
Theoretical Computer Science 320 (2004) 247–267
www.elsevier.com/locate/tcs

Combined super-/substring and
super-/subsequence problems
Martin Middendorf a ;∗ , David F. Manloveb

aParallel Computing and Complex Systems Group, University of Leipzig, Augustusplatz 10–11,
D-04109 Leipzig, Germany

bDepartment of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, UK

Received 8 April 2002; received in revised form 9 October 2002; accepted 3 February 2004
Communicated by A. Apostolics

Abstract

Super-/substring problems and super-/subsequence problems are well-known problems in
stringology that have applications in a variety of areas, such as manufacturing systems de-
sign and molecular biology. Here we investigate the complexity of a new type of such problem
that forms a combination of a super-/substring and a super-/subsequence problem. Moreover we
introduce di3erent types of minimal superstring and maximal substring problems. In particular,
we consider the following problems: given a set L of strings and a string S, (i) 6nd a minimal
superstring (or maximal substring) of L that is also a supersequence (or a subsequence) of S,
(ii) 6nd a minimal supersequence (or maximal subsequence) of L that is also a superstring (or
a substring) of S. In addition some non-super-/non-substring and non-super-/non-subsequence
variants are studied. We obtain several NP-hardness or even MAX SNP-hardness results and
also identify types of “weak minimal” superstrings and “weak maximal” substrings for which
(i) is polynomial-time solvable.
c© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Super-=substring and super-=subsequence problems for sets of strings 6nd impor-
tant applications in many areas, including project and process planning, manufactur-
ing systems design and computational molecular biology (see e.g. [18]). This is be-
cause many objects in nature can be modeled as strings and the super-=substring and
super-=subsequence relations are the most basic and natural relations between strings.
Several papers study super-=substring and super-=subsequence problems with respect to
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their complexity (see e.g. [3,5,9,10,14,15,17,18]). Four well-studied problems are the
Shortest Common Superstring (SCSt), Longest Common Substring (LCSt), Shortest
Common Supersequence (SCSe), and Longest Common Subsequence (LCSe) prob-
lems. Each of SCSt, SCSe and LCSe is known to be MAX SNP-hard [1] (see [16]
for the theory of MAX SNP-hardness). SCSt is polynomial-time solvable for strings
of length 2 and becomes NP-hard for strings of length 3 [5]. SCSt is also NP-hard
for an alphabet of size 2 [5]. LCSt is solvable in polynomial time (see e.g. [8,18]).
SCSe is NP-hard for strings of length 2 [18] and also NP-hard for an alphabet of size
2 [17]. LCSe is trivially solvable in polynomial time for strings of constant length,
though NP-hard for an alphabet of size 2 [10].
Since it is diIcult to 6nd shortest supersequences (superstrings), it is desirable

to have at least minimal supersequences (superstrings) that cannot be shortened by
omitting some characters. A supersequence (superstring) S of a set L of strings is
minimal if no proper subsequence of S is also a supersequence (superstring) of L.
Starting with any supersequence S of L a subsequence of S that is minimal can easily
be found in polynomial time using the following strategy. Delete a character in S if the
so-obtained subsequence of S is also a supersequence of L. Repeat this until no more
characters can be deleted from the supersequence. The problem of 6nding a longest
minimal supersequence is known to be MAX SNP-hard for strings over an alphabet of
size 2 [14]. For strings of length 2 this problem is polynomial time solvable, whereas
the complexity for strings of constant length k¿3 is open [4].
For superstrings the situation is di3erent. A minimal superstring of L cannot neces-

sarily be found by iterative deletions of single characters from some superstring as long
as the string so obtained is required to be a superstring. As an example consider the
superstring S = abcbcd of L= {abc; bcd}. S is not minimal since deleting substring cb
gives the superstring abcd of L. But deleting only one character from S gives a string
that is not a superstring of L. We identify new types of superstrings called “weak min-
imal” superstrings that can be obtained from a given superstring S in polynomial time.
More generally we study the complexity of problems which are a combination of a

super-=subsequence problem with a super-=substring problem. Such problems have not
been studied before. In particular, we focus on the following problems: given a string
S and a set L of strings 6nd a string that is a
(1) minimal superstring (maximal substring) of L and subsequence of T ,
(2) minimal superstring (maximal substring) of L and supersequence of T ,
(3) minimal supersequence (maximal subsequence) of L and substring of T ,
(4) minimal supersequence (maximal subsequence) of L and superstring of T .
We show that some of these problems can be solved in polynomial time while others
are NP-complete. For example, we show that the complexity of 6nding a minimal
supersequence S for a set of strings such that S contains a 6xed string T as a substring
depends on the string T—for some strings T the problem is NP-complete, whilst
for others it is polynomial time solvable. We also consider some non-substring and
non-super=non-subsequence variants, i.e. when we search for strings that do not have
the given property. Moreover, we show that the Longest Minimal Non-Subsequence
problem is MAX SNP-hard for strings over an alphabet of size 2, thus solving an open
problem mentioned in [14]. Note, that the problem of 6nding a shortest supersequence
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of L that is a subsequence of T and the problem of 6nding a longest subsequence of
L that is a supersequence of T have been studied in [14].
Let us give some motivating applications for our problems. The 6rst two examples

concern minimal superstring problems that are studied in Section 3. (1) In rockwool
production a machine can produce rockwool of di3erent diameters D1¡D2¡ · · ·¡Dn.
Usually it is easy to change the production from smaller diameters to larger ones since
the speed of production goes down. The other direction requires that the machine waits
some time before it can speed up. Now assume we want to produce several lots of
rockwool where every lot 6lls a truck. Each lot consists of a sequence of rockwool
units of di3erent diameters. To reduce costs for storing we assume that the rockwool
for each lot is a substring in the production sequence of the machine. The production
sequence is the sequence of di3erent diameters that occur during production (e.g. the
lot D5D6D2 is a substring in the production sequence D3D5D6D2D4D5). To 6nd a
good production sequence we want to limit the number of switches from a larger to a
smaller diameter. Hence we look for a minimal superstring S of the lot sequences that
is a subsequence of (D1D2 : : : Dn)k . In this case S contains at most k switches from
large to small diameter. (2) In other application scenarios similar to (4) one might be
interested to have a large number of switches between two di3erent products A and B.
In this case a minimal superstring that is a supersequence of one of the strings (AB)k

or (BA)k is needed.
The next example is a maximal substring problem (see Section 4). (3) The webusage

behaviour of a customer that visits the webpages of a company can be described
by her navigation path through the webpages, i.e. by a string over the alphabet of
the companies webpages (e.g. [12]). An interesting Data Mining problem is to 6nd
common usage patterns of customers. Assume one is interested to 6nd for a set L of
strings describing customers navigation paths a longest common substring that started
possibly with page A then went on to the set of pages {B; C; D} and ended in the set
of pages {A; E}. Then the problem is to 6nd a longest common substring of L that is
a subsequence of the string A(BCD)k(AE)l for a large enough k; l¿0.
The next two examples concern minimal supersequence problems as studied in

Section 5. (4) Assume a conveyer belt consists of a sequence T of machines of di3er-
ent type. A product can be characterised by the sequence S of machines it has to pass
during production process. The product can be produced on T if S is a subsequence
of T . Assume that the conveyer belt T has to be extended on both sides such that a
set L of new products can be produced on it and such that no machine is unneces-
sary. This is the problem of 6nding a string S that is a minimal supersequence of L
and contains T as a substring. (5) Another problem is to 6nd for a set of products
characterised by a set L of strings a conveyer belt with no unnecessary machines and
where a given sequence of neighboured machines is not allowed to be included (e.g.
a cooling machine should not be placed after a heating machine). Then the problem
is to 6nd a minimal supersequence of L that does not contain a certain substring.
The organisation of the paper is as follows. Basic de6nitions are given in Section 2.

Section 3 contains results about 6nding minimal superstrings. Maximal substring
problems are studied in Section 4. Minimal supersequence and maximal subsequence
problems are described in Section 5. Conclusions are given in Section 6.
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2. Basic de�nitions

A string over an alphabet � is a 6nite sequence of characters from �. For a string S
the pre6x of length k is denoted by Pref k(S). The empty string is denoted by �. The
concatenation of two strings S and T is denoted by ST . For S let S0 = � and Si= SSi−1

for each integer i¿1. A string obtained from S by deleting zero or more characters
is called a subsequence of S. T is a supersequence of S if S is a subsequence of
T . A string S obtained from T by deleting a (possibly empty) pre6x and a (possibly
empty) suIx is called a substring of T . T is a superstring of S if S is a substring
of T . S is a subsequence (supersequence, substring, superstring) of a set L of strings
if S is a subsequence (supersequence, substring, superstring) of every string in L. The
property that S is a substring of L is denoted by S�L. S is a non-supersequence
(non-subsequence, non-substring) of T if S is not a supersequence (subsequence, sub-
string) of T . S is a non-supersequence (non-subsequence) of a set L of strings if S is
a non-supersequence (non-subsequence) of every string in L. A supersequence (super-
string, non-subsequence) S of a set of strings is minimal if no proper subsequence of
S is a supersequence (superstring, non-subsequence). A subsequence (substring, non-
supersequence) S of a set of strings is maximal if no proper supersequence of S is a
subsequence (substring, non-supersequence).
Let S = s1s2 : : : sl be a subsequence of T = t1t2 : : : tk . An embedding of S in T is a

strictly increasing function f : [1 : l]→ [1 : k] such that si= tf(i) for all i∈ [1 : l]. We
say that si is mapped onto tf(i) by f, i∈ [1 : l]. An embedding of S into a set L of
strings is a set F = {fT |T ∈L} where for each T ∈L the function fT is an embedding
of S in T . An embedding of L into S is a set F = {fT |T ∈L} where for each T ∈L
the function fT is an embedding of T in S. A run of a string is a substring of maximal
length that is of the form ak for a∈� and k¿1 (also called a-run).

3. Minimal superstrings

In this section we consider the problem of 6nding, for a given string T and set L
of strings, a subsequence (supersequence) S of T that is a minimal superstring of L.
It is easy to see that the following characterisations are equivalent:
• S is a minimal supersequence of L.
• There does not exist a character s in S such that the string obtained after deleting s
is also a supersequence of L.

• There does not exist a substring S ′ of S such that the string obtained after deleting
S ′ is also a supersequence of L.

• For every embedding of L into S and every character s in S there exists at least one
character of a string in L that is mapped onto s.

For minimal superstrings none of the analogous equivalences holds in general. Be-
fore we give examples showing this we de6ne the corresponding types of minimal
superstrings, i.e. the “weak minimal” superstrings as mentioned in the Introduction.
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A superstring S of a set L of strings is
• embedding-minimal (e-minimal) if for each embedding of L into S and for every
character s of S the set of characters mapped onto s is not empty,

• substring-deletion-minimal (sub-minimal) if no proper subsequence of S, obtained
by the deletion of exactly one substring, is a superstring,

• character-deletion-minimal (char-minimal) if no subsequence of S, obtained by
deleting exactly one character, is a superstring,

• pre8x-su9x-deletion-minimal (pre-suf-minimal) if no proper substring of S is a
superstring.

Lemma 1. (a) For a superstring S of a set L of strings the following implications hold:
minimal⇒ sub-minimal⇒ char-minimal⇒ e-minimal⇒ pre-suf-minimal. (b) The in-
verse implication “char-minimal⇒ sub-minimal” holds for strings of length 2 but not
for strings of length 3. The other inverse implications do not hold even for strings of
length 2.

Proof. (a) follows from the de6nitions. For (b), we give the following examples which
deal with the inverse implications:
1. Let L= {ab; ac; bd; ca} and S = abcacbd. It is not hard to show that S is sub-

minimal. But S is not minimal since the proper subsequence S ′ = acabd of S is also
a superstring of L.
2. Let L= {cba; bac} and S = cbabac. It is easy to show that S is char-minimal.

But S is not sub-minimal since the subsequence S ′ = cbac obtained by deleting the
substring ba is a superstring of L.
3. Let L= {ba; ab} and S = baab. S is e-minimal but not char-minimal since the

subsequence S ′ = bab obtained by deleting one a is a superstring of L.
4. Let L= {ab; c} and S = abic for some integer i¿2. It is easy to show that S is

pre-suf-minimal but not e-minimal.
It remains to show “char-minimal⇒ sub-minimal” holds for strings of length 2. For

a contradiction assume there is a set L of strings of length 2 and a char-minimal
superstring S that is not sub-minimal, i.e. S = S ′S ′′S ′′′ for strings S ′; S ′′; S ′′′, |S ′′|¿2
and S ′S ′′ is also a superstring. Clearly, S ′ 	= � 	= S ′′′. Consider the set of strings L′ ⊂L
that have at least one character in S ′′ in every embedding into S. Since S is char-
minimal L′ is not empty. It follows that in any embedding of L′ into S ′S ′′′, every
string has to be embedded into the last character of S ′—say a—and the 6rst char-
acter of S ′′′—say b. Since S is char-minimal we derive that |L′|=1 and S ′′ = ab.
But then the string S ′aS ′′′ is also a superstring of L and therefore S was not
char-minimal.

As mentioned in the Introduction, 6nding a shortest superstring of a set of strings is
solvable in linear time for strings of length 2 and NP-complete for strings of length 3,
and also for strings over a binary alphabet [5]. The complexity of 6nding any (not
necessarily a shortest) minimal superstring is open for strings of length 3, and also
for strings over an alphabet of size 2. Also, the complexity of 6nding a longest (sub-,
char-, e-, pre-suf-) minimal superstring is not known. However, using a suIx tree (see
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Chapter 5 of [7] for an introduction to suIx trees) it can be checked in time O(n|�|)
whether a string of size O(n) is a superstring of a set L of strings over an alphabet
�, where n denotes the total length of all strings in L. This implies easily that 6nding
just any sub-minimal superstring of a set of strings can be done in time O(n4|�|).
Similarly, char-minimal and e-minimal superstrings can be found in time O(n3|�|). To
6nd a pre-suf-minimal superstring start with any superstring S. Then using a suIx
tree, 6nd the rightmost occurrence in S of every string in L. Let S ′ be the shortest
suIx of S that contains all rightmost occurrences of strings in L. Similarly 6nd then
the leftmost occurrence of every string of L in S ′. Now the string S ′′ that is the
shortest pre6x of S ′ containing all leftmost occurrences of the strings in L is a pre-suf-
minimal superstring of L. Hence, a pre-suf-minimal superstring can be found in time
O(n|�|).
We consider now the problem of 6nding a (sub-, char-, e-, pre-suf-) minimal super-

string that can be of arbitrary length but has to be a supersequence (subsequence) of
some given string.

De�nition 2. Fixed supersequence minimal common superstring:
Given: A set L of strings and a string T over an alphabet �.
Question: Does there exist a minimal superstring of L which is a subsequence of T?
The problems Fixed Supersequence (sub-, char-, e-, pre-suf-) Minimal Common

Superstring are de6ned analogously. When the superstring does not have to be minimal
the problem is called Fixed Supersequence Common Superstring problem.

The Fixed Supersequence Common Superstring problem is polynomially equivalent
to the Fixed Supersequence sub-Minimal Common Superstring problem. To see this,
suppose that S is a superstring of L, and suppose that S ′ is a string obtained from
S by deletion of a substring, such that S ′ is also a superstring of L. Then S ′ is
also a subsequence of T . Analogously, this holds for the Fixed Supersequence char-
Minimal (e-Minimal, pre-suf-Minimal) Common Superstring problems. In case of the
Fixed Supersequence Minimal Common Superstring problem, such relationship is not
immediate, since the complexity of the problem of deciding whether a superstring of
a set L of strings is minimal is open.

Theorem 3. The Fixed Supersequence (sub-, char-, e-, pre-suf-) Minimal Common
Superstring problem and the Fixed Supersequence Common Superstring problem are
NP-hard for strings of length 2.

Proof. We reduce the 3-SAT ([LO2] in [6]) to our problem. Let a set C= {C1;
C2; : : : ; Cm} of clauses each of size three over a set V = {v1; v2; : : : ; vn} of variables
be an instance of 3-SAT. We de6ne a set L of strings of length 2 and a string
T over an alphabet �. For each variable vh, h∈ [1 : n] let Ci1 ; Ci2 ; : : : ; Ciph be the
clauses with an unnegated occurrence of vi and Cj1 ; Cj2 ; : : : ; Cjqh be the clauses with an
occurrence of Pvi and de6ne the corresponding strings Ti= ci1ci2 : : : ciph , T

′
i = cj1cj2 : : : cjqh ,

and T ′′
i = viTi PviviT ′

i Pv1#i. Set T =#0T ′′
1 T

′′
2 : : : T

′′
n . Let L= {vi Pvi | 16i6n}∪ {ci | 16i6m}

∪ {#i | 06i6n}.
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Assume that S is a minimal superstring of L and a subsequence of T . Clearly, S
contains every character #i, 16i6n exactly once. Since S contains the substring vi Pvi
and is a subsequence of T the substring of S between #i−1 and #i is in one of the
following forms: (i) #i−1Sivi Pvi#i where Si is a subsequence of Ti or (ii) #i−1vi Pv1S ′i #i
where S ′i is a subsequence of T ′

i . We obtain a truth assignment of V by setting vi,
i∈ [1 : n] true if (i) holds for vi and otherwise vi is set false. The proof for the case that
S is any superstring is very similar. To show that there exists a minimal superstring
of L that is a subsequence of T when there exists a C-satisfying truth assignment
for V is easy. The proof for the case that S is any superstring is very similar, and
the results for the Fixed Supersequence char-Minimal (e-Minimal, pre-suf-Minimal)
Common Superstring problems follow since each is polynomially equivalent to the
Fixed Supersequence Common Superstring problem.

The 6xed string T in the proof of Theorem 3 depends on the instance of 3-SAT.
An interesting question is whether the problem remains NP-complete when T depends
only on the size of the instance, i.e. does there exist an in6nite sequence T = s1s2 : : :
over characters of some alphabet � such that the following problem is NP-complete:
given a set of strings over �, n∈N, is Prefn(T ) a (sub-, char-, e-, pre-suf-) minimal
superstring of L?

Corollary 4. The Fixed Supersequence (sub-, char-, e-, pre-suf-) Minimal Common
Superstring problem is NP-hard for strings over an alphabet of size 2.

We omit the proof. The idea is to encode every character in the proof of Theorem 3
by a suitable string over an alphabet of size 2.

De�nition 5. Fixed Subsequence Minimal Common Superstring:
Given: A set L of strings and a string T over an alphabet �.
Question: Does there exist a minimal superstring of L which is a supersequence

of T?
The problems Fixed Subsequence (sub-, char-, e-, pre-suf-) Minimal Common

Superstring are de6ned analogously.

Theorem 6. The Fixed Subsequence (sub-, char-, e-) Minimal Common Superstring
problem is NP-hard for strings of length 2.

Proof. We reduce a 3-SAT version where for each variable the number of negated
occurrences equals the number of unnegated occurrences and no variable occurs twice
in a clause. Let a set C= {C1; C2; : : : ; Cm} of clauses each of size three over a set
V = {v1; v2; : : : ; vn} of variables be an instance of 3-SAT. Before we de6ne a set L of
strings of length 2 and a string T over an alphabet � we need some de6nitions and
observations.
A string S ′ in L supports a character in a superstring S of L when S ′ cannot be

mapped into S without using this character. Clearly, every character in a (sub-, char-,
e-) minimal superstring S of L has to be supported by some string in L. In the following
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de6nition of T each # stands for some character that occurs only once in T . We make
the following observation: When T contains a substring of the form #ab#, ab∈L, and
when the string ab is needed to support the substring ab of T (i.e. it is not possible
that strings of the form ax and by support the a and the b) then the substring ab
occurs only once in a (sub-, char-, e-) minimal superstring S of L with subsequence
T and this occurrence is between the corresponding # characters. A main tool in the
proof is to use this observation to restrict the neighbourhoods of characters in parts of
S as follows. We de6ne a substring T0 of T and a set L0 ⊂L of strings so that
(i) outside of the substring T0 of S the character cj, j∈ [1 :m] can only have right

neighbours cj, xj, or vhi when Cj is the hth clause with positive occurrence of vi
and left neighbours cj, yj, or Pvhi when Cj is the hth clause with negated occurrence
of vi,

(ii) outside of the substring T0 of S the character cj, j∈ [m+1 : (3=2)m] (without loss
of generality we assume that m is even) can only have right neighbours cj, xj, or
vi, i∈ [1 : n], and left neighbours cj, yj, or Pvi, i∈ [1 : n].

For each variable vi, i∈ [1 : n] de6ne Tvi = v
1
i Pv

1
i v

2
i Pv

2
i : : : v

ni
i Pv

ni
i v

ni+1
i # and let T1 be the

concatenation of all strings Tvi , i∈ [1 : n]. For j∈ [1 : (3=2)m] de6ne TCj = ajajcjcjbjbj#.
Let T2 be the concatenation of all strings TCj , j∈ [1 : (3=2)m]. Set T =T0T1T2. The set
L contains the strings in L0, all strings # that occur in T and the strings in the following
sets L1 = {vhi Pvhi ; Pvhi vh+1

i | h∈ [1 : ni]; i∈ [1 : n]}∪ {vni+1
i v1i | i∈ [1 : n]}, L2 = {xiyi | i∈ [m+

1 : (3=2)m]}, L3 = {aiai; bibi; cici | i∈ [1 : (3=2)m]}. Now we show that a C-satisfying
truth assignment of V exists when there exists a (sub-, char-, e-) minimal superstring
of L that contains T as a subsequence.
Let S be a (sub-, char-, e-) minimal superstring of L with subsequence T . Consider

an embedding of L in S. The following facts are easy to show: (i) every character #
can occur only once in S and the corresponding string # supports it, (ii) each of the
substrings aiai, bibi, cici, i∈ [1 : (3=2)m] in substring T of S has to be supported by
the corresponding string in L3 ⊂L, (iii) of the (7=2)m+n strings in L1 ∪L2 exactly 3m
have to occur in S as a neighbour to a character cj, j∈ [1 : (3=2)m] in the subsequence
T in order to guaranty that none of cj’s neighbours aj and bj in T is its neighbour
in S, j∈ [1 : (3=2)m], (iv) (1=2)m+ n strings in L1 are needed to support the (non-#)
characters in Tvi , i∈ [1 : n].
It follows that exactly ni+1 of the strings in L1 have to support the (non-#) characters

in Tvi , i∈ [1 : n]. There are only two possibilities: Either all strings {vhi Pvhi | h∈ [1 : ni]}∪
{vni+1
i v1i } or all strings {Pvhi vh+1

i | h∈ [1 : ni]}∪ {vni+1
i v1i } support the (non-#) characters

in Tvi . This allows to de6ne a truth assignment for the variables in V . In the 6rst case
vi is set false and in the second case vi is set true.

For each substring cjcj, j∈ [1 :m] only the string xjyj and strings in L2 can guaranty
that (i) is satis6ed when they occur as neighbours in S. Hence at least one string from
L2 must occur in S as neighbour of cj. This is possible for a string vhi Pv

h
i only when Cj

is the hth clause that contains vi and vi is true (i.e., the string vhi Pv
h
i is not needed to

support characters in Tvi) or for a string Pvhi v
h
i when Cj is the hth clause that contains

Pvi and vi is false (i.e., the string Pvhi v
h
i is not needed to support characters in Tvi). Hence

there must be at least one true literal in each clause. The other direction of the proof
is easy.
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By encoding every character in the proof of Theorem 6 by a suitable string over an
alphabet of size 2 we obtain the following corollary.

Corollary 7. The Fixed Subsequence (sub-, char-, e-) Minimal Common Superstring
problem is NP-hard for strings over an alphabet of size 2.

By contrast with the previous result, Fixed Subsequence pre-suf-Minimal Common
Superstring is solvable in linear time, as we show now.

Theorem 8. The Fixed Subsequence pre-suf-Minimal Common Superstring problem
is solvable in time O(n) where n is the total length of the input strings.

Proof. Let a set L of strings and a string T over an alphabet � be given. Let m be
the maximal length of a run of a string in L. For a string S let %(S) be the string that
is obtained from S by shortening the leftmost run and the rightmost run so that each
has length one. Let %(L)= {%(S) | S ∈L}. For a string S let S. be the string that is
obtained from S by doubling the rightmost character until the length of the rightmost
run is m + 1. Strings /S and /S. are de6ned analogously by doubling the leftmost
(respectively the leftmost and the rightmost) character of S until the length of the
leftmost (respectively the leftmost and the rightmost) run is m+ 1. We consider three
cases.

Case 1: %(L) contains at least two strings with ¿3 runs. Let T1; T2; : : : ; Tm be the
strings in %(L) with ¿3 runs, m¿2. Let S ′ be the string in L with %(S ′)=T1 that has
the longest leftmost run and S ′′ be the string in L with %(S ′′)=Tm that has the longest
rightmost run. Let S ′′′ be a string that has only runs of length m+ 1, contains T as a
subsequence, and is a superstring of every string S ∈L with at most two runs. Then it
is easy to show that the string S ′ . S ′′′ / T2 . /T3 . : : : / Tm−1 . /S ′′ is a pre-suf-minimal
superstring of L that contains T as a subsequence.

Case 2: Case 1 does not hold and there are at least two strings in L with a run of
length ¿2. First assume that %(L) contains one string T1 with ¿3 runs and it has a
run of length ¿2. Then T1 = an1bn2cn3 , a; b; c∈�, a 	= b 	= c, for some integers n1, n2,
n3 at least one of them ¿2. Let S ′ be the shortest string that contains all strings S ∈L
with %(S)=T1 and also every string of the form akbl with integers k, l, l6n2 as a
substring. Further, assume there exists a string in L that is not substring of S ′ and has
a run of length ¿2. Then a string S ′′ can be found in linear time that is a suf-minimal
superstring of the remaining strings in L where the 6rst run of S ′′ has length one
and the string that supports the rightmost character has a run of length ¿2. Let S ′′′

be a string that has only runs of length 1, contains T as a subsequence, and the last
character of S ′′′ is di3erent from the 6rst character of S ′′. Then the string S ′S ′′′S ′′ is
a pre-suf-minimal superstring of L that contains T as a subsequence. Most remaining
subcases can be proved similarly (a few subcases can be detected where there does
not exist a pre-suf-minimal superstring of L with subsequence T ).

Case 3: Neither of Cases 1 and 2 holds. Proof omitted since it can be shown with
similar techniques as the other cases.
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Table 1
Complexity of minimal superstring problems: P=polynomial time, NPh=NP-hard, @=may not exist,
l= length of longest string in L, n= total length of strings in L, �=alphabet

Type of Any Shortest Longest Fixed Fixed
minimality supersequence subsequence

Minimal ? NPh: ? NPh: NPh:
O(n): |�|=2 l=2, Theorem 3 l=2, Theorem 6
l=2 [5] l=3 |�|=2, Corollary 4 |�|=2, Corollary 7

Sub-minimal O(n4|�|) ?

Char-minimal O(n3|�|) O(n): ?

E-minimal l=2 ?

Pre-suf-min. O(n|�|) [5] @ O(n), Theorem 8

None

Table 1 summarises the complexity results of this section.

4. Maximal substrings

In this section we consider 6nding maximal substrings of a set of strings. In analogy
to Section 3, maximal substring problems with a 6xed supersequence (subsequence)
are de6ned. Firstly, we de6ne certain types of “weak maximal” substrings. A substring
S of a set L of strings is
• substring-insertion-maximal (sub-maximal) if no proper supersequence of S, that

can be obtained by the insertion of exactly one string, is a substring,
• character-insertion-maximal (char-maximal) if no supersequence of S that can be
obtained by inserting exactly one character is a substring,

• pre8x-su9x-insertion-maximal (pre-suf-maximal) if no proper superstring of S is a
substring.

Lemma 9. For a substring S of a set L of strings the following implications hold:
maximal⇒ sub-maximal⇒ char-maximal⇒ pre-suf-maximal and the inverse implica-
tions do not hold in general.

Proof. The implications can be shown easily, the following examples show that the
inverse implications do not hold. (1) Let L= {aabacacb; acacbaab} and S = aab. S
is sub-maximal but not maximal since the string acacb is also a substring. (2) Let
L= {accbab; abaccb} and S = ab. S is char-maximal but not sub-maximal since the
string accb obtained by inserting cc into S is also a substring. (3) Let L= {abaa; aaba}
and S = aa. Clearly, S is pre-suf-maximal but not char-maximal since aba is also a
substring.
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De�nition 10. Fixed Subsequence Maximal Common Substring:
Given: A set L of strings and a string T over an alphabet �.
Question: Does there exist a maximal substring of L which is a supersequence

of T?
The problems Fixed Subsequence (sub-, char-, pre-suf-) Maximal Common Sub-

string and Fixed Supersequence (sub-, char-, pre-suf-) Maximal Common Substring
are de6ned analogously.

The Longest Common Substring problem is linear-time solvable: Hui [8] has shown
that, for a set L containing k strings, a longest substring of L may be found in O(n)
time, where n denotes the total length of all strings in L. Hui’s approach involves
the use of suIx trees and lowest common ancestors (see Chapter 8 of [7] for a
de6nition of lowest common ancestors and a description of how they may be computed
eIciently). Gus6eld [7, Section 9.7] presents an in-depth description of Hui’s method,
demonstrating how a simpler O(kn) algorithm for the problem [7, Section 7.6] may be
re6ned in order to achieve the O(n) bound. In this section we show that all pre-suf-
maximal substrings of L may be found in O(n) time. As a corollary we obtain that
a shortest pre-suf-maximal substring of L may be found in O(n) time (note that this
problem is a minimaximal optimisation problem with a special partial order property
as studied in [11]).
Our algorithm makes use of Hui’s methods for solving the Longest Common

Substring problem. Additionally, some aspects of our approach bear similarities to the
algorithm for 6nding all (pre-suf-) maximal repeats in a string in O(n) time
[7, Section 7.12.1]. However our task here involves k strings; nevertheless, by us-
ing suitable data structures, we achieve time bound O(n) for our problem. We leave
open whether the corresponding problems for (sub-, char-) maximal substrings can be
solved in linear time (polynomial time is trivial).
We 6rstly establish some de6nitions relating to suIx trees (the terminology follows

that of Gus6eld [7, Section 5.2]). Let T be a suIx tree for a string S. The label of a
path from the root of T to a node v is the concatenation, in order, of the substrings
labelling the edges of that path. The path label of a node v is the label of the path
from the root of T to v. For any node v, the string depth of v is the number of
characters in the path label of v.

Theorem 11. For a set L of k strings with total length n all pre-suf-maximal sub-
strings of L can be found in O(n) time.

Proof. Suppose that L= {Si: 16i6k}. To each string Si (16i6k), we append a
unique termination symbol $i not occurring in �; let S ′i be the resultant string and S
the concatenation of the strings S ′i (16i6k). Now suppose that X is a suIx of S,
beginning at position i of S (i.e. i is the su9x position of X in S). This position
of S corresponds to a unique string S ′j for some j (16j6k). We call j the string
identi8er of X in S. De6ne the left character of X in S to be the (i − 1)th character
of S if i¿1, or $0 (a symbol not occurring in �) if i=1.
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We build the suIx tree T for the string S, storing two pieces of information at
each leaf node. Recall that each leaf node v of T corresponds to a unique suIx X
of S. De6ne the string identi8er of v in S to be the string identi6er of X in S, and
de6ne the left character of v in S similarly. Store both of these values at v. (For the
purposes of this algorithm, it is not necessary to store at v the suIx position of X in
S.) It is clear that the construction of this paragraph may be carried out in O(n) time,
which is the time required to build a suIx tree [2].
For a node v of T, let Tv denote the subtree of T with root v. Let C(v) denote the

number of distinct string identi6ers that appear at the leaves of Tv. De6ne a matching
node of T to be an internal node v of T such that C(v)= k. It follows that a string
P is a substring of L if and only if P is, or is a pre6x of, the path label of some
matching node v of T. Thus a string P is a maximal substring of L implies that P is
the path label of some matching node v of T. Computing C(v) for each node v may
be carried out in O(n) time overall [8]. We now consider R-tight matching nodes.
Such a node v is a matching node such that no child of v in T is a matching node.

Claim 12. Let v be a matching node of T and let P be the path label of v. Then v
is an R-tight matching node if and only if P*�= L, for any *∈�.

Proof. Suppose that v is an R-tight matching node and Q=P*�L, for some *∈�.
Then Q� Sj for each j (16j6k), which implies that there are k suIxes Xj (16j6k)
of S such that, for each j (16j6k), Xj has string identi6er j in S, and Q is a pre6x of
Xj. Thus, by de6nition of T, there is a matching node w in Tv, where w is a child
of v (w has path label R, such that either Q=R, or Q is a pre6x of R). Thus v has
a child that is a matching node, a contradiction. Conversely, suppose that P*�= L for
each *∈�, and v is not an R-tight matching node. Then v has a child w that is a
matching node; let Q be the path label of w. Then by de6nition of T, there is some
*∈� such that P* is a pre6x of Q (possibly P*=Q). Thus we reach a contradiction,
since Q�L implies that P*�L.

It is clear that the R-tight matching nodes may be determined by a straightforward
traversal of T, in O(n) time, once the C(v) values have been computed. By Claim 12,
the path label of an R-tight matching node is a substring of L that cannot be extended
to the right to give another common substring of L. Next, we show how to locate
substrings that cannot be extended to the left, in addition to being non-extendible to
the right. For an R-tight matching node v of T and for any *∈�, let D*(v) denote
the number of distinct string identi6ers among all leaves of Tv with left character *
in S. De6ne an LR-tight matching node v to be an R-tight matching node v such that,
for all *∈�, D*(v)¡k.

Claim 13. Let v be an R-tight matching node of T and P be the path label of v.
Then v is an LR-tight matching node if and only if *P�= L, for any *∈�.

Proof. Suppose that v is an LR-tight matching node and Q= *P�L, for some *∈�.
Then Q� Sj for each j (16j6k), which implies that there are k suIxes Xj (16j6k)
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of S such that, for each j (16j6k), P is a pre6x of Xj, Xj has string identi6er j in
S, and * is the left character of Xj in S. Thus, by construction of T, we have that Tv

has a leaf node with left character * and string identi6er j in S, for each j (16j6k).
Hence D*(v)= k, a contradiction. Conversely, suppose that *P�= L for each *∈�,
and v is not an LR-tight matching node. Then there is some *∈� such that Tv has a
leaf node with left character * and string identi6er j in L, for each j (16j6k). Hence
Q= *P satis6es Q� Sj, for each j (16j6k), so that Q�L, a contradiction.

By Claim 13, a string P is a maximal substring of L if and only if P is the path
label of an LR-tight matching node v of T. We now show how to eIciently determine
the R-tight matching nodes that are LR-tight matching nodes.

Claim 14. The LR-tight matching nodes in T may be found in O(n) time.

Proof. An algorithm for deciding whether a given R-tight matching node v of T is
LR-tight is shown in Fig. 1. The algorithm calculates only those D*(v) values for which

for each leaf node w of Tv loop
let * be the left character of w;
if *∈� then

add w to S*; v;
end if;

end loop;
for each nonempty set S*; v loop
D*(v) := 0;
for each w ∈ S*; v loop

let t be the string identi6er of w;
if not visited[t] then

visited[t] := true;
D*(v) :=D*(v) + 1;
if D*(v)= k then
halt; {v is not LR-tight}

end if;
end if;

end loop;
for each w ∈ S*; v loop

let t be the string identi6er of w;
visited[t] := false;

end loop;
end loop;
{v is LR-tight}

Fig. 1. An algorithm for deciding whether v is an LR-tight matching node, given that v is an R-tight matching
node of T.
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Tv contains at least one leaf node with left character *∈� (otherwise we may assume
that D*(v)= 0); once such value has been computed, if D*(v)= k then v cannot be
an LR-tight matching node. If this is not the case after all such computations, v is
LR-tight.
To begin, the algorithm makes one pass over the leaf nodes in Tv, constructing

the sets S*; v, where *∈�. Initially we assume that S*; v= ∅, and at the termination
of the 6rst for loop, each S*; v contains the leaf nodes in Tv having left character *.
Clearly, with suitable data structures, these sets may be constructed in O(r) overall time
(avoiding the explicit initialisations S*; v := ∅), and they use O(r) total space, where r
is the number of leaf nodes in Tv.

The second for loop considers in turn each nonempty set S*; v. For each, the number
of distinct string identi6ers among leaf nodes of Tv having left character * is computed.
This is done with the aid of a boolean array visited, having k entries. We assume that
every entry visited is initialised to false at the very outset (i.e. before the algorithm
is invoked on any R-tight matching node), and once D*; v has been computed, those
values of visited that were altered are reset to false. Clearly the second for loop may
be implemented to run in O(r) overall time and O(k + r) total space.
Given that distinct R-tight matching nodes contain disjoint sets of leaf nodes, it

follows that the overall time and space used by the algorithm of Fig. 1 for all R-tight
matching nodes is O(n).

Thus Claim 14 implies that all pre-suf-maximal substrings of L may be identi6ed in
O(n) time by representing each such substring % as a pair (i; j), so that % comprises
all characters of S between positions i and j inclusive (assuming that, in practice, each
edge label 0 of T is represented similarly by a pair of indices (k; l) [8, p. 104]).

Corollary 15. A shortest (sub-, char-) maximal substring of a set of strings L can be
found in time O(n + l3), where l is the length of the shortest string, and a shortest
pre-suf-maximal substring can be found in time O(n).

Proof. Consider the suIx tree T de6ned in the proof of Theorem 11. Having marked
all the LR-tight matching nodes of T, a 6nal traversal of the tree will establish an LR-
tight matching node v of smallest string depth, in O(n) time. By construction, the path
label P of v corresponds to a shortest pre-suf-maximal substring of L. Thus the overall
time complexity of this algorithm is O(n). To 6nd a shortest maximal substring it is
enough to 6nd a shortest pre-suf-maximal substring that is not subsequence of some
other pre-suf-maximal substring. Since there are at most l pre-suf-maximal substrings
this can be done in time O(l3) and the time bound of the corollary follows. Similarly,
shortest (sub-, char-) maximal substrings can be found.

Corollary 16. Let L be a set of strings, let T be a string, and let l be the length of
the shortest string in L. Then
(1) The following time bounds hold for the Fixed Supersequence (sub-, char-,

pre-suf-) Maximal Common Substring problems: (i) (sub-, char-) maximal: O(n+
l · |T |+ l3), (ii) pre-suf-maximal: O(n+ l · |T |).
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Table 2
Complexity of maximal substring problems: l= length of shortest string in L, n= total length of
strings in L, �=alphabet

Type of Shortest Longest Fixed Fixed
maximality supersequence T subsequence T

Maximal

Sub-maximal O(n+ l3) O(n) O(n+ l · |T |+ l3) O(n+ l3)

Char-maximal [8]

Pre-suf-maximal O(n) O(n+ l · |T |) O(n+ l2)

(2) The following time bounds hold for the Fixed Subsequence (sub-, char-,
pre-suf-) Maximal Common Substring problems: (i) (sub-, char-) maximal: O(n+
l3), (ii) pre-suf-maximal: O(n+ l2).

Proof. The proofs of Theorem 11 and Corollary 15 show how all maximal, sub-
maximal, char-maximal, and pre-suf-maximal substrings of L can be found. In each
case there are O(l) such substrings, and each substring can be tested as to whether it
is a subsequence of T in O(|T |) time.

Table 2 summarises the complexity results of this section.

5. Minimal supersequences, maximal subsequences

The problem of 6nding for a given set of strings, a shortest (respectively longest)
of the following sequences was studied by several authors: minimal supersequence,
maximal non-supersequence, maximal subsequence, or minimal non-subsequence
[4,9,10,13,17,19]. It is known that each of these problems is NP-hard. Moreover, it
is known that 6nding a longest minimal supersequence, shortest maximal subsequence
and shortest maximal non-supersequence are MAX SNP-hard over an alphabet of size
2, i.e. there does not exist a polynomial time approximation scheme for these prob-
lems unless P=NP [14]. In the following we show that 6nding a longest minimal
non-subsequence is MAX SNP-hard over an alphabet of size 2. It remains open as to
whether each of the problems of 6nding a shortest supersequence, longest subsequence,
shortest non-subsequence and a longest non-supersequence is MAX SNP-hard over an
alphabet of constant size (when it exists). In addition, we consider the problem of
6nding for a set of strings maximal and minimal (non)super- and (non)subsequences
of arbitrary length that contain (or do not contain) a given string as a substring. For
most of these problems we show NP-hardness even over an alphabet of size 2.

Theorem 17. Given a set L of strings over an alphabet of size 2 it is MAX SNP-hard
to 8nd a longest minimal non-subsequence of L.
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Proof. We only sketch the proof, as it is somewhat similar to the proofs of the MAX
SNP-hardness results in [14]. We L-reduce the Independent and Dominating Set-B
problem to our problem (see [14]). The problem is to 6nd for a graph G=(V; E) with
maximum degree B a smallest vertex set V ′ ⊂V , |V ′|6k such that for every v∈V−V ′

there exists w∈V ′ with {v; w}∈E (i.e., V ′ is a dominating set) and for all u; v∈V ′,
{u; v} =∈E (i.e., V ′ is an independent set). De6ne a set L of strings over {0; 1}: for
i∈ [0 : n] let Si=(10)i11(01)n−i. For each edge el= {vi; vj}∈E, i¡j, l∈ [1 :m] let
Tl=(01)i−10(01)j−i−10(01)n−j0. Set L= {Si | i∈ [0 : n]}∪ {T1; T2; : : : ; Tm}.
No minimal non-subsequence of L contains ¿n + 3 zeros since every string in L

contains 6n+1 zeros. Clearly, every minimal non-subsequence of L containing n+2
zeros contains no one and therefore has length n+2. Every minimal non-subsequence
S of L has 6n + 3 ones since every string in L has 6n + 2 ones. If S has exactly
n + 3 ones then S =1n+3. It can be shown for k6 n

2 − 3 that there exists a minimal
non-subsequence of L with length ¿2n− k +1¿n+ n

2 + 4¿n+3 if and only if there
exists an independent dominating set of size 6k for G. Further, L has an optimal
solution with length 62n+ 1− opt(G)6(2B+ 3)opt(G) where opt(G) is the size of
the optimal solution for G. Hence we have an L-reduction.

De�nition 18. Fixed Substring Minimal Common Supersequence:
Given: A set L of strings and a string T over an alphabet �.
Question: Does there exist a minimal supersequence of L which contains T as a

substring?
Fixed Substring Maximal Common Non-Supersequence, Fixed Substring Maximal

Common Subsequence, Fixed Substring Minimal Common Non-Subsequence, Fixed
Superstring Minimal Common Supersequence and Fixed Superstring Maximal Com-
mon Subsequence are de6ned analogously.

Clearly, Fixed Superstring Minimal Common Supersequence and Fixed Superstring
Maximal Common Subsequence are polynomial-time solvable. For the other problems,
we need the following theorem shown in [14].

Theorem 19. Given a set L of strings over a binary alphabet and integers k0; k1.
The following problems are NP-complete: Find a string containing exactly k0 zeros
and k1 ones that is a (1) supersequence of L ((k0; k1)-Super), (2) subsequence of L
((k0; k1)-Sub), (3) non-supersequence of L ((k0; k1)-Non-Super), (4) non-subsequence
of L ((k0; k1)-Non-Sub).

The proof of Theorem 19 in [14] shows that the problems remain NP-complete in
the following special cases (that we use in this section): (1) (k0; k1)-Super: each 1-run
of a string in L has length 1, each string in L contains k0 − 1 zeros and ends with a
zero, (2) (k0; k1)-Sub: each 1-run of a string in L has length 1.

Theorem 20. The following problems are NP-complete over an alphabet of size 2
even if the given non-substring T has constant length: (a) Fixed Substring Mini-
mal Common Supersequence, (b) Fixed Substring Maximal Common Subsequence,
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(c) Fixed Substring Maximal Common Non-Supersequence, (d) Fixed Substring Min-
imal Common Non-Subsequence.

Proof. We prove only (a) and (b). Results (c) and (d) can be proved by reduc-
tions from (k0; k1)-Non-Supersequence and (k0; k1)-Non-Subsequence. To prove (a) we
reduce (k0; k1)-Supersequence. Let the set L∗ = {T ∗

l | l∈ [1 :m]} of strings be an in-
stance of (k0; k1)-Super where each 1-run has length 1, each string contains k0 − 1
zeros and ends with a zero. We de6ne a set L of strings over {0; 1} and a string T as
follows. Let T =1100011 and L=L′ ∪{S0; S1} with L′ = {T ∗

l 1101 |Ti ∈L∗}, S0 =
0k0011, S1 = (10)k11000. It is now easy to verify that there exists a supersequence
S∗ for L∗ with k0 zeros and k1 ones i3 there exists a minimal supersequence S of L
with substring T .
In fact, let S be a minimal supersequence of L with substring T . Since S is superse-

quence of L it must be of the form S ′0S ′′, where S ′′ contains the subsequence 1101 and
S ′0 is a supersequence of L∗. Clearly S ′ has at least k0−2 zeros. Since the pre6xes of
the strings in L that might have to be embedded in S ′ (i.e., L∗ ∪Pref k0 (S0)∪Pref 2k1+2
(S1)) have only 1-runs of length 1 and S is minimal, it must be that S ′ has only 1-runs
of length one. Hence, the substring T of S can only be embedded in the suIx S ′′ of
S. Since S0 is the only string that can support a second 1-run of length two in S ′′ there
can be at most k0 − 1 zeros in S ′. Since S1 is the only string that can support a 0-run
of length three in S ′′ there can be at most k1 zeros in S ′. Hence S ′0 is a supersequence
of L∗ with at most k1 ones and at most k0 zeros.
Vice versa, let S∗ be a supersequence of L∗ that contains exactly k0 zeros and k1

ones; we can assume that S∗ has only 1-runs of length 1, since all strings in L∗ have
this property. Then S = S∗1100011 is a minimal supersequence for L with substring T .
Indeed, to embed L′ in S, the 6rst 1-run of length two in the suIx 1100011 of S is
required. To embed S0 in S, the second 1-run of length two in the suIx 1100011 of
S is required. To embed S1 in S, the 0-run of length three in the suIx 1100011 of
S is required. Moreover, to embed S0 and S1 in S every zero and every one in S∗ is
required.
(b) We reduce (k0; k1)-Subsequence. Let strings T ∗

l , l∈ [1 :m] be an instance of
(k0; k1)-Sub where each 1-run has length 1. We de6ne a set L of strings over the
alphabet {0; 1} and a string T as follows. Let T =011011, S0 = (10)k010111011, and
S1 = 0k0 (10k0 )k10110111. For each string T ∗

l , l∈ [1 :m] let Tl=T ∗
l 01110111. Set L=

{S0; S1}∪ {T1; T2; : : : ; Tm}. It is shown in the following that there exists a subsequence
with k0 zeros and k1 ones of {T ∗

l | l∈ [1 :m]} i3 there exists a maximal subsequence
of L that contains the substring T .
Let S be a maximal subsequence of L with substring T . Consider an embedding of

S into L. Due to the maximality of S, for every 1-run of length 2 in T there must be a
string S ′ in L such that both ones of the 1-run are mapped onto a 1-run in S ′ of length
¿2. Otherwise a zero could be inserted between the ones. The maximality implies that
this is possible only when T is a suIx of S, i.e. S is of the form S =T ∗T for some
string T ∗. The rightmost zero of T in S must be mapped onto the rightmost zero of
S0. Otherwise, in each string of L there would be the subsequence 111 to the right of
the zeros onto which the rightmost zero of T in S is mapped. Similarly it follows that,
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both ones of the run 11 of T in S are mapped onto the second (seen from the right)
1-run of S1. Due to the maximality of S it follows that
(∗) the left zero of T in S has to be mapped onto the second (seen from the right)
zero in S0 and onto the second zero in S1.

Therefore T ∗ is a subsequence of the strings T ∗
l , l∈ [1 :m] that contains exactly k0

zeros (this is clear since S0 contains only k0 zeros to the left of the second rightmost
zero and since (∗) would not be satis6ed if T ∗ contains ¡k0 zeros). Moreover,
T ∗ contains exactly k1 ones (this is clear since S1 contains only k1 ones to the left
of the second rightmost zero and since (∗) would not be satis6ed if T ∗ contains ¡k1
ones).
On the other hand assume that there exists a subsequence T ∗ of {T ∗

l | l∈ [1 :m]}
with k0 zeros and k1 ones. Clearly every 1-run of T ∗ has length one. Then T ∗ is a
subsequence of the pre6x (10)k01 of S0 and a subsequence of the pre6x 0k0 (10k0 )k1

of S1. In every embedding of T ∗ into the pre6x (10)k01 of S0 the rightmost character
of T ∗ cannot be embedded to the left of the rightmost 0-run. Similarly, in every
embedding of T ∗ into the pre6x 0k0 (10k0 )k1 of S1 the rightmost character of T ∗ cannot
be embedded to the left of the rightmost 0-run. It is easy to show that S =T ∗T is a
maximal subsequence of L.

Remark. (1) Similar proofs show NP-completeness for the following problems:
(a) Find a minimal supersequence that contains two 1-runs of length 2 and one 0-run

of length 3.
(b) Find a maximal subsequence that contains two 1-runs of length 2.
(c) Find a maximal non-supersequence that contains a 1-run of length 2.
(d) Find a minimal non-subsequence that contains a 1-run of length 3 and a 1-run of

length 5.
(2) Fixed Substring Minimal Common Supersequence, Fixed Substring Maximal

Common Subsequence, Fixed Substring Maximal Common Non-Supersequence, and
Fixed Substring Minimal Common Non-Subsequence are NP-complete for strings over
{0; 1} when one requires additionally that the string T is a suIx (or pre6x) of
constant length of the minimal supersequence (maximal subsequence, maximal non-
supersequence, minimal non-subsequence) S.

De�nition 21. Fixed Non-Substring Minimal Common Supersequence:
Given: A set L of strings and a string T over an alphabet �.
Question: Does there exist a minimal supersequence of L that does not contain T as

a substring?
Fixed Non-Substring Maximal Common Non-Supersequence, Fixed Non-Substring

Maximal Common Subsequence, and Fixed Non-Substring Minimal Common Non-
Subsequence are de6ned analogously.

Theorem 22. The following problems are NP-complete over an alphabet of size 2 even
if the given non-substring T has constant length: (a) Fixed Non-Substring Minimal
Common Supersequence, (b) Fixed Non-Substring Maximal Common Subsequence,
(c) Fixed Non-Substring Maximal Common Non-Supersequence.
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Proof. We prove only (a); (b) and (c) can be proven by reduction from (k0; k1)-
Subsequence. To prove (a) we reduce (k0; k1)-Supersequence. Let the set L∗ = {T ∗

l | l∈
[1 :m]} of strings be an instance of (k0; k1)-Super where each 1-run has length 1.
We de6ne a set L of strings over {0; 1} and a string T as follows. Let T =11 and
L=L′ ∪{S0; S1} with L′ = {T ∗

l 11011}, S0 = 0k00111, S1 = 1k11110, S2 = 0k011011, and
S3 = 1k111011. We show that there exists a supersequence with k0 zeros and k1 ones of
L∗ i3 there exists a minimal supersequence of L that does not contain the substring T .
Let S be a minimal supersequence of L that does not contain substring T . Since

S is a supersequence of L′ ∪ S2; S3 it has a subsequence of the form S ′11011 where
S ′ is a supersequence of L∗ and contains at least k0 zeros and k1 ones. Since S does
not contain T there must be at least two additional zeros between the 1-runs of length
two in S ′11011. Since S3 contains only one zero the other zero must be supported by
S2. But then cannot contain ¿k0 + 1 zeros because otherwise S2 can be embedded
in S ′11011. Similarly, since S2 contains only k0 + 1 zeros and k0 of them can be
embedded into S ′ it follows that one additional zero must be supported by S3. This
not possible when S ′ contains ¿k1 + 1 zeros. Thus, S ′ is a supersequence of L∗ that
contains exactly k0 zeros and k1 ones.
Vice versa, let S∗ be a supersequence of L∗ that contains exactly k0 zeros and

k1 ones. Since every string in L∗ has only 1-runs of length one it can be assumed
that S∗ has this property. The it is easy to verify that S = S∗1010101 is a minimal
supersequence of L that does not contain substring T =11.

Theorem 23. The Fixed Non-Substring Minimal Common Non-Subsequence problem
can be solved in linear time over any alphabet.

Proof. Let a string T and a set L of strings over an alphabet � be an instance
of our problem. Assume |�|¿2 (Otherwise the problem is trivial). There exists
an a∈�, such that T =∈ a∗. Let k be the maximum number of a’s occurring in a
string of L. Then S = ak+1 is a minimal non-subsequence of L that does not contain
the substring T .

De�nition 24. Fixed 2-Non-Substring Minimal Common Non-Subsequence:
Given: A set L of strings and two strings T1 and T2 over an alphabet �.
Question: Does there exist a minimal supersequence of L that does not contain either

of the strings T1 and T2 as a substring?

Theorem 25. The Fixed 2-Non-Substring Minimal Common Non-Subsequence prob-
lem is NP-complete over an alphabet of size 2 even if the given non-substrings have
constant length.

Proof. We reduce the 3-SAT to our problem. Let C= {C1; C2; : : : ; Cm} be a set of
clauses of size three over a set of variables V = {v1; v2; : : : ; vn}. We de6ne a set L
of strings over {0; 1} and strings T1 and T2 as follows: Let T1 = 00000, T2 = 11,
S0 = (17n0)7n−117n. For each variable vi ∈V let Ti=(10)7(i−1)+100(10)7(n−i)+41,
T ′
i =(10)7(i−1)+10(10)30(10)7(n−i)+11, T ′′

i =(10)7(i−1)+20(10)20(10)7(n−i)+11. For each
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Table 3
Complexity of minimal supersequence and maximal subsequence problems: P=polynomial time,
NPc=NP-complete, MAX SNP=MAX SNP-hard, n= total length of strings, �=alphabet

Shortest Longest Fixed Fixed
substring non-substring

Minimal NPc: MAX SNP: NPc: NPc:
supersequence |�|=2 |�|=2 |�|=2 |�|=2

[5] [4] Theorem 20 Theorem 22

Maximal MAX SNP: NPc: NPc: NPc:
subsequence |�|=2 |�|=2 |�|=2 |�|=2

[14] [10] Theorem 20 Theorem 22

Maximal MAX SNP: NPc: NPc: NPc:
non-supersequence |�|=2 |�|=2 |�|=2 |�|=2

[14] [19] Theorem 20 Theorem 22

Minimal NPc: MAX SNP: NPc: O(n), Theorem 23
non-subsequence |�|=2 |�|=2 |�|=2 (NPc: 2 6xed

[13] Theorem 17 Theorem 20 non-substr. Theorem 25)

clause Cl let Tn+l be a string with 7n zeros and 7n− 2 ones. In Tn+l there is a one at
both ends and between each two zeros with the following exceptions (i) not between
the 7(h−1)+1th and 7(h−1)+2th zero, if vh ∈Cl, (ii) not between the 7(h−1)+2th
and 7(h− 1)+ 3th zero, if Pvh ∈Cl. Set L= {S0}∪ {Ti; T ′

i ; T
′′
i | i∈ [1 : n]}∪ {Ti | i∈ [n+

1 : n+m]}. Note that each string in L—with the exception of S0—contains exactly 7n
zeros. Now it can be shown that a C-satisfying truth assignment of V exists when
there exists a minimal non-subsequence of L that contains neither of the strings T1 and
T2 as a substring.

In all the NP-hardness proofs of this section the string T (respectively the strings T1
and T2 in the proof of Theorem 25) is not dependent on the instance of the reduced
problem. E.g. it is an NP-hard problem to decide for a given set of strings if there
exists a minimal supersequence that contains the string 11100011000 as a substring.
An interesting question is for which strings T the corresponding problems are NP-hard
and for which strings the problems become polynomial time solvable. Note, e.g., that
the problem to decide whether for a given set L of strings a minimal supersequence
exists that contains the substring 0 is polynomial time solvable (there exists such a
minimal supersequence i3 there exists a string in L that contains a 0).

Table 3 summarises the complexity results of this section.

6. Open problems

Some remaining open problems are to characterise the complexities of 6nding a
minimal superstring and of 6nding a longest (sub-, char-, e-) minimal superstring,
given a set of strings. Also it is an interesting question whether the four remaining open
problem from the classical minimal=maximal shortest=longest (non)super-=subsequence
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problems are MAX SNP-hard for strings over alphabet of size 2, i.e. 6nding a shortest
supersequence, a longest subsequence, a longest non-supersequence, and a shortest non-
subsequence.
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