
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Decentralized Packet Clustering in Router-Based Networks

Daniel Merkle, Martin Middendorf, Alexander Scheidler

Department of Computer Science
University of Leipzig

Augustusplatz 10-11, D-04109 Leipzig, Germany
{merkle,middendorf}@informatik.uni-leipzig.de

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

Different types of decentralized clustering problems have been studied so far for
networks and multi-agent systems. In this paper we introduce a new type of a decen-
tralized clustering problem for networks. The so called Decentralized Packet Clustering
(DPC) problem is to find for packets that are sent around in a network a clustering.
This clustering has to be done by the routers using only few computational power and
only a small amount of memory. No direct information transfer between the routers is
allowed. We investigate the behavior of new a type of decentralized k-means algorithm
— called DPClust — for solving the DPC problem. DPClust has some similarities with
ant based clustering algorithms. We investigate the behavior of DPClust for different
clustering problems and for networks that consist of several subnetworks. The amount
of packet exchange between these subnetworks is limited. Networks with different con-
nection topologies for the subnetworks are considered. A dynamic situation where the
packet exchange rates between the subnetworks varies over time is also investigated. The
proposed DPC problem leads to interesting research problems for network clustering.

1. Introduction

Different types of clustering problems have been studied in the literature where
the aim is to find solutions with decentralized algorithms. Such problems occur
typically in large networks (e.g., [19]) and multi-agent systems (e.g., [16]) where
a central control is not available or should not be established. In this paper we
investigate a new scenario for clustering that is relevant for distributed applications
in networks. We assume that information packets for some distributed application
task that runs on several servers are send around between the servers in a network.
Thus, we assume that the network contains of router nodes and server nodes (it is
possible that routers are also servers). In each server node an application process
is running which has to evaluate the information in the packets that are send to
it. When an information packet has been processed by the application process it is
send back into the network to be transported to some other server node. In order

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that the application process can handle the packets appropriately we assume that
the packets are clustered and that each packet contains the number of its cluster.
The cluster number is used by the application process to apply a corresponding
evaluation function that is adapted to work optimally for packets in that cluster.
For example the application process might have a learning ability so that it can
handle packets from different clusters differently.

The clustering of the information packets is done according to a data vector that
each packet contains. Since the application is distributed over several application
processes that run in the servers of the network we assume that there is no central
process in the network that knows all information packets and can do the cluster-
ing. Hence, we are interested in decentralized solutions for the clustering problem.
Since the routers are typically visited by many packets we consider the case that the
clustering is done by the routers. The corresponding clustering problem is called
here the Decentralized Packet Clustering (DPC) problem. Network router typically
receive and send so many packets (from different applications) that they will have
not much resources available for other tasks. Therefore, we assume that the routers
can store information from at most a few information packets for doing the cluster-
ing. Moreover, the routers should not need to spend much computational effort to
do the necessary operations for clustering.

In this paper we propose a clustering algorithm called DPClust which can be
seen as a form of a distributed k-means algorithm since estimated centroids play
a role for determining the cluster of an information packet. DPClust has also
similarities with a clustering method that is called ANTCLUST which is inspired
by the chemical recognition system of ants [11]. In this algorithm artificial ants
(which correspond to the packets in our algorithm) meet randomly and exchange
odor information which they use to determine whether they are in the same colony
(cluster). If this is not the case they decide whether they should change to the
other ants colony. The odor information that an ant has is considered as its private
odor (its data vector). Each ant has an acceptance threshold that is the difference
between the average value of the average similarity to other ants it has met and the
maximal similarity to these ants.

DPClust uses meetings of information packets (in the following we call informa-
tion packets simply packets when the context is clear) in the routers for information
exchange and for deciding if a packet changes to the other packets cluster. This
decision is based on the information contained in both packets. Each packet con-
tains its cluster number, an estimation of the centroid of its cluster (which can be
seen as an average colony odor) and its personal data vector. The estimation of the
centroid is computed only from information that is exchanged during the meetings
with other packets. Since we do not want to hold packets in the routers for a longer
time the routers copy and store the relevant information from the last packets that
it has seen.

In this paper we investigate the influence of several network parameters and
network topologies on the clustering behavior of DPClust. These parameters are
the number of routers in the network, a partitioning of the network into different

2

numbers of subnetworks, and the amount of information exchange between these
subnetworks. Moreover, different topologies for the connection of the subnetworks
are considered. In addition and differently to most other works on distributed
clustering algorithms, we study also the situation that the characteristics of the
packet transfer in the network may change.

The outline of the paper is as follows. In the next Section 2 we give an overview
over clustering methods that are relevant for this study. The Decentralized Packet
Clustering problem and the DPClust algorithm are explained in Section 3. The
experiments are described in Section 4 and the results are presented in Section 5.
The paper ends with a conclusion and remarks on future work in Section 6.

2. Distributed and Ant-Inspired Clustering

In this section we give a short overview over distributed clustering methods and
also discuss some nature inspired agent based clustering methods.

2.1. General Distributed Approaches

Many distributed clustering algorithms assume a coarse grained approach where
the clustering problem is partitioned into larger subproblems. Typically, the results
of these partial clustering problems or subproblems that have been computed dis-
tributed over several processors are then collected and have to be combined to
obtain the final clustering. This recombination of the results is often done by a
central server. The most prominent types of distributed clustering methods are
explained in the following:

– Robust Centralized Clustering (RCC) is to combine different clusterings of
the same set of objects. The clustering algorithms might be distributed over
several processors but all have access to the whole set of objects and all fea-
tures of the data. The combination of the clusterings may then be done by
distributed processes that have no access to the original data features.

– Feature-Distributed Clustering (FDC) is to combine a set of clusterings that
are obtained from clustering algorithms that have only a partial view of the
data features.

– Object-Distributed Clustering (ODC) is to combine clusterings obtained from
clustering algorithms that have access only to a limited number of objects but
to all data features of these objects.

There also exist combinations of the above approaches, e.g. a combination of
FDC and ODC where the clustering algorithms know only a subset of the objects
and only parts of the data features of these objects. All these approaches are differ-
ent from our approach since they are not fully decentralized and collect information
(partial clusterings) in a central server to obtain the final clustering.

3

2.2. Distributed/Parallel k-Means Approaches

One of the most often used clustering algorithms is the k-means algorithm. This
is an iterative algorithm that starts with a set of k initial data vectors, called center
points. Each object is assigned to its nearest (measured, e.g., with respect to the
Euclidean distance) center point. Then all objects that are assigned to the same
center point form a cluster. For each cluster its centroid is computed and these
centroids form the new center points for the next iteration of the algorithm. The
algorithm stops when some convergence criterion has been met, e.g. the center
points have not changed or a maximal number of iterations has been done. The
selection of the initial center points has a great influence on the results of the
algorithm and different methods have been proposed for choosing these initial points
(one is simply to select the center points randomly from the given data vectors).

Several distributed or parallel versions of the k-means algorithm have been pro-
posed in the literature. The aim of most of these algorithms is to provide a fast
parallel or distributed implementation of k-means or one of its variants (e.g. the
medoid variants where always a given data vector that is near to the centroid is
chosen as center point). The problem is then how to exchange the necessary infor-
mation between the processors (see e.g. [4]). Since this is different to our approach
we do not discuss these algorithms in detail but only describe one example that has
been proposed for networks of processors. In [5] an iterative distributed k-means
algorithm is investigated where the data vectors are distributed between the nodes
of a networks. In every iteration the center points are distributed starting from
an initiator node to all other nodes in the network. The distribution is done along
a peer/echo tree that is determined as a subgraph of the network. The results of
the clusterings in the nodes are then collected along the tree. In every node of the
tree the received results are merged (i.e. each node echoes for each cluster only one
centroid that it has computed as a weighted sum of the centroids it has received).

2.3. Special Approaches for Networks

Various clustering algorithms have been proposed recently for Mobile Ad-Hoc
Networks. Other approaches for networks seek to cluster clients in a network (e.g.
based on IP numbers [2]) and use large data structures in monitor processes for
the clustering. Most of all these works are not relevant here because they consider
the special problem to cluster objects that are located in a two-dimensional grid
world or use a large amount of memory resources. In the following we review two
approaches that are interesting for our application.

In [18] a variant of k-means called ISODATA was studied in a distributed mobile
network. The given objects are assumed to be distributed between a set of worker
nodes. In each iteration a master process distributes a set of center points to the
worker processes. Then each worker computes a clustering with its data, determines
the centroids for this clustering, and sends the set of centroids and the number of
objects in each cluster to the master. The master then computes a new set of
centers from these data and the next iteration starts. Different strategies were

4

proposed how to react when the connection to a worker process gets lost (which
is likely in mobile networks). One strategy is to ignore the connection loss and
another strategy is to use for the objects of the lost worker node the old values for
the centroids. Unfortunately, the few results that are given in [18] do not allow to
observe significant differences between the strategies.

A fully-decentralized algorithm for clustering agents that are spread across a
network of machines has been proposed in [16]. The algorithm is intended to work
within large networks and the main focus of the method is that agents find potential
cluster members in a decentralized fashion. Differently to our approach where the
packets can move within the network the agents are fixed at their machines. Each
agent is represented by a two dimensional data point and the agents seek to group
themselves based on the Euclidean distance between their data points. Each agent
is initially assigned a small number of random neighbor agents. Based on their
local neighborhood the agents form clusters with neighbored agents having the
closest data points. Agents within a cluster combine their local views to allow their
members search a broader range of neighbors. Since clusters are limited in size by
a user-defined parameter a mechanism to split clusters that become too large is
integrated into the algorithm.

2.4. Ant-Based Approaches

Some clustering algorithms have been proposed that are inspired by the behavior
of ants (see e.g. [3]). Ant-based clustering and sorting (see [3, 14]) is inspired by
the particular behavior of real ants to cluster corpses and larvae. The basic idea
of ant clustering algorithms is to model ants as simple agents that move randomly
within a grid environment. Objects (or data items) are placed randomly on the
grid points. An ant that does not carry an object and finds an object in its grid
point can pick up the object and transport it. Eventually it may drop the object at
some grid point that is not occupied by another object. Usually the probability to
pick up or drag an object depends on the similarity of the objects on neighboring
grid points. The more similar these objects are the smaller is the probability that
an ant that does not carry an item picks up an item it finds on the grid point
and the larger is the probability that an ant that carries an object drags it when
the grid point is not occupied. Thus, the standard ant-based clustering algorithms
cluster the objects (implicitly) by their relative positions on the grid. In order to
obtain an explicit clustering it is necessary to apply a postprocessing step where the
objects are assigned explicitly to clusters. Ant based-clustering has been used for
example for graph partitioning [10] and text-mining [6, 17]. In order to speed up
ant-based clustering it was proposed to move the ants directly to a grid point where
it can pick up or drop an object [15]. Another approach is to use spatial transition
probabilities for the ants that depend on pheromone values and guide the ants to
interesting regions instead of moving the ants just randomly [1]. A variation of
ant-based clustering where the ants can place several objects onto a grid point so
that these objects form a heap was proposed in [9]. In this algorithm when an ant
wants to pick up an object from a heap containing several objects it chooses the

5

most dissimilar object in the heap.
In [7, 8] ant-based clustering was compared with k-means clustering, a hierar-

chical agglomeration clustering method that is based on the average link metric,
and one-dimensional self-organizing map clustering (SOM). The ant-based cluster-
ing algorithm studied in [7, 8] has been improved with respect to the standard
algorithm by several features, e.g., the ants are equipped with memory, the radius
of perception of the ants is increased during the run, and the ants posses a variable
stepsize.

A different approach for ant clustering that is based on the chemical recognition
system of ants is proposed in [11, 13]. The idea is to use an artificial odor that is
learned by the ants and represents the odor of their nest. In the algorithm called
ANTCLUST each object (i.e. an n-dimensional data vector) that is to be clustered
is represented by an ant. The idea is to assign groups of similar ants to a nest that
represents a cluster. Initially all ants are not member of any nest. Then, random
meeting between pairs of ants take place. During these meetings the ants collect
information that determines their behavior as described in the following. Each ant
learns an acceptance threshold for the dissimilarity between its own data vector and
the data vector of the ant that it has met in order to decide whether the other ant
would be accepted as a nestmate. Moreover, each ant measures i) how well it is
integrated in its nest by counting for all meetings with nestmates the difference of
the number of acceptances and non acceptances, ii) the size of its nest by counting
the relative number of meetings with nestmates, iii) the mean and the maximal
similarity that it observed during its meetings with other ants. These latter values
are used to adapt the acceptance threshold value.

The assignment of an ant to a nest can change during a meeting as described
in the following. When two ants meet that are not member of a nest and they
accept each other (with respect to their acceptance thresholds) then they found a
new nest. If the ants accept each other but one ant is already member of a nest
then the other ant joins this nest. If two ants meet that are members of different
nests and do not accept each other then the ant which posses the worst integration
within its nest is removed from its nest and thus is not member of a nest anymore.
If two ants meet that are members of different nests but accept each other then
the ant from the smaller nest (with respect to estimated values) leaves its nest and
changes to the other ants nest.

An extension of ANTCLUST called Visual ANTCLUST uses two dimensional
vectors as labels for a nest [13]. The values of these labels are chosen so that nests
with similar ants are placed nearby within the two dimensional space. The labels
of the nests are changed dynamically in the algorithm during meetings of the ants.
It was shown in [7, 8] that ANTCLUST and Visual ANTCLUST give good results
when compared to k-means clustering for a fixed k.

3. Decentralized Packet Clustering

In this section we describe the decentralized packet clustering problem and pro-
pose an algorithm for solving this problem by employing the routers. We concen-

6

Router

Router memory

DPC memory

DPC information of
last routed packet

New Packet Changed Packet

1
2 3

4

Header Application datacivi

Packet

iz

Figure 1: Scheme of DPClust in a router; structure of a packet (above); router
with packet at different stages below: 1) incoming new packet, 2) DPC information
of the new packet is compared with the copy of DPC information from the stored
packet, 3) DPC information of the packet is possibly changed and then the DPC
information is copied into the DPC memory, 4) packet with possibly changed DPC
information leaves the router

trate on the clustering problem but do not discuss the connected problem of how
the clustering information in the packets is used by the application processes that
run on the servers (cmp. Section 1). The latter problem depends on the specific
application task. Hence, we do not model the servers in the problem formulation.

Consider a network where the nodes are routers. The Decentralized Packet
Clustering (DPC) problem is to cluster a set of packets P = {P1, P2, . . . , Pn} that
are send around in the network. Each packet Pi ∈ P contains a data vector vi that
is used for clustering. Our aim is to design an algorithm for DCP problem that
runs in the routers of the network and satisfies the following requirements:

1. The computational effort of the routers to do the necessary operations for
clustering is small.

2. The memory requirements of the algorithm in the routers should be small, so
that each router can not store more than a constant number of packets for
doing the clustering.

3. Each packet should not store much additional information.

4. The algorithm should not establish a control protocol that requires commu-
nication between the routers.

In the following we describe our algorithm DPClust for solving the DPC problem.
We assume that each packet Pi has in addition to its data vector, a cluster number
ci and a vector zi that is an estimation of the centroid of its cluster (altogether this
is called the DPC information of the packet). A packet might contain additional
information, e.g., header information and application data but this is not relevant

7

for the clustering algorithm. Thus, a packet Pi can be characterized by its DPC
information, i.e., Pi = (vi, ci, zi) for i ∈ [1 : n]. For the clustering algorithm the only
information that a router stores is a copy of DPC information of the last packet that
is has seen. The main idea of DPClust is that a packet Pi that arrives in a router is
compared with respect to the DCP information with the corresponding information
P = (v, c, z) that was copied from the predecessor packet. If both packets are in
the same cluster (i.e. they have the same cluster number ci = c) the new packet
updates the estimation of the centroid of its cluster. If both packet numbers are
different then the new packet decides whether it should change to the cluster of the
other packet. This is the case when the distance between the data vector vi of the
packet and the estimation zi of the centroid of its cluster is larger than the distance
to the estimation z of the centroid of packet P . Formally and in more detail (see
also Figure 1) DPClust is described in Algorithm 1.

Algorithm 1 DPCLust

Let v, c, z be copies of the data vector, the cluster number, and the estimate
of the centroid of the last packet that was processed in router Rj respectively.
Let Pi be a newly arriving packet.

if Pi is in the same cluster as the last packet that was processed in the router,
i.e. ci = c,

then update the estimate of the centroid of Pi by

zi := (1− β) · zi + β · v

where 0 < β ≤ 1 is a parameter that determines the relative influence of
the other packets data vector and the old estimate ci of packet Pi

else if the distance of vi to the centroid z is smaller than to its own centroid
zi, i.e. vi − zi > vi − z (we use Euclidean distance in this paper)

then Pi changes its cluster, i.e. ci := c, zi := z

Note that a large value of parameter β has the effect that the estimation of the
centroid of a packet depends mainly on the last few packets from the same cluster
that have been ”met” in the routers. For our experiments we assume that all packets
to be clustered already exist in the network from the start and that all packets have
an unlimited life time. But our methods will in general work also when new packets
arrive or old packets are removed from the network (a similar situation is modelled
in this paper by connecting subnetworks that were not connected before). Especially
for strongly dynamic such situations it is important that β is not too small so that
old information does not influence the centroid estimation for too long. On the
other hand for more static situations β should not be too large in order to increase
the accuracy of the centroid estimation.

8

Figure 2: Behavior of DPClust on Square1 for a network (with one subnetwork)
at steps 0 (upper left), 40 (upper right), 80 (lower left), and 120 (lower right); for
each packet Pi an arrow connects the data vector vi with the estimation zi of the
centroid of the cluster; the grey value of an arrow indicates the cluster number

9

4. Experiments

Since this is a first study on the DPC problem we consider for the experiments
simple types of networks. Each network N consists of a set of r ≥ 1 subnetworks
N1, N2, . . . , Nr. Each subnetwork contains k ≥ 1 routers and each router is assigned
to a subnetwork. Thus when R = {R1, R2, . . . , Rm} is the set of routers and Ri is
the set of routers assigned to subnetwork Ni then (R1,R2, . . . ,Rr) is a partition
of R. We assume that the routers within a subnetwork are fully connected. For
the connection of the subnetworks we study three types of topologies namely ring
networks, fully connected networks, and star networks. A ring network N consists
of a directed ring of subnetworks N1, N2, . . . , Nr so that Ni+1 mod r is the successor
of Ni. In the fully connected network each subnetwork is directly connected to
every other subnetwork. In the star network the subnetwork N1 is connected to
every other subnetwork and vice versa. Let P = {P1, P2, . . . , Pn} be the set of
packets in the network. Each packet is assigned to a subnetwork. Let f(i) be the
index of the subnetwork packet Pi is assigned to.

Algorithm 2 Test Scenario for Ring Networks

Initialization (see details below)

repeat

i) Randomly choose a packet Pi ∈ P with uniform probability.

ii) With probability α > 0 set f(i) := f(i) + 1 mod r, i.e., assign Pi to the
successor subnetwork of its actual subnetwork.

iii) Randomly choose a router Rj ∈ Nf(i) with uniform probability.

iv) Apply DPClust in router Rj to packet Pi.

until stopping criterion is met

To investigate the behavior of DPClust we describe the test scenario for the ring
networks using Algorithm 2. Basically, the algorithm describes how packets move in
the network. Parameter 0 ≤ α ≤ 1 in the algorithm is called the exchange parameter
since it determines the probability of packet exchanges between a subnetwork and
its successor subnetwork in the ring. Note, that the description of the algorithm can
easily be modified for other behaviors of the packets and other network topologies.
E.g., for fully connected networks Step ii) is: With probability α set f(i) := f(j)
with j 6= i uniformly chosen from 1, 2, . . . , i − 1, i + 1, . . . r, i.e., assign Pi to one
random neighbored subnetwork. An similar definition of Step ii) has been used for
star networks so that for the same value α and same total number of packets the
expected number of packets that change their subnetworks is the same as for the
ring network. Thus, in a star network with r subnetworks the exchange rate for
the inner subnetwork is (α · r)/2 and for each outer subnetwork the exchange rate
is (α · r)/(2r − 2).

10

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 4 5 6 7 8 9 10

F
-M

ea
su

re

Distance between cluster centres

k-means
DPClust

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 8 6 4 2

F
-M

ea
su

re

Ratio between cluster centres

k-means
DPClust

Figure 3: Performance of DPClust and k-means on Square1 to Square7 with different
distances between cluster centers (left) and on Sizes1 to Sizes5 with different ratios
between cluster sizes (right); β = 0.05, 2000 steps; vertical bars show the standard
error

The initialization is done so that, i.) each packet Pi ∈ P is assigned randomly
to a subnetwork, i.e., f(i) is chosen uniformly in [1 : r], ii.) each packet Pi ∈ P is
assigned randomly to a cluster, i.e., ci is chosen uniformly from [1 : k], and iii.) for
each packet Pi ∈ P the estimate of the centroid is set to the value of a data vector
of a random packet, i.e., zi := vh where h is chosen uniformly from [1 : n].

To test DPClust we used the same type of clustering instances for the data
vectors as have been used also in other papers on ant-based clustering (e.g. [7]).
There are two types of instances both of which consist of two-dimensional data
vectors from four classes (clusters). One data set is defined for investigating the
influence of class (cluster) overlaps and the other data set for investigating the
influence of different (class) cluster sizes.

For the first type of instances called Square each of the four data classes (clusters)
contains 250 data vectors. The data vectors are generated by a two-dimensional
normal distribution with standard deviation 2 in both dimensions. The centers of
the normal distributions of the four clusters are arranged in a square. The test data
sets Square1 to Square7 differ by the distance between the class (cluster) centers
which is 10, 9, . . . , 4 respectively (an example of a test instance of type Square1
is shown in Figure 2). The second type of instances called Sizes is similar to the
Square1 data but the size of the classes (clusters) is different. For Sizes1 to Sizes5
the ratio between the size of the three small classes (cluster) (which are of equal
size) and the size of the large class (cluster) is 2, 4, . . . , 10 respectively.

For the evaluation of our method we use the F-Measure [20]. This measure
combines measures for the purity and the completeness of the clusters. The F-
measure assumes that the real partition of packets into different classes is known.
Thus data vectors of the packets are assumed to be partitioned into k classes. Let si

be the number of members in class i. The clustering algorithm generates a partition

11

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200

F
-M

ea
su

re

0.01
0.05
0.1
0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.5 0.2 0.1 0.01

de
vi

at
io

n

Figure 4: Convergence behavior of DPClust for β ∈ {0.01, 0.05, 0.1, 0.2}
(left); mean deviation between estimated centroids and true centroids for β ∈
{0.01, 0.05, 0.1, 0.2, 0.5} (right); 1 router; vertical bars show the standard error

of the packets into k clusters. Let nj be the number of members in cluster j. Let
nij be the number of members of class i that are also member of cluster j. For
each class i and cluster j the precision and recall are defined as p(i, j) = nij/nj and
rij = nij/si, respectively. Let F (i, j) = ((b2+1) ·p(i, j) ·r(i, j))/(b2 ·p(i, j)+r(i, j)).
Here we chose b = 1 which gives p(i, j) and r(i, j) an equal influence in order to
compare us with the results of other works. The F-Measure for the clustering with
respect to the given partition into classes is defined as F =

∑
i(si/n)maxj{F (i, j)}.

If not stated otherwise, for parameter β the value 0.1 was used and the test
instance was Square1. All the results are averaged over 50 test runs. In the following
section a step of an algorithm means that number of packets many iterations were
done (for most experiments 1000 packets were used).

5. Results

To illustrate the behavior of DPClust we show four snap-shots from a run of
DPClust on an instance of Square1 (see Figure 2). In the figure each packet Pi is
depicted by an arrow that connects its data vector vi with the actual estimation
zi of the centroid of its cluster. The cluster number ci is indicated by the grey
value of the arrow. The upper left part of the figure shows the random situation
at the start of the test run. This random situation is followed by a situation where
the centroids estimations become smaller but reasonably well formed clusters have
not been found (upper right part of the figure). It can be seen that estimates of
the centroids do not approximate the real centroids well (very different centroids
with the same grey value occur). This is not surprising because at this stage of a
run the packets are often changing their clusters. In later stages the quality of the
clusters increases and the clusters have most of their packets from only one or two
classes (lower left part of the figure). Finally well formed cluster are found which
correspond to the classes (lower right part of the figure).

12

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

F
-M

ea
su

re

8
80

800
8000

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

8
80

800
8000

Figure 5: Influence of the number of routers (8, 80, 800 or 8000 routers) on conver-
gence speed of DPClust in a ring network with subnetworks; 1 subnetwork (left); 8
subnetworks with α = 0.032 (right)

Before we study different aspects of the clustering behavior of the decentralized
DPClust algorithm we compare it with the k-means algorithm (see Figure 3). For
DPClust we used one router (it is shown later that the results of DPClust are very
stable with respect to a changing number of routers). The results show that both
algorithms perform equally well on the Square instances (see left part of Figure 3).
Clearly, an increasing overlap between the clusters leads to decreasing F-Measure
values for the clusterings of both algorithms. On the Size instances both algorithms
have difficulties for large size differences between the clusters (see right part of
Figure 3). But k-means performs better than DPClust for size differences that are
larger than 2. It has to be mentioned here that the initialization of the clusters is
an important factor for the performance of both algorithms. Since we used the data
vectors of random packets for the initial centroids most of these centroids will be
from the larger cluster which is a difficult situation for the algorithms. It is to be
expected that a different initialization method where the initial centroids are more
regularly distributed in the two-dimensional plane can improve the results for the
Size type instances.

The influence of parameter β is shown in the left part of Figure 4. Recall, that
β determines the relative influence of a packets own centroid estimation to the copy
of the data vector of the packet that is stored in the router when a new centroid
estimate is computed. It can be seen in the figure that for all tested values of β

(β = 0.01, ..., β = 0.2) the clusterings that are obtained at the end of the runs
are of the same quality with respect to the F-Measure. But β has an influence on
the speed of improvement of the clustering when starting with the initial random
clustering. The right part of Figure 4 shows the average deviation of the estimated
centroids of the packets from the true centroids of the clusters. Clearly, the larger
the value of β is the larger is the deviation of the estimated centroid from the true
centroid. For all other tests we use β = 0.1 so that DPClust finds a good cluster

13

fast and the difference between the estimated and the real centroids are not too
large.

Figure 5 shows the influence of the number of routers on the clustering behavior
of DPClust. It seems surprising that the influence of the number of routers on the
quality of clustering is so small for a network which consists of only one subnetwork
(see left part of the figure). This indicates that DPClust will work successfully in
large networks with many routers working in parallel. In other words, DPClust
obtains very good speedup values even for a large number of routers. Note, that
it takes some time until all of 8000 routers have received at least one packet. This
leads to the smaller value of the F-Measure after only 20 steps where the number of
meetings between packets in the 8000 routers is effectively nearly the same as after
only 12 steps for 8 routers. Since for large networks the situation that all routers are
connected directly is not realistic we have also studied the influence of the number
of routers for a ring network with 8 subnetworks (see right part of Figure 5). Here
a large number of routers is even an advantage leading to a superlinear speedup
when the aim is to obtain a clustering with a certain good F-Measure value.

For packet clustering in networks it is interesting to investigate scenarios where
the network consists of subnetworks that are only loosely connected. Figure 6 shows
the results for DPClust for ring networks that are divided into different numbers
subnetworks. For each number of subnetworks various values of the exchange pa-
rameter α were tested. The results show that the algorithm has difficulties to find
a good (global) clustering when the packet exchange rate between the subnetworks
is very small (e.g., α ≤ 0.002 for 4 subnetworks). Moreover, it seems that for these
small exchange probabilities the values of the F-Measure converge to a small value.
This value becomes smaller when the ring network has more subnetworks. The
F-Measure converges to approximately 0.65 (0.55, 0.43) for 2 (4, 16, respectively)
subnetworks with α = 0.0005). For 32 subnetworks the F-Measure was still im-
proving after 10000 evaluations. The reason for this behavior is that the clusterings
which are established in the subnetworks during the first iterations might be sim-
ilar but the clusters are numbered differently. Hence, when a packet changes its
subnetwork it might be that the corresponding cluster in the new subnetwork has
a different number. Thus, to cope with such a situation it might be advantageous
to enforce some explicit information exchange between the subnetworks about the
numbering of clusters. The good message from the results is that DPClust finds
a consistent numbering of the clusters implicitly when the packet exchange rate
between the subnetworks is not too small (for α = 0.016 the final large value of
the F-Measure is reached after about 400 steps for up to 8 subnetworks). Not sur-
prisingly, the larger the amount of packet exchange is the faster is the increase of
the F-Measure values. In general, it can be seen that the larger the number of
subnetworks is the slower is the increase of the F-Measure.

Since in the experiment corresponding to Figure 6 the total number of packets
was the same for all tests it follows that the networks with a large number of
subnetworks have less packets in each subnetwork. In order to study the influence
of the number of packets we also compared DPClust for ring networks with total

14

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

Figure 6: Performance of DPClust on the ring network with 2 (upper left), 4
(upper right), 16 (lower left), and 32 (lower right) subnetworks and 1000 pack-
ets as a function of the number of packet evaluations; packet exchange parameter
α ∈ {0.0005, . . . , 0.032}, 1 router in each subnetwork; vertical bars show the stan-
dard error

15

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

Figure 7: Performance of DPClust on ring network with 8 subnetworks and different
number of packets per subnetwork as a function of number of packet evaluations
(125 packets per subnetwork (left), 250 packets per subnetwork (right)); packet
exchange parameter α ∈ {0.0005, . . . , 0.032}, 1 router in each subnetwork; vertical
bars show the standard error

numbers of 1000 and 2000 packets. The results are shown in Figure 7. While the
general appearance of the curves is very similar it can be seen that it takes slightly
longer for the larger number of packets and smaller exchange rates to reach the
same F-Measure values as with half as much packets.

Results on the influence of the connection topology between the subnetworks
is shown in Figure 8. The figure shows the performance of DPClust for a fully
connected and a star network, both having 8 subnetworks. Compared to the ring
network with 8 subnetworks (see left part of Figure 7) the F-Measure in the fully
connected network increases faster. This is different for the star network where the
F-Measure values increase slower than for the ring network. A possible reason is
that it is more difficult for a subnetwork in the fully connected network to establish
a clustering with a different numbering than in the other subnetworks. In the star
network it seems to be difficult to establish the same numbering in all subnetworks
because the outer subnetworks are only connected to the center subnetwork and in
the center it is difficult to establish a good clustering because it has much packet
exchange with all other networks.

In order to study the behavior of DPClust in a dynamic situation where it may
happen that new packets arrive from subnetworks that were disconnected before
we studied the following scenario. For a network with 4 subnetworks DPClust was
run for 400 steps in each subnetwork separately (α was set to zero). Then the
subnetworks were connected by setting α = 0.016 or α = 0.032 respectively. Since
it is not relevant for the application processes in a subnetwork how the clustering is
done in a different subnetwork that is disconnected from it we do not only measure
the global F-Measure (over all 1000 packets) but also the average local F-Measure.
The local F-Measure is measured with respect to the packets that are actually
contained in the considered subnetwork. The results are shown in Figure 9 for

16

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

F
-M

ea
su

re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000
F

-M
ea

su
re

0.0005
0.001
0.002
0.004
0.008
0.016
0.032

Figure 8: Performance of DPClust in a fully connected network (left) and a star
network with 8 subnetworks as a function of number of packet evaluations; packet
exchange parameter α ∈ {0.0005, . . . , 0.032}, 1 router and 1000 packets in each
subnetwork; vertical bars show the standard error

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
-M

ea
su

re

global
local

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
-M

ea
su

re

global
local

Figure 9: Average local and global F-Measure for DPClust in a ring network with
4 subnetworks: no packet exchange (α = 0.0) was done for the first 400 steps, then
α was set to 0.016 (left) 0.032 (right)

17

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
-M

ea
su

re

global
local

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000
F

-M
ea

su
re

global
local(inner)
local(outer)

Figure 10: Average local F-Measure for DPClust in a fully connected network (left)
and a star network (right) each with 4 subnetworks: no packet exchange (α = 0.0)
was done for the first 400 steps, then α was set to 0.016; for the star network the local
F-measure is shown separately for the inner subnetwork and an outer subnetwork

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

F
-M

ea
su

re

global
local(inner)

local(outer-1)
local(outer-2)
local(outer-3)

Figure 11: Single run of DPClust in a star network with 4 subnetworks: shown are
the local F-Measures for the inner subnetwork and the three outer subnetworks: no
packet exchange (α = 0.0) was done for the first 400 steps, then α was set to 0.016

18

a ring network with 4 subnetworks. The figure shows that the average local F-
Measure has already high values before the subnetworks are connected. This is
in contrast to the global F-Measure which has only small values. This is because
even when the clustering is essentially the same in all subnetworks the clusters
will usually be numbered differently in the subnetworks. After the connection of
the subnetworks the average local F-Measure decreases because packets from other
subnetworks enter. It is encouraging how fast the local F-Measure increases again
to the old values. This means that a kind of renumbering of the clusters has been
done successfully by the algorithm without any central control.

Figure 10 shows the average local F-Measure and the global F-Measure for the
same scenario as above for the star network and the fully connected network (sub-
networks were connected with α = 0.016). The curves for the fully connected
network are quite similar to the corresponding curves for the ring network (see left
part of Figure 9). However for the star network the global F-Measure increases
slower after opening the connection. This is in accordance with the observations
that have been made for the static scenarios. It is interesting that there is a clear
difference between the inner subnetwork and the outer subnetworks of the star net-
work. For the inner subnetwork the local F-Measure decreases stronger than for the
local F-Measures of the ring and fully connected network. Whereas the decrease
is much less for the outer subnetworks. This is because the inner network receives
more packets from other subnetworks than the outer networks (Recall that the ex-
change rate is (α · r)/2 = 0.032 for the inner and (α · r)/(2r − 2) = 0.012 for each
outer subnetwork).

Figure 11 shows the F-Measures for a single typical run of DPClust in a star
network with 4 subnetworks. It can be seen that the local F-Measure of the in-
ner subnetwork decreases much stronger after opening the connection than for the
outer subnetworks. This can be explained because the inner subnetwork receives
three times as much packets from outside than each outer subnetwork. Moreover
it can be seen that for one of the outer subnetworks the local F-measure remains
significantly higher than for the other two outer subnetworks. The reason is that
for this run all three subnetworks used different cluster numberings for the packets,
i.e., packets from clusters that correspond to the same class have different numbers.
The subnetwork with the heigh local F-measure was in this run the “winner” with
respect to the renumbering of the local clusterings, i.e., its numbering was finally
adopted by the other subnetworks. Clearly it can also happen that two or three of
the subnetworks use the same numbering (or partially equal numberings). In this
case it can typically be observed that for only one or none of the outer subnetworks
the local F-Measure decreases strongly after the connection.

6. Conclusion

We have proposed a new type of a decentralized clustering problem for networks
— called the Decentralized Packet Clustering (DPC) problem. This problem is
to find for a set of packets that are send around in a network of routers a good
clustering so that no central process is involved. The clustering has to be done by the

19

routers without direct information transfer and with only minimal computational
and routing resources. We have proposed a heuristic algorithm for the DPC problem
which is called DPClust. It was shown that the decentralized DPClust algorithm
has similar performance as k-means on some standard benchmark problems while
it is worse on others. However, our main focus was to investigate whether DPClust
is robust and successful for networks of different topologies. Moreover we have
studied whether DPClust can handle difficult situations which can occur in large
networks, namely that parts of the network are more or less disconnected from
each other or that the quality of connections between subnetworks changes. The
results are promising and show that different clusterings that might have been
established in the subnetworks are combined nicely by DPClust in the sense that
the resulting clustering has a good global F-Measure after the packet exchange
between the subnetworks has been increased.

Our future work is to study changing network topologies and more complicated
dynamic situations in networks (e.g. the birth and dead of packets). In addition
we plan to use control packets that transfer control information and which use
behavioral mechanisms of ant-based algorithms for networks. It is also interesting
to include other information in the information transfer of the meetings in the
routers in order to solve other type of clustering problems (e.g., where clusters have
different shapes).

References

1. A. Abraham, V. Ramos: Web Usage Mining Using Artificial Ant Colony Clustering
and Genetic Programming. Proc. of the Congress on Evolutionary Computation
(CEC03), IEEE Press (2003).

2. M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and F. Zane: Clustering and
server selection using passive monitoring. Proc. IEEE INFOCOM 2002, IEEE Press
(2002).

3. J.L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, L. Chretien:
The dynamics of collective sorting: robot-like ants and ant-like robots. In: J.-A.
Meyer et al. (Eds.) Proc. Simulation of Adaptive Behavior: From Animal to
Animats, 356–365 (1991).

4. I. S. Dhillon, D. S. Modha: A Data-clustering Algorithm on Distributed Memory
Multiprocessors. Proc. Large-Scale Par. Data Mining, LNAI 1759, 245–260 (2000).

5. M. Eisenhardt, A. Henrich: Classifying Documents by Distributed P2P Cluster-
ing. In: Dittrich et al. (Eds), Proceedings Informatik 2003, GI Lecture Notes in
Informatics, Frankfurt, (2003).

6. J. Handl, B. Meyer: Improved Ant-based Clustering and Sorting in a Document
Retrieval Interface. Proceedings of the Seventh international Conference on Parallel
Problem Solving from Nature (PPSN VII). LNCS 2439, 913–923 (2002).

7. J. Handl, J. Knowles, and M. Dorigo: Strategies for the increased robustness of
ant-based clustering. Postproceedings of the First International Workshop on Engi-
neering Self-Organising Applications (ESOA 2003), LNCS 2977, 90–104 (2003).

8. J. Handl, J. Knowles, and M. Dorigo: On the performance of ant-based clustering.
In: Proc. 3rd Int. Conf. on Hybrid Intell. Systems (HIS 2003), IOS Press, (2003).

9. P. M. Kanade, L. O. Hall: Fuzzy Ants as a Clustering Concept. Proceedings 22nd

20

International Conference of the North American Fuzzy Information Processing So-
ciety NAFIPS, 227–232 (2003).

10. P. Kuntz, D. Snyers: Emergent colonization and graph partitioning. In: D. Cliff
et al. (Eds.), Third International Conference on Simulation of Adaptive Behavior:
From Animals to Animats, MIT Press, 494–500 (1994).

11. N. Labroche, N. Monmarch, G. Venturini . A new clustering algorithm based on
the chemical recognition system of ants. Proc. European Conf. on AI, IOS Press,
345–349 (2002).

12. N. Labroche, N. Monmarch, G. Venturini: AntClust: Ant Clustering and Web
Usage Mining. Proc. of GECCO-2003, Springer, LNCS 2723, 25–36 (2003).

13. N. Labroche, N. Monmarch, G. Venturini. Visual clustering with artificial ants
colonies. Proc. 7th International Conference on Knowledge-Based Intelligent Infor-
mation & Engineering Systems (KES 2003), Springer, LNCS 2773, 332–338 (2003).

14. E. D. Lumer, B. Faieta: Diversity and Adaptation in Populations of Clustering
Ants. Proc. 3rd Conf. on Simulation of Adaptive Behavior: From Animal to
Animats (SAB94), MIT Press (1994).

15. N. Monmarche, M. Slimane, and G. Venturini: AntClass: discovery of clusters
in numeric data by an hybridization of an ant colony with the kmeans algorithm.
Technical Report 213, Laboratoire d’Informatique de l’Université de Tours (1999).

16. E. Ogston, B. Overeinder, M. van Steen, and B. Brazier: A Method for Decen-
tralized Clustering in Large Multi-Agent Systems. In: Proceedings of the Second
International Joint Conference on Autonomous Agent and Multi Agent Systems
(AAMAS03), ACM Press, 798–796 (2003).

17. V. Ramos, J. J. Merelo: Self-Organized Stigmergic Document Maps: Environment
as a Mechanism for Context Learning. Proc. 1st Spanish Conf. on Evolutionary
and Bio-Inspired Algorithms AEB2002, 284–293 (2002).

18. O.B.V.Ramanaiah, H. Mohanty: Adapting a Distributed Data Clustering Algo-
rithm for Mobile Environment. Proc. 4th Int. Conference on Information Technol-
ogy, Gopalpur-on-Sea, India, (2001).

19. L. Ramaswamy, B. Gedik, and L. Liu: Connectivity Based Node Clustering in
Decentralized Peer-to-Peer Networks. Proc. of the 3rd International Conference on
Peer-to-Peer Computing (P2P 2003), 66–73 (2003).

20. C. J. van Rijsbergen: Information retrieval. 2nd edition, Butterworths, London,
UK, (1979).

21

