only features from the
batch to be predicted (batch2a in this example) are
used. Apart from the fact that the use of more than
1-2 additional features actually decreased the
prediction accuracy, we could ascertain that there is
only a minimal loss when limiting the features to a
particular batch, as can be seen in Figure 11.

The FlexNet returns better results on the
synthetic data, whereas the FFN achieved
improvement on the real data. Figure 12 shows the
test result with a FFN trained on the first 4 days,
using a 40-sample time lag, 20 hidden neurons,
γ = 0.7 and a prediction over 50 samples into the
future. Figure 13 zooms in on the last day to display
the prediction and the fault tolerance band we use to
evaluate the result.

Regarding the PE and MAPE, the best results
achieved with a single PI as training input and with
additional features for a 7-hour prediction (50
samples) are displayed in Table 1.

Table 1: Results for 50-sample prediction.

Features Data PE MAPE Method
A 28 170 FlexNet PI only B 52 20.7 FFN
A 54 57.9 FlexNet Many features B 34 12.6 FFN

Table 2 shows the same results for an 8-minute
(single-sample) prediction. As expected, the results
for single-sample prediction are better than for the
50-sample prediction. Note that prediction over 50
samples is generally considered to be a difficult
problem. In general, employing feature selection to
select the best three features and adding these to the
PI, improved prediction results.

Table 2: Results for single-sample prediction.

Features Data PE MAPE Method
A 2.5 190 FlexNet PI only B 13 6 FFN
A 5.6 28 FlexNet Many features B 14.4 6.7 FlexNet

Figure 11: PE error (round markers) and MAPE error
(square markers) in percent for various numbers of
features shown on x-axis. The use of predicted batch2a
features only (dotted lines) is compared to the use of
features from all batches (solid lines).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Number of features used for prediction

E
rro

r

PE batch2a
PE all batches
MAPE batch2a
MAPE all batches

Figure 12: Performance Index time series over three days
(dashed line) with prediction of last day (solid line).

24 48 72
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Hours

P
er

fo
rm

an
ce

 In
de

x

PI timeseries
Prediction

Figure 13: 50-sample prediction (corresponds to 7 hours)
for dataset B shown over the course of one day, with a
fault tolerance band.

6 12 18 24
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Hours

P
er

fo
rm

an
ce

 In
de

x

Fault tolerance
PI prediction

SELF-LEARNING PREDICTION SYSTEM FOR OPTIMISATION OF WORKLOAD MANAGEMENT IN A
MAINFRAME OPERATING SYSTEM

217

5 CONCLUSION AND FURTHER
WORK

Early results seem promising, as the system could
predict the tendencies of the workload behaviour as
it changed over time. However, we will shorten the
prediction horizon to gain higher prediction
accuracy in future. A prediction horizon of 2-4
hours, rather than the 7 hours used so far, is
sufficient for the future applications that are planned
to exploit that prediction system. We also plan to
investigate the inclusion of calendaring data into the
prediction method, to include prior knowledge about
load peaks on special days of the month.

The results of this project show that it is possible
to predict the PI, as a relevant performance
indicator, of a complex mainframe system cluster,
like a z/OS Sysplex. This enables us to develop
several functionalities that do resource assignment
or resource provisioning to workloads right in time.
This can avoid resource contention, like CPU or
memory usage, significantly. Especially in big
mainframe environments with very large numbers of
competing workloads this can improve the
throughput and optimal resource usage significantly
and thus optimise data processing costs.

Further work in this area is to analyse and
develop an automatic relearning environment for the
prediction of non-stationary processes. This way, the
prediction system will be able to permanently
improve its prediction quality for each customer by
learning more and more about its particular
environment and workload behaviour. As an
additional benefit, relearning adjusts the prediction
to changes in typical customer workloads, e.g. when
business related changes take effect.

We expect further improvements, when
additional explicit knowledge is incorporated, e.g.
changes or higher workload at special days of the
month or upcoming events.

No other results in the field of operating system
workload management prediction are known to us,
hindering the comparison of our early results with
others.

ACKNOWLEDGEMENTS

The authors thank Clemens Gebhard and Sarah
Kleeberg for their participation in this project.

REFERENCES

Aman, J., Eilert, C. K., Emmes, D., Yocom, P.,
Dillenberger, D., 1997. Adaptive algorithms for
managing a distributed data processing workload. In
IBM Systems Journal, 36(2): 242-283.

Bensch, M., Schröder, M., Bogdan, M., Rosenstiel, W.,
2005. Feature Selection for High-Dimensional Indus-
trial Data. In Proceedings of European Symposium on
Artificial Neural Networks (ESANN), Bruges.

Bigus, J. P., Hellerstein, J. L., Jayram, T. S., Squillante,
M. S., 2000. AutoTune: A Generic Agent for Auto-
mated Performance Tuning. In Practical Application
of Intelligent Agents and Multi Agent Technology.

Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene
Selection for Cancer Classification using Support
Vector Machines. Machine Learning, 46(1): 389-422.

Kearns, M., Mansour, Y., Ng, A. Y., Ron, D., 1997. An
Experimental and Theoretical Comparison of Model
Selection Methods. Machine Learning, 27(1): 7–50.

Mohraz, K., Protzel, P., 1996. FlexNet: A Flexible Neural
Network Construction Algorithm. In Proceedings of
European Symposium on Artificial Neural Networks
(ESANN), Bruges.

Ortiz-Arroyo, D., Skov, M. K., Huynh, Q., 2005. Accurate
Electricity Load Forecasting with Artificial Neural
Networks. In Computational Intelligence for
Modelling, Control and Automation, 1: 94-99.

Polak, E., Ribiere, G., 1969. Note sur la Convergence de
Methodes de Directions Conjugees. Revue Francaise
d'Informatique et de Recherche Operationnelle, 3: 35-
43.

Rumelhart, D., Hinton, G., Williams, R., 1986. Learning
internal representations by error propagation. In D.
Rumelhart and J. McClelland, editors, Parallel
Distributed Processing, pages 318-362. MIT Press.

Vaupel, R., Teuffel, M., 2004. Das Betriebssystem z/OS
und die zSeries – Die Darstellung eines modernen
Großrechnersystems. ISBN 3-486-27528-3, Olden-
bourg Wissenschaftsverlag, Germany.

ICEIS 2007 - International Conference on Enterprise Information Systems

218

