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Abstract. We present an extension of the standard partition function approach to
RNA secondary structures that computes the probabilities Pu[i, j] that a sequence
interval [i, j] is unpaired. Comparison with experimental data shows that Pu[i, j]
can be applied as a significant determinant of local target site accessibility for RNA
interference (RNAi). Furthermore these quantities can be used to rigorously deter-
mine binding free energies of short oligomers to large mRNA targets. The resource
consumption is comparable to a single partition function computation for the large
target molecule. We can show that RNAi efficiency correlates well with the binding
probabilities of the siRNAs to their respective mRNA target.
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1. Introduction

Secondary structure prediction for a single RNA molecule is a classical problem of compu-
tational biology, which has received increasing attention in recent years due to mounting evi-
dence emphasizing the importance of RNA structure in a wide variety of biological processes
[19, 27, 31, 28]. Despite its limitations, free energy minimization [34, 42, 40] is at present the
most accurate and most generally applicable approach of RNA structure prediction, at least in the
absence of a large set of homologous sequences. It is based upon a large number of measurements
performed on small RNAs and the assumption that stacking base pairs and loop entropies con-
tribute additively to the free energy of an RNA secondary structure [21, 20]. In this framework,
a secondary structure is interpreted as the collection of all the three-dimensional structures that
share a common pattern of base pairs, hence we speak of a free energy of an individual secondary
structure.

Under the assumption that RNA secondary structure are pseudo-knot free, i.e., that base pairs
do not cross1, there are efficient exact dynamic programming algorithms that solve not only the
folding problem [39] but also provide access to the full thermodynamics of the model via its
partition function [22]. Two widely used software packages implementing these algorithms are
available, mfold [40, 42] and the Vienna RNA Package [17, 16].

More recently, the secondary structure approach has been applied to the problem of interacting
RNA molecules. Algorithmically, the “co-folding” of two RNAs can be dealt with in the same
way as folding a single molecules by concatenating the two sequences and using different energy
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1Two base pairs (i, j) and (k, l) are crossing if i < k < j < l.
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parameters for the loop that contains the cut-point between the two sequences. A corresponding
RNAcofold program is described in [17], the pairfold program [1] also computes suboptimal
structures in spirit of RNAsubopt [36]. A restricted variant of this approach is implemented in the
program RNAhybrid [29], see also [41, 4]: here secondary structures within both monomers are
neglected so that only intermolecular base pairs are taken into account. The program bindigo

uses a variation of the Smith-Waterman sequence alignment algorithm for the same purpose [15].
The restriction of the folding algorithm to pseudo-knot-free structures, however, excludes a

large set of structures that should not be excluded when studying the hybridization of a short
oligonucleotide to a large mRNA. In particular, there is no biophysically plausible reason to
exclude elaborate secondary structures in the target molecule (as in the case of RNAhybrid). On
the other hand, binding of the oligo is in practice not restricted to the exterior loop of the target
RNA, as is implicitly assumed in the RNAcofold approach.

Here we extend previous RNA/RNA cofold algorithms by taking into account that the oligo
can bind also to unpaired sequences in hairpin, interior, or multi-branch loops. These cases could
in principle be handled using a generic approach to pseudo-knotted RNA structures [7, 8] at
the expense of much more costly computations. Instead we conceptually decompose RNA/RNA
binding into two stages: (1) we calculate the partition function for secondary structures of the
target RNAs subject to the constraint that a certain sequence interval (the binding site) remains
unpaired. (2) We then compute the interaction energies given that the binding site is unpaired in
the target. The total interaction probability is than obtained as the sum over all possible binding
sites. The advantage is that the memory and CPU requirements are drastically reduced: For a
target RNA of length n and an oligo of length w < n we need only only O(n2) memory and
O(n3w) time (compared to O(n2) memory and O(n3) time for folding the target alone).

We apply this approach to published data from RNAi experiments [31]: we demonstrate that
siRNA/mRNA binding can be quantitatively predicted our procedure. The predicted binding
energies correlate well with expression data, showing that the RNAi effect depends quantitatively
on siRNA/mRNA binding. In addition to assessing the interactions at known binding sites,
our approach also provides an effective way of identifying alternative binding sites, since the
computational effort for scanning target mRNA is small compared to the initial partition function
calculation.

2. Energy-Directed RNA Folding

All dynamic programming algorithms for RNA folding can be viewed as more sophisticated
variants of the maximum circular matching problem [26]. The basic idea is that each base pairs in
a secondary structure divides the structure an in interior and an exterior part that can be treated
separately as a consequence of the additivity of the energy model. The problem of finding, say,
the optimal structure of a subsequence [i, j] can thus decomposed into the subproblems on the
subsequence [i + 1, j] (provided i remains unpaired) and on pairs of intervals [i + 1, k − 1] and
[k + 1, j] (provided i forms a base pairs with some position k ∈ [i, j]). In the case of the more
realistic “loop-based” energy models the approach is the same. In addition, however, one now
has to distinguish between the possible types of loops that are enclosed by the pair (i, k) because
hairpin loops, interior loops, and multiloops all come with different energetic contributions.

Algorithms that are designed to enumerate all structure (with a below-threshold energy) [36],
that compute averages over all structures [22], or that sample from a (weighted [6] or unweighted
[33]) ensemble of secondary structures, need to make sure that the decomposition of the structures
into substructures in unique, so that each secondary is counted once and only once in the dynamics
programming algorithm.

The basis of our algorithm is a modified version of the recursions for the equilibrium partition
function introduced by McCaskill [22] as implemented in the Vienna RNA package [17].
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3. Probability of an Unpaired Region

In the following let F (S) denote the free energy of a secondary structure S, and write β for
the inverse of the temperature times Boltzmann’s constant. The equilibrium partition function is
defined as Z =

∑

S exp(−βF (S)). The partition function is the gateway to the thermodynamics
of RNA folding. Quantities such as ensemble free energy, specific heat, and melting temperature
can be readily computed from Z and its temperature dependence.

Since the frequency of particular structure S in equilibrium is given by P (S) = exp(−βF (S))/Z,
partition functions also provide the starting point for computing the frequency of a given structural
motif. In particular we are interested in the probability Pu[i, j] that the sequence sequence interval
[i, j] is unpaired. Denoting the set of secondary structures in in which [i, j] remains unpaired by
Su

[i,j] we have

Pu[i, j] =
1

Z

∑

S∈Su
[i,j]

e−βF (S) (1)

Clearly, the set Su
[i,j] will be exponentially large in general. The program Sfold [6, 5] adds a

stochastic backtracking procedure to McCaskill’s partition function calculation [22] to generate a
properly weighted sample of structures. One then simply counts the fraction of structures with
the desired structural feature. This approach becomes infeasible, however, when Pu[i, j] becomes
smaller than the inverse of the sample size. Nevertheless, even very small probabilities Pu[i, j]
can be of importance in the context of interacting RNAs, as we shall see below.

We therefore present here an exact algorithm. In the special case of an interval of length 1,
i.e., a single unpaired base, however, Pu[i, i] can be computed by dynamics programming. Indeed,
Pu[i, i] = 1 −

∑

j Pij , where Pij is the base pairing probability of pair (i, j), which is obtained

directly from McCaskill’s partition function algorithm [22]. It is natural, therefore, to look for a
generalization of the dynamic programming approach to longer unpaired stretches2.

We first observe that the unpaired interval [i, j] is either part of the “exterior loop”, (i.e., it is
not enclosed by a basepair), or it is enclosed by a base pair (p, q) such that (p, q) is the closing pair
of the loop that contains the unpaired interval [i, j]. We can therefore express Pu[i, j] in terms of
restricted partition functions for these two cases:

Pu[i, j] =
Z[1, i − 1] × 1 × Z[j + 1, N ]

Z
︸ ︷︷ ︸

exterior

+
∑

p,q

p<i<j<q

Ppq ×
Zpq[i, j]

Zb[p, q]
︸ ︷︷ ︸

enclosed

(2)

The first term is the ratio of the partition function of all structure in which [i, j] separates arbitrary
5’ from arbitrary 3’ structures. In the second term, Zpq[i, j] is the partition function over all
structures on the subsequence [p, q] subject to the restriction that [i, j] is unpaired and (p, q)
forms base pair, while Zb[p, q] counts all structures on [p, q] that form the pair (p, q). Multiplying
the ratio of these two partition functions by the probability Ppq that (p, q) is indeed paired yields
the desired fraction of structure in which [i, j] is left unpaired.

The tricky part of the algorithm is the computation of the restricted partition functions Zpq[i, j].
The recursion is built upon enumerating the possible types of loops that have (p, q) as their closing

2Note that we cannot simply use
Qj

k=i
Pu[k, k] since these probabilities are not even approximately independent.
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Figure 1. A base pair p, q can close various loop types. According to the loop type
different contributions have to be considered. a) A hairpin loop is depicted in blue.
b) In case of an interior loop, which is shown in red, two indepent contributions
to Qpq[i, j] are possible: The unstructured region [i, j] can be located on either
side of the stacked pairs (p, q) and (k, l). c) If region [i, j] is contained with in
multiloop we have to account for three different conformations, indicated in the
green structures, a more detailed description is given in the text.

pair and contain [i, j], see Fig. 1. From this decomposition one derives:

Zpq[i, j] = exp(−βH(p, q))
︸ ︷︷ ︸

(a)

+
∑

p < i ≤ j < k or
l < i ≤ j < q

Zb[k, l] exp(−βI(p, q, k, l))
︸ ︷︷ ︸

(b)

+
∑

p<i≤j<q

Zm2[p + 1, i − 1] exp(−βu(q − i))
︸ ︷︷ ︸

(c)

+
∑

p<i≤j<q

Zm[p + 1, i − 1]Zm[j + 1, q − 1] exp(−βu(j − i + 1))
︸ ︷︷ ︸

(d)

+
∑

p<i≤j<q

Zm2[j + 1, q − 1] exp(−βu(j − p))
︸ ︷︷ ︸

(e)

(3)

The computation of the multiloop contributions (c-e) requires two additional types of restricted
partitions functions: Zm[p, q] is the partition function of all conformation on the interval [p, q]
that are part of a multiloop and contain at least one component, i.e., at least one substructure
that is enclosed by a base pair within [p, q]. These quantities are computed and tabulated already
in the course of McCaskill’s algorithm. There, the computation of Zm requires an auxiliary array
Zm1 which counts structures in multiloops that have exactly one component, the closing pair of
which starts at the first position of the interval. For the one-sided multiloop cases (c) and (e)
above we need in addition the partition functions of multiloop configurations that have at least

two components. These are readily obtained using

Zm2[p, q] =
∑

p<u<q

Zm[p, u]Zm1[u + 1, q] . (4)

It is not hard to verify that this recursion corresponds to a unique decomposition of the “M2”
configurations into a 3’ part that contains exactly one component and a 5’ part with at least one
component.

It is clear from the above recursions that, in comparison to McCaskill’s partition function
algorithm, we need to store only one additional matrix, Zm2. The CPU requirements, however,
increases to O(n4) (assuming the usual restriction of the length of interior loops). In practice,
however, the probabilities for very long unpaired intervals are negligible, so that Pu[i, j] is of
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Figure 2. Calculation of the probability of an interaction between a short RNA
and its target

interest only for limited interval length |j − i +1| ≤ w. Taking this constraint into account shows
that the CPU requirements are actually only O(n2 · w).

4. Interaction Probabilities

The values of Pu[i, j] can be of interest in their own right: Hackermüller, Meisner, and col-
laborators [?, 23] showed that the binding of the HuR protein to its mRNA target depends
quantitatively on the probability that the HuR binding site has an unpaired conformation. The
values of Pu[i, j] also play a crucial role in modeling RNA-RNA interactions: The energetics of
RNA-RNA interactions can be viewed as a step-wise process, ∆G = ∆Gu + ∆Gh, in which the
free energy of binding consists of the contribution ∆Gu that is necessary to expose the binding
site in the appropriate conformation, and contribution ∆Gh that describes the energy gain due
to hybridization at the binding site. For an unpaired binding motif in the interval [i, j], we have
of course ∆Gu = (−1/β)(ln Pu[i, j] − lnZ). Since the energy gain from the hybridization can be
substantial, it becomes necessary to deal also with very small values of Pu[i, j]. The sampling
approach thus becomes infeasible.

The computation of the hybridization part is performed using algorithms similar to RNAcofold

or RNAhybrid. In this contribution we are mostly interested in the binding of miRNAs and siRNAs
to a target mRNA, so that complex internal structures in the short RNA can be neglected.

Thus we assume that the oligo binds, possibly with mismatches, to an unpaired stretch of the
target molecule. The partition function over all interior loops between a region [i∗, j∗] in the small
RNA and a segment [i, j] in the target RNA is obtained recursively by summing up all possible
interior interactions in region [i, k; i∗, k∗] for each interior loop closed by base pairs (k, k∗) and
(j, j∗) times the Boltzmann weight corresponding to the energy contribution of this interior loop
exp(−βI(k, k∗; j, j∗)), see Figure 2.

Z∗[i, j, i∗, j∗] = Pu[i, j]
∑

i<k<j

i∗>k∗>j∗

Z∗[i, k, i∗, k∗]e−βI(k,k∗;j,j∗). (5)

The memory requirement for this step is O(n · w3), the required CPU time scales as O(n · w5),
which at least for long target RNAs is dominated by the first step, i.e., the computation of the
Pu[i, j].

5. Results

In order to demonstrate that our algorithm produces biologically reasonable results, we com-
pared predicted binding probabilities with data from RNA interference experiments. Small inter-
fering RNAs (siRNAs) are short (21-23nt) RNA duplices with symmetric 2-3 nt overhangs [10, 24,
25]. They are used to silence gene expression in a sequence-specific manner in a process known as
RNA interference (RNAi). Recently, there has been mounting evidence that the biological activ-
ity of siRNAs is influenced by local structural characteristics of the target mRNA [25, 19, 2, 37]:
a target sequence must be available for hybridization in order to achieve efficient translational
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Figure 3. Predicted fraction of unpaired structure (dashed line) and fraction of
bound siRNA (thick line) near the known binding site of RsiRNA1. Below the
protein expression levels in experimental data [31] are indicated. The isolated
21mer target sequence, that has the same activity as the wild type mRNA, and
3 mutants are shown. In the case of the HP5 6 mutant the primary binding site
is inaccessible. About 1kb downstream, however, there is an alternative binding
position that is partially accessible in this sequence and could be responsible for
the observed silencing effect.

repression, hence single stranded regions in RNA secondary structures are important. Conversely,
nucleotides sequestered in a stable secondary structure can be inaccessible, resulting in decreased
repression of mRNA translation [27, 31].

An obstacle for effective application of siRNAs is the fact that the extent of gene inactivation
by different siRNAs varies considerably. Several groups have proposed basically empirical rules for
designing functional siRNAs, see e.g. [11, 30], but the efficiency of siRNAs generated using these
rules is highly variable. Recent contributions [14, 28] suggest that two of the many parameters
studied so far are highly significant: The difference in the thermodynamic stability of the ends of
siRNAs, which influences the choice of the strand included into RISC, the protein-siRNA complex
that mediates target RNA cleavage [18, 32] and the local secondary structure of the siRNA target
site, which determines the accessibility for an interaction between siRNA and mRNA target
[14, 31, 27, 25, 19, 2, 37].

Schubert et al. [31] systematically analyzed the contributions of these parameters to siRNA
activity. They designed a serie of constructs, which all contained the same target site for the
same siRNA. However this binding site was sequestered in local secondary structure elements of
different stability and extension. This experimental set up allowed a sound analysis of secondary
structure effects by minimizing influences of other possible parameters for RNAi efficiency. Schu-
bert et al. [31] observed a significant obstruction of gene silencing for the same siRNA caused by
structural features of the substrate RNA. A clear correlation was found between the number of
exposed nucleotides and the efficiency of gene silencing: When all nucleotides were incorporated
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in a stable hairpin, silencing was reduced drastically, while exposure of 16 nucleotides resulted in
efficient inhibition of expression virtually indistinguishable from the wild type.

We applied our methods to study the target sites provided by Schubert et al. [31]. Our re-
sults are in perfect agreement with the Schubert’s results. Figure 3, which was calculated using
our method, clearly demonstrated the correlation between target site accessibility and siRNA effi-
ciency. The target site of the VR1 straight construct has a high probability of being unstructured,
which means it is highly accessible. Accessibilty increases from the 5’ to the 3’ end of the target
site, as proposed by Schubert, reaching a probability of being unstructured by more than 0.9 in
the 3’ region of the target site. The stepwise reduction of the target accessibilty is clearly visible
using our programm. In case of construct VR HP5 6 no interaction at the proposed target site is
possible any more. We can also offer an explanation for the still quite high efficiency of transla-
tional repression by this construct: Although the siRNA cannot bind to the proposed target site,
an interaction is possible at an alternative binding site at position 1066 to 1078. Since siRNAs
can also function as miRNAs [9, 38], the siRNA might act in a miRNA like fashion binding to this
alternative target site. The incomplete complementarity of the siRNA to the alternative target
site should be no obstacle to functionality, since it was shown that miRNA target site can be active
even if the length of a continuous helix at the target site is as short as 4 - 5 basepairs [3].Using
our new accessibility prediction tool we are not only able to predict potential binding site but we
might be able to explain differences in si/miRNA efficiency caused by secondary structure effects.
We are positive that our method can be useful for further elucidation of the mechanism of RNAi.

6. Concluding Remarks

We have demonstrated here that variants of McCaskill’s partition function algorithm can be
implemented efficiently to compute the probability that a given sequence interval [i, j] is unpaired.
Since the computation is rigorous it can also be used for small probabilities, i.e., in cases where
large free energy changes are necessary to expose a binding site. Since these free energy changes
are compensated by sometimes substantial hybridization energies, as in the case siRNA/mRNA
binding, even very small probabilities have to be included. The approach presented here therefore
overcomes inherent limitations in sampling approaches such as Sfold [6, 5].

Conceptually, it is not hard to extend this approach to other structural features, see also
[12]. In practice, however, general purpose implementations are least tedious. Such practical
limitations can be circumvented, however, in the framework of Algebraic Dynamic Programming,
as exemplified in RNAshapes [13], which allows computations with RNA structures subject to
constraints on a coarse grained level.

The accuracy of the predictions obtained from our approach are limited by two factors: (1) All
probabilities above are conditional probabilities given that the molecules interact at all. Compar-
ison with the partition function of the isolated systems and standard statistical thermodynamics,
however, could be used to explicitly compute the concentration dependence of RNA-RNA binding,
see e.g. [4]. (2) A more general problem is the energetics of RNA-RNA interactions in loops: the
binding of the oligo to a loop will of course alter the energy contribution of the loop itself. In the
model above we have implicitly assumed that this energy change is a constant. Additional mea-
surement along the lines of the investigation of kissing-interactions [35] are required to improve
the energy parameters for interacting RNAs.
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