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A new approach for solving permutation scheduling problems with ant colony optimization

(ACO) is proposed in this paper. The approach assumes that no precedence constraints

between the jobs have to be fulfilled. It is tested with an ACO algorithm for the single-machine

total weighted deviation problem. In the new approach the ants allocate the places in the

schedule not sequentially, as in the standard approach, but in random order. This leads to

a better utilization of the pheromone information. It is shown by experiments that adequate

combinations between the standard approach which can profit from list scheduling heuristics

and the new approach perform particularly well.
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1. Introduction

The ant colony optimization (ACO) metaheuristic has
been applied successfully to various combinatorial
optimization problems such as scheduling problems,
vehicle routeing problems or assignment problems (for

an introduction and overview see Dorigo et al. 1996,
Dorigo and Di Caro 1999, Dorigo and Stützle 2004,
Merkle and Middendorf 2004). Scheduling problems
that have been solved with ACO are the job-shop
problem (Colorni et al. 1994, Van Der Zwann and
Marques 1999), the flow-shop problem (Stützle 1998),
the single-machine total tardiness problem (SMTTP)
and its weighted variant (Bauer et al. 1999, den Besten

et al. 1999, 2000, Merkle and Middendorf 2000), the
resource constrained project scheduling problem
(Merkle et al. 2002), the group shop scheduling (Blum
2002) and scheduling problems from industry (Gagne
et al. 2000). In ACO, several generations of artificial
ants search for good solutions. Information exchange
between the ants is based on principles of communica-
tive behaviour that are found in real ant colonies.

Every ant builds up a solution step by step, going
through several probabilistic decisions until a solution

is found. Ants that have found a good solution mark

their paths through the decision space by putting some

amount of pheromone on the edges of the path. The

following ants of the next generation are attracted by

the pheromone so that they will search in the solution

space near the good solutions. In addition to the phero-

mone values the ants will usually be guided by some

problem specific heuristic for evaluating the possible

decisions.
It has already been shown that ACO can solve permu-

tation scheduling problems such as the single-machine

total weighted tardiness problem (SMTWTP) (Bauer

et al. 1999, Den Besten et al. 2000, Merkle and

Middendorf 2000) and flow-shop problems (Stützle

1998) very successfully. A comparison between ACO

and other heuristics on a set of benchmark problems

from the OR-library (2001) for the SMTWTP was

made by den Besten et al. (2000). ACO was able to find

for all 125 test instances with 100 jobs the best-known

solutions. This was significantly better than the best-

known tabu search method for SMTWTP. Only iterated

dynasearch reached a similar performance as ACO.
There is a general approach to solving permutation

scheduling problems such as the SMTWTP and flow-

shop problems with ACO. Starting with the first place

of the schedule, every ant constructs a solution by

deciding iteratively which job is at the next place.
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For every place i in the schedule and every job j there
is pheromone information �ij about the desirability to
put job j at place i. This approach is natural since for
many permutation scheduling problems there exist
good list scheduling heuristics which can be used by
the ants in addition to the pheromone information.
All ACO algorithms that have been proposed so far
for the SMTTP, the SMTWTP and the flow-shop
problem follow this approach (Bauer et al. 1999, den
Besten et al., 1999, 2000, Merkle and Middendorf 2000).
In this paper we identify a disadvantage of the

standard approach to solving permutation scheduling
problems with ACO. We propose a new approach that
circumvents this disadvantage of the standard approach.
Moreover, we show how to combine the standard
approach which can profit from list scheduling heuristics
with the new approach. Since the ACO algorithm
(den Besten et al. 2000) that uses the standard approach
was already able to find the best solutions for all the large
benchmark instances for the SMTWTP in the OR-
Library (2001) we tested our method on a somewhat
more difficult problem where, in addition to the weighted
tardiness costs, weighted earliness costs also have to be
considered. This problem is called the single-machine
total weighted deviation problem (SMTWDP).
The paper is organized as follows. The definition of

the SMTWDP is given in section 2. The standard
decision mechanism of the ants to build a solution
is compared with the new approach in section 3.
In section 4 we describe the ACO algorithm for the
SMTWDP. Some variants and further aspects of the
ACO algorithm are considered in section 5. The choice
of the parameter values of the algorithms that are used
in the test runs and the test instances are described in
section 6. Experimental results are reported in section 7
and a conclusion is given in section 8.

2. The single-machine total weighted

deviation problem

The SMTWDP is to find for a given set of jobs with due
dates a one-machine schedule that minimizes the sum of
the total weighted earliness and total weighted tardiness.
Formally, the SMTWDP is to find for n jobs, where job
j, 1� j� n, has a processing time pj, a due date dj and
two weights hj and wj, a non-pre-emptive one-machine
schedule that minimizes D ¼ �n

j¼1ðhj maxf0, dj � Cjgþ

wj maxf0,Cj � djgÞ where Cj is the completion time of
job j. D is called the total weighted deviation of the
schedule. In this paper we do not allow idle times
in the schedule between the jobs. Observe that hjmax
{0, dj�Cj} is the weighted earliness of a job and
wj max {0, Cj� dj} is its weighted tardiness. It is
known that SMTWDP is NP hard in the strong sense

even when all weights are the same (Garey and

Johnson 1979). Note that the SMTWTP problem is

easier since it can be solved in pseudopolynomial time

when all weights are equals (Garey and Gohnson

1979). A short overview of research that studied combi-

nations of earliness and tardiness criteria has been given

by Wu et al. (2000).

3. Decisions of the ants

In this section we identify a problem of the standard

decision process in ACO algorithms for permutation

scheduling problems. A new approach is proposed and

compared with the standard approach. In order to

make the discussion easier we assume that pheromone

information already exists and that no heuristic

information is used. The whole ACO algorithms are

then explained in the following section.

3.1. The standard approach

The standard ACO approach is that ants build up

a schedule by always extending an already fixed prefix.

Thus, in the case of permutation scheduling problems

the ant decides first which job is the first in the schedule,

and then it decides which job is the second and so forth.

The decisions are made randomly according to the

pheromone information. For n jobs there is pheromone

information �ij, i, j 2 ½1; n�, and the ith decision of an ant

is then which job j to put on which place i in the

schedule. If S is the set of unscheduled jobs, the prob-

ability pij to choose job j 2 S is pij ¼ �ij=�h2S�ih. In the

following we identify a disadvantage of this approach.
The general principle of ACO algorithms is that the

pheromone information �ij, i, j 2 ½1 : n�, reflects the

outcomes of the decisions which have been made by

former ants that found good solutions. The ants of the

actual generation should use this pheromone informa-

tion in an adequate way. Hence their decisions should

be made according to the probability distribution that

is determined by the relative size of the pheromone

values corresponding to the possible outcomes of the

decision.
The following observation shows a general problem

for ACO algorithms to follow this guideline. Let us

consider an example with n¼ 3 jobs and the pheromone

values given by the following matrix:

j�ijji, j2½1:3� ¼
1=2 1=3 1=6
1=6 1=3 1=2
1=3 1=3 1=3

������
������:
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This matrix is called the pheromone matrix. Then, for
the first place in the schedule an ant simply chooses
job j 2 ½1 : 3� with probability p1j ¼ �1j. Hence, the prob-
ability to choose job j equals exactly the relative amount
of pheromone �1j for job j in the first row of the
matrix. However, for the decision on which job to
place in the second place the probabilities are different
from the relative amount of pheromone in the second
row. This is because the outcome of the decision
for the first place has to be considered. In parti-
cular, p21 ¼ p12½�21=ð�21 þ �23Þ� þ p13½�21=ð�21 þ �22Þ� ¼
25=180 < 1=6. Similarly, p22 ¼ 56=180 < 1=3 and
p23 ¼ 99=180 > 1=2. This example has shown that the
first decision of an ant correctly reflects the intention
of the ACO heuristic, namely that the probability distri-
bution for the decision reflects the relative size of the
pheromone values. However, as the example shows,
this is not necessarily true for the following decisions.
In the following we show that the situation is given

worse. For typical pheromone matrices that occur
when solving permutation scheduling problems there is
a systematic bias in the probability distributions that
are used by the ants with respect to the distributions
that correspond to the values in the rows of the phero-
mone matrix. A typical situation for problems with
total earliness and tardiness costs such as the
SMTWDP is that for every job there is a more or less
preferred place in the schedule and the costs usually
become higher the more the place of a job differs from
the preferred place.
As an example we study an idealized SMTWDP

instance with n¼ 30 jobs and where each job j has
processing time pj¼ 1, due date dj¼ j, tardiness weight
wj¼ 1 and earliness weight hj¼ 1. Clearly, the only
optimal solution with total costs 0 has job j at place j
in the schedule. We consider a hypothetical pheromone
matrix that is similar to pheromone matrices that occur
after some generations in the ACO algorithm when the
largest pheromone values are centred around the
pheromone values that correspond to the optimal deci-
sions. The pheromone matrix is illustrated in figure 1
and formally defined as follows. For i 2 ½3; 28�, let
�ii¼ 2/5, �i, i�1 ¼ �i, iþ1 ¼ 1=5, �i, i�2 ¼ �i, iþ2 ¼ 1=10 and
�ij¼ 1/20 if j =2 fi � 2, i � 1, i þ 1, i þ 2g. In rows
i 2 f1, 2, 29, 30g we define the pheromone values so
that the sums of the pheromone values in all rows and
columns of the matrix are equal because this is often
the case in real ACO algorithms (in this example
the sum is 9/4). Let �11¼ 11/20, �22¼ 2/5 and �21 ¼
�12 ¼ 1=4, �30,30¼ 11/20, �29,29¼ 2/5 and �29, 30 ¼
�30, 29 ¼ 1=4.
We let 100 000 ants construct a solution using the test

matrix. Denote by mij the number of ants that have
decided to place job j at place i of the schedule.
Since in every row of the pheromone matrix the sum

of the � values is 9/4, the pheromone matrix suggests
that m�

ij :¼ �ij � ð4=9Þ � 100 000 ants should have
placed job j at place i. Let dij :¼ mij �m�

ij be the
deviation of the observed values from the suggested
values. The matrix Dþ :¼ ½maxf0, dijg� of the positive
deviations and the matrix D ¼ ½minf0; dijg� of the nega-
tive deviations are shown in figures 2 and 3 respectively.
Note that the grey values in the figures show relative
values between the maximum and the minimum value
in each matrix and cannot be compared directly between
the matrices.

Figure 1. Pheronome matrix of the example problem:

white¼ 1/20; black¼ 11/20.

Figure 2. Matrix Lþ: white¼ 0, black¼ 5689.

Figure 3. Matrix L�: white¼ 0, black¼�24 554.
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It can be seen from the figures that there is a syste-
matic bias in the decisions of the ants. The negative
values dij occur along the diagonal which means that
the ants tend to choose these values, corresponding to
good decisions that cause only small deviations not
sufficiently often. The positive values occur above
the diagonal and also in the bottom left corner.
The reason for the high values above the diagonal
is that the high pheromone values along the diagonal
cause smaller probabilities to be chosen below the
diagonal (and therefore to higher probabilities to
the right of the diagonal). The reason for the
high values in the bottom left corner can be explained
as follows. Assume that an ant does not schedule a
job when its high pheromone values occur. Then it
will often happen that the job is placed near the
end of the schedule when there are only a few
alternatives left.

3.2. The new approach

In the following we propose a method to cope with the
problems mentioned in the last section. The new
approach is applicable to ACO algorithms that solve
permutation scheduling problems where no precedence
constraints between the jobs have to be considered.
The general idea is that every ant determines in a
random order over the places which job is assigned to
the next place in the schedule. Ants that decide accord-
ing to a random sequence are called random ants. The
advantage of the random decision sequence is that
every place has the same chance to be the first that is
assigned a job. Because there is no bias in the first
decision, the average of the decisions of the ants will
better reflect the information that is contained in the
pheromone matrix. It is likely that this will improve
the optimization behaviour compared with an ACO
algorithm following the standard approach.
To compare the new approach with the standard

approach we let 100 000 random ants construct a
solution using the test pheromone matrix from the
last section. Let mR

ij be the number of random
ants that have decided to place job j at place i of the
schedule and let dR

ij :¼ mB
ij �m�

ij . The matrix DRþ :¼
½maxf0, dR

ij g� of the positive deviations and the matrix
DR� :¼ ½minf0, dR

ij g� of the negative deviations are
shown in figures 4 and 5 respectively.
Similar to the results for the standard approach the

negative values dij occur along the diagonal, which
means that the ants tend to choose these values, corres-
ponding to good decisions with small deviations not
sufficiently often. However, in contrast with the
standard approach the positive values are randomly
distributed in the rest of the matrix. There is no clear
bias to some specific region. This is an advantage

because it indicates that an ACO algorithm using
random ants might find good solutions.

Comparing the absolute value gives further indica-
tions for the strength of the random ants. For the
standard ants the sum of all positive values dij in M
(which equals the absolute value of the sum of all
negative values mij) was 418 418, that is about 14.0%
of all 3 000 000 decisions made by the ants. For the
random ants the sum of all positive values dR

ij in
M was only 112 209, that is only about 3.7% of all
3 000 000 decisions by the ants.

The weighted deviation of all decisions of the
standard ants that exceed (fall below) their expected
value was 4 597 388 (968 992 respectively); that is, the
average deviation of each of these decisions was 10.99
(2.32 respectively). Compared with that, the weighted
deviation of all decisions of the random ants that
exceed (fall below) their expected value was only
1 336 926 (�55 480 respectively). The average deviation
of each of these decisions was 11.91 (0.50 respectively)
which is similar to the corresponding values for the
standard ants. The maximum positive (negative) value
dij was 5 689 (�24 544 respectively) and the maximum

Figure 4. Matrix LRþ: white¼ 0, black¼ 278.

Figure 5. Matrix LR�: white¼ 0, black¼�3 574.
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positive (negative) value dR
ij was 278 (�3 574 respec-

tively). The comparison of the absolute values also
shows that the random ant approach leads to decisions
that better reflect the probabilities which correspond
to relative size of the pheromone values. Moreover,
it does not have such a strong bias as the standard
approach.
It should be mentioned that some care has to be taken

with an interpretation of our findings. Since many ACO
algorithms use a selection mechanism that allows only
the best ant in a generation to update the pheromone
values, it is not necessarily true in such a case that
generations of ants which are not good on the average
lead to an algorithm that is not good. Moreover, the
most important contribution of the ants in a generation
is not always to only find a good solution. It is also
important which of the pheromone values will be
increased because this influences the next generation
of ants. When the pheromone update mechanism
introduces a systematic bias it could become more and
more unlikely that the following generations will find
the optimal solution. Nevertheless, since the random
ants found solutions that better reflect the pheromone
information and since the deviations show no strong
bias, it is likely that they can contribute to a good
optimization behaviour.

3.3. Combinations of both approaches

It should be mentioned that there is a problem with the
random ant approach. An ant that assigns jobs to the
places in a random order cannot usually profit from
heuristics that are based on list scheduling. Since there
exist good list scheduling heuristics for many permuta-
tion scheduling problems and heuristic information
is in general important for the optimization behaviour
of ACO algorithms, it is not clear whether the new
approach (without a heuristic) performs better than
a standard ACO algorithm that uses a powerful list
scheduling heuristic.
Therefore, we propose to combine both approaches.

Some ants should decide according to the standard
sequential order and use the (list scheduling) heuristic
while the other ants make decisions according to a
random order without using heuristic information, but
care has to be taken when two types of ants work
together. When both types of ant are in the same genera-
tion, it might often be the case that ants of one type are
better than the others. Then, only the ants of the better
type will have a chance to update the pheromone matrix,
while the other ants are useless. We assume here that
only the better ants are allowed to update the phero-
mone information. Note that in the first ACO algo-
rithms that appeared in the literature, usually all ants
are allowed to update so that the amount of pheromone

depends on the quality of the solution that was found by

the ant. However, it has been shown meanwhile that for

most problems it is advantageous to allow only the best

ant to update (see, for example, Dorigo and Di Caro

(1999) and Dorigo and Stützle (2004). We

circumvent this problem by using ants of different

types in different generations so that competition

occurs only between ants of the same type.

4. The ant colony optimization algorithm for the

single-machine total weighted deviation problem

The ACO algorithm for the SMTWDP is explained in

detail in this section. It is an iterative algorithm where

in every generation (iteration) each of m ants constructs

one solution for the SMTWDP. We use two types of

ant. The so-called sequential ants select the jobs in the

order in which they will appear in the schedule, whereas

the random ants as introduced in section 3 select the

jobs according to some random order in which they

will appear in the schedule. For the selection of a job

both types of ant use pheromone information. The

sequential ants use also some heuristic information.

Heuristic information, denoted by �ij, and pheromone

information, denoted by �ij, are indicators of how

good it seems to have job j at place i of the schedule.

The heuristic value is generated by some problem-

dependent heuristic whereas pheromone information

stems from former ants that have found good solutions.

The next job is chosen according to the probability

distribution over the set of unscheduled jobs

S determined by

pij ¼
�ij�ij

�h2S�ih�ih
or pij ¼

�ij
�h2S�ih

for the sequential ants and the random ants

respectively.
The heuristic values �ij are computed according to

a heuristic that has been obtained by modifying

a heuristic proposed by Ow and Morton (1998).

The idea is that a sequential ant chooses the next

job from the set of jobs that already exceed their

due date (with respect to the sum of the processing

times of all jobs that are scheduled so far) or will

exceed it when they are scheduled next (if there

exists such a job). For every one of these jobs the

costs will become higher when it is scheduled later.

From these jobs the shorter jobs and those with a

high tardiness weight should be scheduled first.

Hence, for dj � T þ pj, where T is the sum of the

processing times of all jobs that have already been

Solving scheduling problems with ACO 259



scheduled, the heuristic value is (recall that wj is the
tardiness weight of job j)

nij ¼
wj

pj
:

Some of the jobs that will not exceed their due date
when they are scheduled next might exceed it when they
are scheduled after some other job that is scheduled
next. To be able to consider those jobs we apply some
foresight to the heuristic apply. Every job j that has
a processing time which is smaller than the average
processing time and where the due date exceeds Tþ pj
by at most ð �pp� pjÞ=½wj=ðwj þ hjÞ� is given some
positive heuristic value. Observe that the last value
becomes larger for jobs which have tardiness costs that
are relatively high compared with the earliness costs.
The assigned heuristic values fall linearly with
increasing due date from (wj/pj) to zero in the inter-
val ½T þ pj, T þ pj þ ð �pp� pjÞ½wj=ðwj þ hjÞ�. Hence, if
dj 2 ½T þ pj, T þ pj þmaxf0, �pp� pjg=½wj=ðwj þ hjÞ��, then

nij ¼ 1�
dj � T � pj

maxf0, �pp� pjg½wj=ðwj þ hjÞ�

� �
wj

pj
:

When each remaining job j has a due date
dj > T þ pj þ ð �ppþ pjÞ½wj=ðwj þ hjÞ�, then the heuristic
value �ij is defined by (recall that hj is the earliness
weight of job j)

�ij ¼
pj

hj

so that jobs with a long processing time and small
earliness weight will be preferred.
After all m ants of the generation have constructed

a solution, the ant that found the best solution in that
generation is allowed to update the pheromone matrix
but, before that, some of the old pheromone is
evaporated according to

�ij ¼ ð1� �Þ�ij:

The reason for this is that old pheromone should not
have too strong an influence on the future. Then, for
every job j in the schedule of the best solution found
in the generation, some amount of pheromone is
added to element �ij of the pheromone matrix where
i is the place of job j in the schedule. The amount of
pheromone added is 1/D, where D is the total deviation
of the schedule, that is

�ij ¼ �ij þ
1

D
:

The algorithm stops when a certain number of genera-
tions has been achieved. We tested different modes of
alternation between generations of sequential ants and
generations of random ants.

5. Additional aspects and variants

Some variants of the ACO algorithm that were
described in the last section which concern the phero-
mone evaluation and the type of ants used are described
in this section.

5.1. Pheromone summation rule

An alternative way to use the pheromone information is
explained in the following. It was proposed by Merkle
and Middendorf (2000) for the SMTWTP. Since the
SMTWTP is the variant of the SMTWDP where all
weights hj are zero, that is only the tardiness of a job
counts, we use this pheromone evaluation method
(called pheromone summation evaluation, by Merkle
and Middendorf (2000)) here also.

The following problem occurs when using the relative
pheromone values directly as the probability to choose
the next job. Assume that by chance an ant chooses
to put some job h at place i of the schedule that has
a low pheromone value �ih (instead of job j that has a
high pheromone value �ij). Then in order to have
a high chance to still end up with a good solution
it will probably be necessary for the ant to place job j
not too late in the schedule when j has a small due
date. To handle this problem it was proposed by
Merkle and Middendorf (2000) to let the pheromone
value �ij also influence later decisions when choosing a
job for some place l> i. A simple way to guarantee
this influence is to use the sum of all pheromone
values for every job from the first row of the matrix
up to row i when deciding about the job for place i.
Then a sequential ant chooses the next job for place i
in the schedule according to the probability distribution
over S determined by

pij ¼
ð�i

k¼1�kjÞ�ij
�h2S½ð�

i
k¼1�khÞ�ih�

: ð1Þ

5.2. Backward ants

Merkle and Middendorf (1999) proposed the use of
(sequential) forward and (sequential) backward ants
for solving the shortest common supersequence
problem. Here we study which kind of ants, forward
ants or backward ants, are better for the different
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types of problem instances. Backward ants construct

solutions by assigning jobs to the places of the schedule
in reverse order; that is they first decide which job is the

last. Clearly, for the sequential backward ants the

heuristic that they use has to be modified accordingly.
This is done as follows.
A sequential backward ant starts by choosing the last

job that finishes at time
Pn

j¼1 pj . It always choose the
next job from the set of jobs that already exceed their

due date (if there exists such a job). Of these jobs the
shorter jobs and those with a high earliness weight

should be scheduled first. Hence, for dj � T , where T

is the sum of the processing times of all remaining
jobs that have not been scheduled so far, the heuristic

value is

�ij ¼
hj

pj
:

Similarly, for the sequential forward ants, some of the
jobs which will not exceed their due date when they are

scheduled next will also be considered. All those jobs

that have a processing time which is smaller than the
average and where the due date falls not before

T � ð �pp� pjÞ½hj=ðwj þ hjÞ� are given a positive heuristic
value. If dj 2 ½T �maxf0, �pp� pjg½hj=ðwj þ hjÞT � then

�ij ¼ 1�
T � dj

maxf0, �pp� pjg½hj=ðwj þ hjÞ�

� �
hj

pj
:

6. Test instances and parameters

We tested the different variants of the algorithm on
SMTWDP instances of size 100 jobs. The instances

were generated as follows: for each job j 2 ½1, 100�, an
integer processing time pj is taken randomly from the

interval [10, 100], the earliness weight hj is taken

randomly from the interval [1e, 2e], the tardiness
weight wj is taken randomly from the interval [1t, 2t],

and an integer due date dj is taken randomly from the

interval

dj 2
X100
j¼1

pj 1� TF�
RDD

2

� �"
,

X100
j¼1

pj 1� TFþ
RDD

2

� �#
,

where TF is the tardiness factor and RDD is the relative
range of due dates.

Note that this rule was also used for creating the
benchmark instances for the SMTWTP that can be
found in the OR-Library (2001), the parameters e and
t allow control of the average influence of the earliness
and tardiness weights for a problem instance. The
RDD value determines the length of the interval from
which the due dates were taken. TF determines the
relative position of the centre of this interval between
0 and the sum of the processing times �100

j¼1pj . The
values for TF are chosen from the set {0.2, 0.4, 0.6,
0.8}. RDD was set 0.4; that is the due dates cover a
range of 40% of the computation interval. For (e, t)
we tested the combinations (5, 1), (3, 1), (1, 1), (1, 3)
and (1, 5). For every test and each combination of TF
and (e, t) we used a set of at least 15 test instances.
The parameter � was set to 0.01 and the number of
ants in every generation was m¼ 20. Every run was
stopped when the average solution quality found by
the ants in a generation has not changed over 100
generations or after 20 000 generations.

We use the following notation for the different
versions of the ant algorithm: F-A, only sequential
forward ants are used as described in section 4; B-A,
only sequential backward ants are used as described in
section 5.2 (the corresponding versions where the ants
use the pheromone summations rule as in section 5.1
are called �F-A and �B-A respectively; R-A, only
random ants are used. We call these algorithms the
uniform variants because all generations of ants work
in the same manner. The following algorithms are
called heterogeneous because they use generations of
ants that work differently. Combinations between F-A,
B-A, �F-A and �B-A with R-A where exactly the
even generations work according to R-A are denoted
by FR-A, BR-A, �FR-A and �BR-A respectively.

7. Experimental results

In this section we present experimental results on the
performance of the different ACO algorithms.
Moreover, some specific aspects such as the best
number of ants per generation and the best relative
number of generations with random ants for the
heterogeneous algorithms are discussed.

7.1. Performance of the uniform algorithms

A comparison between the relative optimization beha-
viours of the uniform algorithms F-A, B-A, �F-A,
�B-A and R-A is depicted in figure 6. The figure
shows for each algorithm and each combination of
tardiness factor TF and (e, t) its relative performance
measured as percentage average loss in solution quality
compared with the solution of the best of these five
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algorithms for the specific combination of TF and (e, t).
It can be seen that the algorithm R-A with only random
ants performed in general quite well. It was best in about
half of the cases where the due dates lie in the middle of
the scheduling interval (TF¼ 0.4 and TF¼ 0.6). �F-A
performed best when the due dates are more at the
end (TF¼ 0.2) and high earliness costs have to be paid
for the jobs that are scheduled first. The opposite is
true for �B-A. For relative high earliness weights
(large e values) �F-A performs better than for relative
high tardiness weights (large t values). Again, the oppo-
site is true for �B-A. Analogous remarks hold for F-A
and B-A which performed, in general, worse than their
counterparts with the pheromone summation evalua-
tion. These results coincide with an observation of den
Besten et al. (2000) that for the SMTWTP the instances
with high TF values are more difficult than those with
smaller TF values (using only forward ants). Our results
help to explain this phenomenon since they show that
the preferred working direction of the ants should
depend on the type of the problem instances so that
ants make the most important decisions first. This
observation is of general interest for ACO algorithms.

7.2. Performance of the heterogenous algorithms

Comparing the heterogenous ACO algorithms that use
two types of ant (FR-A, BR-A, �FR-A and �BR-A)
with their uniform counterparts with a single type of
ant (F-A, B-A, �F-A and �B-A) our test results show
that the two-type variants are in every case better than

the corresponding single-type variants. A comparison
of the performance of the heterogenous algorithms
and the uniform algorithm R-A is given in figure 7.
When due dates are more at the end (TF¼ 0.2) or the
beginning (TF¼ 0.8), algorithms �FR-A and �BR-A
are the best variants. It is interesting that in these
cases the sequential ants which use the pheromone
summation evaluation can profit from the combination
with the random ants because �F-A and �B-A alone
are better than R-A in these cases. For due dates more
in the middle (TF¼ 0.4 and TF¼ 0.6), algorithm
FR-A is the best when the earliness weights are
relatively large compared with the tardiness weights.
For the opposite case where earliness weights are
relatively small compared with the tardiness weights,
BR-A is the best variant. This shows again that
important decisions that can save high costs should be
made first.

In order to make our algorithms comparable with
those of other researchers we also give the absolute
performance results of the algorithms for SMTWDP
and different combinations of tardiness factor TF and
(e, t). Table 1 shows for the different combinations of
TF and (e, t) which algorithm variant performed best
(of all the uniform and heterogeneous variants F-A,
B-A, �F-A, �B-A, R-A, FR-A, BR-A, �FR-A and
�BR-A) and the corresponding obtained solution
quality. It follows from the results in the table that in
all cases a heterogeneous algorithm performs better
than all uniform algorithms. Observe that for every
row in the table in the left-hand part (right-hand part)

Figure 6. Relative performances of F-A, B-A, �F-A, �B-A and R-A. For each algorithm and combination of tardiness factor TF

and (e, t) value the average percentage loss in solution quality compared with the best-performing algorithm of the five variants for

that combination of TF and (e, t) values is shown. Thus for each combination of TF and (e, t) the best-performing algorithm variant

has a white box.
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there are algorithms with the sequential ants that are
forward ants (back-ward ants). This shows again that
the preferred working direction of the ants should con-
sider important decisions first.

7.3. Relative influence of random ants in
heterogeneous algorithms

Since the heterogenous algorithms were quite successful
we were interested to find how many generations of
random ants should be executed per sequential
generation. With FR-(x, y)-A we denote the algorithm
where x generations of random ants alternate with y gen-
erations of sequential forward ants. For �FR-(x, y)-A

this notation is used analogously. Tests were carried
out with ðx, yÞ 2 fð1, 0Þ, (5, 1), (4, 1), (3, 1), (2, 1),
(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (0, 1)}. Note that FR-
(1, 0)-A is the same as R-A and that FR-(0,1)-A
is the same as F-A. Note also that we do not make
corresponding tests with BR-(x, y)-A and �BR-(x, y)-A
because the results will basically be symmetric.

The test results for Fr-(x, y)-A are shown in figure 8.
It can be seen that, in all cases, sequential generations
and random generations should have a significant
influence. The best rats are between (5, 1) to (1, 2)
for F-(x, y)-A. Further, the earlier the due dates, the
higher should be the rate of random generations.
Thus, for TF values not less than 0.6, significantly

Figure 7. Relative performances of FR-A, BR-A, �FR-A, �BR-A and R-A. For each algorithm and combination of tardiness

factor TF and (e, t) value the average percentage loss in solution quality compared with the best-performing algorithm of the five

variants for that combination of TF and (e, t) values is shown. Thus for each combination of TF and (e, t) the

best-performing algorithm variant has a white box.

Table 1. Average total deviation for the SMTWDP for the best algorithm of F-A, B-A, �F-A, �B-A, R-A, FR-A, BR-A, �FR-A

and �BR-A.

Best algorithm and average total deviation for the following (e, t) values

TF (5, 1) (3, 1) (1, 1) (1, 3) (1, 5)

0.2 �FR-A �FR-A �FR-A �BR-A �BR-A

739 122 443 851 148 453 149 288 149 834

0.4 FR-A FR-A FR-A FR-A BR-A

349 575 218 472 86 738 124 358 160 203

0.6 FR-A BR-A BR-A BR-A BR-A

152 589 121 241 87 874 226 185 363 407

0.8 �FR-A �FR-A �BR-A �BR-A �BR-A

155 756 155 7340 154 640 462 516 770 590
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more random generations should be obtained and, for
TF values not greater than 0.4 an equal (or slightly
higher) number of generations with sequential ants
should be determined. This corresponds to the observa-
tion that forward ants are especially good for problem
instances with large due dates (i.e. with small TF
values). Note that in the former case it is better to
use backward ants instead of forward ants. Thus,
when the pheromone summation rule is not used, we
conclude the following: when using sequential genera-
tions with the best sequential ants (forward versus
backward) and random generations, about the same
number of generations of both types should be used
(or slightly more of the former).
The test results for �F-(x, y)-A are depicted in

figure 9. The results show that a strong influence of
random generations is best for most cases. The best
rates vary between (5, 1) and (1, 1). Only late due dates
(TF¼ 0.4 and TF¼ 0.2) and (e, t)¼ (1, 3) or (e, t)¼ (1, 5)
with equal (or only slightly larger) rates of sequential ant
generations and random generations performed best,
but these are not the cases where �FR-A performed
best (compare table 1). Thus, when the pheromone sum-
mation rule is used, we conclude the following: when
using generations with the best sequential ants (forward
versus backward) and generations with random ants,
the number of generations with random ants should be
higher. Note that this conclusion is different from the
corresponding conclusion for the case when the phero-
mone summation rule is not used. A possible explana-
tion for this difference is that R-A is already better
than F-A but is worse than �F-A in the relevant cases
(see figure 6). This means that sufficient random genera-
tions must be used in the latter case before they can
have a significant influence on the optimization process.

7.4. Influence of the number of ants

Since random ants use different random sequences for
their decisions, it can be expected that the solution
qualities obtained by random ants in a generation
show a larger variance than the solution qualities of a
generation of forward ants. This makes it likely that
the selection pressure of which ants are allowed to
update the pheromone information should be larger
for random ants than for forward ants. Thus, the
number of ants in a generation should not be too
small for random ants. Therefore, we tested the influ-
ence of the number of ants per generation on the optimi-
zation behaviour of the algorithms. Figure 10 shows the
results for the case when TF¼ 0.4 and (e, t)¼ (1, 1).
Not surprisingly, the obtained solution qualities of

Figure 8. Best relations between number of generations with

random ants and number of iterations with sequential ants

for FR-(x, y)-A and different TF and (e, t) values: the heights

of the bars indicate which (x, y) pair performed best.

Figure 9. Best relations between number of generations with

random ants and number of iterations with sequential ants

for �FR-(x, y)-A and different TF and (e, t) values: the heights

of the bars indicate which (x, y) pair performed best.

Figure 10. Best average total deviations of F-A and R-A for

different numbers of ants per generation (TF¼ 0.4 and

(e, t)¼ (1, 1))
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both algorithms increase with increasing number of ants
per generation. More interesting is the fact that the
results support our hypothesis because there is a
strong decline in performance for R-A when there are
fewer than 20 ants per generation. This is different for
F-A which performs reasonably well also for a small
number of ants per generation. In comparison, F-A
performed better than R-A for 15 or fewer individuals
per generation whereas R-A performed better for 20
or more individuals.

7.5. Summary of experimental results

The most important findings from the experiments and
some advice that follows from these findings can be
stated as follows.

(1) It depends on the problem instance whether an ACO
with forward ants or backward ants performs better.
As a general rule it is suggested that the working
direction of the ants is chosen so that ants make
important decisions early.

(2) Random ants perform quite well (i.e. better or only
slightly worse) when compared with uniform
algorithms with either forward or backward ants.

(3) The best heterogeneous algorithms where genera-
tions of random ants alternate with generations
of sequential ants perform better than all uniform
algorithms.

(4) For a heterogeneous algorithm we conclude firstly
that, when not using the pheromone summation
rule, about the same number of generations with
random ants and sequential ants should be used,
and secondly that when using the pheromone
summation rule, more generations with random
ants than generations with sequential ants should
be used. In both cases it is assumed that the best
version of sequential ants (forward ants or
backward ants) is used.

(5) The number of ants per generation strongly effects
the performance of algorithms with random ants
and should be higher than for generations with
sequential ants. As a general rule it can be said
that ten ants per generation are often sufficient for
sequential ants whereas at least twenty ants should
be used for random.

8. Conclusion

We have proposed a new approach for solving permuta-
tion scheduling problems with ACO. Instead of using
the same sequence of decisions for all ants in the new
approach the ants use random sequences. Using a
simple test problem it was shown that the standard

approach leads to an unwanted systematic bias in the

decisions of the ants whereas in the new approach

the ants’ decisions better reflect the pheromone

information. Tests for the SMTWDP have shown that

a combination between generations of ants that use

the standard method of always extending a prefix of

the schedule with generations of ants that allocate the

places in the schedule in random order performs

particularly well. We further characterized the influence

of different types of problem instance on the best

working direction (forward or backward) that the ants

should follow and on the optimal mixture between

generations of random ants and generations of ants

that use the standard sequential method. In general,

our approach of using generations of random ants in

combination with generations of standard sequential

ants is applicable to any permutation problem and it is

interesting to investigate its usefulness for other types

of permutation problem.
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