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ABSTRACT 

 

The level of information provided by electrochemical measurements can be substantial as 

evident by the use of electrochemistry in varied disciplines spanning from materials research to 

cellular biochemistry.  However, electrochemistry on its own does not provide direct information 

concerning redox induced changes in molecular structure.  This information can only be 

elucidated by coupling spectroscopic and/or separation techniques with traditional 

electrochemical methodologies.  In principle, infrared (IR) spectroelectrochemistry (SEC) is 

ideal for such studies but in practice coupling IR spectroscopy and electrochemistry are often 

experimentally incompatible.  Since the inception of in-situ IR SEC techniques in the 1980’s, 

two competing methodologies (using either external- or internal- IR reflection geometries), were 

developed to deal with the two major challenges associated with IR SEC (strong infrared 

absorption of the electrolytes and weak analytical signals).  The primary focus of this thesis is 

the successful advancement of IR SEC techniques through the implementation of synchrotron 

infrared radiation with ultramicroelectrodes (UMEs; electrode diameters < 25 µm) to study 

spectroelectrochemical processes on the microsecond time scale.     

Several examples using Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) 

are presented including the adsorption of dimethylaminopyridine (DMAP) on gold substrates and 

the proton-coupled electron-transfer (PCET) kinetics of electrochemically-active 1,4-

benzoquinone terminated self-assembled monolayers (SAMs).  These studies highlight the 

benefits of coupling electrochemistry and infrared spectroscopy.  For instance, in-situ 

spectroscopic evidence shows that small amounts of DMAP’s conjugate acid (DMAPH+) adsorb 

on gold electrodes in acidic electrolytes and at negative potentials.  This result was not 
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forthcoming from previous electrochemical measurements and was only realized through in-situ 

SEIRAS. 

Finally, the largest contribution in advancing in-situ IR SEC methodologies was through 

the development of utilizing synchrotron infrared radiation on UMEs to study fast 

electrochemical processes.  This work was technically very challenging and emphasized the 

interfacing of an electrochemical cell containing an UME with fast infrared data acquisition 

techniques (i.e. rapid scan and step-scan interferometry).  The use of a prototypical 

electrochemical system, i.e. the mass-transport controlled reduction of ferricyanide, indicate that 

at short times the spectroscopic signal closely matches the electrochemical signal but at long 

time scales it deviates due to edge effects associated with the diffusion environment of the UME. 
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for a 14 µm thick cavity using the same in-situ SEC cell.  Open data points 
are experimental data, blue lines are simulations using finite difference 
methods, and the solid red line is calculated from Equation 7.2. 
 

   
Figure 7.5 Contour maps of the simulated FeሺCNሻ6

‐3 normalized concentration profiles 
within the thin (14 µm) in-situ spectroelectrochemical cell one second after 
the potential step. The red box defines the cross-section of the cavity 
volume that is sampled by the incident infrared radiation from the 
microscope and objective used in these experiments. 
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Figure 7.6 Comparison of the predicted amount of FeሺCNሻ6

‐4produced as a result of the 
potential step in the thin cavity in-situ spectroelectrochemical cell. The red 
line is the result of integrating the current transient (inset and main body), 
the blue line is the calculated response assuming finite linear diffusion, and 
the black line is the simulated infrared response. 
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Figure 7.7 a) Step-scan spectra for the ferro/ferricyanide system in the 

spectroelectrochemical cell at t = 1 second using an embedded 25 µm radius 
Au ultramicroelectrode in a 14 µm thick cavity. The strong upward band at 
2040 cm-1 represents the infrared signature for the corresponding cyano 
ligands for ferrocyanide, whereas the downward band at 2115 cm-1 (more 
visible at 4 cm-1 resolution in b)) for ferricyanide.  A comparison is made 
between the co-addition of 35 synchrotron infrared radition interferograms 
(black line) and an equivalent number of interferograms using a 
conventional thermal source (red line). 
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Figure 7.8 Schematic representing the time progression of the step-scan experiment.   

Two possible methods (A and B, as described in the text) to generate 
subtractively normalized spectra are shown.  The black points represent the 
acquisition of 1.5 seconds of 100 µs binned data at each mirror position, δ.  
Black dotted boxes enclose the mirror positions that constitute a complete 
interferogram whereas the red dotted boxes comprise all measurements 
made at a given mirror position. 
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Figure 7.9 Inverse of the standard deviation of the noise plotted as a function of the 

square root of the number of co-added spectra.  The black open circles are 
calculated from the sequential co-additions method (Method A) using 
Equation 7.5 and the red open triangles (Method B) using Equation 7.6. The 
blue open squares are the result of randomly co-adding the 256 normalized 
spectra using Equation 7.5. 
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Figure 7.10 a) Transient response measured spectroscopically for the 2040 cm-1 band 

during a potential step.  B) The filtered transient measurement (purple line) 
compared to the calculated results for finite, linear diffusion (blue line) and 
the simulated results using finite differences (black line).  The limit of 
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detection (LOD) is shown as the horizontal black line in the part a) of the 
figure. 

   
Figure 8.1 a) Schematic of the microstructured silicon attenuated total-internal 

reflection (ATR) element with optical path and evanescent wave 
propagation for surface enhanced infrared absorption spectroscopy 
(SEIRAS).  b) Scanning electron microscope images of the initial attempts 
to construct microstructured Si ATR elements.   
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Figure 8.2 a) Step-by-step procedure in the construction of the triangular antennas 

surface enhanced infrared absorption spectroscopy. b) Example infrared 
spectrum demonstrating the enhancement of the infrared signal by the 
strong electric-field enhancements provided by the fabricated array of 
antennas on the infrared window substrate at the resonance frequency (1160 
cm-1).  Substrates and measurements were prepared and taken with 
permission from by Tyler Morhart. 
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Scheme 5.1 Changes in molecular structure of 1,4-benzoquinone under proton coupled 
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CHAPTER 1 

INTRODUCTION 

 

It is recognized by electrochemists that measurements of electrical voltages, currents, 

charges and capacitances at electrical interfaces do not always provide definite identification of 

electroactive species or intermediates that are produced at, or near, the electrode surface.  

Although a current signal might be correlated to a known species based on the formal potential 

for a redox process in a given media, the molecular identity can only be inferred.  In more 

complex environmental and biological systems for example, overlap of formal potentials is quite 

common leading to the superposition of electrical responses from multiple reactions.  The ability 

to probe additional physical characteristics of these electroactive species to monitor electrode 

processes, under dynamic or equilibrium conditions, would be immensely valuable.  Historically, 

this concept has motivated electrochemists to attempt to couple various spectroscopic techniques 

to traditional electrochemical methods to provide better understanding of electron transfer 

reactions pathways, and adsorption of molecules or ions at electrified interfaces. 

The variety and versatility of spectroscopic techniques available to researchers is steadily 

increasing as  is the number of research groups working towards the development and successful 

use of in-situ spectroelectrochemical (SEC) techniques.1  A few examples include Electron 

Paramagnetic Resonance (EPR),2,3 Ultra-Violet/Visible/Near Infrared (UV/VIS/NIR)2 absorption 

spectroscopy, X-Ray Absorption Spectroscopy (XAS)4 and Nuclear Magnetic Resonance 

(NMR)3,5 which make use of various molecular, electronic or nuclear properties of the species of 

interest.  A non-exhaustive list includes physical properties such as molar absorptivities, 

vibrational absorption frequencies, and electronic or magnetic resonance frequencies.  Coupling 

these measurements with traditional electrical parameters is being used routinely to provide new 
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insight into fundamental electrochemical processes.  A particular technique that has garnered a 

great deal of interest from researchers is the combination of electrochemistry and infrared 

vibrational spectroscopy.  The availability of modern Fourier Transform Infrared (FTIR) 

spectrometers as well as the wealth of knowledge that can be obtained from infrared 

spectroscopy provides an accessible means for researchers to study both surface and solution 

electrochemical species. 

In-situ infrared spectroelectrochemistry is a powerful means to acquire collaborating data 

between molecular spectroscopy and electrochemistry.  In particular this technique has found 

valuable uses in two broad electrochemical research areas: molecular adsorption on electrodes 

and electrode reactions (electron and charge transfer processes).  In-situ infrared spectra can 

provide information about the identity and molecular structure, orientation of adsorbed species 

and insight into the bonding of these species to the electrode surface.  An example of this can be 

seen in the oxidation of methanol (for use in fuel cells for the production of electricity) as 

various intermediates (i.e. formic acid and formaldehyde) and reaction pathways have been 

identified through the use of in-situ infrared SEC.6  

In-situ infrared SEC has relatively early beginnings with reports appearing in the primary 

literature starting with Bewick7,8 in the early 1980s.  Chapter 2 of this thesis will focus on the 

historical development of in-situ infrared SEC techniques and will provide a description of the 

progression towards modern infrared SEC techniques and methodologies.  This Chapter will go 

on to describe how the development of in-situ infrared SEC has been driven by two major 

experimental problems and has resulted in two distinct methodologies, internal and external 

infrared reflection techniques to minimize their effects.  Both these methods attempt to reduce 

the most formidable problem in the field, the large absorption of infrared radiation by the bulk 
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solvent that constitutes the electrolyte.  Each approach, while adding valuable knowledge to the 

fields of electrochemistry and surface science, introduces a host of experimentally challenging 

problems to overcome.  For instance, mass transport becomes problematic when working with a 

thin-cavity SEC cell configurations and requires careful considered in the interpretation of the 

results.9–11   The other aforementioned experimentally challenging problem is the sensitivity of 

the electrochemical system of interest.  Typically the number of molecules under study is quite 

small and spectroscopic measurements have insufficient signal-to-noise making it increasingly 

difficult to evaluate the system under examination. Both in-situ internal and external infrared 

reflectance techniques will be employed to study a variety of problems in this thesis highlighting 

the advantages and disadvantages of each.  

The work presented in this thesis focuses primarily on the challenging instrumental 

developments required to utilize in-situ infrared spectroelectrochemistry using both internal and 

external reflection geometries.  These improvements required the adaptation of previously 

developed methods (i.e. surface enhanced infrared absorption spectroscopy; SEIRAS), leading to 

completely new areas of research where synchrotron infrared radiation is used in conjunction 

with ultramicroelectrodes to make in-situ measurements on the microsecond time scale.  As a 

result, significant understanding of electrochemical related phenomena was realized on topics 

related to surface adsorption, proton-coupled electron transfer processes and diffusion in thin-

cavity environments. 

In Chapter 3, the theoretical details of infrared vibrational spectroscopy will be explored 

including the various means to measure and acquire data (Rapid-Scan and Step-Scan) using 

Fourier Transform Infrared Spectrometers.  The main emphasis of this chapter is to provide the 

reader with the background required to fully understand the remaining chapters on the 
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improvements made to various in-situ spectroelectrochemical techniques.  Chapter 3 will also 

provide an overview of the theoretical framework of Fourier Transform Infrared spectroscopy 

with particular emphasis on minimizing data collection times while maintaining data quality.  

Further instrumentation and methodological discussions will also include the interfacing of the 

various hardware components required to perform both static and time-resolved in-situ SEC 

experiments and the implementation of synchrotron infrared radiation as a highly brilliant 

infrared source.  Chapter 3 also provides a description of another extensively used in-situ SEC 

technique, Attenuated Total-Internal Reflection Surface Enhanced Infrared Reflection 

Absorbance Spectroscopy (ATR-SEIRAS) which was extensively used in this thesis.  ATR-

SEIRAS is an internal reflectance technique that provides high surface sensitivity allowing for 

the electrochemical study of the structure of the double-layer, adsorption/desorption of molecules 

or molecular ions, characterization of self-assembled monolayers, and monitoring of 

electrochemical reactions.   

Chapter 4 describes the experimental results of successfully implementing SEIRAS in-

situ SEC techniques.  In this Chapter, SEIRAS was employed to further the understanding of the 

adsorption of dimethylaminopyridine (DMAP) on gold substrates.12  Previous work using only 

electrochemical data and thermodynamic models demonstrated various adsorption geometries of 

DMAP depending on surface charge densities and pH.  With in-situ SEC studies of this 

electrochemical system, the molecular vibrational data of molecules confined to the surface was 

obtained and demonstrated that the thermodynamic model of adsorption was consistent with 

SEIRAS.  Beyond this result, it was recognized for the first time that in acidic electrolytes and 

negative electrode potentials, there is a small amount of adsorption of the conjugate acid 

(DMAPH+), likely due to an electrostatic attraction.  This result was not forthcoming in the 
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previous electrochemical studies and only through the use of an in-situ SEC technique was it 

possible to reveal this new information concerning the interfacial adsorption of 

DMAP/DMAPH+ at the interface.  Chapter 4 highlights the value of adding molecular 

spectroscopic techniques to traditional electrochemical methods and emphasizes the importance 

of experimental considerations to acquiring high-quality data. 

Chapter 5 examines the use of SEIRAS based in-situ SEC techniques by further 

advancing the measurement technique from electrochemical systems under equilibrium 

conditions to the study of the kinetics of an electrochemical reaction.  This increases the 

complexity of the collection and processing of infrared data but provides a foundation to start 

studying more complicated electrochemical systems.  In this Chapter, time-resolved information 

on proton-coupled electron transfer (PCET) redox reactions on modified self-assembled 

monolayers are analyzed using Rapid-Scan FTIR spectroscopy.13  A chemically modifiable self-

assembled monolayer (SAM) was used to graft 1,4-benzoquinone to the electrode surface thus 

providing a nearly ideally Nernstian redox layer.  The resulting surface bound quinone 

terminated SAM was then used to study the thermodynamics and kinetics of PCET reactions.  As 

will be described in detail in Chapter 5, the gathered infrared data on formal potential and the 

calculated heterogeneous rate constants agrees well with those measured using strictly 

electrochemical techniques.   

Moving to faster electrochemical kinetic problems, from those described in Chapter 5, 

requires the use of small electrodes.  This creates a problem when trying to perform in-situ SEC 

experiments as a large fluxes of photons are normally required (typically from a large surface) to 

acquire high signal to noise data.  To overcome these problems, Chapter 6 describes the 
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methodologies that were developed to exploit the highly focused incident infrared radiation 

produced by synchrotrons.14,15  

Following the initial successes of coupling synchrotron radiation to near 

ultramicroelectrode sized electrodes (~ 250 µm radius); Chapter 7 of this thesis describes a major 

accomplishment, i.e. the development of the methodology required to perform fast, coupled 

electrochemical and infrared spectroscopic data collection.  To that end, true 

ultramicroelectrodes (~ 25 µm radius) were used in conjunction with an infrared microscope 

utilizing synchrotron radiation.16  With this arrangement, a faster FTIR measurement technique, 

Step-Scan Interferometry, is introduced vastly improving the time-resolution of the 

measurements.  A further discussion on the diffusion-controlled electrochemistry with a thin-

cavity cell will be discussed in some depth.  Chapter 7 concludes by highlighting the present 

limitations of this technique and also reiterating the significant advances that have been made. 

In the thesis conclusion, Chapter 8 provides a summary and discussion on the advances 

made through this research and offers suggestions to continue advancing the field of in-situ 

infrared spectroelectrochemisty.  This Chapter comprises a final description of the progression 

made from internal reflection in-situ infrared spectroscopy to the study of fast electrochemical 

reactions using ultramicroelectrodes, spectromicroscopy, and synchrotron radiation. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Introduction 

The determination of the structure of the electrode/electrolyte interface is an important 

part of electrochemistry and electrocatalysis to solve applied problems in biological, 

environmental and industrial systems.  Electrochemists have recognized that measurements of 

electrical voltages, currents, charges and capacitances at electrical interfaces do not always 

provide a definitive identification of electroactive materials.  It becomes even more difficult 

when investigating complex systems, for example those occurring in environmental or biological 

matrices, where electrochemical-structure related problems might not be clearly resolved.   

Early studies to gain insight into the structure of the electrode/electrolyte interface, 

specifically the nature of potentially adsorbed species, relied solely on electrochemical 

measurements.  These measurements involved applying specific potentials and measuring the 

resulting currents.  By knowing either the number of molecules involved or surface active sites 

for adsorption and by numerically integrating the current, the number of electrons involved in the 

process could be calculated.  With this data, the researcher would typically be able to infer the 

nature of the electrified interface, electrogenerated intermediates and resulting products.  It was 

often difficult, if not impossible, to completely understand reaction mechanisms and the structure 

of the interface which resulted in numerous controversies in the literature. 

This motivated many researchers to develop in-situ spectroscopic techniques to aid in the 

determination of molecular structure information at the interface.  For example, in-situ 

measurements should be able to provide information concerning: the properties of the electrode 
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surface, the nature and the structure of adsorbed species (including the double-layer), and the 

quantities and interactions between the absorbed species and the substrate.  The earliest of 

techniques to combine spectroscopic information with electrochemistry included low-energy 

electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectric 

spectroscopy (XPS) and electron energy loss spectroscopy (EELS).1  These techniques allow a 

high degree of information to be obtained; however, it is important to point out that these 

techniques required high- or ultrahigh-vacuum conditions and were not directly applicable for in-

situ investigations.  It was not until the 1980s that infrared reflection/adsorption spectroscopy 

was recognized as a powerful technique for in-situ spectroelectrochemical (SEC) studies.2,3  

Other optical spectroscopic techniques have also been applied to in-situ electrochemical 

investigations, including: spectroscopic ellipsometry,4 Raman,5–7 and sum-frequency 

generation.8,9       

At first, the development of infrared reflection techniques for in-situ SEC was met with 

uncertainty, as it was believed that the presence of an aqueous electrolyte, which has strong 

infrared adsorption bands, would prevent the measurement of small analyte signals.  Although 

still considered one of the major challenges to using infrared spectroscopy for in-situ studies, the 

ability of various modulation techniques (i.e. photon polarization and electrode potential) and 

instrument improvements made it possible to recover small analyte signals in large-amplitude 

backgrounds.  The first successful demonstration of in-situ infrared SEC was by Bewick et al. in 

1980.2  They utilized a potential modulation technique and in-situ infrared spectroscopy to study 

the electrosorption of indole on a platinum electrode as well as the electrochemical generation of 

long-lived intermediates.  Electrochemically modulated infrared spectroscopy (EMIRS) was the 

first experimental technique to successfully demonstrate in-situ infrared SEC.  The pioneering 
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work by Bewick, Kunimatsu and Pons2 used a square wave potential modulation applied to an 

electrode in a thin-electrolyte layer external reflection spectroelectrochemical cell.  Using a 

dispersive spectrometer and by modulating the potential at a given infrared wavelength, the 

measured signal at the detector is proportional to the difference of absorbance between the 

different potential states.  Using this technique, Bewick et al. were able to adequately measure 

infrared absorbance changes on the order of 10-4 for a variety of electrochemical systems.3  With 

the advent of Fourier Transform Infrared (FTIR) Spectrometers, better detectors and infrared 

sources, in-situ infrared SEC has become a readily accessible and recognized tool for studying 

electrochemical interfaces. 

There are two major experimental problems when measuring in-situ infrared 

spectroelectrochemistry of species at or near the electrode/electrolyte interface.  The first 

problem is the large bulk solvent absorption of infrared radiation.  Aqueous solvents are 

especially problematic as water absorbs strongly throughout the mid-infrared region.  The second 

problem is sensitivity.  The number of molecules under study is typically very small.  Since 

conventional infrared sources are weak and detectors very noisy it can be difficult to measure the 

absorbance of the species of interest.  These two problems have driven the efforts of utilizing 

infrared for in-situ spectroelectrochemistry into two predominant methodologies.  The two 

methods use different optical geometries, internal and external reflection (Figure 2.1), to 

overcome the solvent absorption problem.  The resolution of this problem, however, ultimately 

means that ideal electrochemical behaviour has to be sacrificed as will be discussed in the 

coming sections.  A short introduction to these two geometries is given below.  A more rigorous 

discussion of the two geometries can be found in Chapter 3.  
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Figure 2.1. a) Optical geometry for external reflection spectroscopy (ERS) and b) internal 

reflection spectroscopy (IRS) spectroscopy demonstrating the use of Attenuated Total-Internal 

Reflection (ATR). 
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For external reflection geometries (such as infrared reflection absorption spectroscopy; 

IRRAS), a thin-layer cell is typically used to limit the thickness of solvent that the infrared 

radiation must pass through to be on the order 10 µm.  In practice, electrochemical 

measurements in such a cell become kinetically hindered due to the high resistance of the thin-

volume of electrolyte and non-uniform accessibility of the electrode (i.e. restricted mass-

transport).  Internal reflection geometries (also termed attenuated total-internal reflection, ATR), 

in contrast do not need thin-cavities and do not suffer the same limitations.  With ATR, the 

infrared radiation is directed into and out of an optical element and is totally internally reflected.  

Materials that are suitable for ATR optical elements must be infrared transparent and have high-

refractive indices.  The former criterion excludes most conductive materials that are commonly 

used as electrodes.  However, ATR substrates can be modified by the deposition of a thin layer 

of metal such as gold or platinum.  Once the infrared reflection element (IRE) has been suitably 

modified it is relatively simple to mate it to a suitable electrochemical cell.  Such a setup is 

known as the Kretschmann configuration (see Figure 2.1b).10  ATR techniques are relatively 

exempt to bulk electrolyte absorption as the infrared radiation does not pass directly through the 

electrolyte.  Furthermore, if the metal film is suitably structured, surface enhancements of 

incident infrared electric fields are possible giving rise to very low detection limits. 

As previously mentioned, IRRAS techniques use a thin-layer SEC cell where a very-

small volume of electrolyte separates an infrared transparent window from a reflective electrode 

(Figure 2.1a).  In this configuration, an incident beam is transmitted through the window and 

electrolyte layer and is then reflected off the electrode passing back through the electrolyte and 

window before being collected at the detector.  A distinct advantage to this technique over the 

ATR configuration is that single-crystal electrodes can be employed and the effect of 



14 
 

crystallography on the structure of adsorbed layers can be studied.  However, the strong 

absorption from the electrolyte still results in a large background signal that can be difficult to 

remove to isolate the typically small analyte signals.  Several techniques have been developed to 

address this problem where the background is corrected by means of modulation of the potential 

or polarization of the incident infrared radiation.  Examples include, subtractively normalized 

interfacial Fourier transform infrared spectroscopy (SNIFTIRS)11,12 and polarization modulation 

infrared reflection absorption spectroscopy (PM-IRRAS).13–16  

 

2.2. Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopy 

(SNIFTIRS) 

In SNIFTIRS, the electrode is modulated between a reference potential, EREF, and a 

sample or variable potential, EVAR.  Spectra of the reflected infrared radiation is recorded at each 

of these potentials and the resulting spectrum (ΔS/S), plotted as a function of wavenumber, is 

calculated by, 

∆ܵ
ܵ
ൌ
ሺܵ௏஺ோ െ ܵோாிሻ

ܵோாி
 (2.1)

where SREF and SVAR  are the spectra recorded at the reference and sample potentials 

respectively.  As a result of the subtraction used to calculate (ΔS/S), SNIFTIRS spectra are 

without the common background of the electrolyte solvent and depict the small changes 

associate with potential dependent electrochemical processes.  For this reason, the reference 

potential is often chosen to coincide with values where the molecule of interest is completely 

desorbed from the surface (for adsorption studies), or the electroactive species is present in only 

one redox or structural state.  In SNIFTIRS spectra, a positive going band is indicative of a 

decrease of that particular infrared absorption and vice versa for a negative going band. 
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   The SNIFTIRS method has allowed the development of quantitative analysis to 

investigate the oriented adsorption of organic molecules on gold surfaces.  The first such studies 

include the adsorption of pyridine on Au(110),17 citrate on Au(111)18 and 2-

mercaptobenzimidazole on Au(111)19 substrates.  Pyridine has long been used as a model system 

for investigating coordination to different crystallographic and metal substrates.  A large body of 

thermodynamic information has been acquired for this system from chronocoulometric 

techniques.20–23  Given that its behaviour on low-index gold surfaces was so-well studied, the 

adsorption of pyridine on Au made an ideal electroactive system to test the performance of the 

SNIFTIRS instrument.  An important catalytic analogue of pyridine (dimethylaminopyridine; 

DMAP) was studied in Chapter 4. 

 

2.3. Polarization Modulation-Infrared Reflection Absorption Spectroscopy (PM-IRRAS)         

The development of PM-IRRAS began in 1981 by Golden et al.13 after Hipps and 

Crosby16 introduced the photoelastic modulator in 1979.  Although these early experiments were 

carried out in ultrahigh vacuum conditions and used dispersive spectrometers, Golden and co-

workers were eventually able to measure in-situ SEC systems using Fourier transform 

instruments a few years later.14  In PM-IRRAS, the electric field of the incident infrared radiation 

is modulated between two orthogonal directions, one perpendicular to the plane of incidence (s-

polarized) and one parallel to the plane of incidence (p-polarized) using a photoelastic modulator 

(PEM).  The PEM consists of a piezoelectric transducer attached to a ZnSe crystal.  As an 

oscillating voltage is applied to the transducer, a periodic mechanical wave is introduced in the 

ZnSe crystal causing an expansion or compression along one direction of the crystal.  This 

motion introduces an optical retardation along this axis and a shift in the phase of the incident 
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radiation causing the polarization of the beam to oscillate accordingly between the two different 

polarizations.  In terms of spectroscopy at the metal surface, the electric field of the s-polarized 

light becomes negligible whereas that of p-polarized light is enhanced.24  The implication of this 

is when molecules are on or near the metal surface only those vibrational dipole moments 

perpendicular to the surface are enhanced.  The s-polarized incident infrared light is insensitive 

to the molecules on the surface and as a result can be used to produce a background spectrum 

and isolate the surface molecules of interest.  Once measured, the reflection absorption spectrum 

is obtained by, 

∆ܴ
〈ܴ〉

ൌ
|ܴௌ െ ܴ௉|

ሺܴௌ ൅ ܴ௉ሻ 2⁄
 (2.2)

where RS and RP represent the single beam spectra obtained for s- and p-polarized light 

respectively.  A consequence of using polarization modulation is the common-mode rejection of 

absorption signals when the s- and p-polarized light are identical.  This is especially true for 

atmospheric CO2 and H2O as random orientations of these molecules result in nearly equal 

absorptions for both polarizations.  This result was studied extensively by Faguy et al.25,26 and 

has prompted interest in the studying insoluble surfactant monolayers at the air/water interface of 

a Langmuir trough.27–30  As more research groups began to utilize PM-IRRAS methods, major 

advancements continued and a key innovation was introduced in 1991 by Corn and co-workers 

through their use of a synchronous sampling demodulator.31,32  This device allowed for an almost 

two-fold improvement in measuring modulated signals compared to conventional lock-in 

amplifiers and has become the device of choice for researchers using PM-IRRAS. 

   Some of the first quantitative PM-IRRAS studies with electrochemistry applications 

involved the investigation of the tilt angle of the acyl chains in a phospholipid bilayer, DMPC 

(1,2-dimyristoyl-sn-glycero-3-phosphocholine), on Au(111) electrode surfaces.  In this work,33 
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Horswell et al. used the ratio of the various integrated asymmetric and symmetric CH2 and CH3 

infrared vibrational bands to determine the relative tilt angle of the adsorbed film.  Recently, 

PM-IRRAS has been applied in biomimetic research studies concerning the potential-induced 

changes in orientation and conformational structure of molecules used in model biological 

membranes when supported on electrodes.34,35  These efforts allow the study of important 

voltage regulated biological phenomena such as the opening/closing of ion channels and bio-

electrochemical sensors.36  

    Utilization of SNIFTIRS and PM-IRRAS is becoming increasingly common for 

studying in-situ spectroelectrochemical processes.  The availability of sensitive FTIR 

spectrometers and detectors has allowed electrochemists and surface scientists to study a host of 

systems using these techniques.  The next section deals with the developments of internal 

reflection geometries, particularly attenuated total-internal reflection surface enhanced infrared 

absorption spectroscopy (ATR-SEIRAS).    

 

2.4. Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) 

Surface Enhanced Infrared Absorption Spectroscopy is an internal reflection technique 

pioneered by Osawa and co-workers.37,38  Many of the problems associated with external 

reflection techniques can be largely mitigated through the use of an ATR configuration.  This 

technique uses a thin-metal film deposited onto an infrared transparent element with a high index 

of refraction (i.e. silicon, germanium) which is then used as the working electrode.  Infrared 

radiation from the light source is focused at the back of the thin-metal film electrode through the 

prism where it is totally internally reflected and collected at a detector.  An electrochemical cell 

can be built on the opposite side of the prism to allow for the electrochemical study of 
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electrochemical processes.  A unique feature of this technique is that an approximate 103 

enhancement of infrared absorption by molecules adsorbed on the surface can be realized if the 

thin-metal film contains micrometer-scale roughness compared to surfaces without the metal 

film.  In comparison to external reflective techniques, SEIRAS measurements allow for the 

almost complete removal of the solvent background.  A significant experimental challenge with 

ATR-SEIRAS is grafting the working electrode metal to the ATR element which is not always a 

straightforward process.  A more complete description of the means to achieve this is described 

in Chapter 3. 

 A unique feature of ATR-SEIRAS measurements is that they are extremely surface 

sensitive.  As such, the majority of in-situ SEC problems have been related to analysis of the 

double-layer structure, adsorption/desorption, characterization of self-assembled monolayers 

(SAMs) and monitoring of electrochemical surface reactions.  Redox reactions involving metal 

proteins (i.e. cytochrome C), are known to be promoted when electrode surfaces are covered by a 

SAM of nitrogen containing heterocycles.39  SAMs prepared under different conditions are 

known to exhibit different levels of protein binding activity and to understand this phenomenon, 

real-time monitoring using ATR-SEIRAS measurements were performed on the kinetics of the 

self-assembly of 4-pyridinethiol (4-PySH).40  SEIRAS spectra were collected every 5 seconds 

and tracked the changes in the band intensity of the pyridine’s ring breathing mode.  Under 

different electrolyte pH and potentiostatic conditions it was shown that the rate of formation of 

the SAM dramatically played a role in the resulting activity of the SAM.  In particular, the faster 

the SAM was formed the higher its measured activity in promoting the redox of cytochrome C.  

A study of this nature is virtually impossible without some form of signal enhancement from the 

monolayer and ATR-SEIRAS was shown to be very effective for this purpose. 



19 
 

 One of the most fundamental and studied electrochemical reactions is the electrocatalytic 

hydrogen evolution reaction (HER) on Pt electrodes.41–44  The HER occurs through two 

successive elementary steps where a proton from solution is reduced and adsorbed onto the Pt 

surface (H+ + e- → Hads).  Following this step, the reaction between two adsorbed hydrogen 

atoms (2 Hads → H2) or through the reaction of the adsorbed hydrogen with a proton and electron 

(H+ + e- + Hads → H2) occurs, affording H2 as the final product.  Aspects of this process, in 

particular intermediates, needed spectroscopic evidence to fully understand the HER.  One 

problem studied was in relation to electrochemical data suggesting that the underpotential 

deposition of hydrogen is not a HER reaction intermediate.  First attempts to study this problem 

where made by IRRAS techniques and had significant problems at large overpotentials stemming 

from the use of thin-cavity cells.  At large overpotentials, H2 gas is evolved and can become 

trapped in the thin-layer disturbing both electrochemical and spectroscopic measurements.  This 

limitation resulted in a small window of overpotentials that could be studied using IRRAS 

techniques.  This is an example where using ATR-SEIRAS can prove to be more convenient in 

that evolved H2 has less impact on the in-situ SEC measurements and a greater degree of surface 

sensitivity can be achieved.  Further to this, the increased surface sensitivity of ATR-SEIRAS 

aided in these studies as the infrared measurements were made specifically on the surface bound 

hydrogen to platinum species (~2100 cm-1) infrared band.45     

 Methanol has been extensively cited as a potentially useful fuel for electricity production 

in fuel cells.  In particular, the electro-oxidation of methanol to CO2 on Pt electrodes has been 

studied extensively over the past few decades.41–44  Numerous IRRAS studies on the reaction 

intermediates have demonstrated a variety of intermediate products (including formaldehyde and 

formic acid) that decrease the efficiency of methanol oxidation.46,47  The results of these studies 
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were not very reproducible amongst groups and lead to a great deal of uncertainty in the reaction 

pathways.  In 2003, Osawa and co-workers were finally able to successfully demonstrate 

evidence of the identity of the reaction intermediates produced during methanol oxidation.48  

From this work, the authors were able to show that at positive enough potentials, the infrared 

bands associated with CO bound to the platinum surface disappear and only one new band 

associated with formate appears.  This interesting result (suggested by the authors), is that 

formate is acting as a reaction intermediate in the oxidation of methanol and no other 

intermediates were measured contrary to the inferred non-reproducible results from previous 

IRRAS studies.48  This is just one example of how the surface sensitivity of in-situ ATR-

SEIRAS can be used in understanding the nature of adsorbates and reaction intermediates that 

cannot be measured in thin-cavity electrolyte volumes.   

A problem with SEIRAS is that often large electrode areas are required to measure 

infrared spectra with sufficient signal-to-noise.  As a result of larger electrode sizes, the cell 

time-constant (RC) is effectively large enough to limit the time-resolution of dynamic 

electrochemical processes to milliseconds.  This cell time-constant is the product of the electrode 

capacitance (C) and the solution resistance (R), and is proportional to area of the electrode of the 

electrode.  By decreasing the radius of the electrode, the time required to adjust the charge on the 

electrode surface by a potential step perturbation (5 times RC) also decreases.  By moving to 

smaller electrodes, on the scale of micrometers, the time-resolution of electrochemical processes 

can now be measured on the millisecond to microsecond time scale allowing for the 

measurement of fast electrochemical kinetics.  This is important as many processes at an 

electrified interface (i.e. electron transfer and mass transport/diffusion), can occur very rapidly 

including the creation and consumption of short lived reaction intermediates.  Understanding 
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these processes is important in increasing the efficiency of fuel cells used to generate electricity 

as various reaction intermediates given rise to different deleterious by-products.48   

In an attempt to overcome these problems, smaller electrodes (approaching micrometer 

dimensions) are often employed but start to decrease the effective surface area that can be used 

to measure the weak infrared signals.  In other words, with smaller electrodes the number of 

molecules and the number of photons that can be used to probe the surface is decreased reducing 

the sensitivity of the infrared measurements.  As such, several research groups have moved 

towards external reflection SEC cells suitable for use under infrared microscopes and have 

employed highly bright synchrotron infrared sources. 

 

2.5. Infrared Spectromicroscopy and Synchrotron Sources  

The work by Sun and co-workers utilized infrared microscopy to focus infrared radiation 

from a conventional Globar onto very large ultramicroelectrodes (radius 200 µm; technically this 

exceeds the accepted definition of a UME but the term is kept in order to be consistent with the 

primary literature).49–54  Their work used conventional infrared thermal sources and was very 

successful in reporting processes displaying surface enhancement via anomalous infrared 

enhanced spectroscopy (AIRES)55 occurring on the electrode surface on the time scale of tens to 

hundreds of microseconds.  Their studies used both continuous (rapid-scan)51 and step-scan49,50 

interferometry to increase the temporal resolution of the measurements.  It is very likely that 

further attempts to improve the temporal resolution were prohibited by insufficient signal-to-

noise levels when equivalent experiments using smaller platinum UMEs were attempted or on 

other electrochemical systems not displaying AIRES.  The signal-to-noise of conventional 

thermal sources is increasingly limited by the ability of the instrument to focus large photon 
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intensity onto very small areas providing a motivation to move to non-conventional sources of 

infrared radiation such as synchrotron infrared radiation for studying dynamic electrochemical 

processes. 

The use of synchrotron infrared radiation for electrochemical studies was first 

demonstrated through the work of Melendres and co-workers.56–64  These authors have primarily 

used far-IR (1000-10 cm-1) synchrotron radiation to study processes related to copper oxidation, 

and ion adsorption on metal electrodes.  The first preliminary report published by Melendres et 

al.59 in 1995 presented initial results on utilizing synchrotron far-infrared radiation for in-situ 

studies and provided sufficiently promising proof-of-concept results to warrant continued 

investigations.  Since that time, the group has been actively coupling synchrotron radiation to 

electrochemical cells through various methods utilizing a far-infrared microscope and grazing 

incident objectives.  The primary motivation is to alleviate the large absorption of aqueous 

electrolytes that overpower conventional thermal sources typically found in bench-top 

spectrometers for the far-infrared region and to gain valuable knowledge in adsorption processes 

on electrode surfaces.  As a result, Melendres and co-workers have been able to report on the 

adsorption of ions on gold62,63, silver64 and platinum59,61 in the far-infrared region.  For example, 

the adsorption of chloride and bromide ions on gold electrodes has been studied extensively in 

electrochemistry.  With the advent of far-infrared measurements utilizing synchrotron radiation, 

experimental in-situ data demonstrated an Au–Cl surface vibrational bond at 263 cm-1 and an 

Au–Br stretching mode at 182 cm-1 in aqueous electrolytes.62  Further experiments studied the 

adsorption of various oxyanions63, the vibrational properties of cyanate ions, OCN-, on silver64 

and hydroxide adsorption on platinum electrodes.59    
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Aside from the research effort involving the adsorption of anions on metal electrodes, a 

considerable area of focus for Melendres and co-workers was to study processes related to 

copper oxidation using in-situ far-infrared synchrotron radiation.  Their early studies looked at 

the composition of electrogenerated surface films formed during the general and localized 

corrosion of copper in alkaline and bicarbonate solutions.60  An important point about this early 

work is that the window used for electrochemical measurements still had to be removed from the 

cell to measure the infrared spectra.  A true in-situ experiment was not fully realized until 200856 

when a thin-cavity cell employing a 500 µm size Cu working electrode pressed against a far-

infrared window made from Mylar.  The results from this work demonstrate that it was possible 

to obtain in situ spectra with excellent signal-to-noise ratios for electrochemically formed surface 

oxide films.  In addition, these results were in good agreement with their previous studies and 

were consistent with thermodynamic calculations adding further credit to the technique.  

Melendres and co-workers were finally able to demonstrate the collection of entirely in-situ far-

infrared spectra of surface films formed upon anodic oxidation of copper for the first time in 

aqueous solution environments using a synchrotron source.56–58  However, in all the above cases 

utilizing synchrotron infrared radiation, dynamic electrochemical processes were not studied and 

only measurements taken on equilibrated interfaces were achieved. 

Considering the successes of Melendres and co-workers, further improvements can be 

made to Sun et al.’s work with ultramicroelectrodes by utilizing synchrotron infrared sources for 

increased signal-to-noise levels.  By building on the work of these two groups, the use of true 

ultramicroelectrodes (൑	25 µm) and synchrotron infrared radiation should provide adequate 

signal-to-noise levels to study fast electrochemical events both electrochemically and 

spectroscopically.  
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 The combination of electrochemistry and infrared spectroscopy for in-situ 

spectroelectrochemical measurements has been continually advancing since the first reports by 

Bewick in the early 1980s.  The need to supplement purely electrochemical measurements with 

molecular information was a driving force in the first developments with a need to understand 

the electrode/electrolyte interface under in-situ potentiostatic control.  Infrared spectroscopy, 

although first overlooked due to large solvent absorptions, eventually became the most utilized 

in-situ spectroscopic technique and has proven to be successful in understanding various 

electrochemical processes.  This thesis focuses on the continued development of in-situ infrared 

spectroelectrochemical techniques, using both internal and external reflection geometries, to 

further the understanding of molecular adsorption, diffusion currents and kinetics of proton-

coupled electron transfer reactions.  A significant achievement is in the first demonstration of 

coupling true ultramicroelectrodes, synchrotron infrared radiation and step-scan interferometry to 

measure very fast electrochemical processes.      
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CHAPTER 3 

THEORY AND METHODOLOGY 

 

3.1. Introduction 

The primary focus of this Chapter is to provide specific details on the various theories 

and methodologies used throughout this thesis.  From Chapter 2 an understanding of where the 

field has moved from its early beginnings to current technologies and the wide variety of 

experimental techniques available to the in-situ spectroelectrochemist was discussed.  This 

Chapter starts by providing a theoretical background in infrared vibrational spectroscopy 

followed by an in depth analysis of the finer points of Fourier Transform Infrared (FTIR) 

spectrometers.  Two different FTIR techniques, continuous rapid-scan and step-scan, will be 

discussed and compared for time-resolved measurements. 

Further instrumentation discussions include the interfacing of the hardware components 

required to perform both static and time-resolved in-situ spectroelectrochemistry (SEC) 

experiments and the implementation of synchrotron infrared radiation as a highly brilliant 

infrared source.  Another extensively used in-situ SEC technique is Attenuated Total-Internal 

Reflection – Surface Enhanced Infrared Reflection Absorbance Spectroscopy (ATR-SEIRAS).  

ATR-SEIRAS is a highly surface sensitivity technique based on the pioneering work by Osawa 

and co-workers.1,2  This technique is very well-suited for the study of electrochemical processes 

relating to the structure of the double-layer, adsorption/desorption of molecules or ions and the 

characterization of self-assembled monolayers on metal surfaces. 

The main emphasis of this Chapter is to provide the reader with the background required 

to fully understand advancements in in-situ spectroelectrochemistry presented in this thesis.   
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3.2. Infrared Vibrational Spectroscopy 

Infrared (IR) spectroscopy deals with the interaction of infrared radiation with matter.  

The infrared spectrum of a compound can provide useful information about the molecular 

structure.  The infrared region of the electromagnetic spectrum is generally considered to span 

from 0.770 µm to 1000 µm wavelength corresponding to 12 900 cm-1 to 10 cm-1 in common 

infrared spectroscopy units.  This energy range is on the order of the energies sufficient to excite 

vibrational transitions within a molecule.  The IR region is further subdivided into the near-

infrared (12 900 to 4000 cm-1), mid-infrared (4000 to 700 cm-1) and the far-infrared (700 to 10 

cm-1).3  

 Nearly all molecules absorb infrared radiation with the exception of homonuclear 

diatomic molecules (e.g. H2, O2 and N2).  The infrared spectrum of polyatomic molecules can be 

complex as a result of the many possible vibrational transitions and the existence of overtones, 

sum and difference bands.  However, infrared absorption bands are usually quite sharp and 

contain characteristic frequencies for certain groups in the molecule allowing for qualitative 

structural analysis.  Further, the infrared spectrum for a given molecule is unique and can be used 

for the identification of unknown compounds with the aid of spectral libraries.  Detailed analysis 

of infrared absorption bands can be extremely useful in describing and determining the structure 

of molecules.  Similar to ultra-violet/visible (UV-VIS) spectroscopy, infrared spectroscopy has 

the potential to provide quantitative information using Beer’s law.  As a result, infrared 

spectroscopy is well suited to studying various electrochemical processes in-situ such as 

molecular structure, orientation and identification of intermediates. 
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3.3. Molecular Vibrations 

 Infrared spectra result from transitions between quantized vibrational energy states.  A 

molecular vibration can range from the simple coupled motion of two atoms in a diatomic 

molecule to much more complex motion where every atom in a large polyatomic molecule 

vibrates.  Molecules with N atoms have 3N degrees of freedom, three of which represent 

translational motion in mutually perpendicular directions (x-, y- and z-axes) and three rotational 

motions around these axes.3–5  The remaining 3N-6 degrees of freedom give the number of ways 

the atoms in a molecule can vibrate (the number of vibrational modes), and is further discussed 

in Section 3.3.2.  Each vibrational mode involves the approximate harmonic displacement of the 

associated atoms from their equilibrium positions.  These modes, i, for the atoms involved will 

vibrate at a certain characteristic frequency, ߥ௜.   

The potential energy of this motion, ܸሺݎሻ, is often described by a harmonic oscillation 

and is shown as a function of the distance between the atoms, r, as the dotted line in Figure 3.1.  

For any mode in which the atoms vibrate with simple harmonic motion (i.e. obey Hooke’s law), 

the vibrational energy states, ௜ܸ௩, can be described by Equation 3.1. 

௜ܸఔ ൌ ௜ߥ݄ ቀ݊௜ ൅
ଵ
ଶ
ቁ (3.1)

where h is Planck’s constant, ߥ௜ is the fundamental frequency of the particular mode and ݊௜ is the 

vibrational quantum number of the ith mode (݊௜ = 0, 1, 2,…).  The energy for transitions 

between the ground state (݊ ൌ 0) and the first excited state (݊ ൌ 1) of most vibrational modes 

corresponds to the energy of electromagnetic radiation in the mid-infrared spectrum.   

 A more accurate description of the variation of the potential energy as a function of the 

displacement of the atoms from their equilibrium positions is shown by the solid green line in 

Figure 3.1.  From this curve it can be seen that Equation 3.1 is only valid for low values of the  
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Figure 3.1.  Potential energy curve for a diatomic molecule demonstrating the vibration 

differences between harmonic and anharmonic oscillators. 
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vibrational quantum number, and is not valid when ݊௜ is large.  In practice, ௜ܸ௩ must be described 

instead using an anharmonic potential function as shown by the solid blue line in Figure 3.1.  To 

a first approximation, this is mathematically described by, 

௜ܸ௩ ൌ ௜ߥ݄ ቀ݊௜ ൅
ଵ
ଶ
ቁ ൅ ௜ݔ௜ߥ݄ ቀ݊௜ ൅

ଵ
ଶ
ቁ
ଶ
 

(3.2)

where xi is the anharmonicity constant and has values that typically range from -0.001 and -0.02 

depending on the mode. 

 If all vibrational modes were strictly harmonic, no transitions involving changes in ݒ௜ by 

more than ±1 would be allowed.  The effect of anharmonicity is to relax this selection rule to 

allow bands caused be Δݒ௜ ൐ 1.   

 

3.3.1. Basis of Infrared Absorption 

 The selection rules for infrared absorption can be determined by evaluating the transition 

moment (Equation 3.3),3,5,6    

ܴ ൌ න߰௜
௝݀߬ (3.3)߰ߤ∗

where R is the transition moment for a transition between states i and j.  The integration is 

calculated over all space, dτ, for the electric dipole moment of a vibrational transition moment, 

µ, expressed by, 

ߤ ൌ ଴ߤ ൅ ሺݎ െ ௘ሻݎ ൬
ߤ߲
ݎ߲
൰
଴
൅
1
2
ሺݎ െ ௘ሻଶݎ ቆ

߲ଶߤ
ଶݎ߲

ቇ
଴

൅ ⋯ (3.4)

with µ0 being the permanent dipole moment, r the internuclear distance, and re being the 

equilibrium bond length.  By neglecting all but the first two terms in Equation 3.4 (dipole 

approximation), 
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ܴ ൌ න߰௜
∗ ൤ߤ଴ ൅ ሺݎ െ ௘ሻݎ ൬

ߤ߲
ݎ߲
൰
଴
൨߰௝݀߬ (3.5)

which can be further reduced as follows, since µ0 is constant and ߰׬௜
∗߰௝݀߬ ൌ 0 due to 

orthogonality, to 

ܴ ൌ න߰௜
∗ ൤ሺݎ െ ௘ሻݎ ൬

ߤ߲
ݎ߲
൰
଴
൨߰௝݀߬ (3.6)

From this equation, it is clear that there must be a change in dipole moment during the vibration 

in order for the molecule to absorb infrared radiation. 

 The intensity of a particular vibrational band in the infrared region is dependent on the 

square of the transition moment and thus to the square of the dipole moment derivative from the 

above equation (Equation 3.6).  This implies that a molecule may have a small permanent dipole 

moment and a large dipole moment derivative and vice versa.  For example, carbon dioxide, 

CO2, has a very small dipole moment, 0.11 D, but has a large absorption cross-section in the 

infrared due to a very large dipole moment derivative.  This explains why homonuclear diatomic 

molecules, having ߤ ൌ 0 for all inter-nuclear distances, have no infrared absorption.  These 

particular modes, vibrations that do not involve a change in the dipole moment, are said to be 

infrared-inactive. 

 The strength of an infrared absorption can be described in terms of the molar 

absorptivity, ε, of the measured infrared band.  The molar absorptivities of the strongest 

absorbing groups in the infrared region are still one to three orders of magnitude lower than the 

molar absorptivities of the most intense electronic transitions in the UV-VIS region.  For 

instance, the highly polar bonds in C-F and C-Cl have large dipole moment derivatives and may 

have infrared ε values of only 100 to 1000 L mol-1 cm-1, whereas these highly absorbing 

transitions in the UV-VIS have ε values on the order of 10 000 to 100 000 L mol-1 cm-1.3  
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3.3.2. Number of Vibrational Modes 

In general, molecules with N atoms will have 3N – 6 normal modes of vibration;  

however, this is not the case for linear molecules which are expected to have 3N – 5 such modes 

as the rotation about the molecular axis cannot be observed.  Commonly used examples to 

illustrate normal modes of vibration are water, H2O, and carbon dioxide, CO2.
3–6  In the case of 

the nonlinear water molecule, there are three fundamental modes of vibration.  Looking closely 

at H2O, a permanent dipole moment arises in the molecule due to the separation of charge 

between the oxygen and hydrogen atoms and a change in dipole moment accompanies the 

absorption of infrared radiation at all three of the fundamental modes (Figure 3.2a).  As such, 

these modes are called infrared-active vibrational modes.  When analyzing the linear CO2 

molecule in a similar manner (Figure 3.2b), four fundamental modes of vibration are expected.  

Conversely, the symmetric stretch in CO2 does not give rise to a change in dipole moment and is 

infrared-inactive.  In the infrared spectrum for CO2, however, only two fundamental vibration 

absorption frequencies are observed.  The two bending modes are degenerate and absorb at the 

same frequency and demonstrate the complexity that can develop when analyzing an infrared 

spectrum.  In addition to the vibrational modes presented in Figure 3.2, with extra atoms in a 

molecule more complicated vibrational modes can develop (see Figure 3.3).3–6 

 Although the number of expected vibrations can be calculated from the number of 

degrees of freedom for a given molecule, often polyatomic molecules experimentally show fewer 

absorption bands, and in a few cases more, than expected.  For example, fewer absorption bands 

may be measured when there are: inactive infrared vibrational modes, degenerate vibrations,  
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Figure 3.2. Vibrational modes in H2O (a) and CO2 (b). 
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Figure 3.3. Vibrational modes for a methylene group and the breathing vibration for a 

ring compound. 
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weak absorption cross-sections and instrumental aspects including, but not limited to, poor 

resolution and spectral range.  When more infrared absorption bands are observed, overtones, 

combination and difference bands may be the cause.  For the latter two examples, a combination 

band may arise if two vibrational modes are excited simultaneously.  Finally, it is important to 

note that these non-fundamental transitions are much weaker in intensity than the fundamental 

transitions.        

 

3.3.3. Group Frequencies 

 An interesting phenomenon is often exploited when studying infrared spectra and that is 

that with certain functional or structural groups, their vibrational frequencies are nearly 

independent of the rest of the molecule.  An example of this is the stretching vibrations of the 

carbonyl group in various aldehydes and ketones are almost always observed between 1650 cm-1 

and 1740 cm-1.  Such frequencies are characteristic of the functional or structural group and are 

called group frequencies and are only slightly affected by the composition of the rest of the 

molecule.  The presence of these group frequencies in an infrared spectrum are a great asset for 

the determination of a molecule and its structure. 

 These group frequencies are typically found in the mid-infrared spectral region (4000 – 

1000 cm-1) and in practice this region is called the group frequency region of the infrared 

spectrum.3–6  The fingerprint region of the infrared spectrum (1200 –700 cm-1) is so-called 

because the vibrational frequencies are influenced by the entire molecule and can be used for 

identification purposed by comparison to spectral libraries.  
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3.3.4. Vibrational Coupling 

 The frequency of a specific vibrational mode may be influenced by the presence of other 

vibrations in the molecule through vibrational coupling.  Strong coupling can occur between two 

stretching vibrations if, for example, the two vibrations share a common atom.  Interactions can 

also occur between two bending modes that share a common bond between the groups.  

Vibrational coupling is strongest when the energies of the isolated vibrational frequencies are 

approximately equal in magnitude, share the same symmetry and an appreciable interaction 

between the groups exists.  For instance, if the two groups are separated from each other by two 

or more bonds vibrational coupling is unlikely to occur.  A simple example of this is in the 

infrared spectra between methanol and ethanol where an additional C-C bond interaction in 

ethanol results in a 20 cm-1 shift in the carbonyl C-O stretching frequency compared to the same 

stretch in methanol.  It is therefore not possible for the absolute position of an absorption band to 

be specifically known for a given group frequency with every molecule.3  These slight shifts 

allow for valuable qualitative analysis and a unique infrared spectrum for different molecules. 

 In the situation when an overtone or combination frequency interacts with a fundamental 

vibration, the resulting interaction is called a Fermi resonance.  The result of these interactions 

effectively raises one frequency and lowers the other.  The separation and resulting intensities of 

the bands depends strongly on how close in frequency the two unperturbed vibrations are.  An 

example of this is in the case of the CH stretch in aldehydes at 2800 cm-1 interacting with the 

first overtone of the 1400 cm-1 in-plane CH stretch.  The resulting spectrum has a doublet peak in 

the infrared region between 2700 and 2900 cm-1 as a result of the Fermi resonance. 
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3.4. Fourier Transform Infrared Spectroscopy 

3.4.1. Michelson Interferometer 

 Infrared spectroscopic measurements are routinely acquired using the two-beam 

interferometer designed by Michelson in 1891.7  Other designs have followed, but the theory 

behind the operation remains the same.  Essential for all scanning two-beam interferometers is a 

device that divides a beam of radiation into two paths, using a beam splitter, and two mirrors to 

reflect the beams back before recombining them after introducing a path difference (optical path 

difference OPD; often called the retardation, δ).  When this occurs, a condition can develop in 

which interference between the two beams is produced.  The variation in the intensity of the 

beam emerging from the interferometer is measured by a suitable detector as a function of the 

path length difference created by moving one of the mirrors with respect to the other.  Figure 3.4 

depicts this simple concept with two mirrors mutually perpendicular to each other but with only 

one of the two mirrors capable of moving along the axis of incident radiation.  

 An important component of the Michelson interferometer is the beamsplitter which 

intersects the fixed and movable mirror to create a condition where the incident beam is partially 

reflected along each path and recombined upon exiting the interferometer.  An interesting aspect 

often overlooked in the Michelson interferometer is that the beam that exits the interferometer 

has an equivalent beam that radiates back towards the source.  As such, the intensity of the beam 

that exits the interferometer is further decreased as a result of the partial reflected radiation back 

towards the source. 

 The movable mirror can be moved either at a constant velocity (a continuous scan 

interferometer) or in discrete positions along the movable mirror axis (step-scan interferometer).   
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Figure 3.4. Simple two-beam Michelson Interferometer. 
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When the mirror drive in a continuous scan interferometer operates at relatively high rates, the 

interferometer is often called a rapid-scan interferometer.  Both rapid-scan and step-scan 

interferometers are utilized in in-situ spectroelectrochemical (SEC) kinetic measurements in this 

thesis. 

 To better understand the processes that occur in a Michelson interferometer it is often 

convenient to consider an idealized situation using a monochromatic radiation source and an  

ideal beamsplitter (i.e. one that does not absorb any of the radiation and both the reflection and 

transmission is exactly 50% of the intensity).  When the fixed and movable mirrors are 

equidistant from the beamsplitter (zero retardation or zero path difference, ZPD) a unique 

situation develops in that the two beams are perfectly in-phase with each other upon 

recombination and the beam experiences constructive interference.  All the light reaches the 

detector and none is reflected back towards the source.  This is the result of the 900 phase change 

a beam undergoes at each reflection and in this case, destructive interference of the radiation at 

the beamsplitter cancels out all light directed along the path back to the source.  At the ZPD all 

the incident beam power is transmitted to the detector and no light returns to the source. 

 For a monochromatic source, there is no way to determine whether a maximum signal 

data point along the retardation axis is the ZPD or a retardation equal to an integer number of 

wavelengths from the incident wavelength.  If the mirror is driven at constant velocity, the 

resulting signal measured at the detector, ܵሺߜሻ, would appear to be sinusoidal with a maximum 

intensity at integral multiples, ߜ ൌ  ଴, of the incident wavelength, λ0.  The measured signal atߣ݊

the detector is referred to as an interferogram and in the simple case of monochromatic radiation 

can be expressed as, 

ܵሺߜሻ ൌ (3.7) ߜ෤଴ߥߨ2ݏ݋෤଴ሻܿߥሺܤ
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 where ߥ෤଴ is the corresponding incident radiation wavenumber and ܤሺߥ෤ሻ is the intensity of the 

source at the corresponding wavelength. 

 When the source is no longer monochromatic but produces continuous radiation, ߥ෤, the 

measured interferogram is the superposition result of the interferograms corresponding to each 

individual wavelength.  The resulting interferogram can be expressed as follows,4,8 

ܵሺߜሻ ൌ න ෤ߥ݀ߜ෤ߥߨ2ݏ݋෤ሻܿߥሺܤ
ାஶ

ିஶ
 

(3.8)

 Mathematically, ܵሺߜሻ is the cosine Fourier Transform of ܤሺߥ෤ሻ and as a result a spectrum 

can be calculated from an interferogram of this form by computing the Fourier Transform and is 

called Fourier Transform Spectrometry.  When the incident radiation used is in the infrared 

region of the electromagnetic spectrum, the technique is referred to as Fourier Transform 

Infrared (FTIR) Spectroscopy. 

 In practice it is not possible to sample the interferogram at the infinitely high resolution 

expressed in Equation 3.8.  The interferogram can only be sampled at finite sampling intervals 

and places resolution limits on the measured interferogram and computed spectrum.  For 

practical purposes, the Discrete Fourier Transform (DFT) is used in the transformation from 

interferogram to spectrum.4,8   

ܵሺ݊∆ݔሻ ൌ෍ ሻߥ∆ሺ݇ܤ
ேିଵ

௡ୀ଴
݇݊ߨሺ݅2݌ݔ݁ ܰ⁄ ሻ 

(3.9)

where the continuous variables ߜ and ߥ෤ have been replaced by ݊∆ݔ and ݇∆ߥ respectively.   

Consider two peaks that are separated by Δߥ෤ ൌ ሺߥ෤ଵ െ  ෤ଶሻ and will become out of phase atߥ

0.5ሺΔߥሻିଵ and will be back in phase after a retardation of ሺΔߥ෤ሻିଵ.4  To measure one complete 

period of this beat frequency, and resolve the two peaks, a retardation of  ሺΔߥ෤ሻିଵ would need to 

be measured.  The smaller the difference between the two peaks (small values of Δߥ෤), the greater 
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the retardation needs to be before the two cosine waves become in phase and can be resolved.  

That said, the apparent spectral resolution depends in the maximum retardation of the 

interferometer.  Instrumentally this means for high resolution measurements of FTIR 

spectroscopy, a long mirror drive is required.  For example, to acquire a spectrum with a spectral 

resolution near 0.001 cm-1, a several meter long mirror drive would be required.  Typically, mid-

infrared spectral resolutions on the order of 4 cm-1 are adequate for routine measurements and 

have much smaller maximum retardations on the order of centimeters. 

 Several important considerations need to be accounted for when sampling the 

interferogram at finite positions over a discrete optical retardation range.  Typically, modern 

FTIR spectrometers make use of the interference pattern of a monochromatic source, HeNe laser, 

to control the change in the optical path difference.  By discretely sampling the interferogram of 

the continuous light source at the zero-point crossings of the HeNe laser, an internal wavelength 

reference with accuracy determined solely by the precision of the laser beam itself allows for 

highly accurate infrared spectra to be produced.  However, various artifacts can be 

mathematically introduced into the resulting Fourier transformed spectra.  Some of the more 

prevalent spectral artifacts are resolution bias error (also known as the picket-fence effect), 

aliasing and leakage.8  Aliasing will be discussed in further detail later in this Chapter as a 

technique to undersample interferograms in effort to decrease interferogram data collection times 

for step-scan interferometry which are strategically utilized in Chapter 7.  

 In the picket-fence effect, the calculated Fourier transformed spectrum is a discrete 

spectrum and consists of estimates of what the spectral level is at specific frequencies. These 

frequencies are determined by the analysis and data acquisition parameters and have nothing to 

do with the signal being analyzed.  This has the potential that there probably are peaks in the true 
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spectrum of the signal that are between the lines of the discrete Fourier Transform analysis.  

Experimentally, the peaks in a Fourier Transformed spectrum will be measured too low in level, 

and the valleys will be measured too high.  Moreover, the true frequencies where the peaks and 

valleys exist may not be those indicated by the calculated Fourier Transform spectrum.  This 

phenomenon is called resolution bias error, but is colloquially known as the picket fence effect.  

In other words, when looking at a Fourier Transformed spectrum, it is like looking at mountain 

range through a picket fence. 

 Resolution biasing errors can be overcome by adding zeros to the end of the 

interferogram, called zero-filling, before the discrete Fourier Transform is performed.  By doing 

this the number of points per wavenumber in the spectrum is increased and the noise is reduced.  

It is recommended that one should choose a zero-filling factor of two, essentially doubling the 

number of data points present in the interferogram.  However, if the expected line-shape widths 

are similar to the spectral sample spacing, larger values for the zero-filling factor, up to 8, may 

be more appropriate.  This solution does not introduce any further errors in the spectrum as it 

does not change the instrumental line shape. 

 Unlike the picket-fence effect, spectral leakage is not due to the digitization of a 

continuous interferogram, but instead is caused by the data truncation of the interferogram at a 

finite optical path difference.  Instrumentally speaking, there is a finite distance a mirror can be 

driven in an interferometer.  When the data collection abruptly stops, exact integer multiples of 

the wavelengths of radiation may not have been recorded.  When an interferogram is Fourier 

Transformed the spectral response displays not only a spectral peak, but numerous ‘side lobes’ or 

‘feet’ to the peaks.  The spectral component of interest no longer contains the complete intensity 

but rather contains the energy of adjacent components and noise.  The leakage from a larger 
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signal component may significantly overshadow smaller signals making them difficult to identify 

or detect.  The solution to this problem is to truncate the interferogram less abruptly.  In other 

words, find a suitable mathematical function, an apodization function (Greek for ‘removal of 

feet’), to apply to the interferogram to mitigate the effects of spectral leakage and the restriction 

of having a limited observation interval.  Numerous functions of this nature exist, with the most 

commonly used functions being the Happ-Genzel and the 3-Term Blackman-Harris function.4 

 

3.4.2. Spectral Aliasing 

Another source of error in the Discrete Fourier Transform (DFT) is aliasing.4,8  To 

understand what is meant by aliasing consider the basic DFT equation (Equation 3.9) which 

describes how a spectrum measured at wavenumbers ሺ݇ ∙  ሻ can be transformed from anݒ∆

interferogram sampled at optical path differences,	ሺ݊ ∙  ሻ.  Both n and k will run from 0 to N-1ݔ∆

generating N complex output data points from N generally real measured data inputs producing 

the expected output in Figure 3.5a.  However, this is not what occurs in practice.  When the DFT 

calculation is performed on the interferogram, it yields not just a single spectrum but rather the 

spectrum plus its mirror image such that the first N/2 points represents the expected spectrum 

and the second starting at k = N/2 equaling its mirror image (Figure 3.5b).  Practically this means 

that a DFT of an N-point interferogram yields N/2 meaningful output data points.  As this second 

set of N/2 points is a mirror image of the first it is redundant and is discarded.  To understand 

this, if index k is substituted by N-k, using the identity ݁݌ݔሺ݅2݇ߨሻ ൌ 1, the obtained result 

describes a mirror symmetry ܵሺሾܰ െ ݇ሿሻ ൌ ܵሺെ݇ሻ about a so-called “folding” or “Nyquist” 

wavenumber ݒ௙.8 
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Figure 3.5. a) Expected Fourier transform spectrum, b) DFT of an N-point interferogram, 

demonstrating the mirror imaging that occurs as a result, c) The effect of aliasing on the 

spectrum pictured in b), d)  A spectrum demonstrating the requirements for undersampling (note 

the spectrum is zero everywhere but between the folding limits) and e) Aliases resulting from 

undersampling the interferogram. 
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Further to the point, inspection of Equation 3.9 reveals that not only is the index k valid 

from 0 to N-1, but for all integer values including negative numbers.  Considering this, if k is 

replaced by ݇ ൅݉ܰ in Equation 3.9, where m is an integer, the final result is ܵሺሾ݇ ൅ ݉ܰሿሻ ൌ

ܵሺ݇ሻ.  In other words, the mirror symmetry described in an N-point sequence is repeated 

periodically as indicated by Figure 3.5c.  This replication of the original spectrum and its mirror 

image on the wavenumber axis across k-space is termed aliasing. 

 

3.4.2.1. Alias Overlap 

It is clear from Figures 3.5b and 3.5c that a unique spectrum can only be realized if the 

spectrum does not overlap with its mirror-symmetrical replicate.  This condition is valid only if 

the spectrum is zero above a maximum wavenumber ݒ௠௔௫ and is smaller than the folding 

wavenumber, ݒ௙.  However, if there is a non-zero contribution above the folding wavenumber, 

 ௙ and will result in the appearance of aݒ ௙, this contribution will be “folded back” belowݒ

spectral artifact, i.e. a spectral feature at the wrong position on the frequency scale.  This possible 

type of error is known as an aliasing artifact.   

In most conventional FTIR spectrometers, the interferogram sampling positions are 

defined by the zero-crossings of a HeNe laser having a wavelength of 15 800 cm-1.  In terms of 

the maximum bandwidth that can be sampled without spectral overlap (aliasing), the folding-

wavenumber is also 15 800 cm-1.   

 

3.4.2.2. Undersampling 

Given the above discussion, it is possible to reduce the interferogram size through a 

technique known as undersampling which can save considerable amounts of time in data 
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collection.4,8  This can only be achieved if the spectral intensity is zero below a lower band limit, 

 ௠௔௫, are between aߥ ௠௜௡andߥ ,and the spectrum band limits ,(௠௜௡ is not equal to zeroߥ) ௠௜௡ߥ

lower, ߥ௙,௅ைௐ, and the upper folding limit, ߥ௙,ுூீு (as shown in Figure 3.5d).  As a further note, 

the upper folding number, ߥ௙,ுூீு, must be an integer multiple (݊ ൌ 1,2,3, …) or a natural 

fraction (1 4⁄ , 1 3⁄ , 1 2⁄ ,…) of the HeNe laser wavenumber in order to correctly fold the 

spectrum into the right wavenumber space.   

 If the sample spacing is increased by a factor of n, the spectrum (Figure 3.5d) will 

overlap appreciably resulting in the spectrum filling the previous empty range from 0 to ߥ௙,௅ைௐ 

with n-1 copies of the original spectrum (Figure 3.5e).  Since these copies are identical, with the 

exception of their absolute wavenumber, the desired spectrum does not have to be calculated 

with a true N-point interferogram.  Instead, a calculation involving the alias of the lowest 

wavenumber by an N/n-point interferogram followed by correcting the wavenumber scaling 

results in the desired spectrum measured with fewer interferogram points while maintaining 

spectral quality.   

Modern FTIR spectrometers and software determine the appropriate sampling and 

undersampling conditions based on the input of the desired spectral range by the user.  This can 

be dangerous to the user’s data if they do not understand the experimental conditions required to 

facilitate this type of measurement.  In particular, the user is still required to ensure that there are 

no spectroscopic contributions outside the entered spectral range (between ߥ௠௜௡and ߥ௠௔௫).  One 

way this is often achieved is through the use of optical or electronic filers.  If suitable care is not 

taken into account, unwanted aliasing may occur and produce artifacts in the final calculated 

spectrum.     
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3.4.3. Phase Correction 

 The last mathematical step in the conversion of an interferogram into a spectrum is a 

phase correction.4  A phase correction is required because at the ZPD it is possible that not all the 

optical frequencies are in phase partly due to the optical response of the beamsplitter, electronic 

filters and amplifiers.  In other words, the interferogram may not be symmetric about the ZPD 

and after processing the interferogram an inaccurate representation of the true spectrum would 

result.  There are many techniques to accomplish this process with one of the most commonly 

used techniques formulated by Mertz.9  A complete description of the Mertz technique is beyond 

the scope of this thesis. 

  

3.5. Introduction to Continuous-Scan and Step-Scan Interferometry 

3.5.1. Continuous Scan Interferometers 

Continuous scan interferometers account for the majority of currently used FTIR 

spectroscopic measurements.  As previously mentioned, the mirror in the interferometer is in 

constant state of motion during the collection of the interferogram, with digitization occurring at 

the zero-point crossings of the reference HeNe laser.  Typically, the signal-to-noise is improved 

by repeating the data collection and co-adding numerous interferograms to produce a single 

spectrum.  For accurate phase correction, it is important that the data collection for an 

interferogram starts at a point before the ZPD and that the data is acquired over the maximum 

retardation required for the desired resolution.  When the mirror has reached the desired 

retardation, it is decelerated and depending on the interferogram data acquisition type will 

traverse backwards collecting another interferogram (forward-backward scanning) or 

immediately return to the start position and proceed with another interferogram from the starting 
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point (forward only scanning).  Another option exists where interferograms can be collected as 

either double- or single-sided.  In double-sided forward-backward collection, essentially four 

single-sided interferograms are acquired as the mirror drive starts at the maximum retardation on 

one side of the ZPD and traverses forward and backward for the desired retardation paths.  It is 

important to note that the forward and backward collected interferograms must be processed 

separately into infrared spectra before they can be co-added.  Even though the interferograms are 

essentially optically identical, different responses from electronic filters and amplifiers for the 

detector are measured and produce direction dependent phase responses.  This particular aspect 

becomes important for signal averaging rapid-scan time-resolved FTIR spectra presented 

Chapters 5 and 6 of this thesis.    

 

3.5.2. Step-Scan Interferometer 

 In contrast, step-scan interferometry involves translating the moving mirror to discrete 

measurement positions, essentially halting at specific retardations determined by the zero-point 

crossings of the reference HeNe laser and the desired spectral resolution.  The interferogram is 

then sampled one point at a time building an interferogram as data is collected at the various 

stepped mirror positions.  This form of data collection allows for much higher temporal 

resolutions compared to those that than can be obtained from measurements made using 

continuous scanning mode which are limited to the mirror drive velocity.10–13  To achieve the 

high temporal resolution required to match the fast electrochemistry using ultramicroelectrodes, 

step-scan interferometry was an essential component of the experimental methodology designed 

and utilized in Chapter 7 of this thesis.    
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3.5.3. Final Word on Fourier Transform Infrared Spectroscopy 

 Fourier transform infrared spectroscopy is the most widely used technique to measure 

molecular vibrations.  As discussed, there are several important aspects of using FTIR 

spectroscopy to consider when perform typical (and not so typical) infrared measurements.  

Aside from these, it is important to mention the numerous advantages to using FTIR 

spectroscopy over dispersive instruments.  The first such advantage is a multiplexing advantage 

(sometimes called the Fellgett advantage).4   In dispersive spectrometers, the absorption of 

vibrational energy in a molecule is observed sequentially as a grating optic is scanned across the 

wavenumber space.  In contrast, continuous scan FTIR spectrometers allow for the observation 

of all wavelengths of light at the same time allowing for faster measurements of equal quality.  

Comparing a dispersive instrument and a FTIR spectrometer under identical conditions (spectra 

collected in the same measurement time, at the same resolution, and with the same source, 

detector, optical throughput, and optical efficiency) a 2 cm-1 resolution 800 - 8000 cm-1 spectrum 

measured using a dispersive spectrometer could take 30 minutes.  A spectrum with similar 

signal-to-noise for a FTIR spectrometer could take on the order of seconds.  If additional scans 

are required to boost the signal-to-noise, adding a couple of seconds to a measurement versus 

minutes to hours with dispersive instruments decreases the overall time for an experiment.   

 The second advantage often discussed when using a FTIR spectrometer is the throughput 

advantage (sometimes referred to as the Jacquinot advantage).4  This is achieved because FTIR 

instruments do not require optical slits (in the traditional sense) to achieve resolution which 

necessarily decrease the amount of incident radiation on the sample in dispersive instruments.  

Therefore, a much higher throughput is capable with FTIR instruments as all the light exiting the 

interferometer can be used to measure a given sample with the maximum number of available 
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photons.  Another consequence of using a FTIR spectrometer over a dispersive instrument is the 

higher achievable level of spectral resolution.  The spectral resolution of a spectrometer is a 

measure of how well it can distinguish between closely spaced spectral features.  To adjust the 

spectral resolution in a dispersive spectrometer, it is often necessary to decrease the slit width, 

thereby decreasing the amount of available light for the measurement (adding noise and 

increasing the time required to take a high resolution measurement).  In the case of a FTIR 

spectrometer, the value of the spectral resolution is a function of the maximum achievable value 

of optical path difference (OPD).  This implies that in order to achieve a given resolution over a 

specified wavenumber region all that is needed is to increase the retardation length of the 

scanning mirror; without decreasing the amount of incident radiation probing the sample.  These 

advantages highlight the successes of using Fourier transform infrared spectrometers to make 

infrared vibration measurements.  In the next section, the topic of Surface Enhanced Infrared 

Reflection Absorption Spectroscopy (SEIRAS) will be described before a further discussion on 

infrared sources and time-resolved techniques is presented. 

 

3.6. Surface Enhanced Infrared Reflection Absorption Spectroscopy 

 Surface enhanced infrared reflection absorption spectroscopy (SEIRAS) is a powerful 

internal reflection technique for in-situ spectroelectrochemistry given the strong sensitivity and 

selectivity towards electroactive molecules on or near the surface.  Many of the challenges that 

limit the use of external reflection spectroscopy (i.e. strong background absorption from solvents 

and low sensitivity to adsorbed molecules), can be overcome using SEIRAS techniques.  The 

nature of SEIRAS is very similar to surface enhanced Raman spectroscopy (SERS) in that both 

techniques utilize textured metal surfaces to achieve electric field enhancement effects.14  The 
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various aspects of the theory of SEIRAS and certain experimental considerations will be 

discussed in this section starting with a discussion on the mechanisms responsible for the 

measurable enhancements. 

 

3.6.1. The Mechanism of SEIRAS 

 The largest contributing factor to the SEIRAS phenomena is due to the electromagnetic 

(EM) interactions between the incident light and the molecules on or near a roughened metal 

surface.   To model this effect, Osawa assumed the metal film consists of metal islands 

(evidenced by atomic force microscopy15) and that each island can be represented as a metal 

ellipsoid particle (as shown in Figure 3.6).  If the metal particle is smaller than the wavelength of 

light incident upon it, the particle will become polarized as a result and generate a larger EM 

field around it then the incident light alone.16  It is estimated that this new EM field is 

approximately 10 times larger than the incidence field.17   Added to this effect, an additional 

enhancement occurs when a molecular vibration induces a dipole moment in the metal further 

perturbing the EM polarization of the metal particles.  This perturbation, induced by the adsorbed 

molecules, is only significant at the frequencies of vibrations present in the molecule and is 

negligible everywhere else.  This has the effect of amplifying the molecular vibrations as they 

are mirrored through a change in absorption or reflectance of the metal film.  This is a 

consequence of the absorption coefficient of the metal film being much larger than the molecules 

in the infrared region.  Simply put, the metal particles act as an amplifier of the infrared 

absorption of adsorbed molecules giving rise to the enhancement observed in SEIRAS.  The 

larger the illuminated surface area, the more amplified this effect becomes. 
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Figure 3.6.  Schematic representation of the electromagnetic mechanism of Surface 

Enhanced Infrared Absorption Spectroscopy (SEIRAS) as described by the model developed by 

Osawa.  The dipole, p, generating an electromagnetic field around the particle upon excitation of 

an incident photon and the molecular vibration inducing an addition dipole, δp, in the metal 

island that effect the optical properties of the metal particles at the particular molecular vibration 

frequency. 
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A feature of the enhanced surface EM field around the metal particles is that it is 

essentially polarized along its surface normal as shown in Figure 3.6.  As a consequence, only 

molecular vibrations with a transition dipole moment that is perpendicular to the surface are 

enhanced.  This surface selection rule is important to consider when analyzing ATR-SEIRAS 

measurements and is similar to infrared absorption reflection spectroscopy (IRRAS) in that 

regard.18  To further elaborate on this concept, consider the transition dipole of the adsorbed 

molecule perpendicular to the surface.  This dipole moment will constructively interfere with the 

dipole formed in the metal island upon excitation from the incident radiation and thus provides a 

surface selection rule enhancement for adsorbed molecules.  The distance dependence of this 

SEIRAS enhancement effect is proportional to 1 ⁄଺ݎ  where r is the distance from the dipole 

moment induced in the metal particle.  This is a further reason that the SEIRAS effect is confined 

to molecules adsorbed at the surface and is why SEIRAS is a considered a surface sensitive 

technique.  Utilizing this technique for in-situ spectroelectrochemical measurements has some 

specific and challenging experimental aspects.  The remainder of this section will highlight some 

of these important aspects that were critical for the experimental results presented in Chapters 4 

and 5.    

 

3.6.2. Attenuated Total-Internal Reflection (ATR) 

 An important element in successfully acquiring SEIRAS measurements in internal 

reflection is the attenuated total-internal reflection (ATR) phenomenon.  In ATR, the incident 

infrared beam is directed onto an infrared transparent crystal (internal reflection element; IRE) 

with a relatively high refractive index (i.e. Si: 3.4, Ge: 4.0, ZnSe: 2.4).19,20  The infrared beam 

reflects from an internal surface of the crystal and an evanescent wave is produced that projects 
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orthogonally through the reflecting surface.  This evanescent wave can interact with the metal 

island film placed on top of the reflecting plane and the returning reflected beam measured at the 

detector.  It is important that the angle of incidence is equal to or greater than the critical angle of 

the interface.  If the critical angle is not met, the resulting spectrum could result only from the 

external reflectance.  Both the angle of incidence, and infrared polarization, also plays a crucial 

role in the optimization of SEIRAS measurements and further details will be discussed in a 

subsequent section.   

 For completeness, the penetration depth, ݀௣, of the evanescent wave (defined as the 

distance required for the electric field amplitude to fall to ݁ିଵ) is often discussed when 

considering ATR techniques.  The wavelength dependence on the depth into the sample is given 

by,19,20 

݀௣ ൌ
ߣ

ሺ݊ଵߨ2
ଶ݊݅ݏଶߠ െ ݊ଶ

ଶሻଵ ଶ⁄  
(3.10)

where ߣ is the wavelength of the incident light, ߠ the angle of incidence, and ݊ଵ and ݊ଶ are the 

refractive indices of the crystal and sample respectively.  Typical penetration values for mid-

infrared radiation are on the order of a few microns and demonstrate some level of surface 

sensitivity as a result.  By exploiting this ATR optical geometry, an in-situ 

spectroelectrochemical apparatus can be realized taking advantage of SEIRAS.  A significant 

obstacle, however, in the development of any ATR-SEIRAS setup, is in the grafting of a thin-

metal film to the IRE for suitable surface enhancement. 

 

3.6.3. Preparation of the Thin-Metal Film Electrodes 

 A unique feature of using ATR-SEIRAS for in-situ SEC is that the thin-metal film 

required achieving surface enhancement, serves a double role as it also functions as the working 
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electrode in an electrochemical cell.  In the work presented in Chapter 4 and 5, Au metal films 

were prepared by electrolessly depositing the metal to the surface of the reflecting plane of the Si 

hemisphere IRE.  Aside from the aforementioned technique, vacuum evaporation is another 

means to deposit the metal to the IRE.21  In the case of the vacuum evaporation, a roughly 20 nm 

thick film needs to be slowly deposited onto the IRE to obtain SEIRAS active films.22 

 Recently, methods of electrolessly depositing the thin-metal film on Si and Ge have been 

developed producing stable SEIRAS active films.15  This process is quite a bit more 

experimentally challenging compared to the vacuum evaporation technique, but the resulting 

films produced SEIRAS films were found in this thesis to provide more electrochemically stable 

metal films with more consistently higher infrared enhancement activity.  The process of 

preparing these films consist of exposing the total reflecting plane of the prism (IRE) to a plating 

solution consisting of the desired metal salt and a reducing agent in a buffer.15,23  Higher quality 

films can be obtained by performing the plating at elevated temperatures (~65oC) and by initially 

cleaning the substrate.  For the Si hemisphere IRE used throughout this thesis (25 mm diameter), 

the surface is contacted with a 40% NH4F aqueous solution for a few minutes to remove the 

oxide layer and to terminate it with Si-H.  Ensuring these steps are followed, the thin-films 

produced by electrolessly deposition will have good adhesion and be SEIRAS active 

approximately 80% of the time. 

 The final step in preparing the gold coated Si hemisphere IRE is to electrochemically 

clean the thin metal film.  This is accomplished by running cyclic voltammetry (CV) in 0.5 M 

H2SO4 into the oxidation region of the gold film until a stable CV is produced.  From start to 

finish, the process of preparing the Si IRE with a gold metal film for in-situ ATR-SEIRAS SEC 

measurements is approximately two hours. 
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3.6.4. In-situ ATR-SEIRAS SEC Experiment Considerations 

 An in-situ ATR-SEIRAS SEC experiment first begins by mechanically polishing the 

reflecting plane of the Si hemisphere before electrolessly plating a thin layer of gold on this 

surface.  Once complete, the process of electrochemically cleaning the thin-film is performed in 

the in-situ SEC cell which has been preset in the sample compartment of the FTIR spectrometer.  

This allows for infrared measurements to be taken of the thin film before and after and to assess 

if the film is SEIRAS active or not before continuing on with the desired experiment.  This was 

typically accomplished by analyzing the infrared absorption of water before and after the 

electrochemical cleaning process.    

It is important to mention that once the in-situ SEC cell has been assembled (Figure 3.7), 

with the thin-metal film, due to the design of the cell the thin-film does not survive the 

disassembling process.  In addition, the mechanical stability of the thin-film can be further 

extended by keeping the film under solution and through the careful exchange of any solutions 

thereafter.  With a fully assembled in-situ SEC cell, experiments on the adsorption properties of 

DMAP (Chapter 4) and on the time-resolved kinetics of proton-coupled electron-transfer 

reactions (Chapter 5) can be performed.  Specific details on the experimental parameters used in 

each of these studies are provided in their corresponding Chapters.   

 

3.7. Infrared Light Sources 

3.7.1. Conventional Globar Sources  

Conventional infrared sources found in most modern FTIR spectrometers rely on the 

emission from a blackbody radiator.  Typically, this device is made from a sintered silicon-  
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Figure 3.7. Pictorial representation of the assembled in-situ spectroelectrochemical cell 

used for ATR-SEIRAS measurements. 
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carbide element (trade name Globar®) and heated to a temperature of about 2000 K by passing 

an electrical current through it.  The infrared radiation produced is emitted in all directions and 

must be collected through the use of focusing mirrors before it can be passed through an 

interferometer.   

 

3.7.2. Synchrotron Infrared Radiation Sources 

The brightness of incident light is an important parameter in the determination of which 

source to use for a given experiment.  Brightness, also known as brilliance, is a measure of the 

intensity (i.e. flux emitted into a unit solid angle) for a unit area of the source.  It is independent 

of the distance (but not direction) to the observer and is an intrinsic property of the source.  With 

small samples, higher brilliance incident radiation is desired and some cases necessary in order 

to achieve reasonable signal-to-noise ratios. 

Synchrotron light is produced by the interaction of electrons (or any charged particles, 

e.g. positrons) with a magnetic field as they travel.  During the interaction of the charged particle 

with the magnetic field, energy is lost.  Some of this energy is given off in the form of 

synchrotron light which covers the electromagnetic spectrum from the far infrared to higher 

energy X-rays.  This radiation is given off tangential to the electron’s path in the magnetic field 

and has a high brilliance factor compared to a conventional infrared Globar source.  For this 

reason, synchrotron infrared radiation is highly desirable for applications requiring high 

brightness and demanding spatial resolution.24   

It should be noted that a conventional Globar source usually has a higher photon flux 

than a synchrotron source.  The highly focused light of a synchrotron results in a brightness 
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values that are 2 – 3 orders of magnitude higher than that of a conventional infrared source.  This 

can be seen if we consider the expression for the flux of a blackbody radiator,25 

௕௕ሺ߱ሻܤ ൌ 	
԰߱ଷ

ሺ2ߨሻଶܿଶ
݀߱

݁԰ఠ/௄் െ 1
 

(3.11)

When written in terms of wavenumbers and assuming the emission is into 2π sr (T = 2000 K), 

Equation 3.11 can be simplified to, 

෤ሻߥ௕௕ሺܤ ൌ 6 ൈ 10ିଵହିߥଷ
෤ߥ݀

݁ఔ෥ ଵସ଴଴⁄ െ 1
 

(3.12)

This equation can be compared to the description of synchrotron radiation source, typically 

governed by diffraction limitations in the mid-infrared region as,25 

௦௥ሺ߭ሻܤ ൎ ଶ߭ܫ10ି଼	 ሺܹ	݉݉ିଶିݎݏଵܿ݉ሻ (3.13)

By plotting Equation 3.12 and Equation 3.13 in Figure 3.8 it becomes quite clear that 

there is a significant advantage in using synchrotron radiation over the traditional Globar source 

in terms of brightness.  For this reason, synchrotron infrared radiation is utilized for in-situ SEC 

studies on ultramicroelectrodes in Chapters 6 and 7.  The advancements of in-situ infrared SEC 

techniques for studying fast electrochemical processes require the use of small electrodes to 

minimize the cell-time constant (discussion to follow).  With these smaller electrodes, highly 

focused, very bright infrared sources are required in order to acquire infrared spectra with 

sufficient signal-to-noise to measure small analyte signals.  The advantages of synchrotron 

infrared radiation sources over conventional Globar sources make these measurements possible.   

 

3.8. Rapid-Scan and Step-Scan Time Resolved FTIR Spectroscopy 

 Rapid-scanning spectrometers are limited in the temporal resolution that can be achieved 

by the speed at which the interferometer mirror can be translated.  For instance, the temporal  
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Figure 3.8.  Calculated brightness for a synchrotron infrared radiation source (Canadian 

Lightsource, CLS) and a conventional Globar infrared source.  
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resolution is obtained by looking at the time difference between two successive acquired 

interferograms.  Currently, the fastest conventional interferometers can only achieve 

approximately 100 spectra per second but only at low (10 cm-1) spectral resolution resulting in 

the measurement of time dependent phenomenon on the order of approximately 10 milliseconds.  

Moreover, if better spectral resolution is required, the time resolution must decreases as the 

distance the mirror needs to translate must also increase.  This implies that a fundamental limit in 

the temporal resolution for a Rapid-Scan FTIR spectrometer is essentially the rate of mirror drive 

and the distance needed to travel by the moving mirror and the sampling rate limited by the 

speed of the detector. 

 In contrast, step-scan FTIR spectrometers can obtain a much higher temporal resolution 

as the data collection occurs in a different manner.  In a step-scan measurement, the moving 

mirror is translated (stepped) to a fixed position and held there so that the OPD remains 

temporarily constant.  A reproducible experiment is then initiated and the infrared light intensity 

at that mirror position is recorded at specific time intervals for a given length of time.  The 

mirror is then stepped to the next position, and the repeatable experiment is once again triggered 

and the infrared intensity recorded.  This process of stepping and holding the mirror, then 

triggering the time-resolved event is repeated until the time-varying intensities are recorded for a 

complete set of mirror positions. 

    At the conclusion of the infrared experiment, a two-dimensional matrix of intensity data 

points are analyzed by first rotating the matrix into a series of retardation-spaced intensities 

(interferograms) for different times.  Each of these interferograms corresponds to one of the 

fixed times after the trigger.  The interferograms are then Fourier Transformed into a series of 

time-slice spectra each corresponding to one of the digitization times after the experimental 
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trigger.  The major advantage of the technique is that so long as the process of interest is 

reproducible the achievable temporal resolution is limited only by the detector and digitizer 

electronic bandwidths and not the translational velocity of the mirror.  

 Although the first interferometers, such as those constructed by Michelson were step 

systems, it is more technically challenging to realize a step-scan interferometer than to build a 

rapid-scan system.  The reason for this is ultimately in the precise and accurate control the 

interferometer needs in the movement of the mirror to make a step-scan measurement. 

 

3.8.1. Mirror Stability in Step-Scan Time-Resolved Measurements 

 Another major consideration for time-resolved FTIR step-scan measurements is the 

positional stability of the movable mirror in the interferometer.4,26  For example, if at a given 

mirror position the OPD is not truly fixed, the intensity value at that nominal mirror position will 

introduce significant errors in intensity.  This is especially true near the ZPD where the intensity 

changes occur very rapidly versus the optical path difference.  Such an artifact distorts the entire 

spectrum, as one distorted point affects the entire interferogram.  To minimize these types of 

systematic errors, an active feedback system is often employed into the interferometer and mirror 

translation electronics.  Typically, this feedback system is tied to the HeNe reference laser.4 

  

3.8.2. Step-Scan Electronic Considerations 

The electronic considerations in step-scan time-resolved measurements are an important 

aspect one must consider when designing these experiments.  Ideally, one wants to have 

sufficient time-resolution to measure the process of interest while still ensuring that the available 

hardware can make the desired measurement.  In general, the temporal resolution of the 
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measurement should not be increased beyond this point because as the time resolution of 

measurement is improved, the bandwidth of the detector must be increased.  Degradation of 

signal-to-noise ratios results from unnecessary high measurement speeds because thermal noise 

is proportional to the square root of the bandwidth.  For example, if a 10 kHz process is 

measured with a 10 MHz detection system, the electronic noise level will be 32 times larger 

compared to a 10 kHz measurement.26 

 It is also important to ensure that each of the three essential detection components, 

transducer, preamplifier and digitizer, all have the sufficient bandwidth required to make the 

measurement.  If one component is slower than the rest, it effectively becomes the rate limiting 

component in temporal resolution.  Consideration of the digitization used in the analog-to-digital 

converter to transform the analog signal from the detector to a digital signal for processing is also 

important to note.  In particular, the amplitude of the infrared signal and the bit resolution of the 

device play an important role in the quality of the resulting spectrum.  It is extremely important 

to fill the dynamic range of the ADC without overfilling it.  In the situation where the analog 

signal overfills this range (often called clipping), the measured interferogram and subsequent 

spectrum will be highly distorted as a result.  Converse to this, if the signal is too small, that is 

the digitizer is underfilled, the signal may suffer relative to the bit noise, particularly when the 

optical path difference is far removed from the ZPD, resulting in a noisy spectrum.  The 

experimental conditions under which step-scan FTIR is utilized in this thesis suffered mostly 

from these types of noise problems.   

In order to overcome this, an ADC with a large bit resolution is required which ultimately 

slows down the measurement.  For example comparing an 8 bit ADC and a 16 bit ADC, the level 

of digitization noise with a dynamic range of ±10 V is 78 mV for the 8 bit digitizer and 305 µV 
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for the 16 bit digitizer.  The key point here is that the 16 bit digitizer is 256 times more sensitive 

than the 8 bit digitizer.  For small signals, this becomes very important as it provides a greater 

distinction between the various intensity levels measured at the detector.  However, as previously 

mentioned, with improved bit resolution one typically sees a decrease in the temporal resolution 

and it can be as dramatic as nanosecond time resolution for a low bit digitizer to microsecond 

time resolution for a high bit digitizer (102 - 103 times slower).  

 Typically, when measuring an interferogram, measuring the rapid changes in the intensity 

of the infrared signal measured by the detector is important to producing high quality 

interferograms.  This is achieved by amplifying only those rapidly changing interferogram points 

(electrically speaking the alternating current (AC) component), and by removing the direct 

current (DC) offset of the measured detector signal to maximize the dynamic range of the 

digitizer.  This process is carried out in the pre-amplifier (trans-impedance amplifier), component 

of the detection system.  For continuous scanning FTIR modes, this setup is ideal as the intensity 

on the detector is essentially modulated by the scanning rate of the interferometer which is on the 

order of kHz.  This scheme also works in step-scan measurements if the process of interest 

occurs rapidly and is completed very quickly (i.e. there is large signal perturbation over a very 

short interval).  In the situation where the process of interest initially occurs rapidly but does not 

go to completion for a long time (i.e. 0.5 seconds), this scheme fails as the pre-amplifier is only 

sensitive to large differential changes in the signal and becomes increasingly insensitive to long, 

slowly evolving intensity signals.  This is effectively the situation experienced in the potential 

step measurements made in Chapter 7.  It is therefore necessary to adjust the pre-amplifier to 

maintain the DC signal level measured by the detector through DC-coupling the amplifier.  

Through this method, the long, slowly changing signal intensity measured at the detector can be 
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digitized and used to follow the kinetic event.  However, DC-coupling the detection system, 

means that slow changes in the environment (such as ambient temperature variations) maybe 

convolved with the analytical signal.26,27   

 

3.9. Electrochemical Considerations 

The majority of the electrochemical experimental details have been purposely excluded 

from the discussion in this Chapter as the primary focus of this thesis is on the development of 

the Fourier Transform Infrared spectroscopic measurements to study electrochemical problems.  

Electrochemical concepts required to understand the experimental results are described in each 

individual experimental Chapter.   

 

3.10. Conclusions 

This Chapter has highlighted the background information required to better understand 

the improvements made to various in-situ spectroelectrochemical techniques presented 

throughout this thesis.  An overview of the theoretical framework of Fourier Transform Infrared 

spectroscopy along with descriptions on methods to minimize data collection times while still 

maintaining data quality were investigated.  Two different methods are described to measure 

FTIR time-resolved spectroscopy, rapid-scan and step-scan interferometry and the 

implementation of synchrotron infrared radiation as a highly brilliant infrared source.  In 

addition, a detailed description of Attenuated Total-Internal Reflection Surface Enhanced 

Infrared Reflection Absorbance Spectroscopy (ATR-SEIRAS) for use in in-situ 

spectroelectrochemistry was discussed.  ATR-SEIRAS is an internal reflectance technique 

allowing for the electrochemical study of the structure of the double-layer, adsorption/desorption 
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of molecules or ions, characterization of self-assembled monolayers, and monitoring of 

electrochemical reactions owing to the high surface sensitivity this technique provides.   

 The remaining Chapters of this thesis go into experimental results utilizing the 

information presented in this Chapter starting with the adsorption properties of DMAP on gold 

electrodes and use in-situ ATR-SEIRAS SEC techniques to provide new insight into this 

chemical system. 
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CHAPTER 4 

SURFACE ENHANCED INFRARED ABSORPTION SPECTROSCOPIC STUDIES OF 

DIMETHYLAMINOPYRIDINE (DMAP) ADSORPTION ON GOLD SURFACES 

 

4.1. Introduction 

The molecular adsorption of dimethylaminopyridine (DMAP) on gold surfaces has been 

a subject of electrochemical studies in recent years.1–3  In this Chapter, a description of the initial 

development and utilization of an in-situ spectroelectrochemical system is described.  The results 

are used to provide further evidence and validation of electrochemically derived models of 

DMAP adsorption on gold. 

Corroborating evidence from extra-thermodynamic techniques such as scanning probe 

microscopy or spectroscopic methods can often offer new insight concerning molecular 

adsorption.  For example, in-situ vibrational spectroscopy has emerged as a tremendously 

powerful analytical tool for characterizing thin molecular films at electrode surfaces.4  Surface 

enhanced Raman scattering (SERS) is one such technique that can provide great sensitivity to 

adsorbed molecules.  However, SERS is usually restricted to roughened surfaces of coinage 

metals precluding extraction of information concerning molecular orientation.  In contrast, 

external reflection absorption infrared spectroscopy (RAIRS)5 and sum-frequency generation6 

experiments can be performed on single-crystal smooth electrodes but offer lower sensitivity 

relative to SERS.  In the past decade another technique has emerged, surface enhanced infrared 

absorption spectroscopy (SEIRAS).  Pioneered by Osawa and co-workers,7 SEIRAS has been 

shown to have surface sensitivity over 10 times greater than that of infrared-reflectance 

absorption spectroscopy techniques.  Both SEIRAS and SERS require some degree of surface 
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anisotropy to achieve large electric field enhancements.  Metal electrodes can be prepared 

through repetitive oxidative-reduction potential cycling but result in very rough and ill-defined 

surfaces.8  Alternatively much better defined metal films, consisting of ~100 nm elliptical sized 

islands, can be prepared by vapour sputtering or electrolessly depositing the films onto 

appropriate substrates.  These surfaces have been shown to provide excellent enhancement for 

both SEIRAS and SERS measurements.9,10  Therefore, even though the gold surfaces used in 

SEIRAS experiments are not as polished as single-crystal substrates, such as those commonly 

employed in RAIRS measurements, qualitative and quantitative information on molecular 

orientation can still be extracted.   

The attention by researchers to the adsorption of DMAP stems largely from the reports of 

water-dispersible, DMAP stabilized Au nanoparticles (DMAP-AuNP) first described by Gittins 

and Caruso.11  Unlike thiol stabilized AuNP analogues, the absence of a chemical bond between 

molecule and metal allows for facile ligand exchange on DMAP-AuNP surfaces.12,13  In addition 

to this characteristic, DMAP-AuNP have been shown to be positively charged,3,11,12,14,15 and can 

be further exploited by providing strong electrostatic interactions with oppositely charged 

molecules or substrates.  Utilization of these unique properties have allowed for numerous 

examples in the literature ranging from polyelectrolyte adsorption (layer-by-layer assembly),16–20 

electrochemical sensing,21,22 and DNA templating.23   The demonstration that the basicity of the 

pyridine derivative is an important property in the phase-transfer and stabilization of metal 

nanoparticles was described by Lennox and Gandubert.3  These authors reasoned that DMAP 

(pKb = 4.3) and not pyridine (pKb = 8.7) stabilized MNPs can be prepared because of the 

increased basicity of DMAP due to the presence of its para-substituent.  This suggests possible 

differences between the adsorption behaviour of pyridine and DMAP on metal surfaces.   
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On gold electrodes, it is well known that pyridine undergoes a potential-dependent phase 

transition.  This phenomenon has been explained by the interaction between π electrons and 

negatively charged metal surfaces, causing pyridine to adsorb in a flat-laying, low density 

monolayer.  If the surface is charged positively, the molecules tend to orient to form a more 

compact, vertical layer involving a strong physisorption bond between the nitrogen atom and the 

gold.24   Previous chronocoulometric studies at low pH (ca. 4-5), provided electrochemical 

evidence showing that DMAP follows a similar horizontal-to-vertical transition at potentials 

close to the potential of zero charge (Epzc).
1  This transition also encompasses a near doubling of 

the corresponding surface coverage.  This purely electrochemical study indicated that the 

horizontally adsorbed species was most likely the protonated dimethylaminopyridinium 

(DMAPH+) species rather than the neutral form of the molecule.  Also, during the transition from 

the horizontal to the vertical phase, deprotonation of DMAPH+ was required and was speculated 

to occur even when the bulk solution pH is nearly 5 orders of magnitude below the pKa of 

DMAPH+.  Another important difference between DMAP and pyridine adsorption on gold is the 

tendency of DMAP to adsorb in a vertically oriented higher density monolayer at pH values near 

the pKa.  A final contrast worth noting between DMAP and pyridine physisorption on gold25,26 

occurs at pH values ≥ 9.7.  At this pH, both horizontal and vertical phases are observed for the 

pyridine system whereas in the DMAP system no electrochemical evidence of the horizontal 

adsorption state on polycrystalline gold was found.   

The adsorption model summarized above for DMAP, and its conjugated acid, is the result 

of purely electrochemical studies and is based on the electrostatic models and the 

thermodynamics of adsorption on ideally polarized electrodes.  In this Chapter, the results of in-

situ spectroelectrochemistry on the adsorption behaviour of DMAP and its conjugate acid are 
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discussed.  In a particularly relevant study to this work, Cai et al. employed in-situ 

spectroelectrochemical experimental techniques to study the adsorption of pyridine on an 

Au(111) textured electrodes.27  From their results, they confirm that there is a horizontal to 

vertical transition that had not been forthcoming from previous infrared28 and SERS29 related 

studies.  Herein, SEIRAS studies of DMAP adsorbed on gold films are measured under variable 

pH and electrochemical conditions.  Briefly, the infrared results in basic solution are 

complementary to previous electrochemical studies on the adsorption of DMAP whereas 

measurements at low pH provide new details on the adsorption behaviour of the conjugate acid.   

 

4.2. Experimental 

4.2.1. Reagents, Solutions, and Electrode Materials  

4-(Dimethylamino)pyridine (DMAP) (99%), sodium fluoride (99.998%), potassium 

perchlorate monohydrate (+99%), potassium hydroxide (Semiconductor grade, +98%), 

perchloric acid (70%, double distilled), ammonium fluoride (+98%), ammonium chloride 

(+98%), sodium sulfite (+98%), sodium thiosulfate (99%), and hydrogen tetrachloroaurate III 

(99.9%) were purchased from Aldrich and were used as received. All aqueous solutions were 

prepared from Milli-Q (> 18.2 MΩ cm-1) water or deuterium oxide (D, 99.9%) (Cambridge 

Isotope Laboratories, Inc., Andover, MA), as indicated in the text. Ethanol (95%), used for 

cleaning the silicon hemisphere, was purchased from Commercial Alcohols Inc. (Brampton, ON, 

Canada).  

4-Dimethylamino-pyridinium perchlorate, (DMAP)HClO4,was prepared as per Barlow et 

al.1  Caution: Although the reactivity of (DMAP)HClO4 is not reported, organic perchlorate salts 

similar in nature have the potential to be explosive and should be handled with great care. 
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4.2.2 Electroless Deposition of Gold onto Silicon Hemispherical Prism  

For deposition of gold onto the silicon hemispherical prism, the original procedure 

reported by Osawa et al.30 was followed with the modification described by Delgado et al.9 

Briefly, the reflecting plane of a 25 mm diameter, non-doped, silicon hemispherical prism 

(Harrick Scientific Products, Pleasantville NY, US) was successively polished with finer grade 

diamond suspensions (Leco Corporation, St. Joseph, MI, US) down to 0.5 µm.  The prism was 

then degreased by sonication in ethanol and finally rinsed in Milli-Q water before metal 

deposition.  To remove the oxide layer and to terminate the silicon surface with hydrogen, the 

reflecting surface was left in contact with 40% (w/w) solution of NH4F.  After 4 minutes, the 

ammonium fluoride solution was removed from the crystal, and the crystal was placed in a hot 

55 ◦C water bath.  Immediately, the plating solution containing the Au (5 mg HAuCl4, 0.3 M 

Na2SO4, 0.1 M Na2S2O3, 0.1 M NH4Cl and 2% HF (2:1 in volume)) was added to just cover the 

crystal surface (~1 mL).  After about 10 seconds an Au film appeared and at this point most of 

the plating solution was removed from the crystal and replaced with another aliquot of the 

plating solution.  This process was repeated until all the Au plating solution had been used, or the 

crystal had obtained a metallic gold colour. 

Once completed, the gold deposition was quenched by carefully rinsing the prism and 

thin film with copious amounts of Milli-Q water.  The gold film was then electrochemically 

cycled into the gold oxidation region in 0.5 M H2SO4 electrolyte until stable voltammograms 

were obtained.  Finally, the modified gold substrate was rinsed with Milli-Q water.  
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4.2.3. In-situ spectroelectrochemical SEIRAS Cell 

 The in-situ spectroelectrochemical (SEC) cell was machined from PTFE using a custom 

design to accommodate the necessary experimental and instrument requirements (Figure 4.1).  

Specifically, the cell needed to provide a water-tight seal (with a slight argon gas over pressure) 

to the basal plane of the 25 mm diameter Si attenuated total-internal reflection (ATR) 

hemisphere.  This was accomplished through an O-ring sandwiched between the Si hemisphere 

and a circular groove machined out of the underside of the cell face adjoining the hemisphere.  

PTFE was chosen as the cell material to allow for adequate cleaning and to withstand caustic and 

acidic solutions.  This posed a challenge in that the softness of this material allowed it to be 

easily deformed and as such required additional elements of the overall cell design to include 

aluminum flanges.  

Another important design consideration was the electrical connection to the thin-metal 

film working electrode.  In this scheme, it was decided that a loop of wire would be pressed 

against the thin-film electrode from above, through an access port in the cell lid.  This 

arrangement proved to work sufficiently for these experiments, but was considered to be the 

weakest point in the strategy of this in-situ SEC cell.  In fact, this was the main driving force to 

change the design of the cell after these experiments were completed and these modifications 

will be discussed in the Chapter 5 in detail.       

 With the additional access ports in the cell lid, the counter electrode and various inlet and 

outlet gas connections allowed for in-situ SEC experiments to be performed in an argon 

environment while utilizing a three-electrode configuration through a proper reference electrode 

connected via a salt-bridge in the side of the SEC cell. 
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Figure 4.1. a) Drawing of designed in-situ spectroelectrochemical cell used throughout 

the experiments in this Chapter.  
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4.2.4. Infrared Optical Layout 

 A major obstacle to overcome in the experimental apparatus was providing the necessary 

optics to direct the source infrared radiation into and out of the ATR element at relatively large 

angles (> 60o).   Given the high angle of incidence required to achieve maximum SEIRAS 

enhancements4 and the space within the sample compartment of the Nicolet 6700 Fourier 

Transform Spectrometer, an additional accessory (VeeMax II, Variable Angle Specular 

Reflectance Accessory, Pike Technologies, Inc.; Madison WI, USA) was used and modified to 

provide a platform to support the in-situ SEC cell in a Kretschmann configuration.  This multi-

bounce reflective optical accessory allows for the adjustment of the angle of incidence and 

reflection of the infrared radiation between 30o – 70o with the in-situ SEC cell in place.  In 

addition, the optical path of the infrared radiation also needed to be enclosed to create a carbon 

dioxide (CO2) and water vapour free environment to prevent large interferences in the 

spectroscopic signals measured.  This meant that the entire reflection accessory and in-situ SEC 

cell needed to be compact enough to fit in the predefined sample compartment space of the 

spectrometer.  

 

4.2.5. ATR-SEIRAS Measurements 

All the ATR-SEIRAS measurements were performed using an experimental setup 

adapted from previous reports31,32 and described above.  Electrochemical potential control was 

maintained using a PAR 173 potentiostat and a custom virtual instrument (VI) written in the 

LabVIEW (National Instruments) programming environment.  The electrolyte was deaerated by 

purging with argon gas for 30 minutes, with a continual blanket of argon gas maintained over the 

electrolyte throughout the experiment.  The pH of the electrolyte was adjusted by using either 
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potassium hydroxide or perchloric acid.  All SEIRAS spectra were measured using p-polarized 

incident radiation at 70° with a resolution of 4 cm-1 on a Nicolet 6700 Fourier Transform Infrared 

(FTIR) Spectrometer equipped with a mercury cadmium telluride (MCT) liquid nitrogen cooled 

detector.  The spectrometer was controlled autonomously through custom written macros written 

for the spectrometer control software (OMNIC) and communicated to a LabVIEW VI to control 

the potential of the working electrode in the cell.  All transmission infrared spectra were 

measured similarly to the SEIRAS spectra except at a higher spectral resolution of 2 cm-1.  The 

sample chamber of the spectrometer was purged throughout the experiment using CO2 and H2O 

free air supplied by a Parker Balston FT-IR purge gas generator 75-62 (Parker Hannifin 

Corporation, Haverhill, MA). 

 

4.2.6. Differential Capacity Measurements 

Differential capacity (DC) measurements were performed in an all-glass cell using the 

working electrode positioned on the electrolyte surface in a hanging meniscus configuration or 

with the electrode immersed in the electrolyte. The working electrodes used were; a gold coated 

silicon wafer prepared identically to the ATR element, a polished polycrystalline gold, and 

finally an Au (111) single crystal.  In all cases a coiled gold wire served as the counter electrode, 

and a KCl saturated Ag/AgCl electrode was used as the reference electrode.  The pH of the 

electrolyte (50 mM KClO4) was adjusted to pH 9.7 using KOH and electrolyte solutions were 

deaerated by purging with argon for a minimum of 30 minutes prior to an experiment.  During 

the experiments, an argon blanket was maintained over the solution to prevent air from 

interfering with the electrochemical measurements.  The DC was calculated by measuring the in-

phase and out-of-phase currents arising from the superposition of a 5 mV s-1 direct-current 
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potential sweep and an alternating-current perturbation (5 mV rms at 25 Hz) assuming a resistor-

capacitor equivalent series circuit.  Measurements were carried out at room temperature, 20 °C, 

using a SRS730 Lock-in Amplifier (Standford Research Systems, Sunnyvale, CA) and a HEKA 

Potentiostat PG590 (HEKA, Mahone Bay, NS, Canada).  A more rigorous explanation of 

differential capacity measurements is provided elsewhere.33 

 

4.3. Results and Discussion 

4.3.1. Electrochemistry 

In this section, a description of the SEIRAS data for DMAP adsorption on gold films 

electrolessly deposited on a Si ATR element will be discussed.  In order to compare previous 

electrochemical data concerning DMAP adsorption and the results of this study, it was first 

necessary to determine the crystallography of the chemically deposited gold films.  Previous 

reports in the literature have claimed that Au films thermally evaporated on Si provide (111) 

textured surfaces,9,27,31 and it would be beneficial to know the orientation that results from 

electrolessly depositing Au on the Si ATR substrates.  This was accomplished by 

electrochemical methods, in particular differential capacity measurements, of various gold 

substrates in pH 9.7 electrolyte solutions containing a formal DMAP concentration of 0.1 mM.  

From Figure 4.2 one can see the positive going differential capacity curves for a polished 

polycrystalline gold electrode (solid line), an Au(111) single crystal (dotted line), and finally a Si 

wafer coated by a thin Au layer by chemical deposition as described in the experimental section 

of this Chapter (dashed line).  The Au(111) single crystal electrode shows several differences in 

the adsorption behaviour of DMAP compared to the smooth polycrystalline electrode.  One can  
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Figure 4.2. Differential Capacity (DC) measurements for various gold substrates with 0.1 

mM formal DMAP concentration in 50 mM KClO4 (pH 9.7, adjusted using KOH): a polished 

polycrystalline gold electrode (black), a single crystal Au(111) electrode (blue), and a gold 

coated (electrolessly as described in the Experimental section) Si wafer (red).  
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see that there is a pseudocapacitive peak which is interpreted as the onset of molecular 

adsorption and occurs at E ~ -600 mV for DMAP.  The polycrystalline gold electrode also has 

this peak, however, it is superimposed on a much broader pseudocapacitive feature which is 

centered at E = -600 mV.  The DC curve for this electrode shows a potential-independent 

capacitance after the initial adsorption and agrees with previous studies that model the adsorption 

of DMAP as a single state for polycrystalline gold at high electrolyte pH.1   In contrast, the 

corresponding curve for the Au(111) electrode shows a distinct phase transition peak at E = 0 

mV.  The presence of this peak is somewhat remarkable implying that even at high pH, multiple 

states of adsorption for DMAP can occur on Au(111) but not on Au polycrystalline surfaces.   

The adsorption behaviour of pyridine has been extensively studied using a variety of gold 

single crystal electrodes and has shown a dependence on which low-index surface is exposed to 

the electrolyte solution.24  The differential capacity results presented in Figure 4.2 imply that the 

adsorption behaviour of DMAP also depends on the surface crystallography of the gold 

substrate.  With these distinct adsorption behaviours of DMAP on polycrystalline and Au(111) 

electrodes, one should be able to explain some of the  DMAP adsorption characteristics on the 

chemically deposited Au coated Si substrates.  The adsorption pseudocapacitive peak of DMAP 

on gold coated silicon occurs at E = -600 mV which registers nearly identically to the position 

described as the adsorption peak for DMAP on Au(111).  This result implies that the surface is 

slightly preferentially (111) oriented.  On the other hand, the phase transition peak at E = 0 mV, 

which is very pronounced for the single crystal, is only weakly apparent on the deposited Au 

film.  The low intensity of this peak on Au coated silicon in contrast to Au(111) can be 

rationalized by the fact that discontinuous Au(111) domains on the Au coated silicon result from 
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the chemical deposition and make the phase transition less distinct compared to a perfect 

Au(111) crystal.  

 

4.3.2. Infrared Absorption Spectroscopy of DMAP 

An important aspect to any in-situ spectroelectrochemical measurements is an 

understanding of the spectral response of the electrochemical species of interest.  This 

information can usually be inferred by theoretical means and with this information a meaningful 

analysis of the acquired spectral data can be described.  Figure 4.3 shows the infrared absorption 

spectra of DMAP and (DMAP)HClO4 measured using a simple KBr pellet (commonly used 

transmission method) and also in aqueous solutions in conjunction with an uncoated Si ATR 

element (internal reflection method).  A summary of the assignments (both in solid state and in 

solution) of the various measured infrared bands for DMAP and DMAPH+ are presented in Table 

4.1.  Based on experimental and theoretical work performed by Kozhevina et al.,34,35 the point 

group of DMAP is Cs as there is a slight divergence from a planar molecule due to the methyl 

groups.   The important modes of vibration can be generally assigned to vibrations in the 

dimethylamino group and in-plane distortions of the pyridine ring.  The normal modes of 

vibration for DMAP can be divided into both A’ and A’’ symmetry classes displaying overall 

transition dipole moments oriented collinear with the mirror plane (A’) and orthogonal to the 

mirror plane (A”), respectively.  Computational work done by Kozhevina and Rybachenko show 

that upon protonation a positive charge delocalizes in the heterocycle which leads to a positive 

shift in the vibrational frequencies involving the stretching vibrations of the C-C and C-N bonds 

found within the pyridinium ring.34,35  It is not surprising that this is also  
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Figure 4.3. Top panel: Absorbance infrared spectra of a) DMAP and b) DMAPH+ 

measured in KBr pellets.  Bottom panel: Absorbance spectrum of concentrated aqueous 

DMAP(H+) solutions in ATR mode at c) pH 11 and d) pH 3.5.  In all cases the FTIR spectra 

were measured with 2 cm-1 resolution.   
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Table 4.1.  Assignments of Infrared Vibrational Bands for DMAP and DMAPH+ 

Measured in a KBr Pellet and in Aqueous Solution 

 

DMAP (dimethylaminopyridine) Infrared Vibrations 

mode description symmetry
DMAP  

(KBr Pellet) 
DMAP (solution, pH 11) 

ring distortion + C-N stretch A’ 1605 cm-1 (vs) 1609 cm-1 (vs) 

ring distortion A” 1540 cm-1 (shp) n/a 

ring distortion A’ 1520 cm-1 (b) 1534 cm-1 (m,b) 

methyl-group bending A’ 1447 cm-1 (s) 1447 cm-1 (w) 

C-N single bond stretch A’ 1385 cm-1 (s) 1385 cm-1 (w) 

 

DMAPH+ (dimethylaminopyridinium) Infrared Vibrations 

mode description symmetry
DMAPH+•ClO4 

(KBr Pellet) 
DMAP (solution, pH 3.5)

ring distortion + C-N stretch A’ 1647 cm-1 (vs) 1652 cm-1 (vs) 

ring distortion A” 1590 cm-1 (sh) n/a 

ring distortion A’ 1564 cm-1 (b) 1569 cm-1 (2) 

methyl-group bending A’ 1446 cm-1 (m) 1445 cm-1 (w) 

C-N single bond stretch A’ 1404 cm-1 (m) 1405 cm-1 (w) 

 

*vs, very strong; s, strong; m, medium; b, broad; shp, sharp; sh, shoulder; n/a, band not observed. 
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known to occur in DMAP.36,37  Given that the in-situ SEIRAS SEC measurements will be 

measured in aqueous electrolytes, understanding any differences seen between solution and 

solid-state measurements is valuable to the overall understanding of the spectral response of 

DMAP.   

The measurements in solution, taken at pH 11, (Figure 4.3) reveal four principal peaks 

corresponding to the A’ bands seen in the solid state.  However, there is a noticeable difference 

between the two measurements with the apparent loss of the weaker A” mode in the 

corresponding solution phase spectrum and that the position and relative intensities of the bands 

are slightly different.  The slight shifts in the measured position of the bands in the two sets of 

spectra are attributed to solvation effects and the fact that the frequency of ATR absorption 

bands are dependent of the refractive index of the sample as well as the penetration depth, dp.
38   

The relative intensities also differ and can be explained by not having corrected ATR spectral 

data for the differences in path length and depth of penetration, dp, of the evanescent wave.    

Another prominent feature seen in Figure 4.3 is the shift in spectral band position 

between the low and high pH forms of DMAP.  At low pH, 3.5, almost all the bands shift to 

higher frequencies expect for the peak at 1447 cm-1.  The attributed reason is that this band is 

associated with the bending modes of the methyl group and is not influenced by protonation of 

the endocyclic nitrogen.  The effect of pH was further explored by analyzing the dependence of 

the peak positions and intensity as performed via a titration of the solution phase DMAP.  In 

Figure 4.4 the magnitude of the integrated intensities of the bands appearing at 1652 and 1609 

cm-1 are plotted as a function of pH.  These bands demonstrate a change in intensity but there 

was no shift in their positions.  The sigmoidal shape of the curves in Figure 4.4 clearly exhibit  
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Figure 4.4.  Scaled integrated intensities of the 1652 and 1609 cm-1 infrared vibration 

bands in the ATR infrared spectra of aqueous DMAP solutions as a function of pH. 
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the expected shape for a simple acid/base titration curve and provide a pKa value of 10.  This is 

in good agreement with the reported value of 9.7 for DMAPH+.20,39 

 

4.3.3. In-situ Spectroelectrochemistry SEIRAS  

The in-situ ATR-SEIRAS SEC experiments on the adsorption behaviour of DMAP were 

performed at two pH values, 10 and 4.5, to analyze both acid and base forms of the molecule.  In 

these experiments, the acquisition of 128 single beam infrared scans at a reference potential was 

followed by immediately stepping to a variable potential of interest.  Before the collection of 128 

scans at the new potential, a two minute wait time was used to allow the system to reach 

adsorption equilibrium.  After stepping back and forth between the reference potential and 

several variable potentials (-800 mV < E < 500 mV) the resulting data set consisted of a family 

of reference and variable potential spectra.  In order to increase the signal-to-noise in these 

experiments, four data sets were collected to provide a total of 512 single beam measurements.  

This limited the time at the reference potential for each measurement to extend the life of the thin 

metal layer deposited on the Si hemisphere.  Once collected, an average was calculated based on 

the entire set of data before subtractively normalizing the averaged spectra as follows, 

∆ܵ
ܵ
ൌ
ሺܵ௏̅஺ோ െ ܵோ̅ாிሻ

ܵோ̅ாி
 (4.1)

where ܵ௏̅஺ோ and ܵோ̅ாி are the average of 512 individual single beam signals at the variable and 

reference potentials respectively.  The net result of these calculations is that a negative-going 

peak in the processed data set indicates an increase in that particular vibrational mode.  This can 

be the result of either a greater density of vibrations (i.e. more molecules) or an increased 

alignment of that particular mode’s transition dipole moment with respect to the surface normal  
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Figure 4.5. Subtractively normalized SEIRAS data for 0.1 mM formal DMAP 

concentration in 50 mM NaF (pH 10, adjusted using KOH) as a function of potential.  The 

reference potential, EREF, for this set of data was -800 mV (vs Ag/AgCl).  There were a total of 

512 co-added scans for each potential step, EVAR.  
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of the electrode.  Conversely, a positive-going infrared peak indicates a diminishment of that 

vibrational mode.   

In Figure 4.5, one can see the results of these calculations for 0.1 mM DMAP species in 

pH 10, 50 mM supporting electrolyte.  In this data set, the reference potential, EREF, was  

-800 mV versus Ag/AgCl where DMAP species are completely desorbed from the electrode 

surface.1  At variable potentials, EVAR, more negative than -400 mV versus Ag/AgCl, the 

difference spectra are featureless and indicate that the surface remains surfactant free.  However, 

with potentials -400 mV and greater, the data reveal four downward-going bands appearing at 

1389, 1446, 1538 and 1623 cm-1 respectively.  The most pronounced of these is at 1623 cm-1 

which is slightly convoluted by the superimposition of a very broad, positive adsorption.  This 

bimodal feature arises from the displacement of water molecules, which have a strong absorption 

at 1640 cm-1, from the surface by the adsorption of DMAP.  The position of the remaining bands 

at 1389, 1446 and 1538 cm-1 are in accordance with the A’ modes described earlier (Figure 4.3) 

at pH 11 and provides a strong indication that the absorbed species is vertically aligned, 

deprotonated DMAP molecules.  This result was previously inferred from electrochemical 

measurements1 but the SEIRAS data provides supporting molecular structure information.  

Determination of whether the highest frequency absorption band is related to either DMAP or 

DMAPH+ is initially problematic, as this band appears in-between the protonated and 

deprotonated forms observed from the measured transmission spectra (see Table 4.1).  From the 

literature and recalling that this vibration is very strongly coupled with a symmetric ring 

deformation mode, it would be expected that this mode will be blue-shifted as the lone pair of 

electrons on the pyridine ring coordinate to the metal surface.  This type of shift to higher 

frequencies has also been reported for pyridine upon N-bonded adsorption on Au(111).27,28,40,41  
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From this information, all four bands in the spectroelectrochemical data at pH 10 (Figure 4.5) are 

interpreted to be the corresponding A’ modes of the deprotonated form of the DMAP molecule.  

The relative intensities of these signals are found to increase with increasingly positive potential.  

To demonstrate this, in Figure 4.6 a plot of the normalized integrated intensities for the 1538 and 

1623 cm-1 infrared bands versus electrode potential was prepared.  To provide a means to 

compare the electrochemical data, the differential capacity curve for 0.1 mM DMAP on Au 

coated Si has been overlaid.  There was no special reason for the integration of just these two 

bands other than they provided the strongest signals.  In fact, the integration of the 1389 and 

1446 cm-1 peaks provides qualitatively identical results but with larger scatter (data not shown) 

due to the lower signal-to-noise ratio of these bands.  Briefly, a higher DMAP surface coverage 

corresponds to a lower measured capacity, and as one can see in Figure 4.6 there is good 

correlation between the electrochemical and the integrated spectroscopic signals for E > -200 

mV.  The increase in the infrared signal intensity is congruent with the observation of a limiting 

capacity value of ~10-11 µF cm-2.  The maximum infrared signal occurs at a measured potential 

of E = 200 mV following which the signal begins to decrease.  The DC curve reveals something 

analogous as the capacity begins to increase at potentials greater than 200 mV.  This 

phenomenon is attributed to the onset of competitive hydroxide adsorption on the electrode 

surface in high pH solutions which will displace some of the DMAP molecules.  The strong 

consistency between the electrochemically measured DC curve and the in-situ SEC 

measurements for E > -200 mV provides excellent corroborating evidence for vertically oriented 

DMAP adsorbing on gold surfaces at this pH.  However, there are some minor discrepancies 

between the onset of a very broad pseudocapacitive peak in the differential capacity data and the 

initial appearance of infrared signal intensity.  The lack of an infrared signal in the potential  
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Figure 4.6. Scaled integrated intensities for the infrared vibration bands at 1538 (○) and 

1623 (□) cm-1 as a function of the electrode potential.  Superimposed on these plots is the 

measured differential capacity (DC) curve for 0.1 mM DMAP (formal concentration) on the Au 

coated Si wafer at pH 10.  
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range -700 mV < E < -500 mV may imply that even at pH 10, the DMAP species may initially 

adsorb horizontally on the surface.  In an earlier electrochemistry study, it was observed that this 

pseduocapacitive peak (associated with the horizontal-to-vertical phase transition), shifts 

cathodically with increasing pH by approximately 60 mV pH-1.  At pH 10, this peak would 

correspond to the shoulder clearly visible on the positive side of the adsorption pseudocapacity 

peak (Figure 4.6).  As horizontally adsorbed DMAP species are invisible due to the surface 

selection rules of ATR-SEIRAS, the narrow potential window between the initial adsorption and 

phase transition would explain why no infrared signal is measured until approximately E ≥ -400 

mV. 

Another metric to provide further evidence of an end on, vertical orientation of the 

DMAP molecule is the change of the peak position as a function of potential.  Although, as 

previously mentioned, the band appearing at 1445 cm-1 is potential invariant, the remaining three 

bands shift to higher frequencies, with increasing potential.  Similar potential induced shifts in 

infrared vibrations have been observed for many adsorbates, particularly CO adsorption on Pt 

surfaces.42  There are two commonly cited mechanisms for this observation, the first is the Stark 

effect and the second is a charge-transfer model.43  The Stark effect involves the coupling 

between a potential induced electric field and the polarizablity of electrons in the adsorbate 

molecule.  In contrast, the charge-transfer model is based on changes in the bonding structure of 

the adsorbate related to changes in the charge density on the electrode.  In Figure 4.7 plots of the 

peak position versus electrode potential for the nominally 1623, 1538 and 1390 cm-1 bands are 

shown to elicit further information about the adsorption orientation of DMAP.  A simple linear 

equation was used to fit each data set.  The slopes for the 1623 and 1538 cm-1 infrared bands 

were similar at 7-8 cm-1 mV-1, whereas 1391 cm-1 has a smaller potential dependence  with a  
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Figure 4.7. Peak position as a function of applied potential for the three strongest A’ 

modes (infrared vibrational bands) of DMAP from Figure 4.5 at pH 10: a) 1623 cm-1, b) 1538 

cm-1 and c) 1391 cm-1. 
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slope of 4.5 cm-1 mV-1).  For comparison, the A1 ring vibration mode found in pyridine has 

demonstrated a 5-6 cm-1 mV-1 dependence28 and has been cited as arising from either a weak 

Stark effect or a change-transfer effect resulting from the electron donation via the nonbonding 

orbital located on the nitrogen atom.  Two vibrations (1623 and 1538 cm-1) are strongly coupled 

to the nitrogen present in the pyridine ring, whereas the 1391 cm-1 vibrational band primarily 

involves the C-N stretch.  If the Stark effect is involved in the potential induced shifts, the rapid 

drop of the electric field across the inner Helmholtz plane of the electrical double-layer should 

provide a greater Stark shift to the end of the molecule closest to the surface of the electrode.  

Qualitatively, there is a larger potential-induced shift in the ring-dependent modes (1623 and 

1538 cm-1) compared to those of the C-N vibration (1391 cm-1) and provides further indications 

that DMAP adsorbs vertically on the Au surface through its endocyclic nitrogen at high pH and 

at potentials greater than -400 mV. 

More insight into the adsorption behaviour of DMAP/DMAPH+ in low pH electrolytes 

was desired and was further analyzed by in-situ ATR-SEIRAS SEC techniques.  These 

measurements were performed in 50 mM KClO4 + 0.1 mM (DMAP)HClO4 with the pH adjusted 

to 4.5 using high purity HClO4.  As a previous electrochemical study suggested that there is a 

greater possibility that both DMAP and DMAPH+ signals will be present on the surface at these 

conditions, H2O was substituted with D2O to remove any potential solvent absorptions.  This 

avoids convolution of the H-O-H deformation signal, ~1640 cm-1, with the 1653 cm-1 signal from 

DMAPH+ and the 1623 cm-1 signal from DMAP respectively.  In Figure 4.8, one can see the 

results of these measurements once again using a reference potential, EREF, of -800 mV versus 

Ag/AgCl.  This reference potential was chosen based on previous differential capacity 

measurements which indicated that the electrode is surfactant free at these potentials for low  
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Figure 4.8. Subtractively normalized SEIRAS data for 0.1 mM formal (DMAP)HClO4 

concentration as a function of applied potential.  The 50 mM KClO4 electrolyte was adjusted to a 

pH of 4.5 using double-distilled HClO4.  There were 128 co-added scans for each infrared 

measurement using a reference potential, EREF, of -800 mV (vs Ag/AgCl). 
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solution DMAP concentrations.  However, using this reference potential was slightly 

problematic as there is a significant amount of hydrogen evolution at -800 mV in pH 4.5 

electrolytes.  This hydrogen evolution reaction (HER) led to the deterioration of the thin gold 

films deposited onto the Si ATR element.  This effect has also been commented on by Osawa et 

al.27  As a consequence of this, repeatedly stepping into the HER to acquire a reference 

spectrum, resulted in slight changes in the optical response of these films from one data set to the 

next.  As such, although replicate measurements are qualitatively identical, co-addition and 

averaging of large numbers of multiple data sets had the deleterious effect of decreasing the 

signal-to-noise ratio.  Consequentially, the spectra in Figure 4.8 correspond to only 128 scans 

rather than 512 scans. 

From previous electrochemical studies, a proposed adsorption model had horizontally 

adsorbed DMAPH+ at potentials negative of the potential of zero charge, EPZC, which underwent 

a transition to vertically oriented DMAP with E > EPZC.  As the surface selection rules for 

SEIRAS render the horizontally adsorbed DMAPH+ invisible it was speculated that the acquired 

spectra for the pH 4.5 experiments would be featureless for E < -200 mV and would show 

negative going bands for E > -200 mV (similar to the previous measurements performed at pH 

10).  However, the subtractively normalized data in Figure 4.8 indicates the appearance of two 

positive-going bands (1643 and 1559 cm-1) starting at E = -700 mV.  These bands increase in 

intensity with increasing positive potential to E = -300 mV versus Ag/AgCl.  The frequency of 

these peak centers indicate that these signals are arising from the protonated DMAPH+ ion.  One 

will notice that these infrared signals are potential-dependent and demonstrate a shift in 

frequency compared to Figure 4.5.  The positive direction of these bands qualitatively describes a 
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decrease in either the concentration of the molecule or a change in alignment (relative to the 

surface normal), of DMAPH+.    

Starting at E ~ 300 mV, new negative infrared bands appear in the subtractively 

normalized spectra at 1622, 1538 and 1390 cm-1, producing pronounced bimodal features for the 

A’ vibrational modes.  The frequency of these negative-going bands strongly indicates that they 

correspond to the neutral DMAP molecule as they are nearly identical in position to the bands 

seen in the high pH experiment.  Although only visible over a short range of potentials, the 

negative-going infrared band signals show a clear Stark effect as seen by a shift to higher 

frequencies with increasing positive potentials.  In contrast, the peak positions of the positive 

modes in Figure 4.8 do not shift with potential.  In order to rationalize the presence of the 

positive-going bands, one can surmise that the chosen reference potential (EREF = -800 mV) did 

not correspond to a state of complete surface desorption as originally suspected.  Considering the 

electrode surface is highly negative at EREF, it is speculated that the DMAPH+ ion is held 

electrostatically to the electrode surface with a vertical orientation to maximize charge 

compensation.  Then, when the potential is stepped to more positive values, the magnitude of the 

negative surface charge density decreases and the DMAPH+ ions adopt a lower coverage, 

horizontally oriented state of adsorption.  In this model, one can accept that the charged 

molecules will switch from being infrared active at the reference potential to infrared inactive in 

the adsorbed state (-700 mV < E < -200 mV).   This would then explain both the appearance of 

the positive-going bands and the absence of a Stark shift associated with these bands in Figure 

4.8.  Moving to more positive potentials, the sign of the surface charge density will then switch 

from negative to positive and will result in the deprotonation of DMAPH+ ions which reorient 

vertically on the surface.  Compared to the reference potential state of electrostatically bound,  
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Figure 4.9. Scaled integrated intensities of the positive-going 1643 cm-1 band (□) and the 

negative-going 1623 cm-1 vibrational band (○) as a function of applied potential.  Plots are 

superimposed on differential capacity (DC) measurements of 0.1 mM DMAP (formal 

concentration) on an Au coated Si wafer at pH 4.5 (black). 
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vertical ions, this would equate to a loss of DMAPH+ signal and the appearance of negative-

going bands corresponding to the now adsorbed DMAP molecule.  This conversion of adsorbed 

DMAPH+ to DMAP also explains the bimodal character of the infrared bands seen in Figure 4.8 

for E > 200 mV. 

In Figure 4.9, the absolute integrated infrared band intensities for the positive-going 1643 

cm-1 band and the negative-going 1623 cm-1 band are plotted as a function of electrode potential.  

Superimposed on this plot is the corresponding differential capacity curve for this system.  One 

can see from this figure that the 1643 cm-1 band plateaus in intensity at E ~ -300 mV correlated 

with the onset of the 1623 cm-1 signal and the region of potentials with the lowest capacity in the 

DC curve.  This latter point is convincing evidence that in acidic electrolytes, deprotonated 

DMAP molecules are still adsorbed onto Au surfaces at positive potentials.  The intensity of the 

1643 cm-1 band begins to increase at potentials corresponding to the first pseudocapacity peak in 

the DC curve (E ~ -650 mV) and plateaus at the onset of the second pseudocapacity peak (E ~ -

250 mV).  The implication of this is that the first pseudocapacity peak represents the vertical ion 

to horizontal ion transition of the DMAPH+ ion rather than the onset of molecular adsorption as 

was originally inferred from previous electrochemical studies.  The fact that the area under the 

1643 cm-1 band does not plateau until -300 mV indicates that between -700 mV < E < -300 mV 

the electrode is covered by a mix of both phases of DMAPH+ ion orientations.  However, at 

more positive potentials, the positively charged molecular ion is completely absent from the 

surface. 
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4.4. Summary and Conclusions 

In summary, this Chapter illustrates the successful demonstration of in-situ SEC ATR-

SEIRAS to obtain infrared spectra of DMAP and its conjugate acid, DMAPH+, adsorbed on gold 

surfaces.  The application of this in-situ SEC technique has allowed for the collection of high 

quality data as evidenced by the excellent signal-to-noise ratios obtained and through the large 

magnitude peaks observed in the subtractively normalized data.  As a result, further evidence and 

new insight concerning the adsorption behaviour of DMAP and DMAPH+ has been obtained.   

The electrolessly prepared Au film used for the SEIRAS measurements was analyzed 

electrochemically and indicated that the gold surface is preferentially (111) oriented but the size 

of these domains is still probably quite small.  The net result of these films is a surface that 

shows intermediate behaviour between a well-ordered (111) single crystal and a polished 

polycrystalline electrode.   

The infrared data at high pH (pH 10) show large potential-dependent absorption signals 

that correspond to the various A’ ring deformation modes of the DMAP molecule but no 

evidence of modes corresponding to its conjugate acid.  These results confirm the existence of a 

monolayer of vertically oriented DMAP molecules over a very wide range of double-layer 

potentials.  Experiments performed at pH 4.5 show infrared signals that arise mainly from the 

base form of DMAP despite the fact that in the bulk of solution this species exists exclusively in 

the form of the conjugate acid.  However, there are no infrared features observed until E > 200 

mV even though the differential capacity data clearly indicate that DMAP species are adsorbing 

on the surface between -600 mV < E < -100 mV.  This is consistent with the model previously 

inferred from purely electrochemical measurements of a horizontal-to-vertical reorientation of 

DMAP species.  Due to the surface selection rules, direct infrared measurements of horizontally 
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absorbed DMAP (or DMAPH+) are prohibited and therefore conclusive evidence to verify this 

phase transition cannot be made from infrared measurements alone.  Nonetheless, the infrared 

data offers no contradicting evidence to this model and tacitly supports a potential dependent 

horizontal-to-vertical transition with a pH 4.5 electrolyte aqueous solution.  The in-situ infrared 

measurements also confirm that at relatively positive potentials (and corresponding positive 

surface charge densities) a deprotonation of DMAPH+ occurs upon the adsorption onto the Au 

surface.  This result implies that the metal (Au) – electrolyte interface pKa of DMAPH+ is 

considerably different compared to the bulk of solution.  Although this perturbation of the acidity 

of a molecule at a surface is well-known,44–46 the DMAP system is an excellent example of how 

the electrical state of the interface may also perturb the acid/base behaviour of surface bound 

molecules.   

An unexpected result was also obtained from working in low pH electrolyte solutions 

with in-situ infrared measurements.  The presence of positive going bands from the A’ 

vibrational modes of dimethylaminopyridinium reveal that the DMAPH+ ions are still adsorbed 

on the electrode surface at very negative potentials presumably due to an electrostatic attraction.  

This last result was not entirely forthcoming from previous electrochemical studies (differential 

capacity and chronocoulometry), and highlights the power of combining electrochemical 

measurements in-situ with molecular spectroscopic techniques in revealing new information 

concerning interfacial adsorption at electrified interfaces.  Chapter 5 of this thesis builds upon 

the successes of this work by moving towards more experimentally challenging methods than 

those presented here.  While continuing to use the internal reflection ATR-SEIRAS apparatus 

described here, the molecular structure and electrochemical properties of proton-coupled 

electron-transfer (PCET) kinetic processes will be examined.    
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CHAPTER 5 

CHARGE TRANSFER AND SERIAS STUDIES OF 1,4-BENZOQUINONE 

FUNCTIONALIZED MIXED MONO/DITHIOL SELF-ASSEMBLED MONOLAYERS 

 

5.1. Introduction 

 This chapter builds on the work from the previous chapter by moving from measuring 

equilibrated electrochemical systems to measuring dynamic electrochemical processes.  This 

increases the complexity of the collection and processing of infrared data but provides a 

foundation to start studying more complicated electrochemical systems, in particular 

electrochemical kinetic processes.  The work presented here still utilizes internal reflection 

geometry optics and a slightly improved in-situ spectroelectrochemical cell compared to the one 

described in the previous chapter.  The main instrumental challenge presented here was in the 

development of Rapid-Scan (continuous mirror drive) FTIR spectroscopic techniques including 

the interfacing needed to automate the collection of replicate measurements for improved signal-

to-noise.  In this chapter, time-resolved information concerning proton-coupled electron transfer 

(PCET) redox reactions on modified self-assembled monolayers (SAMs) is obtained using 

Rapid-Scan FTIR spectroscopy.  A chemically modifiable SAM was reacted with an 

electroactive moiety, namely 1,4-benzoquinone.  The resulting surface bound quinone terminated 

SAM was then used to study the thermodynamics and kinetics of PCET reactions.  The gathered 

infrared data on formal potential and the time-resolved calculated heterogeneous rate constants 

agree well with those measured using strictly electrochemical techniques. 

Redox active self-assembled monolayers (SAMs) provide an excellent platform for the 

study of electrochemical charge transfer processes and specifically for the development of time-
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resolved ATR-SEIRAS methodologies.  Distinct advantages of studying surface confined redox 

centers includes the removal of mass transfer limitations and the ability to manipulate 

heterogeneous electron transfer rates through control of the spacer thickness separating the redox 

center from the electrode surface.  Simply modifying the length1–6 and chemical nature of the 

thiol backbone spacer7–12 has been found to be particularly useful for determining the mechanism 

of electronic coupling between substrate and redox center as well as verifying Marcus theory 

predications.4,13,14  One such electrochemical system is the benzoquinone 

(BQ)/hydroxybenzoquinone (HBQ) terminated SAM.  This system has been extensively 

studied8–11,15–27 and is of particular fundamental interest owing to the importance of quinone 

moieties in biological28 and industrial29 processes.  Unlike simple electron transfer redox 

couples, the reduction of BQ to HBQ in aqueous solutions involves the coupled transport of both 

two electrons and two protons (2e-2H+).  The theoretical treatment of the observed apparent 

heterogeneous rate constants dependence on pH is based on either a step-wise mechanism 

(discrete proton and electron transfer steps)30–35 or a concerted mechanism (simultaneous transfer 

of both forms of charge).36–40  A modification to the step-wise mechanism was described by 

Finklea41 to handle PCET processes confined to an electrode surface.   

Based on previous work42,43 a procedure to form a nearly ideal electroactive BQ 

monolayer by covalently attaching 1,4-benzoquinone (BQ) to a pre-formed amine terminated 

monolayer via Michael addition was developed in our laboratory.44  This system provides 

minimal heterogeneity and Nernstian responses at very slow voltammetric sweep rates and was 

used to demonstrate that the resulting aminobenzoquinone terminated monolayer exhibits two-

electron, three-proton step-wise PCET electrochemical reaction.45  Although this 

aminobenzoquinone system is an excellent model system for electrochemical determination of 
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formal potentials and charge transfer rate constants, it was found that the monolayer suffered 

from a gradual loss of electrochemical activity, presumably due to C-N bond hydrolysis.  A more 

robust chemical linkage is preferable in order to minimize these losses as they would greatly 

affect the signal-to-noise ratio of the time-resolved infrared measurements.  

  In this Chapter mixed monolayers of nonanedithiol (NDT) diluted in octanethiol (OT) are 

first prepared before the covalent tethering (bonding) of 1,4-benzoquinone through a Michael 

addition to the free thiol terminus.  Highly facile and nearly quantitative yields have recently 

been reported for similar reactions involving freely dissolved thiols and benzoquinone in 

aqueous solution46,47 and as demonstrated in this Chapter these reactions can also be extended to 

surface confined reactions.  Furthermore, unlike the amino functionalized monolayers, the 

reaction with the thiol terminated SAM does not require elevated temperatures which simplifies 

their preparation.  This method of preparing a quinone terminated SAM provides a more stable 

redox active monolayer than the aminobenzoquinone system, albeit with an increase in the 

heterogeneity of the redox center microenvironments.     

The greater robustness of this preparative method has allowed the extension of kinetic 

and thermodynamic methodologies beyond voltammetry and chronocoulometry to coupling in-

situ ATR-SEIRAS to characterize these redox active monolayers.  Herein, the agreement 

between thermodynamic (apparent formal potentials) and kinetic (apparent heterogeneous rate 

constants) parameters obtained from purely electrochemical (cyclic voltammetry, 

chronocoulometry) and in-situ spectroelectrochemical SEIRAS techniques are reported.  
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5.2. Experimental 

5.2.1. Chemicals, Reagents and Gold Substrate Preparation 

Octanethiol (95%), 1,9-nonanedithiol (95%), NaClO4·H2O (> 99%), Na2HPO4 (ACS 

Grade), NaH2PO4 (ACS Grade) and HClO4 (Ultrahigh Purity Grade) were all purchased from 

Sigma–Aldrich and were used as received.  Ethanol (95%) was purchased from Commercial 

Alcohols Inc. (Brampton ON, CA).  1,4-Benzoquinone (BQ) (Alfa Aesar, < 98%) was purified 

by sublimation at a slightly elevated temperature (37 0C) before use.  All aqueous solutions were 

prepared from Milli-Q (> 18.2 MΩ cm-1) water.  The procedure for fabricating the 

polycrystalline bead electrodes from gold wire (Alfa Aesar, 99.99%) has been described 

elsewhere.48 Prior to incubation, the polycrystalline gold bead working electrodes were cleaned 

by immersion in piranha solution (3:1 H2SO4:H2O2) for a minimum of 30 minutes and then 

rinsed copiously with Milli-Q water.  The electrodes were flame annealed and quenched with 

Milli-Q water immediately before use. Details on the deposition of a thin-layer of gold onto the 

silicon ATR hemispherical prism was described in some depth in the previous chapter (Chapter 

4, Experimental Section). 

 

5.2.2. Self-Assembled Monolayer Preparation 

The cleaned gold substrates were incubated in 3 mM octanethiol (OT) ethanolic solutions 

for 5 hours before being rinsed thoroughly with ethanol.  Subsequently, the gold substrates were 

incubated in ethanolic solutions containing 3 mM 1,9-nonanedithiol (NDT) to afford partial 

place-exchanged monolayers.  After 15 minutes of the place-exchange process, the substrates 

were rinsed with ethanol and finally rinsed with Milli-Q water before being exposed to an 

aqueous solution of ~10 mM 1,4-benzoquinone for 18 hours at room temperature.  Finally, the 
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quinone-terminated modified gold substrates were rinsed with copious amounts of Milli-Q water 

before performing any given experiment. 

 

5.2.3. Electrochemical Measurements 

A three-electrode arrangement was used to analyze the electrochemical features of the 

modified gold substrate SAMs.  These measurements were performed in an all-glass sealed cell 

connected to the external reference electrode (Ag/AgCl, saturated KCl) via a salt bridge.  The 

counter electrode was a loop of gold wire flame annealed before every experiment.  All the 

glassware used for an experiment were heated in a mixture of concentrated H2SO4 and HNO3 

(2:1 by volume) and then rinsed and soaked overnight in Milli-Q water prior to an experiment.  

The electrolytes used were de-oxygenated with argon before the introduction of the working 

electrode and a continual blanket of argon was maintained over the electrolyte for the duration of 

all electrochemical experiments.  Cyclic voltammetric and chronocoulometric measurements 

were made using a computer controlled system with software written in the LabVIEW (National 

Instruments Corporation, Austin, TX, USA) environment, consisting of a HEKA Potentiostat 

PG590 (HEKA, Mahone Bay, NS, Canada) with data collected using a multifunction DAQ card 

(PCI 6251 M Series, National Instruments Corporation, Austin, TX, USA).  The electrochemical 

techniques used in this Chapter are briefly described below.  A more detailed description of these 

techniques can be found elsewhere.49 

 

5.2.3.1. Cyclic Voltammetry 

Cyclic voltammetry (CV) involves the measurement of a current (i) as a varying DC 

electrical potential (E) is applied to an electrode using a potentiostat.  The applied electrode 
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potential ramps linearly, between two set points, as a function of time at a specific scan rate (mV 

s-1).  In a three-electrode electrochemical cell, the potential is applied between the reference 

electrode and the working electrode and the current is measured between the working and the 

counter electrode.  The measured data is then typically plotted as current (i) versus potential (E).   

 

5.2.3.2. Chronocoulometry 

As its name implies, chronocoulometry (CC) is the measurement of charge (Q; 

coulombs) as a function of time.  CC is a controlled-potential technique and uses a potential step 

waveform. An experiment typically starts at a specific potential, EREF, and held there for a 

sufficient duration so that the interface reaches an equilibrated state.  The potential is then 

changed “instantaneously” (stepped) to a value, EVAR, that drives an electrochemical process 

such as the oxidation of a surface bound molecule.  During this step to EVAR the current is 

continuously recorded and then integrated to obtain the charged passed.  In a single potential step 

experiment, the potential step sequence is repeated albeit with a new choice of EVAR.  In a double 

potential step experiment, a second current transient is recorded during a subsequent potential 

step prior to a return to the base potential, EREF.   The data is typically plotted as a function of 

measured charge (Q) versus the applied potential, EVAR. 

 

5.2.4. Improved In-situ spectroelectrochemical SEIRAS Cell 

 As briefly described in the previous chapter (Chapter 4, Experimental) a major challenge 

in the reliability of the in-situ spectroelectrochemical cell was the physical contact to the thin-

film gold working electrode deposited on the Si ATR hemisphere.  When attempting to make the 

electrical contact to the thin metallic-film, the loop of Au wire frequently scratched the Au 
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coated Si hemisphere and electrical contact was lost.  In order to improve reliability, the in-situ 

spectroelectrochemical cell was redesigned in such a way to allow three conductive springs to be 

compressed against the thin-metal film outside the electrolyte solution.  Figure 5.1 is a computer 

model of the improved cell design.  The cell was still constructed out of PTFE and aluminum and 

was designed to be more modular to allow for a variety of different experiments.  Once again an 

O-ring was used to seal the cell against the basal plane of the Si ATR hemisphere prism.  The 

design still allowed for a reference electrode (Ag/AgCl, saturated KCl) to be connected through a 

glass salt bridge.  With several ports built into the lid of the cell, purge gases and access for the 

coiled Au counter electrode could still be achieved. 

 

5.2.5. In-situ Spectroelectrochemical Measurements 

All in-situ measurements were performed in the spectroelectrochemical cell described above and 

arranged in the inverted Kretschmann attenuated total internal reflection (ATR) configuration (as 

described in the Experimental section of Chapter 4).  Potential control was maintained using a 

HEKA PG590 potentiostat and custom software written in LabVIEW.  The electrolyte was 

deaerated by purging with argon for 30 minutes prior to an experiment and a continual blanket of 

argon was maintained over the electrolyte throughout the duration of an experiment.  All ATR-

FTIR spectra were measured using p-polarized incident radiation at 60o with respect to the 

normal of the ATR element.  A Nicolet Nexus 870 Fourier Transform Infrared (FTIR) 

Spectrometer equipped with a mercury cadmium telluride (MCT) liquid nitrogen cooled detector 

was used to make the IR measurements at a resolution of 4 cm−1.  This particular spectrometer is 

capable of working in rapid-scan mode with an approximate minimum time per interferogram of 

77 milliseconds at 4 cm−1 resolution.  The sample chamber of the spectrometer was purged using 
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Figure 5.1 Computer Aided Drafting (CAD) drawing of the modified in-situ 

spectroelectrochemical cell used throughout the experiments in this chapter.   

 

O‐Ring to seal around 

Si Hemisphere 

O‐Rings to seal 
the different cell 

sections 

Salt‐Bridge 
Electrolyte 

Cavity

Working Electrode 
Spring Contacts 

Al 
Flanges 

Al 
Flanges 

Al 
Flanges 

PTFE Body 

PTFE 
Body 

Access Ports 

SiO
2
 

View Port 

25 mm 

25 mm



118 
 

CO2 and H2O free air supplied by a Parker Balston FT-IR Purge Gas Generator 75-62 (Parker 

Hannifin Corporation, Haverhill, MA, US). 

 

5.2.6. In-situ Spectroelectrochemical Kinetic Measurements 

To perform the kinetic SEIRAS experiments, it was necessary to trigger the start of the 

infrared spectra measurements simultaneously with the change in the working electrode potential 

upon a step to the formal potential, E0.  To repetitively achieve this, the spectrometer was 

triggered using the commercially available Nicolet Start-Accessory and custom written 

LabVIEW software synchronizing the potential step and commencement of infrared data 

collection.  In these kinetic experiments, 8 interferograms were measured at 4 cm−1 resolution 

and binned into 1.3 second intervals with total data acquisition times lasting 120 seconds.  In 

order to build adequate signal-to-noise ratios for these infrared measurements, this process was 

repeated 128 times providing a total of 1024 co-added spectra for each 1.3 second time interval.  

It is important to note that as the rate of mirror drive in a Fourier Transform instrument is 

increased, the signal-to-noise is decreased.  As a result, a relatively higher number of scans are 

required to achieve suitable signal-to-noise from the collected data. 

 

5.3. Results and Discussion 

5.3.1. Mixed Monolayers 

To prepare a thiol terminated, mixed monolayer system on gold the literature provided 

several different reported techniques including passive incubations of neat 1,9-nonanedithiol 

(NDT) solutions in various solvents,50–52 electrochemical methods (potential assisted 

deposition),53–56 and passive place exchange incubations.57  However, dithiol monolayers formed 
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through passive incubation and subsequently exposed to BQ were found to exhibit poor 

electrochemical responses.  The weakly discernible and unstable voltammetric signal with very 

large peak was not desirable for further experimentation.  Furthermore, there is a significant 

decrease in peak current intensity with each potential cycle.  This is interpreted as evidence of 

physisorption of BQ mixed in the aliphatic hydrocarbon matrix of the SAM’s alkane backbone 

rather than the desired chemical attachment of BQ to the ω-functionalized monolayer.  The 

absence of a chemical linkage to the BQ is most likely caused by the propensity of both thiol 

headgroups of the same NDT molecule to attach to the gold substrate which has been reported 

elsewhere.58  There was only minimal improvement observed when deoxygenated organic 

solvents were used52 for the passive incubation of NDT monolayers.  Another approach was to 

use a potential assisted deposition method reported by Rifai et al.53,54 which was very successful 

but proved to be quite cumbersome to implement, especially when working with gold thin films 

used in the SEIRAS in-situ SEC cell.  The final approach, which provided the best results, was to 

build a mixed mono/dithiol monolayer formed by passive place-exchange method.   

Firstly, the gold substrate was incubated in an alkane thiol (octanethiol, OT, 1 mM) for 

five hours affording a well ordered SAM.  This was followed by a short incubation in 1,9-

nonanedithiol (NDT, 10 mM).  The choice to use OT was made on the basis of the relative 

lengths of OT and NDT.  Assuming a fully extended hydrocarbon region, NDT will be 

physically longer than OT by the length of a methylene and thiol unit which ensures that the 

resulting mixed SAM has a readily exposed thiol group, accessible for the addition of the 

electroactive quinone moiety.  This method provided monolayers with the best reactivity towards 

BQ and as a result was exclusively used for the electrochemical and infrared measurements 

throughout the remainder of the discussion in this Chapter.  
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To monitor and analyze the incubation process of the SAMs, SEIRAS measurements 

were taken before and after the incubation of the NDT to confirm that the place-exchange 

reaction had taken place.  Figure 5.2 is the resulting plot of the normalized difference spectrum 

(as discussed in Chapter 4), ∆ܵ ܵ⁄ ൌ ሺܵ௏஺ோ െ ܵோாிሻ ܵோாி⁄  with SREF and SVAR representing the 

single beam signals for the monolayer before and after the place exchange reaction.  Four major 

infrared absorption bands are present, two upward going bands (2874 and 2972 cm-1) and two 

downward going bands (2853 and 2922 cm-1).  The two upward going bands are associated with 

the symmetric and asymmetric C-H stretching modes of the CH3 moiety (of the octanethiol) and 

the two downward bands are for similar modes in the CH2 group.59–61  It is clear that during the 

place exchange process there is a loss of signal from CH3 groups and a gain in signal from the 

CH2 groups.  This expected decrease in the number density of methyl groups at the surface 

qualitatively confirms the success of the place exchange reaction of OT with NDT as methyl 

groups are replaced with –CH2-SH moieties.  Conversely, the place exchange process leads to a 

gain in the number of CH2 groups present at the surface indicating the addition of NDT to the 

monolayer.  One should also expect to see a downward going back associated with the thiol (S-

H) functional group but due to the weak absorption cross-section of S-H, such a band was not 

observed. 

With the mixed mono/dithiol SAM grafted to the thin gold films, electroactive quinone 

functionalization of the free thiol endgroup was achieved through a Michael-like addition with 

1,4-benzoquinone.  The end product of this reaction should be the reduced form (i.e. 

dihydrobenzoquinone) of the redox center; however, Budavari et al. have shown that the 

negative shift in the reduction potential for the tethered species results in its oxidation by excess 

free benzoquinone in the incubating solution.42,43  Cyclic voltammetric experiments clearly   
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Figure 5.2.  Infrared normalized difference spectrum of the CH stretching vibration 

region demonstrating the changes to the self-assembled monolayer after the place exchange 

reaction has taken place.  The reference spectrum is the octanethiol-SAM before the place 

exchange reaction. 
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demonstrated that this system could be readily toggled between its two redox states and that it 

was amenable for various electrochemical and (in-situ) infrared experiments.  It was of interest 

to estimate the initial loading of the quinone electroactive moiety on the mixed monolayer to 

determine how successful and active the quinone coupling was.  A series of independent 

electrochemical experiments determined the ratios of the charge associated with the reductive 

desorption of the mixed thiol monolayer (in the absence of quinone) and the charge passed in the 

quinone redox reaction.  These measurements indicated that the ratio was (0.95 ± 0.5):1.  

Assuming one electron transfer for thiol reduction and two electron transfer for quinone 

electrochemistry, it is estimated that the initial loading of benzoquinone to be approximately 

50%. 

 

5.3.2. Electrochemical Characterization 

As previously mentioned, the stability of the amino-quinone SAM was a concern for the 

expected long duration of the time-resolved infrared experiments but could be greatly alleviated 

by using thio-quinone linkages.  Comparisons of the stability of the two systems were measured 

through a series of cyclic voltammetric (CV) experiments for both the amino-quinone and thio-

quinone SAM modified electrodes.  The procedure used for the preparation of the amino-quinone 

modified electrode was described elsewhere.44  From the CVs collected for each separately 

prepared electrode, a ratio of the peak height from a given scan to the first scan is plotted in 

Figure 5.3 to illustrate the stability of the BQ electrochemical activity.  In both cases one can see 

that there is some loss in the electrochemical response of the quinone moiety during each CV 

scan cycle; however, this loss is more substantial for the amino-quinone system.  After nearly 

one hour of continuous potential scanning, the loss of signal from the thio-quinone based system 
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was only 5% compared to the nearly 33% attenuation observed in the amino-quinone system.  

This loss of electrochemical activity is speculated to arise from the hydrolysis of the C-N bond 

linkage.  As a further point of comparison, the amino-quinone system was found to be 

completely unstable at pH > 9.  This finding suggests that the C-S bond in the thio-quinone SAM 

has a greater degree of resistance to the hydrolysis of the linkage bond compared to that of the C-

N bond in the amino-quinone SAM. 

After successfully devising a method to reproducibly build electroactive BQ modified 

SAMs on gold substrates, the system was characterized through a variety of electrochemical 

techniques to elicit information about the kinetics of the PCET process.  To start, CVs of the 

system in 5 mM phosphate buffers of various pH were measured.  To ensure common ionic 

strength of all the electrolyte solutions used, these phosphate buffered solutions were prepared 

using an excess of NaClO4 (100 mM).  Figure 5.4 depicts typical CVs of three separately 

prepared electrodes in the different pH ionic strength balanced electrolytes.  The CVs in all cases 

were background corrected by removing capacitive currents measured due to the charging of the 

double layer.  From the CVs in Figure 5.4, one will notice a shift in peak position as a function  

of pH which is well-known for electrochemical systems that involve proton-coupled electron 

transfer. 

The kinetics of this BQ-SAM system were prepared to be extremely slow by adjusting 

the separation between the redox moiety and the electrode surface.1–6  An effect of this is that it 

makes it very difficult to ensure equilibrium is reached on the time scale of the potential sweep 

in a CV measurement, even at slow scan rates.  As an alternative to ultraslow potential scanning, 

chronocoulometric techniques were employed with the following potential step sequence.  The 

working electrode was initially biased at a rest potential, EREF, ~200 mV negative of the formal 
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Figure 5.3. Relative stability of the electrochemical anodic peak measured in cyclic 

voltammetric experiments at 10 mV s-1 for an amino-quinone and thio-quinone self-assembled 

monolayer systems.  The electrolyte was the same for both (5 mM NaPBS, pH 5, 100 mM 

NaClO4) with the potential scanning between ± 500 mV from the formal potential, E0’. 

 

 

 

 



125 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. (a) Cyclic voltammograms (CV) of the benzoquinone self-assembled 

monolayer (BQ-SAM) system in 5 mM NaPBS, 100 mM NaClO4 buffered electrolyte solutions 

at a scan rate of 10 mV s-1.  The CVs have been normalized by peak area. (b) Normalized 

Faradaic charges of BQ-SAM in the same electrolytes described in (a).  The inset in (b) is the 

potential step-sequence.  The downward arrows indicate the transient measured edges. 
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potential (roughly determined by CV), E0’, for 5 seconds to ensure all BQ moieties were in their 

fully reduced redox state.  The potential was then stepped to a variable potential, EVAR, and held 

for 300 seconds, well beyond the time required for the system to reach equilibrium.  After this 

set time, the potential was immediately stepped back to EREF and the current transient was 

measured and numerically integrated to provide the difference in the total charge, ΔQ, between 

EREF and EVAR.  This potential step sequence was repeated using increasingly positive values of 

EVAR over a few hundred millivolt potential range.  From these measurements of ΔQ, the 

background charge, associated with any capacitive processes, was subtracted leaving only the 

Faradaic charge, qF, associated with the BQ moiety’s redox activity.  A detailed description of 

the background correction procedure is described elsewhere.44  Similar to the CV results, one can 

see from Figure 5.4 that there is the expected analogous shift in the formal potential to more 

positive values with decreasing pH (-60 mV pH-1).  This dependence on pH with the formal 

potential was theoretically treated by both Laviron31 and Finklea41 for a two electron two proton 

electrochemical reaction and is in excellent agreement with these experimental results.  The 

chronocoulometry measurements allow a more accurate means to determine the apparent formal 

potential by fitting a sigmoidal function to the data and numerically differentiating the resulting 

curve to provide the apparent formal potential.   

Figure 5.5 plots the formal potential, E0’, as a function of electrolyte pH for BQ modified 

SAMs in phosphate buffered electrolyte.  The data presented in this plot is a compilation of two 

different electrochemical techniques and one in-situ spectroelectrochemical technique (to be 

discussed later) and are averages of 3-5 replicates per point.  As demonstrated in this plot, a best 

fit line through the data points has a slope of -63 mV pH-1 in the pH range 1-10.  The results are 
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Figure 5.5. The formal potential, E0’, of the benzoquinone self-assembled monolayer 

(BQ-SAM) system measured in 5 mM NaPBS, 100 mM NaClO4 variable pH electrolytes using 

different techniques.  Cyclic voltammetry values were determined from measurements made at a 

scan rate of 10 mV s-1.  Chronocoulometry (CC) values were determined from numerical 

differentiation of the baseline corrected charge data.  Infrared (IR) values from integrated peak 

areas of the carbonyl vibrational band (1660 cm-1). 
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comparable to within 5% error between the three different experimental techniques used to 

determine the formal potential (CV, CC and in-situ SEIRAS SEC).  For completeness it is noted 

that there is the presence of an inflection point in the data at pH ≥ 10.  This change in slope is 

predicted by Laviron32 to be due to a difference in the number of protons transferred during the 

PCET step for quinone based electrochemical systems.  

One will notice from Figure 5.5 that there are no data points for the chronocoulometry 

results below pH 5.  As the pH of the electrolyte solution is decreased, the formal potential shifts 

to more positive potentials.  Eventually, the potential shifts to a point where the interferences due 

to background currents become substantially more difficult to accurately remove.  This was also 

true, but to a lesser extent, for the CVs measured at these pHs causing the results to be slightly 

less reliable. The measured shift in formal potential can be explained using Laviron’s theory of 

coupled proton electron-transfer,31 which was later modified by Finklea for monolayer systems.41  

The slope calculated from the data points in Figure 5.5 are consistent with the expected shift in 

the formal potential (-60 mV pH-1).  An important note is that the infrared measurements are not 

hindered by these limitations and provide an alternate approach to calculate the formal potential 

of this system.   

 

5.3.3. In-situ Spectroelectrochemical Results 

Two fundamentally different in-situ spectroelectrochemical experiments were used to 

examine the thermodynamic and kinetic aspects of the prepared BQ modified SAMs.  As 

previously mentioned, in-situ SEC measurements were made to determine the formal potential of 

the BQ-SAM as a function of pH.   This was accomplished by using a set of normalized 

difference spectra calculated for the BQ modified SAM with a constant reference potential and 
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varying a series of stepped potentials.  The chosen value for the reference potential was several 

hundred millivolts negative of the estimated formal potential (approximated from the CV data) to 

ensure only the reduced form of the BQ moiety existed on the electrode surface.  After the 

application of the potential step, a delay of appropriate duration (300 seconds, i.e. the same value 

used in the CC measurements) was implemented before collection of the infrared spectra to 

ensure the interface was equilibrated.  Representative data showing the ΔS/S measured 

difference spectra for pH 3 are shown in Figure 5.6.  It is known that when BQ undergoes a 

PCET reaction that the molecular structure of the electrochemically active moiety changes in 

accordance with Scheme 5.1.  Upon the oxidation of 1,4-dihydroxybenzoquinone to 1,4-

benzoquinone there is a loss of two hydroxyl (OH) groups which are transformed into two 

carbonyl (C=O) functional groups.  The carbonyl vibrational stretch provides an intense (sharp 

and strong) signal in the infrared at ~1660 cm-1 and provides an excellent molecular marker for 

the redox state of the quinone moiety.  One can see from Figure 5.6 that the carbonyl stretch 

progressively increases in intensity (i.e. becomes a more pronounced negative going peak) with 

increasing positive potential.  An important note (as previously discussed in Chapter 4) is that 

this region of the infrared spectrum is usually complicated by the presence of a strong water 

absorption band due to an H-O-H deformation mode at 1640 cm-1.  To verify that the observed 

intense infrared signal in Figure 5.6 was in fact due to the carbonyl and not due to water, a 

similar experiment was repeated in a D2O based electrolyte.  From this experiment, the infrared 

band at 1660 cm-1 did not show a large shift in wavenumber that would be expected if the peak 

was associated with a change from H2O to D2O solvents.  Parallel to the changes in the carbonyl 

signal, a decrease in the benzene ring breathing stretch and single bond C-O stretch are expected 

upon oxidation of the redox center.  These spectral features should appear as upward going bands 
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at approximately 1450 cm-1 and 1200 cm-1, respectively.26  While the latter is below the cut-off 

frequency for the Si ATR element and as a result not measurable, inspection of Figure 5.6 shows 

that only at the most positive potentials is there a very weak upward signal at ~1460 cm-1.  It is 

possible that the lack of a pronounced signal be attributed to the loss of the HBQ arises from 

changes in the molecular orientation upon oxidation of the redox center.  If the reduced HBQ is 

aligned in such a way that the principle C2 molecular axis of the quinone moiety is roughly 

parallel to the reflecting plane, then surface selection rules render both the benzene ring stretch 

and the C-O stretching infrared modes inactive.  Correspondingly, no apparent loss of these 

associated infrared signals will be measured upon oxidation.  In contrast, the strong signals 

arising from the carbonyl stretches indicate that the BQ must have an orientation perpendicular 

to the gold surface.  The weak change observed in Figure 5.6 for the CH stretching region (2850 

cm-1 to 3000 cm-1) provides additional evidence that there is a potential dependent distortion of 

the hydrocarbons which would be consistent with molecular rearrangement within the SAM 

upon oxidation. 

The intensity of the carbonyl infrared band increases with potential until reaching a 

plateau.  To quantify this result, the integrated infrared band associated with this stretch is 

plotted as a function of potential for a variety of pHs in Figure 5.6.  From this Figure, the data 

points for a given pH were fit to a sigmoidal function and the formal potential, E0’, was 

determined from the inflection point.  As the potential is stepped through the formal potential, 

there is a rapid change in the C=O stretching region similar in shape to the calculated charge 

from the chronocoulometry experiment.  Between pH 1-11 there is some variation in the width of 

the sigmoidal curves (Figure 5.6b) which is attributed to the different extents of heterogeneity 

from monolayer to monolayer.        
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Figure 5.6. (a) Infrared normalized difference spectral data for the benzoquinone self-

assembled monolayer (BQ-SAM) system in 5 mM NaPBS (pH 3), 100 mM NaClO4 supporting 

electrolyte.  The reference potential, EREF, was -250 mV vs Ag/AgCl and each spectra is 

comprised of the co-addition of 1024 scans.  (b) Normalized carbonyl (C=O) vibrational peak 

areas associated with the BQ-SAM at different pH values and potentials.  Electrolytes were 

prepared at different pHs using 5 mM NaPBS and 100 mM NaClO4. 
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Scheme 5.1.  Changes in molecular structure of 1,4-benzoquinone under proton coupled 

electron transfer (PCET) reactions.  
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However, one should notice that the data for pH 1 has an appreciably larger width indicating that 

at very low pH, longer wait times are required to ensure that the system is measured at 

equilibrium conditions as the system is much slower.  As will be discussed in the next section, 

this is consistent with the decrease in the standard rate constant with decreasing pH.  

 

5.3.4. Proton Couple Electron Transfer Kinetics  

The debate on the charge transfer mechanism for proton-coupled electron transfer 

electrochemical reactions has been active over the last few decades and includes step-wise13,30–

35,62 and concerted mechanisms.36–39  A means to measure and assess aspects of Nernstian like 

systems (that follow the Nernst equation) is to look at the full-width half maximum (FWHM) of 

a redox peak measured by CV.  For instance, for a two electron Nernstian system, it is expected 

that the measured FWHM should be 45 mV.63  However, in the case of these prepared BQ-

SAMs, the FWHM of the redox peaks was typically measured to be ~100-150 mV.  A plausible 

explanation for this is that there are a multitude of local environments (microenvironments) 

surrounding each quinone moiety, each having various Frumkin interactions.  These 

microenvironments are a likely result of the place exchange process involving the dithiol 

molecules and their tendency to form island domains in alkane SAMs.57  These dithiol domains 

allow for an increase in the interactions between neighbouring redox-centers and could possibly 

result in double-tethering of the quinone centers to the monolayer.42,43  The net result is a breadth 

of kinetic behaviour as previously demonstrated by electrochemical measurements. 

Given that these BQ terminated SAMs do not behave in an ideally Nernstian manner, 

obtaining details of the PCET mechanism becomes rather complicated.  Details, however, on the 

pH dependence of the apparent rate constant, ks,app, for this reaction will be determined through 
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several electrochemical methods and highlight collaborating evidence acquired with in-situ 

spectroelectrochemical techniques.  The apparent rate constant can be determined, as shown by 

Laviron, by studying the redox peak separation at varying scan rates.62  This technique has seen 

extensive use in the literature as a means to measure ks,app.  This method necessarily assumes that 

the transfer coefficient for the process is potential independent which Finklea has argued is not 

the case for PCET occurring in monolayer systems.41   

To minimize and prevent errors three different experimental techniques were employed 

based on: cyclic voltammery (CV), chronocoulometry and finally by in-situ 

spectroelectrochemistry.  All three methods will measure the apparent standard rate constant of 

this BQ-SAM system on measurements at or very near the formal potential, E0’.  The first 

method used to obtain the rate kinetics was developed by Finklea et al. based on data obtained 

from CV measurements.13,64  Briefly, the Faradiac current, iF, is isolated from the double-layer 

charging currents by subtracting the non-Faradiac currents from the measured CVs.  The charge 

is then found by integrating these background corrected CVs.  At the apparent formal potential, 

the apparent standard rate constant can now be calculated using the following equation, 

݇௦,௔௣௣ ൌ
݅ி

ி,௧௢௧௔௟൫1ݍ െ 2߯ఎୀ଴൯
 (5.1) 

where ߯ఎୀ଴ is the fraction of BQ moieties reduced or oxidized in the cathodic or anodic sweep to 

the formal potential.  For each CV the above equation was then used to calculate, ks,app for both 

the forward and reverse potential scans with the average value reported herein. 

To study the kinetics using chronocoulometric methods, the double-step experiment 

described previously was modified as follows.  A potential, EREF, ~200 mV more negative than 

the formal potential was first applied to the working electrode to afford a fully reduced 

monolayer of BQ moieties.  The potential was then stepped to the formal potential, E0’, and held 
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for a variable amount of time, tVAR.  At this point, the potential was then stepped back to EREF 

and the current transient measured.  Once this measurement was completed, another set of 

potential steps were applied to the system in order to provide a means to correct for the slow loss 

of quinone as the experiment proceeded.  This was accomplished by stepping the potential 200 

mV more positive than the formal potential to now fully oxidize the BQ moieties.  Finally upon 

stepping the potential back to EREF the current transient is once again measured.  This process is 

repeated numerous times with changes to tVAR to longer times up towards a final time of 300 

seconds.  The collected transient data is first corrected by subtracting the charge associated with 

background process and then normalized by using the charge obtained when stepping from the 

formal potential to the fully oxidized BQ moieties.  These results are then plotted (Figure 5.7) as 

a function of time.  This data can then be fit to an exponential function to extract the average 

apparent standard rate constant of the redox centers.  Again, due to the multitude of 

microenvironments surrounding each electroactive center only the average heterogeneous rate 

constant can be calculated. 

Finally, an alternative approach to using purely electrochemical techniques to measure 

the heterogeneous rate constant is to use an in-situ time-resolved infrared spectroscopic method.  

Here, the infrared data was collected during a potential step from a reference potential to the 

apparent formal potential, as described in more detail in the experimental section of this Chapter.  

From this data, the infrared peak intensity at 1660 cm-1 is numerically integrated, normalized and 

plotted with respect to time (Figure 5.7).  Exponential fitting of this data can then be used to 

measure the rate of formation of BQ.  A comparison of kinetic data obtained with 

chronocoulometric and IR measurements is shown in Figure 5.7.  There is some discrepancy 

between the chronocoulometric and in-situ SEC data.  This difference is attributed to the slow 
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Figure 5.7. Comparison between a purely electrochemical technique, double-step 

chronocoulometry, and in-situ spectroelectrochemistry for the determination of the 

heterogeneous rate constant, ks,app.  Electrolytes of the two pH values were prepared from 5 mM 

NaPBS and 100 mM NaClO4.  Inset depicts the potential step-sequence used to make the 

chronocoulometric measurements.  Downward arrows indicate the potential step edges where the 

transient data was measured.  
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loss of the quinone signal over the long experiment times required to make the time-resolved  

infrared measurement; whereas, the modified double-step chronocoulometric potential sequence 

provides a way to account for the slow loss of quinone from the monolayer.  To qualitatively 

verify this, independent electrochemical experiments were measured using CVs before and after 

subjecting the electrode to the exact same conditions implemented with the infrared 

measurements.  Through this, it was determined that roughly 15-20% of the quinone is lost over 

the time period required to make the infrared measurements which will perturb the signal 

transients such as those shown in Figure 5.7.  In general, the evolution of the spectroscopic 

signal closely resembles that of the charge-based signal but is perturbed by a systematic error 

due to slow losses in the amount of surface quinone. 

The heterogeneous rate constants obtained for each of the three methods, as a function of 

pH, have been superimposed for comparison in Figure 5.8.  One will notice that above pH > 5 

the agreement between the three techniques is very good but at low pH there is more scatter 

between the various techniques.  It becomes increasingly more difficult to accurately subtract the 

background signal for both the CV and chronocoulometry methods at low pH as the redox 

potentials of the quinone moiety begin overlapping with non-analytical signals most likely due to 

the onset of the oxidation of the Au-thiol bond.  This is particularly problematic in the CV 

method where the slow electron transfer kinetics mandate that relatively large overpotentials are 

applied to the electrode for long periods of time to observe the quinone electrochemistry at the 

scan rates required ( ≥ 1 mV s-1).  Accounting for the background currents is further 

compromised by the asymmetry of the apparent transfer coefficient.  This result is demonstrated 

by significantly broadening and poorer defined anodic peaks compared to that of the cathodic 

peak; this increases the error in the rate constant as determined by the method described by 
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Figure 5.8. Plot of the heterogeneous rate constant, k,s,app, determined by the three 

different measurement techniques (two purely electrochemical and one using in-situ 

spectroelectrochemistry).  The values were determined for a series of different pH electrolytes 

made from 5 mM NaPBS and 100 mM NaClO4 for the benzoquinone self-assembled monolayer 

(BQ-SAM) system. 
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Finklea et al. and becomes quite noticeable at low pHs.  The infrared technique is not affected by 

this limitation and the apparent rate constant for the PCET process can be measured with equal 

degree of accuracy over the entire pH range.  In general, the heterogeneous rate constants 

measured using solely electrochemical techniques closely resemble those calculated 

spectroscopically.  This result indicates that this in-situ molecular spectroscopic technique is as 

accurate as the electrochemical measurements in determining ks,app.  Figure 5.8 also demonstrates 

that the rate constant appears to have an overall linear dependence on pH.  This strongly deviates 

from the expected theory for a two-electron, two-proton step-wise PCET which predicts that the 

shape of Figure 5.8 should be more consistent with a “W shaped” plot.13,44,64  The apparent linear 

trend reported may result from the large heterogeneity subsequent from the construction of the 

thiobenzoquinone monolayers which also accounts for the greater distributions (large error bars) 

in the measured values reported in Figure 5.8. 

 

5.4. Summary and Conclusions 

This Chapter outlined a place-exchange method to afford a mixed monolayer which 

includes dithiol molecules covalently attached to gold surfaces through only one thiol end group.  

It has been shown that these monolayers can be further modified chemically, and made 

electroactive, in aqueous solution at room temperature by the Michael addition of 1,4-

benzoquinone.  With this chemically modified electrode, the thermodynamics and kinetics of the 

quinone redox moiety using electrochemical and in-situ spectroelectrochemical techniques has 

been analyzed.  Briefly, the formal potential and the heterogeneous rate constant have been 

measured using electrochemical and spectroscopic techniques over a wide range of pHs and are 

in good agreement.  The formal potential is found to shift to more positive potentials with 
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increasing electrolyte acidity at a rate of ~60 mV pH-1 which is expected for a two-proton two 

electron system.  However, what was not predicted by either step-wise or concerted PCET 

models was how the logarithm of the apparent standard rate constant decreased linearly with pH.  

It is speculated that more subtle changes in the rate constant dependence are most likely 

obscured by the kinetic heterogeneity of the system. 

Finally, this Chapter highlights the successes of measuring the in-situ 

spectroelectrochemical pH dependences of benzoquinone terminated self-assembled monolayers 

that undergo proton-coupled electron-transfer electrochemical reactions.  However, this 

electrochemical system was tailored in such a way as to provide kinetics sufficiently slow 

enough to be observed with rapid-scan SEIRAS.  In order to measure faster electrochemical 

systems a smaller working electrode is required to decrease the cell time constant associated with 

a potential step.  However, decreasing the size of the working electrode would also decrease the 

infrared photon throughput.  With fewer infrared photons probing an electrode with a fewer 

number of electrochemically active molecules, the diminishing loss of sensitivity in the 

spectroscopic measurements limits the feasibility of moving towards faster electrochemical 

systems measured with faster infrared spectroscopic techniques.  This paradox is the foundation 

for the remainder of this thesis and illustrates the primary motivation and largest contributions 

made in advancing in-situ infrared SEC techniques.   

In attempt to study much faster electrochemical systems, the next Chapter deals with a 

change in methodology from using internal infrared reflection and SEIRAS techniques towards 

external infrared reflection spectromicroscopy techniques utilizing synchrotron infrared 

radiation.  The value of internal infrared reflection and SEIRAS techniques should not be 
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understated as plenty of electrochemical systems and problems can be solved using in-situ SEC 

SEIRAS and rapid-scan techniques.        
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CHAPTER 6 

SYNCHROTRON RAPID-SCAN INFRARED RADIATION FOR 

ELECTROCHEMICAL EXTERNAL REFLECTION SPECTROSCOPY 

 

6.1. Introduction 

Infrared in-situ spectroelectrochemistry has been an active area of sustained interest 

among electrochemists for the better part of thirty years as described in the previous Chapters.  

Almost from the method’s inception there have been two competing approaches in the 

technique’s development: external reflection spectroscopy (ERS) and internal reflection 

spectroscopy (IRS).  In the previous two chapters (Chapters 4 and 5), significant technical work 

was done to ultimately achieve time-resolved kinetic information using the IRS technique of 

SEIRAS to provide molecular details of electrochemical processes.1  A substantial limitation 

with the previously described studies (Chapter 4 and 5) is the slow response of the 

electrochemistry as a result of using large area electrodes to accommodate the low brightness of 

commercial infrared sources.  This was not a problem in the previous studies as in one case 

(Chapter 4) surface adsorption at equilibrium conditions did not include any kinetic work, and in 

the second case (Chapter 5) the kinetics of the system were tailored to accommodate the 

accessible time scale of the technique.  In this Chapter, methodologies are developed utilizing 

ERS techniques with very bright focused synchrotron infrared radiation to achieve better time-

resolved in-situ spectroelectrochemical information.    

 It is generally agreed among contemporary users that an advantage of ERS is that it 

allows the use of well-defined single-crystals but suffers from the disadvantage of restricted 

mass transport owing to the thin-electrolyte layers required to prevent complete infrared 
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attenuation by the solvent.  An additional potential advantage to using ERS is through photon 

polarization to differentiate between solution and surface adsorbed species.2   

Optimal conditions for performing vibrational spectroscopy in the presence of an 

electrolyte are completely opposed to optimal conditions for performing electrochemical 

measurements.  This is particularly manifested in ERS where a thin-layer of broadband 

absorbing electrolyte (usually water based) is contained between an infrared transparent window 

and an infrared reflective metal such as gold or platinum.  This thin-layer of electrolyte allows 

sufficient levels of radiation to pass through the cell cavity but leads to extremely large cell 

resistances and decreased mass-transport to the electrode.3  As such, to increase the signal-to-

noise ratio in vibrational spectra, a large working electrode area is employed to increase the 

photon flux sampling the interface of interest.  Electrochemists are aware that the product of the 

electrolyte resistance and the working electrode’s capacitance designates the electrochemical cell 

time constant.  As the later term is directly proportional to the electrode area, a typical ERS 

electrochemical cell is characterized by a very large (on the order of 10 milliseconds or greater) 

cell constant (RC).  In other words, when the potential is stepped to a new value there is an 

inherent lag (5xRC) in the response of the electrified interface to reach this new value related to 

this cell constant.  This means that in a typical experiment, one can measure the optical response 

as fast as the system will allow, but the minimum time scale in time-resolved studies is limited to 

the cell constant when studying dynamic processes triggered by an electrochemical perturbation.  

As a consequence, the majority of electrochemical in-situ ERS measurements are non-dynamic 

in nature and are performed by acquiring spectra only after a state of equilibrium has been 

reached at the electrified interface.  Examples include subtractively normalized interfacial 

Fourier Transform Infrared spectroscopy (SNIFTIRS) and polarization modulation infrared 
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reflection absorption spectroscopy (PM-IRRAS) which have emerged as the dominant external 

reflection methods in the infrared spectroelectrochemistry community.4  Non-static methods, 

such as electrochemically modulated infrared spectroscopy (EMIRS),5 use AC (alternating 

current) modulation of the applied potential to greatly reduce 1/f noise and provide dynamic 

information. However, with notable exceptions using step-scan interferometers,6–10 the success 

of EMIRS in modern FTIR spectrometers is limited by both slow diffusion rates and large 

charging times.  These temporal limitations can be somewhat alleviated by using IRS methods 

which eliminate the need for thin, highly resistive electrolyte layers.  Still, when coupled with a 

conventional infrared source, a relatively large electrode area (> 1 cm2) is required to increase 

signal intensity and the study of sub-millisecond kinetic processes with IRS has yet to be truly 

realized.  

Nevertheless, decreasing the dimension of the working electrode in an external 

reflectance thin-cavity cell to micrometer size could, in principle, decrease the minimum time 

scale of electrochemical infrared experiments by at least an order of magnitude.  Sun and co-

workers have already made advances in this regard by coupling FTIR microspectroscopy with 

relatively large ultramicroelectrodes (radius of 200 μm).11–16   They reported infrared 

spectroelectrochemical studies occurring on electrode surfaces on the time scale of tens to 

hundreds of microseconds.11,12  Importantly, as the size of the electrode decreases so will the 

signal-to-noise ratio as the instrument’s ability to focus large photon intensity onto very small 

illumination areas becomes increasingly difficult with conventional sources.  The use of non-

conventional sources of infrared radiation is required to make these measurements feasible.  To 

the best of the author’s knowledge, the only previous reports of coupling synchrotron (far) 

infrared radiation with electrochemistry are the non-dynamic studies of Russell et al.17–19 and 
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Melendres et al.20-28  These researcher groups have primarily used far-infrared synchrotron 

radiation to study processes related to copper oxidation20–24 and ion adsorption on gold,25,26 

silver17,27 and platinum electrodes.24,28 

In this Chapter, a simple redox probe (ferro/ferricyanide) has been chosen to dynamically 

study the diffusion processes occurring at a relatively small electrode (500 μm diameter) in a 

thin-cavity ERS in-situ cell.  The well-established redox couple, ferri/ferrocyanide, is particularly 

well suited for infrared spectroelectrochemistry7,9,10,29,30 owing to a very clear spectral shift in the 

cyanide vibrational stretches of the reduced and oxidized forms which are both frequency 

resolved from water absorption bands.  The goals of this present Chapter are to evaluate the 

feasibility of coupling synchrotron generated radiation through an infrared microscope onto a 

thin-cavity external reflectance cell and to contrast the time-resolved electrochemical and 

spectroscopic responses. 

 

6.2. Experimental 

6.2.1. Reagents and Solutions  

Potassium hexacyanoferrate(II) trihydrate (K4Fe(CN)6•3H2O, 99.99% trace metals basis), 

Potassium hexacyanoferrate(III) (K3Fe(CN)6, 99.99% trace metals basis), sodium fluoride 

(99.998%) and sodium perchlorate monohydrate (NaClO4•3H2O, 99.0% trace metals basis) were 

purchased from Sigma Aldrich and were used as received.  Deuterium oxide (D, 99.9%) for the 

determination of the cavity thickness was supplied from Cambridge Isotope Laboratories, Inc. 

(Andover, MA).  All aqueous solutions were prepared from Milli-Q (>18.2 MΩ cm-1) water. 
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Figure 6.1. Diagram of the in-situ spectroelectrochemical (SEC) cell.  The thin-cavity 

electrochemical cell was prepared by compressing a nominally 5 µm thick PTFE gasket between 

the main cell body (PVC plastic) and an infrared transparent window (CaF2, 1 mm thick, 25 mm 

diameter).  The working electrode (WE) and counter electrode (CE) were made from 0.5 mm 

diameter gold wire and the quasi-reference electrode (RE) from 0.5 mm silver wire.  Flow-

through holes were added to allow electrolyte solutions to be added after assembled dry. 
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6.2.2. Experimental In-situ Spectroelectrochemical Cell 

The main body of the in-situ spectroelectrochemical (SEC) cell (Figure 6.1) was 

constructed to fit on the stage of the IR microscope.  PVC plastic was chosen as the SEC cell 

material for its rigidity and electrical insulating properties.  Similar designs for in-situ ERS SEC  

cells have been previously reported.31,32  The thin-cavity was prepared by compressing a 

nominally 5 μm thick PTFE gasket between an infrared transparent window (CaF2, 1 mm thick 

and 25 mm diameter) and the main body of the cell.  A conventional three electrode arrangement 

was achieved with the working electrode (WE) and the counter electrode (CE) made from 0.5 

mm diameter gold wire (Alfa Aesar, 99.95%) and a quasi-reference electrode (RE) from 0.5 mm 

diameter silver wire (Alfra Aesar, 99%).  The electrodes were sealed in the main body using an 

epoxy, and the top (reflecting) surface was polished flat and to a mirror finish using successively 

finer grade diamond suspensions (Leco Corporation, St. Joseph MI, US) down to 0.5μm.  The 

cell was designed as a flow-through cell to allow the electrolyte into and out of the thin cavity 

through two holes placed on extreme edges of the cavity after dry assembly.  

 

6.2.2.1. Determination of In-situ SEC Cell Time Constant 

To determine the time-constant of the cell (effectively the obtainable time resolution of 

the electrochemical measurements), electrochemical impedance spectroscopy (EIS) was used.  A 

detailed description of EIS is beyond the scope of this Chapter but for more information is 

available in most standard electrochemistry books.33,34  From these EIS measurements, the 

solution resistance and working electrode capacity in 0.5 M NaClO4 were determined to be 3.4 

kΩ and 76 nF, respectively. The time constant of the cell is ∼0.25 milliseconds, and the time to 
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establish the desired potential at the interface is ∼1.25 milliseconds (5RC).  This is much faster 

than the measurable infrared spectral time resolution when using rapid-scan interferometry.  

 

6.2.2.2. Determination of Cavity Thickness of Thin-Cavity In-situ SEC Cell 

The determination of the cavity thickness between the PTFE gasket and the infrared 

window can be made from an analysis of the interference fringes obtained spectroscopically in 

the dry in-situ SEC cell and with the following equation,35 

ܾ ൌ
݊
ߥ∆2

 (6.1)

where b is the pathlength, n is the number of fringes, and Δυ is the wavenumber spacing of the 

fringes.  Interference patterns, such as the one shown in Figure 6.2a, arise due to multiple 

reflections from the internal walls of the cell.  The validity of this method has also been 

confirmed using the absorption of small amounts of water in a deutrated water background.  

From Figure 6.2b, known molar absorptivities for the water stretching bands and Beer’s law of 

absorption,36 the cavity thicknesses measured by both techniques are within experimental error.     

Through the utilization of the pre-described interference fringe method, the path length of 

the thin layer used in the experiments below was determined to be 13.7 μm.  It is important to 

note that as the incident radiation converges on the focal point about a mean angle of 30o, as 

calculated from the numerical aperture (NA) of the objective lens, from the surface normal, the 

actual cavity thickness is estimated to be 12 µm.  The total volume of the cell is therefore ∼6 μL. 
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Figure 6.2. a) A representative single beam spectrum demonstrating the fringes that 

develops in the dry thin-cavity in-situ spectroelectrochemical (SEC) cell.  From this information 

the cavity thickness can be determined for the assembled cell and for this particular cell setup the 

cavity thickness is 10.2 µm. b)  Using the same in-situ SEC cell assembled in a), the cavity was 

filled with D2O to determine a background before small amounts of H2O were added.  Depicted 

are the adsorption spectra for 3 different concentrations of H2O.  Using this information and 

Beer’s Law, the cavity thickness was determined to be 9.8 µm thick.   
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6.2.3. Fourier Transform Infrared Measurements 

Fourier Transform Infrared (FTIR) spectroscopy measurements were collected using the 

Mid-IR beamline facilities located at the Canadian Light Source (Beamline 01B1-01, Canadian 

Light Source, Inc., Saskatoon, SK, Canada).  The beamline end station consisted of a Bruker 

Optics IFS66 v/S Spectrometer (with Rapid Scan) coupled to a Hyperion 2000 Infrared  

reflectance mode, onto the working electrode using a 36x Schwarzschild objective (NA 0.52) 

and measured using a narrowband 100 μm mercury cadmium telluride (MCT) (liquid nitrogen 

cooled) detector. 

 

6.2.3.1. Rapid-Scan FTIR Measurements 

The moving mirror in the time-resolved rapid scan experiments was driven at 100 kHz 

(measured in relation to the reference HeNe laser wavelength of 632.8 nm) with a spectral 

resolution of 8 cm-1.  Under these conditions, the spectrometer was able to collect one double-

sided forward/backward interferogram every 120 milliseconds.  Before each time-resolved 

experiment, a reference spectrum was collected (consisting of 100 scans) at the reference 

potential (200 mV vs Ag).  This spectrum was used in the subtractively normalized calculation 

for each interferogram in a given time resolved experiment.  In this manner any possible 

spectrometer drift throughout the course of the experiment would be minimized.  Each complete 

rapid-scan experiment lasted ∼6 seconds in which 52 reference corrected single beam spectra 

were obtained.  However, with the high velocity of the moving mirror, there is an instrumental 

trade-off resulting in low signal-to-noise ratios for a given spectrum.  This necessarily requires 

that a given set of time-resolved experiments must be measured and signal averaged numerous  
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Figure 6.3. Absorbance values of the peak height at the 2040 and 2115 cm-1 infrared 

bands for varying concentrations of (a) ferrocyanide and (b) ferricyanide, respectively, (1.0 mM, 

2.5 mM, 5.0 mM, 7.5 mM, 10.0 mM and 15.0 mM) in 0.5 M NaF aqueous solutions.  The 

absorbance spectra were obtained by the co-additon of 256 scans at various resolutions, as 

indicated, (4 cm-1, 8 cm-1, 16 cm-1 and 32 cm-1) using a blank aqueous solution containing 0.5 M 

NaF. 
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times (in this case, 256 replicates for the 20 x 20 μm aperture size and 1024 for the 8 x 8 μm 

aperture) for high signal-to-noise results. 

 

6.2.4. Molar Absorptivity for Ferro/Ferricyanide in Aqueous Solutions 

FTIR absorbance spectra were measured in 0.5 M NaF aqueous solutions containing 

various ferricyanide or ferrocyanide concentrations to determine the molar absorptivity of the 

2115cm-1 and 2040 cm-1 infrared bands respectively (Figure 6.3).  The measurements were made 

using the thin cavity in-situ SEC cell described above assembled with a 1 mm thick CaF2 

window and having a cavity thickness of 23.7 µm (determined using the interference fringe 

method).  From this data, the peak height was plotted as a function of concentration with the 

slope then fit to Beer’s Law to determine the molar absorptivity coefficient (Table 6.1).  Each 

spectrum was the co-addition of 256 scans in reflection mode.  The spectra were referenced to a 

blank aqueous solution containing only 0.5 M NaF. 

 

6.2.5. Electrochemical Measurements  

All electrochemical measurements were performed in the in-situ SEC cell using a HEKA 

PG 590 Potentiostat (HEKA, Mahone Bay, NS, Canada).  Cyclic voltammetry (CV) and double-

step chronocoulometry (CC) experiments were performed using software written in the 

LabVIEW (National Instruments Corporation, Austin, TX, USA) programming environment as 

described in Chapter 5 (Experimental section).  Data acquisition, signal generation, and 

triggering for the in-situ SEC experiments were done with a National Instruments 

multifunctional Data Acquisition Card (DAQ) PCI 6251 M Series.  For these measurements, an  

 



158 
 

 

 

 

Table 6.1. Ferrocyanide (2040 cm-1) and Ferricyanide (2115 cm-1) Molar Absorptivity 

Coefficients in 0.5 M NaF aqueous solutions. 

 

Ferrocyanide 
Spectral Resolution Molar Absorptivity 2040 cm-1, ɛ (M-1 cm-1) 

4 cm-1 4.561 x 103 
8 cm-1 3.898 x 103 

16 cm-1 2.852 x 103 
32 cm-1 1.701 x 103 

 

Ferricyanide 
Spectral Resolution Molar Absorptivity 2115 cm-1, ɛ (M-1 cm-1) 

8 cm-1 8.81 x 102 
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additional National Instruments DAQ card was used (PCI 6251 X Series) to measure the current 

transients during the in-situ SEC experiments. This second card was necessary to acquire the full 

6 seconds of rapid-scan data as the first DAQ card had enough memory to hold 2 seconds worth 

of data at the very high sampling rates utilized to catch the experimental trigger signal.   

 

6.2.6. Interfacing Hardware and Software  

The major technical challenge in performing these experiments was interfacing the FTIR 

spectrometer and the potentiostat for consistent, synchronized measurements.  The primary 

objective was to start the acquisition of the infrared spectra in synch with the application of a 

particular potential waveform while ensuring that this process was repeatable over many 

replicate measurements.  This required a series of hardware and software triggering signals to 

ensure proper timing, communication, and data flow between the various instruments (Figure 

6.4).  Briefly, a sequence of transistor-transistor logic (TTL) hardware trigger signals were 

generated and received between the FTIR spectrometer and a computer controlling the 

potentiostat (through the LabVIEW software environment).  These two TTL signals worked in 

parallel to gate the start and stop of the acquisition of the rapid-scan FTIR spectra (and 

electrochemical data) reproducibly with the application of the potential waveform to the working 

electrode.  This two-way communication ensured that the proper sequence of events could be 

repeatedly achieved.  
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Figure 6.4. Detailed connection diagram for the various components interfaced together 

to allow for repetitive automated rapid-scan measurements for time-resolved infrared studies. 
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6.3. Results and Discussion 

6.3.1. Diffusion Consideration 

It is important to adequately discuss the electrochemical response of the in-situ 

spectroelectrochemical cell used in these experiments before a meaningful discussion of the 

synchrotron infrared spectroscopic results is made.  The theory of diffusion currents in restricted 

geometries, including the thin-layer cell used here, under voltammetric conditions has been 

treated by several authors.37–39  Although there are equations describing the flux of material in 

thin-cavity cells under constant current conditions, there does not seem to be an exact analytical 

solution for the corresponding diffusion controlled chronoamperometric experiment.  In 

particular, for a disc electrode of radius, re, in a thin-layer cavity configuration of thickness h 

along the z direction, a rigorous treatment of this problem includes both axial and radial diffusion 

terms (best described by cylindrical diffusion), 

,ݎሺܥ߲ ,ݖ ሻݐ
ݐ߲

ൌ ܦ ቈ
߲ଶܥሺݎ, ,ݖ ሻݐ

ଶݎ߲
൅
1
ݎ
,ݎሺܥ߲ ,ݖ ሻݐ

ݎ߲
൅
߲ଶܥሺݎ, ,ݖ ሻݐ

ଶݖ߲
቉ (6.2)

with the following initial and boundary conditions 

,ݎሺܥ ,ݖ 0ሻ ൌ  ∗ܥ

lim
௥→ஶ

,ݎሺܥ ,ݖ ሻݐ ൌ  ∗ܥ

,ݎሺܥ 0, ሻݐ ൌ 0 ሺݎ ൑ ,௘ݎ ݐ ൐ 0ሻ 
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௭→௛

,ݎሺܥ߲ ,ݖ ሻݐ
ݖ߲

ൌ 0 

where D and C* are the diffusion coefficient and the initial concentration of the redox species 

being consumed respectively.  The spectroelectrochemical relevance of this problem has inspired 

the development of several models which invoke simplifying assumptions in an attempt to 

reduce the dimensionality of the problem.40–42  For example, Micka et al. made the assumption 
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that for sufficiently large cavity thicknesses, radial diffusion can be entirely neglected and only 

linear diffusion along the normal axis of the electrode’s surface (denoted as axial diffusion for 

the remainder of this Chapter) is of consequence.  As such, the corresponding mass-transfer 

limited, chronoamperometric response can be represented as:40 

݅ሺݐሻ ൌ
∗ܥܦܣܨ2݊

݄
෍ exp ቈെ൬݉ ൅

1
2
൰
ଶ

ቀ
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݄
ቁ
ଶ
቉ݐܦ

ஶ

௠ୀ଴

 (6.3)

where ܣ ൌ  ௘ଶ is the area of a perfectly smooth disc electrode, F is the Faraday constant, and nݎߨ

is the number of electrons transferred.  A different expression was provided by Oglesby et al.43 

that uses the same boundary conditions and assumptions but leads to essentially identical results.  

For completeness, it should be noted that the expression derived by Oglesby et al. is more robust 

for calculating concentration profiles at short times. 

 A complementary scenario develops if the mass transfer in the axial direction, for ݎ ൑  ,௘ݎ

is assumed sufficiently rapid enough such that there is nearly immediate exhaustion of 

electroactive material initially in the electrolyte volume above the electrode.  This becomes 

especially true for very small values of h (h < re) and relatively large values of the diffusion 

coefficient, D.  Under these conditions, the problem reduces to semi-infinite radial diffusion 

towards a cylinder of area 2݄ݎߨ௘, and can be approximated by Szabo et al.44  as, 

݅ሺݐሻ ൌ ∗ܥܦܨ݊ߨ2݄ ቈ
2expൣെ0.05ሺ߬ߨሻଵ ଶ⁄ ൧

ሺ߬ߨሻଵ ଶ⁄ ൅
1

lnሺ5.2945 ൅ 0.7493߬ଵ ଶ⁄ ሻ
቉ (6.4)

where ߬ ൌ ݐܦ4 ⁄௘ଶݎ .  For small values of τ, i.e. short times, only the first term in Equation 6.4 is 

significant and the resulting exponential approaches unity producing a modified Cottrell-like 

relationship as follows, 

݅ሺݐሻ ൌ
ଵߨ௘ݎ2݄ ଶ⁄ ଵܦܨ݊ ଶ⁄ ∗ܥ

ଵݐ ଶ⁄  (6.5)
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Alternatively, at sufficiently long enough times (large values of τ), the first term in Equation 6.4 

approaches zero and a quasi-steady state current is expected, 

݅௤௦௦ ൌ
∗ܥܦܨ݊ߨ4݄

lnሺ߬ሻ
 (6.6)

Overall, it is predicted that currents arising from axial diffusion will dominate at short times 

provided that the radius of the disc electrode, re, and the depletion layer thickness above the 

electrode, h, are such that the area over which radial diffusion occurs is much smaller than the 

actual area of the electrode.  However, regardless of the electrode disc radius, once the depletion 

layer normal to the electrode surface extends across the full thickness of the cavity, a quasi-

steady state current condition will exist and be solely dominated by radial diffusion at 

sufficiently long times.  Thus, even in the absence of an exact solution to the pre-described 

diffusion problem, a reasonable estimation is to assume that the current measured is largely 

dictated by Equation 6.5 for short times and controlled by Equation 6.6 at long times.  This can 

be qualitatively evidenced in Figure 6.5 as both limiting conditions (Equations 6.5 and 6.6) are 

simulated (with the parameters used in the in-situ spectroelectrochemical experiments) to predict 

the current and charge densities for; C* = 1 mM, h = 20 µm, re = 0.025 cm, and D = 6.4 x 10-4 

cm2 s-1.  Under these conditions, one can see from Figure 6.5 that both simulated currents are 

initially linearly dependent on 1 ଵݐ ଶ⁄⁄  (but have different corresponding slopes) and cross after 

0.8 seconds as the axial current quenches.  The axial diffusion charge versus t1/2 curve is linear 

(Cottrell-like) at early times but eventually plateaus after less than a second as the electroactive 

species initially in the thin-cavity layer above the electrode is consumed.  In contrast, the charge 

curve simulating the radially diffusing species continues to increase with increasing time.  A 

consequence of these assumptions is that Equation 6.3 determines the current (and consequently 

the amount of electrogenerated species) at short times. 
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Figure 6.5. Simulated diffusion-controlled responses for electrochemical measurements 

taken in the thin-cavity, in-situ spectroelectrochemical cell.  Current densities (a) have been 

plotted for finite-volume linear diffusion (black) and semi-finite radial diffusion (red) with the 

corresponding charge densities are shown in (b).  The time domain has been transformed for all 

sets of transient data to allow easy comparison with Cottrell-like behaviour.  The simulation was 

made with the following parameters: C* = 1 mM, h = 20 µm, re = 0.025 cm, D = 6.4 x 10-4 cm2 

s-1. 
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By keeping the cavity thickness above the electrode fixed, inspection of Equation 6.3 and 

6.5 reveals that the diffusion current from Equation 6.3 is proportional to the square of the 

electrode radius while Equation 6.5 is linearly dependent on re.  From this examination, it should 

be obvious that axial diffusion is dominant for large electrodes (ݎ௘ ≪ ݄) and the results described 

by Micka et al.40 adequately predict the current behaviour over the majority of the experimental 

time scale.  Conversely, as the electrode size decreases, the radial contribution will become more 

significant at increasingly shorter times.  An important note to consider is that the vast majority 

of species electrogenerated at the perimeter of the electrode, as a result of radial mass transport, 

will immediately diffuse away from the electrode and into the semi-infinite space parallel to the 

surface of the disc electrode.  This has an important consequence in that the thin cavity cell for 

in-situ spectroelectrochemical electrolysis only spectroscopically reports on the concentration of 

species electrochemically formed directly above the electrode.  For relatively large electrodes, 

this will correlate with the measured electrochemical signal at short times, but as one decreases 

the electrode radius, deviation between the infrared measured signal and the cumulative charge 

passed will increase.  If the size of the electrode is reduced to the dimension of an 

ultramicroelectrode (re < ~25 µm), the mass transport problem is identical to diffusion to a 

scanning electrochemical microscope (SECM) tip above an insulating substrate.45  This problem 

will be discussed in greater detail in the following chapter (Chapter 7). 

 

6.3.2. Electrochemical Results 

Figure 6.6 shows a typical cyclic voltammogram measured in the external reflection in-

situ SEC cell at a scan rate of 50 mV s-1 with 1.13 mM ferrocyanide, FeሺCNሻ6
-4, in 0.5 M NaClO4  
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Figure 6.6. Measured electrochemistry of 1.13 mM FeሺCNሻ6
‐4 in 0.5 M NaClO4 aqueous 

electrolyte solution using the in-situ spectroelectrochemical (SEC) thin-cavity cell with 0.5 mm 

diameter gold working electrode.   a) A representative cyclic voltammogram (CV) for the above 

mentioned system and b) a pictorial representation of the double-potential step-sequence 

(forward step - solid red line and return step – solid blue line) used to make these measurements.  

c) The charge transient data obtained from numeric integration of the measured currents during 

the double-step forward(solid green line) and return step (solid blue line).    
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supporting electrolyte.  The apparent formal potential of this system was ~150 mV and both the 

reduction and oxidation peaks display non-steady state, diffusional tailing.  Prior to any 

synchrotron infrared radiation measurements, the in-situ cell was filled with a fresh volume of 

the above described electrolyte solution.  The potential was initially held at -200 mV for 30 

seconds and the current transients were recorded during the double potential step depicted in 

Figure 6.6.  One can see from the numerically integrated current transients that there is a rapid 

initial change in the charge followed by a much slower changing tail which is consistent with the 

argument above that axial diffusion dominates at short times and radial diffusion at long times.  

It is interesting to note that there is a net positive charge passed in the total transient.  That is, the 

charge tail at long times is appreciably “flatter” in the backward step compared to the forward 

step.  To rationalize this, a qualitative consideration of the initial conditions before each potential 

step is required.  Prior to the step from -200 mV, there should only be FeሺCNሻ6
-4 present in the 

cell and it should be homogeneously distributed in both the axial and radial directions.  When the 

potential is stepped to 500 mV, only FeሺCNሻ6
-4 in the electrolyte volume above the electrode is 

initially converted to FeሺCNሻ6
-3 and the oxidized product will largely be retained in this volume.  

The radial component will begin to contribute more significantly to the measured charge passed 

as this layer becomes increasingly depleted of FeሺCNሻ6
-4.  As discussed in the previous section, 

any FeሺCNሻ6
-3 generated at the electrode perimeter will diffuse away from the electrode surface 

but still largely contributes to the measured charge.  After stepping the potential back to -200 

mV, a significant portion of this material will not be recollected at the electrode within the 

measurement time scale of the transient and a smaller amount of charge will be measured.  Given 

semi-infinite radial diffusion conditions, as well as 30 seconds potential hold at -200 mV prior to 
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the next double-step sequence, it is assumed that any complications from the slow accumulation 

of ferricyanide in the electrolyte near working electrode will be eliminated.  In fact, the infrared 

measurements (vide infra), were performed with over 1000 consecutive iterations of this 

potential step profile (without flowing new electrolyte into the cell) and the first and last 

transients are nearly identical to one another within experimental error. 

 

6.3.3. Synchrotron Advantage 

The subject of synchrotron versus conventional thermal (Globar) sources has been 

addressed elsewhere,46 but it is prudent to provide a brief overview.  Flux is a common measure 

of source energy output and is defined as the photon density per source unit area per unit time.  

For a typical commercial Globar the flux is actually greater than that of a synchrotron infrared 

radiation source, under normal synchrotron operating conditions.  However, focusing thermal 

source radiation leads to significant losses because the emission pattern of a Globar is in all 

directions, whereas highly directed synchrotron infrared photons can be treated as a near point 

source and does not suffer such high magnitude losses leading to 2 to 3 orders of magnitude 

higher brilliance (flux density).  Thus, it is primarily when infrared radiation needs to be focused 

onto small spatial regions that synchrotron radiation is truly advantageous.  This is illustrated in 

Figure 6.7 where an experiment measuring reflected infrared radiation is collected through the 

in-situ SEC cell filled with electrolyte at different aperture sizes.  These reflection spectra are the 

ratio of two successive single interferograms measured at 1 cm-1 resolution.  As shown in panel 

(a), the Globar and synchrotron sources provide comparable noise levels for a 40 x 40 µm square 

aperture for frequencies above 2400 cm-1.  Below this frequency, the synchrotron source has  
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Figure 6.7.  Comparison of differing noise levels for various aperture sizes (a) 40 x 40 

µm, (b) 20 x 20 µm, (c) 5 x 5 µm measured using synchrotron infrared radiation (red lines) or 

conventional Globar (black lines) reflected from the working electrode surface of the in-situ 

spectroelectrochemical (SEC) cell.  These curves were calculated by taking the ratio between 

two successive, single interferograms (1 cm-1 resolution) through the SEC cell containing an 

aqueous 0.5 M NaClO4 electrolyte solution. 
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higher noise levels than the Globar due to absorption from various optics associated with the 

beamline (diamond window).  At the 20 x 20 µm sized aperture, panel (b), shows that the 

synchrotron and Globar noise levels are very comparable in the wavenumber region from 1800 

cm-1 to 2400 cm-1 but is somewhat more favourable for the synchrotron source outside the region 

of diamond interference.  Most impressively, panel (c) shows that for a 5 x 5 µm aperture, 

synchrotron infrared radiation noise is significantly smaller across the entire region of interest.  

Clearly, synchrotron infrared radiation noise levels become increasingly better relative to those 

of the Globar as the aperture size is decreased.  Restated, the synchrotron advantage occurs due 

to a decrease in the noise levels compared to those of a Globar.     

Unfortunately, for this particular study, it should be noted that the attenuation of the 

synchrotron source due to the diamond window absorption overlaps with the C≡N stretches of 

both forms of the ferro/ferricyanide redox couple.  Nevertheless, even after these losses, there is 

still about a two-fold decrease in the level of noise when synchrotron radiation is used to study 

the electrochemistry of ferro/ferricyanide.  A more thoughtful choice of redox couple would see 

an even larger advantage in favour of this synchrotron source.   

 

6.3.4. Synchrotron Infrared Radiation – Electrochemical External Reflection 

Spectroscopy Results 

In Figure 6.8, a subtractively normalized energy curve, ∆ܵ ܵ⁄ ൌ ሺܵ௏஺ோ െ ܵோாிሻ ܵோாி⁄ , for 

the oxidation of 1.13 mM ferrocyanide, FeሺCNሻ6
‐4, in 0.5 M NaClO4 is depicted.  The single 

beam reference spectrum was obtained by holding the potential at -200 mV where only the 

reduced form, FeሺCNሻ6
‐4 will exist in the cavity.  The sample spectrum was obtained at 500 mV, 

FeሺCNሻ6
‐3, after waiting 60 seconds.  As described in a previous chapter, a positive  
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Figure 6.8. Subtractively normalized infrared spectrum of the ferrocyanide oxidation 

measured at long times.  The sample spectrum was acquired by holding the potential, EVAR, at 

500 mV for 30 seconds after measuring a spectrum at the reference potential, EREF -200 mV.  

The strong upwards going band at 2040 cm-1 corresponds to a loss of ferroycanide material in the 

thin-cavity above the electrode whereas the weaker downward band at 2115 cm-1 is attributed to 

the electroformation of ferricyanide.  
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going peak, 2038 cm-1, is assigned to a loss of that vibrational stretch.  In this case, ferrocyanide 

has been oxidized upon stepping the potential to +500 mV.  In contrast, the smaller downward 

band at 2115 cm-1 is assigned to the formation of oxidation product, ferricyanide, in the thin 

layer.  Further inspection of Figure 6.8 reveals no additional peaks or shoulders present even 

after several hours of repetitive potential steps.  There is no evidence of the formation of an 

adsorbed polymeric hexacyanoferrate (HCF) complex which has been reported by others.10,29  

Although, it is important to note that the instrumental setup is not designed to provide surface 

sensitivity, due to the small angle of infrared incidence, it is unlikely that adsorbed HCF is 

formed below detectable levels because of the relatively mild potential perturbations used.10  

This can be further evidenced by the consistency in measured cyclic voltammograms before and 

after the long duration time-resolved spectroelectrochemical studies. 

Rapid scanning interferometry time-resolved synchrotron infrared radiation external 

reflection spectroelectrochemistry was performed using freshly exchanged ferrocyanide solution 

and with the same potential perturbation sequence depicted in Figure 6.6.  The measurements 

were recorded at 8 cm-1 resolution allowing for the collection of a double-sided interferogram 

every 120 milliseconds.  This time resolution is more than sufficient to follow the mass-transfer 

controlled redox process studied here.  Given that the working electrode used in this SEC cell 

(0.5 mm diameter) was much larger than a UME, the aperture setting was decreased to 8 x 8 µm 

to mimic the magnitude of the infrared signal that would be measured from an 

ultramicroelectrode.  To offset the decrease in photon throughput caused by decreasing the 

illuminated area, a large number of co-added time-resolved spectra had to be collected in order to 

achieve high enough signal-to-noise ratios to provide a meaningful discussion.  This was 

accomplished by repeating the double potential step sequence 1024 times.  The signal-to-noise 
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value after analysis of the ferrocyanide peak was ~60 which was comparable to the signal-to-

noise level after the co-addition of 256 interferograms collected with a much larger 20 x 20 µm 

aperture size. 

The time-resolved infrared absorbance data was calculated from the collected data and is 

presented in Figure 6.9.  The ordinate, shows the change in absorption relative to the infrared 

signal after the potential was held at –200 mV for 30 seconds.  One will notice that there is a 

rapid change in the infrared signal for both forms of the redox species upon stepping to the more 

positive potential.  However, in less than one second both signals reach a plateau and remain 

invariant in time until the reverse potential step to – 200 mV is applied at which point they return 

back to their initial values.  This last point is particular important as it reveals that the infrared 

radiation only interrogates molecules that remain close to the electrode within the time scale of 

the experiment.  When comparing this result to the experimental charge transients, there is no 

evidence of a longer-time tail which, as described earlier, has been attributed to the contribution 

of radial diffusion to the overall electrochemical signal.  In fact, the shape of the ferricyanide 

optical transient in Figure 6.9 is qualitatively identical to the charge transients simulated for pure 

axial diffusion.  To further illustrate this point, a quantitative comparison between axial 

electrochemical diffusion simulations and the spectroelectrochemical measurements was made.  

In order to do so, the molar absorptivity, ɛ, of both ferrocyanide and ferricyanide was first 

determined as described in the Experimental section of this chapter. The determined values of ɛ 

for ferrocyanide and ferricyanide were 3.9 x 103 M-1 cm-1 and 8.8 x 102 M-1 cm-1 respectively.  

The absorbance data in Figure 6.9 was converted to the change in species concentration through 

the application of Beer’s law, using the measured molar absorptivities and the path length of the 

SEC cell.  A charge transient for ferrocyanide oxidation was simulated  



174 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. (a) Time-resolved changes in infrared absorbances for ferrocyanide (■) and 

ferricyanide (○) during the double-step (potential step-sequence is taken from Figure 6.6(b)) in-

situ spectroelectrochemical (SEC) measurements.  Each data point represents the co-addition of 

1024 co-added scans with 8 cm-1 wavenumber resolution.  (b) Plot of the in-situ SEC 

concentration changes measured during the forward potential step (first 3 seconds) calculated 

using Beer’s Law (points).  Superimposed (lines) are the simulated results of the charge transient 

during the potential step. 
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using the integrated form of Equation 6.3 and the following parameters: h = 12 µm, C* = 1.13 

mM, re = 0.5 mm and D = 6.4 x 10-6 cm2 s-1.34  The simulated charge values were converted into 

concentrations of ferrocyanide and ferricyanide using Faradays constant and division of the 

volume of the cavity (݄ݎߨ௘ଶ).  The results are plotted in Figure 6.9 and show excellent agreement 

between the two methods (charge simulation and spectroelectrochemical experiment) confirming 

that the spectroelectrochemical technique is insensitive to species arriving at the electrode 

through radial diffusion.   

This last point has important implications for future studies using infrared 

microspectroscopy and ultramicroelectrodes and is the topic of Chapter 7.  Briefly, there will be 

a much more pronounced discrepancy between electrochemical and spectroscopic data with 

decreasing electrode dimensions.  Secondly, even though much faster time scales become 

accessible with UME-based synchrotron in-situ spectroelectrochemistry, the electrogenerated 

spectroscopic signal will always be limited by the amount of species formed from axial diffusion 

within the period of the potential perturbation.   

 

6.4. Summary and Conclusions 

This chapter has provided much of the ground work needed for the use of synchrotron 

infrared radiation to study electrochemical kinetic processes.  Using electrodes near in size to 

ultramicroelectrodes, it has been shown that synchrotron infrared radiation can be successfully 

coupled with an external reflectance electrochemical cell to make in-situ spectroelectrochemical 

measurements.  Excellent signal-to-noise ratios have been obtained from time-resolved infrared 

and electrochemical measurements with an illumination area less than 10 x 10 µm.  From this 

work, an important result concerning the differing responses seen for the infrared and 
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electrochemical measurements were described.  Briefly, the purely electrochemical response in 

the thin-cavity cell include contributions from both axial and radial diffusion; whereas, it was 

demonstrated that the infrared spectroscopic signal arises only from species originating in the 

thin-cavity between the electrode surface and the infrared window.  Simulations of linear 

diffusion in a finite volume element are in outstanding agreement with the time dependence of 

the experimentally measured infrared absorbance.  Furthermore, with small aperture settings 

synchrotron infrared radiation provides significantly higher signal-to-noise ratios compared to a 

conventional thermal sources.   

From an instrumental point of view, these measurements were possible through the 

successful integration of electrochemical and infrared spectromicroscopy equipment to allow 

time-resolved studies using synchrotron generated infrared radiation.  The instrument setup 

comprises several commercial components, including a potentiostat, infrared spectrometer and 

microscope, all interfaced through custom written software in the LabVIEW environment to 

control the measurement sequence.  A simple proof of principle electrochemical system was 

chosen to demonstrate the capabilities of the instrumental setup and methodology.  Once in 

place, the temporal electrochemical response was measured and analyzed with great success 

using rapid-scan Fourier Transform Infrared spectroscopy.   

The next chapter (Chapter 7) demonstrates a further progression in the development of 

time-resolved studies by increasing the temporal resolution of both electrochemical and infrared 

measurements.  As mentioned, the electrodes used in this chapter were not truly 

ultramicroelectrodes but do provide the ground work for the next chapter where a 10 fold 

decrease in electrode size will be examined using similar thin-cavity in-situ SEC cells.  In 

addition to decreasing the electrode size to increase the electrochemical response, the infrared 
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time-resolution can be greatly improved through the use of step-scan Fourier Transform 

interferometry.   
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CHAPTER 7 

SYNCHROTRON INFRARED RADIATION FOR ELECTROCHEMICAL EXTERNAL 

REFLECTION TIME-RESOLVED STEP-SCAN FOURIER TRANSFORM INFRARED 

SPECTROSCOPY 

 

7.1. Introduction 

 This final experimental results chapter describes the continued effort to improve the time-

resolution of in-situ spectroelectrochemical external reflectance infrared spectroscopy.  Briefly, 

this has been achieved by utilizing a synchrotron infrared radiation source coupled to a true 

ultramicroelectrode in a thin-cavity external reflectance cell.  To reiterate the point made in 

previous chapters, the utilization of mid and far infrared radiation from synchrotron sources is 

now well-established and described by several recent reviews.1–3  The relative advantages of 

synchrotron infrared radiation compared to thermal sources (e.g. Globars) have been previously 

addressed in detail (Chapter 6), particularly with respect to synchrotron infrared radiation 

enhanced spatial resolution in microspectroscopy.4   

Although infrared spectroelectrochemistry (SEC) is now a mature field with a host of 

well-developed external5 and internal6 reflection techniques, most studies to date have typically 

employed large electrodes to facilitate high photon throughput which prevents the study of fast 

kinetic electrochemical events from being properly performed.  This is a consequence of the fact 

that the establishment of the interfacial potential is determined by the cell’s time constant which 

is the product of the electrolyte resistance, R, and the electrode capacitance, C.  As the time 

constant increases with increasing working electrode area, only very slow processes (on the order 

of seconds) can be meaningfully studied as a result.  Acquisition of spectroscopic data with 
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temporal resolution smaller than five times the cell constant (5xRC) results in the convolution of 

a time dependent thermodynamic parameter (electrode potential) and the kinetically controlled 

response.7–9  Two approaches exist to reach faster time resolution in infrared 

spectroelectrochemical studies.  Firstly, the use of internal reflection geometry and surface 

enhanced infrared absorption spectroscopy (SEIRAS) eliminates the highly resistive electrolyte 

layers found in external reflection methods such as PM-IRRAS. There are several reports where 

SEIRAS has permitted the study of kinetic processes on the ~1-50 millisecond time scale.10–12 It 

is possible for picosecond time-resolved SEIRAS on electrode surfaces through laser-induced 

temperature jump experiments,13,14 although this method is not readily amenable to precise 

control of the electrode’s potential.  Alternatively, the time constant can be reduced below a 

microsecond if an ultramicroelectrode (UME) is used.  Working with an UME requires the use of 

reflectance-mode microspectroscopy which can be disadvantageous as the inherently more 

complex optics of a microscope can lead to higher relative throughput losses compared to 

internal reflectance SEIRAS.  

Sun and co-workers have succeeded in coupling FTIR microscopy, a conventional 

thermal source, and large ultramicroelectrodes (radius 200 µm) while reporting studies of 

processes occurring on electrode surfaces on the time scale of tens to hundreds of 

microseconds.7,15,16  The particular electrochemical systems Sun et al. chose to study, however, 

had surface enhancement via anomalous infrared enhanced spectroscopy (AIRES).17  It is likely 

that further improvements in their temporal resolution were prohibited by insufficient signal to 

noise levels when equivalent experiments using smaller platinum UMEs were attempted.  Signal 

to noise values will be increasingly limited by the ability of the instrument to focus large photon 
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intensity onto very small areas providing the motivation to move to non-conventional sources of 

infrared radiation such as synchrotron infrared radiation. 

Herein the use of synchrotron infrared radiation as a source for fast, step-scan 

spectroelectrochemical measurements is described.  The high brilliance of synchrotron infrared 

radiation should, in principle, offer lower noise levels compared to thermal sources when using 

small electrodes (< ca. 70 µm).  However, this advantage may be offset by other factors unique 

to synchrotron infrared radiation particularly source noise inherent to the ring current.  To 

investigate the utility of synchrotron infrared radiation for step-scan spectroelectrochemistry, 25 

µm gold UMEs have been prepared and used to analyze a simple electrochemical system.  Once 

again, the ferri/ferrocyanide redox couple from Chapter 6 will be employed for its clear change 

in spectral response as a function of potential.  Time-resolved synchrotron infrared radiation 

measurements are combined with a detailed analysis of the mass-transport controlled 

electrochemical conversion within a restricted volume geometry.  These results are also used to 

discuss methods to mitigate the effects of source-intensity variation intrinsic to synchrotrons 

operating in beam decay mode.  It is demonstrated that the present configuration has a minimum 

time resolution (5xRC) of less than one microsecond and the step-scan measurement has a limit 

of detection of less than 4 x 10-14 moles of ferrocyanide.  This detection limit is discussed in 

terms of the further improvements and developments needed to achieve the goal of microsecond-

resolved infrared detection of sub-monolayer quantities on electrocatalytic surfaces.  
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7.2. Experimental 

7.2.1. Reagents and Solutions 

Potassium hexacyanoferrate(III) (K3Fe(CN)6, ≥ 99.0% trace metals basis), potassium 

hexacyanoferrate(II) trihydrate (K4Fe(CN)6· 3H2O, ≥ 99.0% trace metals basis),  and sodium 

fluoride (99.998%) were purchased from Sigma Aldrich and were used as received.  All aqueous 

and electrolyte solutions were prepared from Milli-Q water (> 18.2 MΩ cm-1).  

 

7.2.2. Experimental In-situ Spectroelectrochemical Cell 

The three electrode flow-through in-situ spectroelectrochemical (SEC) cell was 

constructed similarly to the one described in Chapter 6 with the following modifications.  The 

cell was machined from a 25 mm diameter, 5 mm thick PVC plastic disc for its mechanical and 

electrical insulating properties and supported for the experiments by an aluminum microscope 

plate.  The 50 µm diameter working electrode (Au, 99.998% metals basis, Alfa Aesar) and 

reference electrode (Ag, 250 µm diameter, 99.9985% metals basis, Alfa Aesar) were first 

embedded in fiberglass resin (3M Bondo Fiberglass Resin) before being sealed in the PVC disc.  

The top (reflecting) surface was first machined parallel to the bottom of the disc and then 

polished to a mirror finish using successively finer grade diamond suspensions (Leco 

Corporation, St. Joseph MI,US) down to 0.5 μm.  

From Figure 7.1, one can see the assembled in-situ SEC cell, with a thin cavity created by 

compressing a nominally 5 μm thick PTFE gasket between a CaF2 IR window (1 mm thick and 

25 mm diameter) and the main body of the cell by tightening a thin aluminum clamping ring to 

the microscope plate adapter.   Through this arrangement a thin cavity of 15 µm was determined  
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Figure 7.1. Diagram of the in-situ spectroelectrochemical (SEC) cell.  The thin-cavity 

electrochemical cell was prepared by compressing a nominally 5 µm thick PTFE gasket between 

the main cell body and an infrared window (CaF2, 1 mm thick, 25 mm diameter).  The working 

electrode (WE) and counter electrode (CE) were made from 25 µm radius gold wire and the 

quasi-reference electrode (RE) from silver wire.   
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from interference fringes obtained in a dry cell and the equation ܾ ൌ ݊ ሺ2∆ߥሻ⁄ , where b is the 

path length, n is the number of fringes, and Δυ is the wavenumber spacing of the fringes.  This 

method was discussed in more detail in the Experimental section of Chapter 6. 

 

7.2.3. Electrochemical Measurements 

The electrochemical characterization of the in-situ SEC cell was performed on the bench 

using an AUTOLAB PGSTAT302N (Metrohm Autolab B.V., Netherlands).  To determine the 

time constant of the electrochemical cell, electrochemical impedance spectroscopy was 

implemented with a 0.5 M NaF electrolyte solution.18  It was determined that the time constant 

was 0.1 µs, implying the time needed to establish the desired potential at the interface was 0.5 

µs.  Further characterization of the electrochemical system was carried out by performing cyclic 

voltammetry (CV) and chronoamperometry (CA) with 0.5 M NaF electrolyte solutions 

containing varying concentrations of ferro/ferri-cyanide.  All CVs were measured at a scan rate 

of 10 mV s-1 unless otherwise indicated.          

For the in-situ SEC measurements at the synchrotron, a HEKA PG 590 Potentiostat 

(HEKA, Mahone Bay, NS, Canada) was used and controlled by software written in the 

LabVIEW (National Instruments Corporation, Austin, TX, USA) programming environment.   

 

7.2.4. Fourier Transform Infrared Measurements 

Fourier Transform Infrared (FTIR) spectroscopy measurements were collected at the 

Mid-IR Beamline facilities located at the Canadian Light Source (Beamline 01B1-01, Canadian 

Light Source, Inc., Saskatoon, SK, Canada).  The beamline end station consists of a Bruker 

Optics Vertex 70v FTIR Spectrometer (Step-Scan capable) coupled to a Hyperion 3000 IR 
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Microscope (Bruker Optics, Billerica, MA, USA).  Light was focused and collected in 

reflectance mode using a 15x Schwarzschild objective (NA 0.4).  The collected light was 

measured using a narrowband fast DC coupled mercury cadmium telluride (MCT) (liquid 

nitrogen cooled) Kolmar (Kolmar Technologies, Inc., Newburyport, MA, USA) detector with 

Bruker preamp.  An optical band pass filter was constructed and placed in-front of the 

microscope consisting of a Long Pass Edge Filter (4.50-25 µm) and a LiF window (both 

windows from ISP Optics Corporation, Irvington, NY, USA) to provide a small optical window 

to decrease measurement times and to prevent spectral aliasing. 

 

7.2.5. Step-Scan Measurements 

In regular FTIR spectroscopic measurements using modern Michelson based FTIR 

spectrometers, a mirror is continuously moved and the interferogram sampled as a function of 

mirror position, δ.  This limits the time-resolution of FTIR measurements to the speed of the 

moveable mirror, which is on the order of the millisecond time scale.  This constraint is lifted 

when instead of sampling the interferogram during a continuous mirror drive, the movable mirror 

stops are predetermined positions and at each position time-resolved data are collected.  Once the 

mirror has stepped to all the positions and the time resolved data acquired, an interferogram can 

be reconstructed from each temporal period with a resolution between microseconds and 

nanoseconds.  The actual minimum time resolution in a step-scan configuration is limited by the 

bandwidth of the detector, preamplifier and digitization rather than the speed of the moveable 

mirror drive. 

The time-resolved single-sided step-scan interferograms were collected at a spectral 

resolution of 16 cm-1 in the wavenumber region 2400-1250 cm-1 (corresponding to the 
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transmission range of the optical bandpass filter).  With these parameters and a phase resolution 

of 64 cm-1 a total of 170 interferogram points (mirror positions) were measured with a temporal 

resolution of 100 µs for a total of 1.5 s (15000 points) of time-resolved data per interferogram 

scan.  Each scan took roughly 10 minutes to acquire and was repeated a total of 256 times to 

increase the signal to noise of the measurement over the course of two days.   More information 

on the timing and acquisition of the data will be discussed in the following section. 

After all the time-resolved infrared measurements were collected, the data was converted 

to single beam energy curves using the Fourier Transform algorithms in OPUS (Bruker) 7.2 

software (Mertz phase correction, Blackman-Harris 3-term apodization and a zerofilling factor of 

2). 

 

7.2.6. Interfacing Hardware and Software 

The most challenging aspect of this experiment was setting up and interfacing all the 

various elements of the hardware and software.  Specifically, the main challenge was interfacing 

the FTIR spectrometer and the potentiostat to ensure consistent and synchronized measurements.  

The in-situ time-resolved step-scan experiment was directed by several LabVIEW Virtual 

Instruments (VI) and two National Instruments multifunctional Data Acquisition (DAQ) cards 

PCI 6251 X Series and USB 6009 devices as depicted in Figure 7.2.  One VI was solely 

responsible for the timing of the experiment by applying the appropriate trigger signal to start the 

infrared data acquisition in OPUS and the potentiostat to apply the potential step to the in-situ 

SEC cell.  This master trigger signal was gated by the Vertex 70v FTIR spectrometer (to ensure 

the mirror had stepped and settled at the appropriate mirror position to begin the infrared  
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Figure 7.2. Interfacing diagram for the in-situ spectroelectrochemical step-scan time-

resolved Fourier Transform infrared synchrotron radiation measurements.   
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measurement) and also started the acquisition of the resulting electrochemical data, the 

magnitude of the synchrotron beam current and average DC value of the Kolmar MCT IR 

detector.  The two DAQ devices had different sampling rates depending on the specific data they 

were measuring.  For example, the short time current transient measurements were measured 

using the PCI 6251 X Series card and for the long average DC MCT values the USB 6009 

device.  A routine was setup between all the VIs and OPUS to be able to repeat measurements 

with minimal interaction from the user. 

The Kolmar MCT IR detector was made to be DC coupled by adjusting the appropriate 

jumper settings on the Bruker Pre-Amp and Bruker ADC device (ANA-101).  To monitor the 

DC level of the MCT detector, the raw infrared signal was measured by the USB 6009 before 

being digitized by the ANA-101 device (i.e. between the pre-amp and ADC device). 

 

7.3. Results and Discussion 

7.3.1. Electrochemistry in Confined Thin Cavity Geometry 

The thin layer geometry of the spectroelectrochemical cell used in these experiments 

creates a restricted diffusion space.  In this environment, there exist semi-infinite diffusional 

conditions extending radially from the electrode circumference but there is a finite diffusion 

volume perpendicular to the electrode surface (directly above the electrode).  Cyclic 

voltammetry (CV) measurements were made to emphasize the effect this thin-geometry has on 

the electrochemical properties of the in-situ SEC cell.  Figure 7.3 provides the cyclic 

voltammogram measurements with a 25 µm radius gold UME in 10 mM ferricyanide (0.5 M 

NaF supporting electrolyte) with both a 14 µm cavity (as determined by infrared measurements  
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Figure 7.3. Cyclic voltammetry for 10 mM Fe(CN)6
-3 in 0.5 M NaF supporting 

electrolyte using an embedded 25 µm radius Au ultramicroelectrode in a 5 mm thick cavity 

(black line) and a 14 µm thick cavity (red line). The scan rate in both cases was 10 mV s-1. 
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described in Chapter 6) and a 5000 µm cavity.  One can see that in the thicker cavity there is 

enhanced mass-transfer, which arises from the fact that the diffusion geometry is best described 

as quasi-hemispherical, when electrolysis is occurring at the electrode.  As a result, nearly ideal 

steady-state current behaviour is reported and is consistent with expectations for 

electrochemistry using UMEs.19  This electrochemical behaviour drastically changes in the 

experiments measured using the 14 µm cavity.  From Figure 7.3, it should be noticed that much 

smaller limiting currents are observed and the overall shape of the CV exhibits current peaks 

rather than the sigmoidal shape measured in the thick cavity configuration.  This highlights the 

fact that during the experiments performed in the restricted volume, the growing diffusion layer 

fully encompasses the cavity thickness depleting the flux of redox species to the electrode.  As 

such, the electrochemistry measured in the thin cavity geometry of the in-situ SEC cell 

experiences mass-transfer limitations to a much greater extent than those experiments performed 

in the thicker cell volume. 

To further analyze this effect of cavity thickness on the electrochemical behaviour, it is 

convenient to define the spatial distribution of FeሾCNሿ6
‐3concentrations in the thin cavity volume 

by using cylindrical coordinates,  ,C r z , where the r and z axes run parallel and perpendicular to 

the electrode surface respectively placing the origin at the center of the electrode’s surface.  This 

treatment is similar to the approach taken in the previous chapter.  The initial condition is easily 

defined when only the oxidized half of the ferri/ferrocyanide couple (FeሺCNሻ6
‐3) is present 

throughout the cell volume.  This is accomplished, experimentally, by applying a potential 

substantially positive of the ferri/ferrocyanide formal potential for an adequate period of time.  

Upon, stepping to a potential sufficiently negative of the formal potential, 

 , 0, 0C r z t    (r ≤ re, t > 0), 
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and the generation of  4

6
Fe CN



 
will be mass-transport controlled.  The diffusion equation 

describing this situation for an embedded disk electrode of radius, re, under a potential bias well 

negative of the formal potential of ferri/ferrocyanide is  

       2 2

2 2

, , , , , , , ,1C r z t C r z t C r z t C r z t
D

t r r r z

    
       

(7.1)

under these additional initial and boundary conditions; 

  *, ,0C r z C  

  *lim , ,r C r z t C   

 , ,
lim 0z h

C r z t

z





 

where D and ܥ∗ are the diffusion coefficient and the bulk concentration of the redox species 

being consumed (ferricyanide, FeሺCNሻ6
‐3 , in this case) and where h represents the cavity 

thickness.  In Chapter 6, the electrode used was 0.5 mm in diameter and Equation 7.1 was treated 

under two limiting cases.  At short times, the current was dominated by finite volume, linear 

diffusion in the thin cavity between the electrode surface and the infrared window.  This resulted 

in the concentration of the diffusing analyte to become nearly exhausted in the cavity rather 

quickly.  As the electrolysis proceeded, radial diffusion continued to supply a state-state flux of 

the electroactive analyte and dominated the current transients at much longer times.  In the 

previous chapter it was concluded that the time at which mass transfer switched from primarily 

linear diffusion to primarily radial diffusion, decreased with decreasing electrode radius.  By 

moving to an order of magnitude smaller electrode, a more satisfactory model of this diffusion 

problem is required and is the focus of the rest of this section. 
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This problem of diffusion to an embedded disk electrode in restricted geometries is often 

modeled by using finite element (FE) simulations and finds many applications in negative 

feedback scanning electrochemical microscopy (SECM) studies.20–22  To aid in the analysis of 

the diffusion problem described above (Equation 7.1), commercial finite-element software 

package (FlexPDE) was employed to model and simulate the results.  The code for these 

simulations is modified from that  provided by Mirkin et al.22  Simulations were performed for 

both thin and thick cavity geometries, and the simulated results were compared to experimental 

data.  From Figure 7.4 one can see the semi-logarithmic plots of both the simulated and 

measured current transients for the 25 µm radius UME and 10 mM FeሺCNሻ6
‐3.  Comparisons 

between the simulation and experiment for the larger cavity allows for evaluation of the 

microelectrode response.  This also provided a means to assess the appropriateness of the 

simulation routine by comparing the results described by the studies of Shoup and Szabo who 

used the following equations for the current arising from semi-infinite diffusion to a disk UME23 

(equivalent to the thick cavity cell geometry), 

݅ሺ߬ሻ ൌ ௘݂ሺ߬ሻ (7.2)ݎ∗ܥܦܨ4݊

where 

݂ሺ߬ሻ ൌ 0.7854 ൅ 0.8862߬ିଵ ଶ⁄ ൅ 0.2146݁ି଴.଻଼ଶఛ
షభ మ⁄

 (7.3)

and 

߬ ൌ
ݐܦ4
௘ଶݎ

 (7.4)
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Figure 7.4. Current transients for an embedded 25 µm radius Au ultramicroelectrode in 

10 mM Fe(CN)6
3- with 0.5 M NaF supporting electrolyte.  The larger magnitude curves are for a 

thick (5 mm) cavity and the smaller currents are for a 14 µm thick cavity using the same in-situ 

SEC cell.  Open data points are experimental data, blue lines are simulations using finite 

difference methods, and the solid red line is calculated from Equation 7.2. 
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As is shown in Figure 7.4, the simulated current response and the calculated current transient are 

almost superimposable and compared to the experimental results, neither deviate by more than 

~3-4%, which is in very close agreement to the acknowledged ~1% error known to be applicable 

in the results of Shoup and Szabo (Equations 7.2-7.4).23  Similar results have been reported by 

Mauzeroll et al. when modeling the response of SECM approach curves.24  A possible 

explanation for the slight differences in response measured experimentally with those modeled 

using re = 25 µm is most likely due to the polishing procedure used in the preparation of the SEC 

cell which slightly distorts the electrode geometry.  The finite difference simulations and 

experimentally measured ݅ሺݐሻ curves for the 14 µm (thin) cavity are also presented in Figure 7.4.  

Here, it is easily seen that there is good agreement between the simulation and experiment results 

and the difference in the total charge passed (integral of the transients) for the two plots is less 

than 2.5%.  In accordance with the cyclic voltammetry reported in Figure 7.3, the steady-state 

current response observed for the thick cavity experiment is not observed in the thin cavity and 

the limiting current is attenuated by roughly a factor of one-third. 

It is possible to assess the amount of electrogenerated material produced as a result of the 

potential step by utilizing the simulation results.  Also, general comparisons between the 

simulated electrochemical signal and the simulated infrared spectroscopy can be made.  It is 

important to remember that these two analytical signals will be significantly different as the 

former will be dominated by semi-infinite diffusion to the perimeter of the electrode whereas the 

measurements obtained through infrared microspectroscopy are indifferent to this source of 

FeሺCNሻ6
‐3 electrolysis.  Figure 7.5 highlights this edge effect by providing a contour map of the 

simulated FeሺCNሻ6
‐4 concentration in the electrode vicinity one second after the potential step.  In 

the snapshot provided in Figure 7.5, one can observe a pronounced concentration differential   
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Figure 7.5. Contour maps of the simulated Fe(CN)6
-3 normalized concentration profiles 

within the thin (14 µm) in-situ spectroelectrochemical cell one second after the potential step. 

The red box defines the cross-section of the cavity volume that is sampled by the incident 

infrared radiation from the microscope and objective used in these experiments. 
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extending radially along the electrode mantle (z = 0, r/re > 1) which gives rise to a large flux of 

material to the electrode circumference.  The volume sampled by the infrared incident radiation 

is delimited by the solid red line in Figure 7.5.  It can be seen that this cavity volume does not 

contain large concentration gradients but instead shows a much more uniform distribution of 

FeሺCNሻ6
‐4 concentrations.  It is evident that the majority of the charge measured at long times at 

the electrode during the potential step arises from edge effects.  It should also be noted that the 

current distribution on the electrode surface is heterogeneous and is heavily weighted around the 

electrode circumference.  Again, it is important to realize that species electrogenerated at the 

edges will not be sampled by the infrared radiation.  This is because they remain excluded from 

the volume element bounded by the CaF2 infrared window and the UME surface. 

In order to better illustrate the differences in the measured infrared and electrochemical 

signals, the simulated diffusion results for the thin cell geometry were used to determine the 

number of moles of ferrocyanide, ݁ܨሺܰܥሻ଺
ିସ, produced during the potential step.  This is a 

simple procedure for the purely electrochemical signal and is achieved by numerically 

integrating the current transient and applying Faraday’s Law (ܳ ൌ  However, to simulate  .(ܨ݊

the signal response expected from the infrared measurements, the concentration contour maps at 

different times (from simulation) were integrated in cylindrical coordinates within the region 

bounded by the electrode surface and the infrared window with respect to both spatial variables 

(i.e. z and r).  The resulting areas were then normalized by the area at t = 0 to determine the 

fraction of ferricyanide converted and finally scaled by the number of moles initially present 

within the volume element based on the initial bulk concentration.  The results from Chapter 6 

with much larger electrode surfaces showed excellent agreement between the experimentally 

measured results and the calculated response for finite linear diffusion (i.e. radial diffusion could 
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be considered negligible).  From the independent work of Micka et al.25 and Olgesby et al.26 the 

corresponding mass-transfer limited, chronoamperometric response for finite linear diffusion can 

be expressed analytically as follows: 

݅ሺݐሻ ൌ
∗ܥܦܣܨ2݊

݄
෍ ݌ݔ݁ ቈെ ൬݉ ൅

1
2
൰
ଶ

ቀ
ߨ
݄
ቁ
ଶ
቉ݐܦ

ஶ

௠ୀ଴

 (7.5)

where A and h are the area of the embedded electrode and the thickness of the cavity 

respectively.  From Figure 7.6, the three simulated responses (calculated number of ferrocyanide 

moles produced) are plotted as a function of time for comparative purposes.  As expected, the 

signal from the current transient greatly exceeds the two other curves and, as indicated in the 

inset of Figure 7.6, increases with respect to time.  In contrast, the finite linear-diffusion 

treatment depicts the eventual conversion of all of the FeሺCNሻ6
‐3 initially present within the thin 

cavity volume and has essentially no contribution from species diffusing from outside this space.  

This result plateaus after the conversion of 2.7 x 10-13 moles, approximately 0.5 seconds after the 

potential step perturbation.  The finite differences solution of this diffusion problem can also 

simulate the change in the concentration of ferricyanide species in the thin-volume cavity which 

would be in the beam path of the infrared radiation.  Figure 7.6 shows that the simulated infrared 

response is similar to the finite-volume transient albeit with a systematically smaller (~13 %) 

extent of conversion.  The rationalization for this result is somewhat intuitive by considering the 

case of finite linear diffusion where the depletion zone rapidly extends across the entire cell 

cavity and exhaustively consumes the ferricyanide.  However, if the radius of the electrode is 

comparable to the thickness of the electrolyte cavity, as is the case presented here, the depletion 

zone of FeሺCNሻ6
‐3 rapidly extends radially from the electrode center and the cavity volume above  
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Figure 7.6. Comparison of the predicted amount of Fe(CN)6
-4 produced as a result of the 

potential step in the thin cavity in-situ spectroelectrochemical cell. The red line is the result of 

integrating the current transient (inset and main body), the blue line is the calculated response 

assuming finite linear diffusion, and the black line is the simulated infrared response. 
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the electrode cannot be completely electrolyzed within the duration of the experiment.  In the 

remainder of this chapter, the experimental result obtained via step-scan time-resolved Fourier 

Transform Infrared in-situ spectroelectrochemistry will be compared to the simulated results in 

an effort to demonstrate the capabilities of step-scan synchrotron infrared radiation for 

electrochemical studies. 

 

7.3.2. Fourier Transform Infrared Step-Scan Spectroelectrochemistry with 

Synchrotron Radiation in Decay Mode 

As mentioned previously it is important to have an electroactive molecule that has 

measurable infrared vibrational bands that respond to electrochemical perturbation in order to 

perform in-situ spectroelectrochemical studies.  The ferri/ferrocyanide redox couple is one such 

molecule owing to the clear spectral shift in the cyanide stretches of the reduced and oxidized 

forms which are both baseline resolved from water absorption bands.27–30  In Chapter 6, 

subtractively normalized infrared spectra, ∆ܵ ܵ⁄ ൌ ሺܵ௏஺ோ െ ܵோாிሻ ܵோாி⁄ , for the 

ferri/ferrocyanide redox system were presented for continuous rapid-scan interferometry.  The 

spectra obtained using step-scan interferometry exhibit a strong peak at 2038 cm-1 which is 

assigned to ferrocyanide (Figure 7.7a), similar to the results presented in Chapter 6. A much 

weaker band at 2115 cm-1 is attributable to ferricyanide and becomes more pronounced with 

higher spectrometer resolution (Figure 7.7b). Figure 7.7a also demonstrates the advantage of 

increased brilliance by overlaying the synchrotron infrared radiation spectrum with an equivalent 

measurement made using a conventional thermal source.  Any analytical signal in the latter 

spectrum is masked by significant noise levels.  While it is clear from Figure 7.7 that step-scan 

interferometry using synchrotron infrared radiation is suitable to follow the ferro/ferricyanide  
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Figure 7.7. a) Step-scan spectra for the ferro/ferricyanide system in the 

spectroelectrochemical cell at t = 1 second using an embedded 25 µm radius Au 

ultramicroelectrode in a 14 µm thick cavity. The strong upward band at 2040 cm-1 represents the 

infrared signature for the corresponding cyano ligands for ferrocyanide, whereas the downward 

band at 2115 cm-1 (more visible at 4 cm-1 resolution in b)) for ferricyanide.  A comparison is 

made between the co-addition of 35 synchrotron infrared radiation interferograms (black line) 

and an equivalent number of interferograms using a conventional thermal source (red line).  

1950 2000 2050 2100 2150 2200

-0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150


S

/S

Wavenumber (cm-1)

 25.0 m (16 cm-1)

 25.0 m (4 cm-1)

1800 1900 2000 2100 2200
-0.2

-0.1

0.0

0.1

0.2

Globar
x0.25

 

 


S

/S

Wavenumber (cm-1)

SIR

a

b) 



203 
 

conversion it is important to also consider data acquisition and noise limitations whose general 

relevance to step-scan interferometry are described in Chapter 3 and elsewhere.31–33 

As discussed at the beginning of this chapter, the use of a true ultramicroelectrode 

enables one, in theory, to approach microsecond temporal resolution (of both electrochemical 

and infrared measurements) through implementation with step-scan interferometry.  Step-Scan 

Fourier Transform infrared spectroscopy for fast processes is a well-established experimental 

technique; however, there have been very few reports in the literature of step-scan infrared 

spectroscopy using synchrotron infrared radiation. 

In-depth discussions of data acquisition and noise limitations in step-scan interferometry 

have been previously discussed in Chapter 3, however it is prudent to discuss two aspects that 

are particularly relevant to this case study.  The successful utilization of step-scan spectroscopy 

requires a system that exhibits long-term stability and repeatable responses to a triggered 

perturbation.  In the measurements described herein, a double potential step (E+400 mV → E-400 mV 

and E-400 mV → E+400 mV) was applied to the ultramicroelectrode at each of the 170 individual 

mirror positions constituting a complete single interferogram.  In the process of acquiring 256 

individual interferograms, the potential was stepped approximately 90 000 times across the 

ferri/ferrocyanide formal potential.  To ensure the stability of the system would not adversely 

affect the step-scan measurements, the current transients for each potential step were 

continuously recorded through the experiment.  Numerical integration of the resulting ݅ሺݐሻ 

curves, to measure the total charge passed, revealed a decrease of only ~15% over the course of 

the two-day experiment indicating remarkable electrochemical stability.   

The second aspect related to the data acquisition and noise limitations in step-scan 

interferometry is associated with the infrared radiation source.  Unlike a conventional thermal 
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source (Globar), the infrared radiation from a synchrotron operating in normal mode (as was the 

case at the Canadian Light Source at the time of the experiments) provides a source intensity that 

decays exponentially with a time constant of roughly 40 hours.  At the time of these 

measurements, the storage ring was refilled every eight hours to a maximum beam current of 200 

mA and decayed by about 25% over this period.  Figure 7.8 illustrates how this affects data 

processing through a schematic representation of the time course of a step-scan experiment.  The 

position of the moveable mirror is plotted as a function of time.  Each rectangular point 

corresponds to the triggered acquisition of t = 1.5 seconds worth of data.  The black dotted box in 

Figure 7.8 encloses a complete set of mirror positions representing a single block of 100 µs time 

resolved inteferograms.  A single block of data, i.e. one interferogram, requires about 10 minutes 

of measurement time and is repeated N = 256 times resulting in a total experiment time of nearly 

48 hours.  Two different data processing approaches were employed to explore the potential 

impact of source intensity variation throughout the course of the experiment.  In method A, each 

block was treated individually by first Fourier transforming the interferogram for every time 

slice to produce a family of energy curves,  and then subtractively normalized using the energy 

curves for t < 0 (i.e. prior to the potential step) as a reference.  Each of the 256 blocks was 

processed in this fashion, on an individual basis, and finally the average of all blocks was 

calculated as expressed mathematically below; 

   
 

, ,
1

0,

n

n
A

S t S t

S S t

 




 


 (7.5)
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Figure 7.8. Schematic representing the time progression of the step-scan experiment.   

Two possible methods (A and B, as described in the text) to generate subtractively normalized 

spectra are shown.  The black points represent the acquisition of 1.5 seconds of 100 µs binned 

data at each mirror position, δ.  Black dotted boxes enclose the mirror positions that constitute a 

complete interferogram whereas the red dotted boxes comprise all measurements made at a given 

mirror position. 
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In method B, the 256 interferogram blocks for every time slice at each mirror position were first 

averaged to produce  P t  (i.e., red-dotted boxes in Figure 7.8).   A single Fourier transform 

was applied to the averaged signals to generate one average energy curve for each time slice, 

ܵሺݐ,  ,෤ሻ, and finally, subtractively normalized as followsߥ

   
 

,,
1

0,
B

S tS t

S S t






 


 (7.6)

Simply described, the two methods can be considered to be A) an average of normalized spectra 

and B) a normalization of averaged spectra.  Of note, method A is more demanding 

computationally due to the greater number of FFTs needed to be performed.  A distinct 

advantage, however, to method A is that it provides an internal normalization of source variation 

over a much shorter time period (~10 minutes) compared to method B, (~48 days and several 

strong ring refills).  To illustrate this difference, the same ferricyanide spectroelectrochemical 

data was analyzed using both data processing methodologies and utilizing calculated signal-to-

noise ratios as a comparative metric between the two techniques.  The noise level, sN,  of each 

method was first determined by considering the standard deviation of the noise in a 50 

millisecond window of the subtractively normalized signal at 2040 cm-1 just prior to the 

application of the potential step (i.e. t = -0.25 seconds ± 25 milliseconds).  Figure 7.9 depicts 

plots of the inverse of sN as a function of the square root of the number of co-added and averaged 

spectra, N.  After co-adding all 256 data blocks, the noise level from method B is found to be 

nearly double that of method A.  This result clearly emphasizes the advantage, and need, of a 

data processing method that inherently accounts for source intensity variation.  Interestingly, the 

order in which the spectra were co-added affects the shape of the ensemble averaging results for 

method A.  If the 256 subtractively normalized spectra are sequentially co-added in the order of 
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which they were measured (i.e. chronologically), portions of the plot are linear (with varying 

slope) but in other regions additional co-additions do not improve the overall noise level.  

Instead, if the 256 spectra produced using method A are randomly co-added, a nearly perfect 

linear dependence of sN
-1 on n1/2 results.  This highlights the degree of noise variation that can 

occur during the course of a prolonged synchrotron infrared experiment which is more than 

likely synchrotron source dependent.  A mechanism to isolate the parameter, or parameters, that 

lead to vacillating noise levels is not completely obvious nor is a means to readily identify and 

discriminate anomalously noisy interferograms (from the nearly 4 million collected for this 

experiment) that degrade the signal-to-noise.  However, Figure 7.9 does indicate that the overall 

quality of the step-scan synchrotron infrared data is somewhat degraded by a relatively few 

number of compromised interferograms.  Further improvements in terms of the data acquisition 

and processing in this regard should improve the benefits of ensemble averaging. 

The unfiltered infrared transient showing the formation of eletrogenerated ferrocyanide is 

presented in Figure 7.10a.  The subtractively normalized peak height at the position of the 

ferrocyanide band maximum (ߥ෤ெ஺௑ ൌ 2040cm‐1) was first converted to an absorbance,

  , 2040log 1S t
S

A
Abs    , before determining the number of moles of ferrocyanide produced 

via Beer’s law and the cavity volume, 2
c eV h r .  In addition, the molar extinction coefficient 

for ferrocyanide as a function of step-scan spectrometer resolution was required and a discussion 

on the determination of this value was provided in the Experimental section of Chapter 6.  A 50 

Hz low pass Fourier Filter was applied to the data presented in Figure 7.10a and is plotted in 

Figure 7.10b to compare these experimental results to those determined from the finite difference 

simulations previously described.  One can see from Figure 7.10b that the simulation of diffusion 

within the thin cavity is in very good qualitative agreement with the measured result.   
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Figure 7.9. Inverse of the standard deviation of the noise plotted as a function of the 

square root of the number of co-added spectra.  The black open circles are calculated from the 

sequential co-additions method (Method A) using Equation 7.5 and the red open triangles 

(Method B) using Equation 7.6. The blue open squares are the result of randomly co-adding the 

256 normalized spectra using Equation 7.5. 
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This confirms that the majority of ferricyanide flux sustaining the electrochemically measured 

current transient occurs at the electrode perimeter and is not spectroscopically detected.  From 

Figure 7.10b, it can also be seen that that treatment of the thin cavity volume in terms of finite, 

linear diffusion overestimates the actual signal by approximately 15%.  This is in contrast to the 

previous chapter (Chapter 6) where linear, finite diffusion was found to be in excellent 

agreement with the experimental result.  This difference is attributed to the size of the electrodes 

used in the different experiments with the electrode used in Chapter 6 being an order of 

magnitude larger.  The influence of the electrode size is easily understood through consideration 

of the diffusion space (vide supra). 

Figure 7.10 also provides insight to the maximum achievable sensitivity using 

synchrotron infrared spectromicroscopy and ultramicroelectrodes at the Canadian Light Source.  

As shown in Figure 7.10(a), the limit of detection (LOD) calculated as three times the standard 

deviation about the noise level) is 36 fmol and the analytical signal giving rise to the LOD is not 

reached until 10 milliseconds after the potential step.  The thickness of the depletion layer, zd, 

after this time (10 milliseconds) can be estimated using 4dz Dt  , to be approximately 5 µm.  

Clearly, with no surface enhancement in the current experimental configuration, detection limits 

on the order of tens of femtomoles can be obtained.  Further optimization of these conditions, 

particularly by using different redox couples that have larger intrinsic absortivities and peak 

absorbances at frequencies well removed from beamline/synchrotron interferences (e.g. a 

diamond window at the 01B1 Mid-IR Beamline at the CLS attenuates the throughput at 2000-

2200 cm-1 by approximately 80%) could lower the LOD by a further order of magnitude.   
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Figure 7.10. a) Transient response measured spectroscopically for the 2040 cm-1 band 

during a potential step.  B) The filtered transient measurement (purple line) compared to the 

calculated results for finite, linear diffusion (blue line) and the simulated results using finite 

differences (black line).  The limit of detection (LOD) is shown as the horizontal black line in the 

part a) of the figure. 
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7.4. Summary and Conclusions 

The work presented in this chapter has greatly improved the previous 

spectroelectrochemical studies, presented in Chapter 6, using synchrotron infrared radiation 

through the technically challenging implementation of step-scan Fourier Transform 

interferometry and true ultramicroelectrodes.  From an electrochemical perspective, a theoretical 

time constant of less than 1 µs for the in-situ spectroelectrochemical cell has been achieved and 

the mass-transport limited electrochemical signal has been successfully modelled using a finite-

differences approaches.  As such, the diffusion behaviour within a finite cavity volume has been 

fully described and the majority of electrochemical current arises from diffusion to the perimeter 

of the embedded electrode rather than from material flux to the middle of the electrode surface.  

The contribution to the overall current from edge effects becomes increasingly more dominant 

with increasing time after the potential step.  Expanding from the results in Chapter 6, the purely 

electrochemical response in the thin-cavity cell include contributions from both linear and radial 

diffusion, it has been shown for both large (0.5 mm diameter) and small (25 µm diameter) 

electrodes that the infrared spectroscopic signal arises solely from redox species originating in 

the thin-cavity created between the electrode surface and the infrared window.  As demonstrated 

by this present case, a maximum analytical signal of 235 fmol was obtainable.  The time-

resolved detection of electrogenerated ferrocyanide from ferricyanide has been accomplished by 

coupling Fourier Transform step-scan experiments with synchrotron infrared radiation. In-situ 

spectroelectrochemical measurements, with time resolution approaching the time constant of the 

electrochemical cell (~ 1 µs), can be readily made with the configuration described herein and 

were only prohibited by the relatively slow, diffusion controlled electrochemical process studied. 



212 
 

This work has also provided a description of data processing methods that illustrate the 

possible deleterious effect caused by synchrotron-derived source variation.  Careful 

consideration of data processing strategies is needed to account for beam current decay when 

operating in normal decay mode.  By correctly doing so, noise signals behave in a random 

fashion and ensemble averaging provides the expected √n dependence.  The estimated limit of 

detection for ferrocyanide detection approaches the femtomole level.  However, it is evident that 

further advancement in microsecond-resolved spectroelectrochemical measurements of 

electrochemical processes will require surface sensitivity and microscope objectives/UME 

preparations that provide surface enhancements.  These next steps are beyond the scope of this 

work but will be discussed as possible further directions in the final chapter (Chapter 8). 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1. Conclusions 

The advancement of several research techniques for in-situ infrared 

spectroelectrochemistry (SEC) is highlighted in this thesis.  It has long been recognized by 

electrochemists that electrochemical measurements alone do not always provide definite 

identification of electroactive molecules at or near the electrified interface.  For example, a 

particular diffusion current might be correlated to a known species, but the molecular identity 

can still only be inferred from these measurements.  This was evident in the work discussed in 

Chapter 4 where Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) was used to 

study the adsorption of dimethylaminopyridine (DMAP) on gold substrates.  Previous work 

solely based on electrochemical data and thermodynamic models provided adsorption geometries 

of DMAP that were shown to depend on the pH of the aqueous solutions and the surface charge 

density of the substrate.  This thesis has described the development of a SEIRAS technique that 

allowed for further evidence to be gathered verifying the pre-described thermodynamic models.  

More interestingly, however, was the newly recognized concept that in acidic electrolytes and at 

negative potentials, there is a small amount of adsorption of the conjugate acid (DMAPH+).   

This result, likely due from an electrostatic attraction, was not forthcoming from previous 

electrochemical studies and was only realized because of the additional information provided 

through in-situ infrared spectroelectrochemistry. 

Further instrumental advances were made to improve the data-collection capabilities to of 

in-situ SEC measurements, specifically, time-resolved kinetic information.    The added step of 
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complexity in the collection and processing of data provided a foundation to study complicated, 

kinetic responses of electrochemical systems.  Chapter 5 highlighted this work through the study 

of the time-resolved kinetics of a proton-coupled electron transfer (PCET) redox reaction on 

modified self-assembled monolayers (SAMs) using Rapid-Scan FTIR spectroscopy.  A method 

to prepare chemically modifiable SAMs was developed and allowed for the attachment of an 

electrochemically-active moiety, 1,4-benzoquinone, suitable for the study of PCET 

thermodynamics and kinetics.  A new in-situ SEIRAS spectroelectrochemical cell was designed 

to be robust and reliable and was proven to be very effective for time-resolved measurements.  

Formal potentials and the heterogeneous rate constants were measured using traditional 

electrochemical techniques and in-situ spectroelectrochemical techniques over a wide range of 

pHs.  The results from different methodologies were in good agreement and demonstrated a shift 

in the formal potential to more positive potentials with increasing electrolyte acidity with a ~60 

mV pH-1 dependence.  This was the predicted result for a two-proton two electron system.  

However, what was not predicted by literature models was the observation that the logarithm of 

the apparent standard rate constant decreasing linearly with pH.  It is speculated that more subtle 

changes in the rate constant dependence were most likely obscured by the kinetic heterogeneity 

of the system, which was purposely designed to exhibit relatively slow electron transfer kinetics 

such that they could be measured using this SEIRAS technique.  

The ability to measure faster electrochemical systems requires the use of small working 

electrodes in order to increase the electrochemical responsiveness of the system.  Complimentary 

to this, faster infrared spectroscopic collection techniques need to be employed to match the 

increase in electrochemical dynamics.  This represents a paradox in experimental terms as small 

electrodes are required electrochemically whereas large electrodes are preferred 
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spectroscopically to achieve high photon throughput.  If the size of the working electrode is 

decreased to afford fast electrochemistry, there is a considerable decrease in the infrared photon 

flux incident on the smaller electrode surface.  With fewer infrared photons probing the electrode 

and fewer electrochemically active molecules in the infrared beam path, the diminishing loss of 

sensitivity in the spectroscopic measurements limits the feasibility of moving towards faster 

electrochemical systems measured with fast infrared spectroscopic techniques.  Developments to 

mitigate these two incongruent concepts were the primary focus of the last two experimental 

chapters (Chapter 6 and 7) and highlight the largest contributions this body of work has made in 

advancing in-situ infrared SEC techniques. 

To overcome these problems, methodologies were developed to utilize the high brilliance 

and spatial resolution of synchrotron infrared sources.  This necessitated switching from internal 

reflection geometries (SEIRAS) to external reflection geometries and required the use of focused 

(via an infrared microscope) synchrotron infrared radiation.  To the best of the author’s 

knowledge, this work represented the first instances in which dynamic (non-equilibrium) 

electrochemical interfaces were studied using synchrotron sources for infrared in-situ SEC.  In 

Chapter 6, these ideas were first explored through the development of a thin-cavity in-situ SEC 

cell, required for external reflectance, housing a near ultramicroelectrode (UME) sized working 

electrode (250 µm radius).  Electrochemically, this cell was shown to be capable of achieving 

millisecond time-resolution (5xRC = 1.25 milliseconds) and through experimental measurements 

of the ferro/ferri-cyanide redox system demonstrated diffusion current limited responses.  

Spectroscopically, the in-situ measurements were made using rapid-scan (continuous mode) 

Fourier Transform Infrared Spectroscopy allowing for temporal measurements in the ~ 100 

millisecond time regime.  Efforts to understand the diffusion current characteristics of the thin-
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cavity electrochemical cell lead to various theoretical simulations and fitting to the 

experimentally obtained data.  An empirical model was developed that fit the electrochemical 

data at short times to contributions mainly from the electroactive material directly above the 

electrode in the thin-cavity and at long times from the radial diffusion towards the edge of the 

electrode.  Importantly, the infrared spectral response can only describe the molecular changes in 

the material directly above the electrode and not the material contributing to the radial 

electrochemical signal.     

Chapter 7 continued the work from Chapter 6 by introducing the use of a true 

ultramicroelectrode and increased time-resolved spectroscopic data collection through step-scan 

Fourier Transform Infrared Spectroscopy and synchrotron infrared radiation.  Using a ten times 

smaller working electrode (25 µm radius), sub-millisecond (5xRC ~ 1 microsecond) time 

responses were obtained with a spectral time-resolution on the order of tens of microseconds.  

The ferro/ferri-cyanide redox couple was employed to examine the diffusion current behaviour 

within the thin-cavity in-situ SEC cell.  Unlike the analysis performed for the larger electrode 

(Chapter 6), this problem was analyzed through numerical simulations. 

As a result of this treatment, the diffusion behaviour within a finite thin-cavity volume 

has been fully described and it was shown that the majority of the electrochemical current arises 

from diffusion to the perimeter of the embedded electrode rather than from material flux to the 

electrode surface.  As such, the contribution to the overall current from edge effects becomes the 

more dominant source with increasing time after the potential step.  From these results, and those 

described in Chapter 6, the purely electrochemical response in a thin-cavity cell includes 

contributions from both linear and radial diffusion.  Also, both electrodes only report the infrared 
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spectroscopic signal arising solely from redox species originating in the thin-cavity created 

between the electrode surface and the infrared window.   

A further result demonstrated a spectroscopic limit of detection (LOD) to be ~36 fmol for 

the ferro/ferricyanide redox couple.  It is important to keep in mind that this LOD could be 

improved by analysis of electroactive species with spectroscopic signals away from the large 

diamond window absorbance present in the beamline optics at the Canadian Light Source.  

Through the discussion presented in Chapter 7, a description of different data processing 

methods illustrate the possible deleterious effect caused by synchrotron-derived source 

variations.  Careful consideration of data processing strategies are required to account for beam 

current decay when operating in normal decay mode and also to correct for other sources of 

noise present in synchrotron infrared sources.  By correctly doing so, noise signals behave in a 

random fashion and ensemble averaging provides the expected √n dependence.   

In summary, in-situ infrared spectroelectrochemistry is a powerful tool to elicit molecular 

information at or near an electrified interface providing insight into structure, orientation and 

kinetic details of electrochemical processes.  This thesis has highlighted a progression from 

developing methodologies and instrumentation to providing improved understanding of 

electrochemical related phenomena of surfaces.  This advancement has required the adaptation of 

previously developed methods, e.g. surface enhanced infrared absorption spectroscopy 

(SEIRAS), to completely new areas of utilizing bright highly focused synchrotron infrared 

radiation with ultramicroelectrodes to measure in-situ spectroelectrochemical information on the 

microsecond time scale.  This thesis concludes with a section detailing possible directions and 

future enhancements to address some of the current limitations in detection and time-resolution 

as well as some possible applications that would benefit from this work.  
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8.2. Future Work 

Given the successes demonstrated in combining electrochemistry with synchrotron 

infrared radiation in the latter part of this thesis, further instrumental developments to improve 

the sensitivity of these measurements is a logical place to continue the work in this field.  In 

particular two projects worth pursuing in this area use different methodologies to construct 

substrates for surface enhanced infrared absorption spectroscopy (SEIRAS) that are compatible 

with microscope objectives commonly used in infrared microscopy.  In doing so, the surface 

sensitivity of these experiments should be increased, decreasing the limit of detection.  For 

example, the continued development of microstructured silicon wafers fabricated in such a way 

to couple infrared radiation for attenuated total-internal reflection (ATR) is a possible means to 

achieve surface sensitivity.  Current methods use monolithic silicon, germanium or zinc selenide 

prisms, typically hemispherical for single bounce or wedged shaped for multi-bounce 

geometries.  A disadvantage to these particular optical elements is the large path lengths the light 

must travel in the ATR element, often with absorption losses.  For example, the most commonly 

used infrared ATR element, silicon, has strong infrared absorptions due to silicon lattice 

vibrations that absorb infrared radiation between 300 cm-1 and 1500 cm-1.  By decreasing the 

thickness of the ATR element to the thickness of commonly available silicon wafers (~500 µm), 

high optical throughput throughout the entire mid-infrared range can be achieved with the 

flexibility to host a variety of in-situ or ex-situ applications.  The microstructured silicon ATR 

elements considered here consist of a periodic array of v-shaped grooves chemically wet-etched 

onto the backside of a Si (100) wafer (Figure 8.1a).2 

The primary function of etching an array of periodic grooves in the Si ATR element is to 

overcome the problem of coupling infrared radiation through a Schwarzchild objective lens for 
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total-internal reflection.  The shallow angle of incidence (~ 24o half angle, for an objective with 

NA = 0.4) is below the critical angle required for total-internal reflection within the Si wafer.  

The array of “v-shaped” grooves preferentially etched in the Si wafer changes the angle of 

incidence from the infrared microscope to the wafer as the grooves form a 54.7o angle from the 

surface normal of the wafer.  In this arrangement, the incident light from the infrared microscope 

is now capable of entering the Si wafer above the critical angle and can be totally-internally 

reflected.  

In addition to this, there is an angle dependence of the incident radiation polarization.  

From Chapter 3, only p-polarized radiation is responsible for any SEIRAS related signals and 

increases in intensity to a maximum angle of incidence at 80o to the reflection surface normal.3  

By etching these grooves in the Si wafer, not only does it allow the incident beam to be totally 

internally reflected, but it moves the angle of incidence closer to the maximum angle and results 

in an increase in intensity.   

The preparation of these ATR elements utilizes common silicon processing technologies 

developed in the semi-conductor industry.  Initial attempts to prepare these substrates are 

presented in Figure 8.1b following the procedure outlined by Schumacher et al.2  From this 

figure, one can see that the desired v-shaped pattern has been successfully wet-etched into the 

backside of the silicon wafer.  Further refinements to this pattern are needed by optimization of 

the groove spacing and depth for maximum total internal reflection.  Once adjusted, one could 

theoretically metalize the non-machined side of the ATR element with gold, similar to the work 

presented in Chapters 4 and 5, to allow for in-situ spectroelectrochemical SEIRAS 

measurements.  These substrates could be utilized for SEIRAS measurements using a 

conventional infrared source and a bench-top spectrometer, or coupled with a synchrotron  
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Figure 8.1. a) Schematic of the microstructured silicon attenuated total-internal reflection 

(ATR) element with optical path and evanescent wave propagation for surface enhanced infrared 

absorption spectroscopy (SEIRAS).  b) Scanning electron microscope images of the initial 

attempts to construct microstructured Si ATR elements.   
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infrared radiation source and an optical/infrared microscope.    

A particular problem with the above described Si microstructured ATR elements is that 

although highly transparent in the infrared, they are opaque in the visible light region of the 

electromagnetic spectrum.  This makes it incredibly difficult for microscopy related applications 

which provides the motivation for the next project.  An optically transparent, both in the visible 

and infrared portions of the electromagnetic spectrum, CaF2 (and ZnSe partially transparent in 

the visible) window can be patterned with gold nanostructures to produce highly sensitive 

plasmonic substrates.  Halas et al.4 have demonstrated, through the use of electron beam 

lithography, that long (between 575 – 1800 nm) and narrow (50 nm) gold antenna cross 

structures can be fashioned to produce theoretical surface enhancement factors of more than 

12000.  The large enhancement of the electric field at the surface of the plasmonic structures 

allows for near zeptomolar sensitivities in the infrared.  This is accomplished by specifically 

engineering the structures, by changing their size and shape, to tune the electric fields created 

around them through illumination of appropriate infrared light.  This enhancement effect, similar 

to that proposed to be responsible for surface enhanced Raman spectroscopy (SERS), is due to 

the collective excitation and oscillations of the metal electrons present in the structure.5  These 

surface plasmons can be tailored in such a way that their resonant frequency can be matched with 

a given molecular vibration coupling the intensities and providing an enhancement of the 

molecular vibration.  By this means, small and weak infrared absorption signals can effectively 

be enhanced to measurable levels allowing for near single molecule sensitivities.  

 An issue with the above approach taken by Halas and co-workers is the high costs 

associated with electron beam lithography.  To produce just one mask, costs can amount to tens 
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of thousands of dollars.  However, a low-cost alternative for tunable resonant structure for 

SEIRAS can be realized.6  This is a current direction of interest within the author’s current 

research group and is demonstrating some encouraging preliminary results.  Briefly, strong 

electric-field enhancements can be realized by tuning fabricated arrays of triangular gold 

microstructures, antennas, on infrared transparent windows.  This is accomplished through low-

cost colloidal lithography with micrometer-sized polystyrene spheres.  These substrates are 

prepared by drop casting polystyrene sphere suspensions onto CaF2 windows.  Once the solvent 

has evaporated, a thin layer of gold is deposited on the substrate coating both the polystyrene 

spheres and the holes formed between the spheres (Figure 8.2a).  Removal of the spheres results 

in a honeycomb pattern of gold triangular antennas capable of enhancing infrared vibrations 

specific to the size of the antennas (Figure 8.2b).  By varying the size of the micrometer-sized 

polystyrene spheres, one can tune the antenna resonance across the infrared spectrum and tailor 

the substrate to the particular chemical systems of interest.  Transitioning this fabrication 

technique to use conductive glass materials (i.e. indium titanium oxide, ITO), one could imagine 

the eventual incorporation of these substrates for in-situ spectroelectrochemical measurements 

utilizing highly brilliant focused synchrotron radiation. 

With the infrared enhancements to the sensitivity described above, more challenging 

electrochemical systems can be examined.  For example, the long experimental times required to 

achieve adequate signal-to-noise levels for the step-scan time-resolved in-situ 

spectroelectrochemical measurements meant it was not feasible to measure the kinetics of 

irreversible electrochemical reactions.  In order to perform these measurements, after each 

potential step the analyte would need to be flushed from the thin-cavity cell and replenished with  
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Figure 8.2. a) Step-by-step procedure in the construction of the triangular antennas 

surface enhanced infrared absorption spectroscopy. B) Example infrared spectrum demonstrating 

the enhancement of the infrared signal by the strong electric-field enhancements provided by the 

fabricated array of antennas on the infrared window substrate at the resonance frequency (1160 

cm-1).  Substrates and measurements were prepared and taken with permission from by Tyler 

Morhart. 
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fresh material.  This added step, although easily achieved using peristaltic pumps and control 

systems, adds seconds to each potential step measurement.  In the context of the step-scan 

measurements described in Chapter 7, with 170 mirror positions measured for one interferogram 

adding seconds to each mirror measurement translates to minutes for an interferogram.  Co-

adding multiple interferograms will add hours (potentially days) to a given step-scan 

measurement. 

With the larger surface enhancements that could be achieved with one of the methods 

described above, these measurements become more achievable as several orders of magnitude 

improvements to the signal-to-noise are predicted.3  This has the potential to decrease the total 

number of co-added scans required to complete a time-resolved kinetic in-situ 

spectroelectrochemical measurement using step-scan interferometry.  Coupled with the fully 

described diffusion current properties of thin-cavity electrochemical cells (described in Chapters 

6 and 7), valuable information can obtained for important irreversible electrochemical reactions.  

Some example systems include the endo-cyclization of dopamine7 and the analysis of the 

byproducts produced during the oxidation of methanol in fuel cells.8–10  

 These are just a few potential ideas to move the field of in-situ infrared 

spectroelectrochemical techniques forward and a brief example of what more complicated and 

advanced electrochemical problems that could be analyzed.  Much of the work presented in this 

thesis has focused on the challenging instrumental foundations required to move forward to 

understand more complicated electrochemical processes.  Along this development, meaningful 

results in the understanding of electrochemical related phenomena of surface adsorption, proton-

coupled electron transfer processes and diffusion in thin-cavity environments were realized. 
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