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ABSTRACT
Motivation: Genome-wide screens for structured ncRNA genes in
mammals, urochordates, and nematodes have predicted thousands
of putative ncRNA genes and other structured RNA motifs. A pre-
requisite for their functional annotation is to determine the reading
direction with high precision.
Results: While folding energies of an RNA and its reverse comple-
ment are similar, the difference are sufficient at least in conjunction
with substitution patterns to discriminate between structured RNAs
and their complements. We present here a support vector machine
(SVM) that reliably classifies the reading direction of a structured RNA
from a multiple sequence alignment.
Software: RNAstrand is freely available as a stand-alone tool from
http://www.bioinf.uni-leipzig.de/Software and inclu-
ded in the latest release of RNAz, a part of the Vienna RNA

Package, from http://www.bioinf.uni-leipzig.de/RNA.
Contact: kristin@bioinf.uni-leipzig.de

Genome wide computational screens for structured ncRNA genes
in mammals (Washietl et al., 2005b; Pedersen et al., 2006), uro-
chordates (Missal et al., 2005) and nematodes (Missal et al., 2006)
resulted in tens of thousands putative structured ncRNAs. Functio-
nal and structural annotation of these predictions thus becomes a
pressing problem. Evidence for evolutionary conserved RNA struc-
ture alone usually does not distinguish very well between the two
possible reading directions. This information, however, is crucial
already for the most basic annotation information. Direction infor-
mation is needed e.g. to determine whether a conserved RNA motif
is intronic, intergenic, or located within a coding sequence or an
untranslated exon. The RNAstrand tool is designed specifically
to predict the reading direction of a multiple sequence alignment
under the assumption that the alignment contains an evolutionary
conserved RNA secondary structure.

Our task at hand is a conceptually simple two class prediction
problem for which we employ a support vector machine (SVM)
(Cristianini & Shawe-Taylor, 2000). The basic idea is to devise des-
criptors that utilize both the small asymmetry in the energy rules
(Mathews et al., 1999) and the asymmetric effect of GU pairs. Sup-
pose a particular pair of alignment columns exhibits a GC→GU
substitution in one reading direction; this preserves base pairing
and hence is consistent with a conserved structure. The reverse
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complement of the same alignment, however, displays a GC→AC
substitution which is inconsistent with a conserved base pair. The
patterns of structure conservation thus differ between the reading
directions. Note compensatory mutations, such as GC→AU do not
provide strand-specific information.

Thermodynamic stability is conveniently quantified by the mean
of the energy z-scores of the individual sequences contained in the
alignment. We use the same SVM-regression procedure as RNAz
(Washietl et al., 2005a) to estimate the z-scores from the sequence
composition. In contrast, structural conservation is captured by the
energy of the consensus fold computed by RNAalifold (Hofacker
et al., 2002). This program computes the most stable secondary
structures that can be formed simultaneously by a set of aligned
sequences. The RNAz program uses the ratio of these two quantities
as a “structure conservation index” (SCI) to quantify structural con-
servation. The energetic differences between strands are captured by
the differences of z-scores and mean folding energies, while diffe-
rences in structure conservation are described by the differences in
SCI and consensus energies. Since the relevance of the differences
depends also on the sequence similarity of the aligned sequences,
we use the average pairwise sequence identity and the length of the
alignment as additional descriptors.

We use libsvm 2.8 (Chang & Lin, 2001) with RBF kernel,
γ = 2, probability estimates, descriptor vectors scaled linearly to
the interval [−1, +1] before training, and default settings as listed

Table 1. Evaluation of RNAstrand.

c = 0 c = 0.5 c = 0.9

ncRNA type N S RNAz S 1-S-u S u

rRNA 947 0.97 [0.96] 0.95 0.01 0.90 0.08
tRNA 213 0.89 [0.48] 0.75 0.06 0.64 0.33
miRNA 2385 0.99 [0.14] 0.98 0.00 0.93 0.06
snoRNA 1403 0.97 [0.90] 0.95 0.01 0.91 0.08
spliceosomal RNA 2771 0.94 [0.84] 0.90 0.04 0.80 0.18
euk. SRP RNA 2364 0.99 [0.85] 0.99 0.00 0.99 0.00
nucl. RNaseP 141 0.94 [0.90] 0.94 0.05 0.92 0.04

N . . . number of alignments in the test sets, S . . . sensitivity, u . . . fraction of undecided
cases, 1−S−u . . . fraction of misclassified cases. For comparison we give in brackets
the sensitivities of naive strand prediction using the difference of the RNAz ncRNA
classification probabilities for the two reading directions.
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Fig. 1. Distribution of RNAstrand score D for RNAz-positive
alignments and shuffled controls, excluding families with S < 0.1.

in the README file for all other parameters. Alignments for trai-
ning were taken from the same sources as in (Washietl et al., 2005a)
including representatives for rRNAs, spliceosomal RNAs, tRNAs,
miRNAs, small nucleolar RNAs, RNaseP and SRP RNA. Sequence
similarity in this dataset ranges from 47% to 99% mean pairwise
identity in alignments of 40nt to 400nt length and containing 2 up
to 6 sequences. A total of 5906 alignments, approximately equally
representing these ncRNA families, were used after removing 924
alignments that were not recognized as structured RNA by RNAz in
the correct reading direction. Half of this dataset was used as posi-
tive training data, while the reverse complement of the other half
was used as negative training set. The SVM returns an estimated
class probability p which we convert into a score D = 2p − 1,
so that D ≈ +1 means “RNA in reading direction of input ali-
gnment” while D ≈ −1 means “RNA is reverse complement of
input alignment”.

Classification performance is evaluated using 39988 alignments
of 227 of the 503 ncRNA families from RFAM (version 7.0).
The remaining families were excluded because they contained too
few (67), too short (5), too long (4) or only too divergent (200)
sequences. The test data was created in a similar way as in (Washietl
et al., 2005a). For each ncRNA family at most 500 alignments
were randomly constructed each for 2 up to 6 sequences. Identi-
cal alignments, alignments with a pairwise identity less than 60%
and alignments not recognized as RNA in both reading directions
were removed. The alignments from each family were split into two
distinct subsets, one used as positive test cases while the reverse
complement of the other were used as negative test set.

Table 1 lists the classification rates for different threshold values
c, i.e., classifying the RNA as “plus strand” for D > c and as
“minus strand” for D < −c, while −c ≤ D ≤ c is interpreted as
“undecided”. The results highlight that our classification task has an
intrinsic symmetry: sensitivity and specificity in fact coincide for an
unbiased sample since the fraction S of correct classifications must
be the same in both reading directions. We observe only a negligible
loss of sensitivity when c is increased from 0 to 0.9. The distribu-
tion of D (Fig. 1) demonstrates that the majority of alignments are
classified correctly with high probability.

A naive way to determine the likely reading direction is to score
an alignment and its reverse complement using RNAz, evofold,
or another tool for recognizing structured RNAs. This approach was
taken e.g. in (Missal et al., 2005, 2006; Washietl et al., 2005b). A
manual inspection of the data, however, showed that this approach is

Table 2. Comparison of classification accuracies.

Naive RNAz-based classification
RNAstrand correct incorrect
correct 24510 9122
incorrect 1127 1538

problematic in particular in those cases where RNAz scores are simi-
lar. Table 2 shows that the reading direction is classified correctly in
the majority of the test alignments by both approaches. However,
the misclassification rate of the naive approach is almost eight times
higher than that of RNAstrand.

The distribution of RNAstrand scores D depends on whether
the alignment is classified as structured RNA or not, Fig. 1. If so,
RNAstrand predicts predominately the correct reading direction.
The RNAz-negative set was constructed using the shuffling proce-
dure described in (Washietl et al., 2005a), which is designed to
destroy the secondary structure signal but at the same time retain
as much of the alignment structure as possible. The distribution of
RNAstrand scores is non-random, frequently retaining the clas-
sification of the original alignments. This indicates that the the
shuffling procedure preserves a “shadow” of the structural informa-
tion, which in turn implies that the false discovery rates of RNAz
screens are likely to be over-estimated since the shuffled controls
still contain some structural information.

In summary, RNAstrand provides a significant improvement in
determining the probably reading direction of a predicted structured
RNA motif by reducing the misclassification rate almost eight-fold
compared to more naive approaches. This in particular increases the
confidence with which we can discriminate predicted RNA motifs
located in introns or non-coding UTRs from putative anti-sense
RNAs.
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