
ly true
d pro-
ctions.

ng on
, hard-

cement
o our
re ac-
ve not
effec-
ults).

ly uti-

clas-
ercial

ility
index-
ation
ation
ins, we
. The
ically
high

ent of
of de-
s. The
ribution

ioning
tion
rt on a
uery
For
com-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig
On Flexible Allocation of Index and Temporary Data in
Parallel Database Systems

Erhard Rahm
Holger Märtens, Thomas Stöhr

University of Leipzig, Germany

1 Introduction

Data placement is a key factor for high performance database systems. This is particular
for parallel database systems where data allocation must support both I/O parallelism an
cessing parallelism within complex queries and between independent queries and transa
Determining an effective data placement is a complex administration problem dependi
many parameters including system architecture, database and workload characteristics
ware configuration, etc. Research and tool support has so far concentrated on data pla
for base tables, especially for Shared Nothing (SN), e.g. [MD97]. On the other hand, t
knowledge, data placement issues for architectures where multiple DBMS instances sha
cess to the same disks (Shared Disk, Shared Everything, specific hybrid architectures) ha
yet been investigated in a systematic way. Furthermore, little work has been published on
tive disk allocation of index structures and temporary data (e.g., intermediate query res
However, these allocation problems gain increasing importance, e.g. in order to effective
lize parallel database systems for decision support / data warehousing environments.

In the next section we discuss the index allocation problem in more detail and introduce a
sification of various approaches that are already supported to some degree in comm
DBMS. While SN offers only few options, the other architectures provide a higher flexib
because index allocation can be independent from the base table allocation. For certain
supported queries, this can allow for order-of-magnitude savings in I/O and communic
cost. We then turn to the disk allocation of intermediate query results for which the alloc
parameters can be chosen dynamically at query run time. For the case of parallel hash jo
outline how to determine an optimal approach supporting a high degree of parallelism
work discussed is performed within a project aiming at developing strategies to automat
determine optimal data allocation strategies in order to simplify system administration in
performance environments.

2 Index Allocation

Determining an index allocation comprises tasks similar to determining the data placem
tables, namely specifying the distribution granules (fragments), calculating the degree
clustering, and allocating the fragments to disks or (in SN systems) to processing node
latter subproblem can be solved by standard techniques, e.g. to achieve a balanced dist
of access frequencies.

SN systems typically use a horizontal partitioning of tables based on a hash or range partit
on an attribute TPA (table partitioning attribute). Index allocation follows the table alloca
in order to allow each processing node to locally access its data. As a result, index suppo
particular attribute IA results in a local subindex per node on attribute IA. For an index q
on IA (different from TPA), each node would perform a local index scan on its subindex.
selective queries this is clearly much more efficient than a complete table scan. Still, the
munication overhead to start and terminatep subqueries and the I/O cost ofp local index scans
1

https://core.ac.uk/display/226135321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

s can
e there
rtition-

assi-

o, we

index
le disk
ysis-

stering
multi-
least
ue-

t of the
-
que-
by a

query
other

of-
arger
i-
can be substantial, e.g. for exact match queries on the primary key (example:accounttable with
branchID as TPA andacctNo as IA).

For Shared Disk (SD) - as well as in other architectures where multiple DBMS instance
directly access the same data - there are more options for index allocation. This is becaus
is no need to partition an index structure among processing nodes and because index pa
ing may be different from table partitioning. The main index allocation alternatives are cl
fied along two dimensions in Fig. 1. At the first level, we considerlogical index partitioning
affecting processing (query) parallelism and the size of the index search space. At level tw
considerphysical aspects such as the degree of declustering affecting I/O parallelism.

Approach 1 is to have no logical index partitioning but to simply use a single index tree1 (1 root)
as in centralized DBMS. Such an approach is also referred to as aglobal index. Global indices
allow minimal storage and access cost because there is only 1 index tree. Depending on
size and access frequency, a global index may be completely stored (clustered) on a sing
or to the minimal number of disks if the index size exceeds the disk capacity, or it may ph
cally be declustered across multiple disks, e.g., at the page level.Physical clusteringis the sim-
plest approach that avoids the need to specify a degree of declustering, size of the declu
granules etc. Furthermore, an index access is confined to a single disk so that occupying
ple disk arms is avoided which may restrict I/O rates. On the other hand, it supports the
degree of parallelism so that it is primarily of interest for small indices or highly selective q
ries. Even in these cases, mutli-user operation may lead to disk bottlenecks unless mos
index data can be cached in main memory.Physical declusteringcan overcome these restric
tions by supporting improved I/O parallelism and load balancing in multi-user mode (inter-
ry parallelism) [RS95, SWZ98]. It may be transparent to the DBMS, e.g., when supported
disk array controller.

Global indices allow optimal processing of selective queries. For instance, an exact match
on a primary index can be processed with a single index traversal. SN systems, on the
hand, may requirep subqueries andp local index traversals for such queries causing order-
magnitude higher processing overhead (communication, I/O). Intra-query parallelism for l
index queries is more difficult to achieve2 and one of the reasons for logically partitioned ind
ces.

1. Due to space restrictions we concentrate on B*-tree index structures.
2. One possibility is to logically partition only the leaf level of a global index, similar to [KFK96].

Fig. 1. Classification of index partitioning strategies

lo
gi

ca
l

p
h

ys
ic

a
l

Logically central-
ized (global) in-
dex (1 root)

Index logically partitioned (p roots) on

table partition-
ing attribute TPA
(2a)

index attribute
IA (2b)

Index partitioning for Parallel DBS

physically
clustered
index

physically
declustered
index

 a
sp

e
ct

s
as

pe
ct

s

(2)(1)

other attribute
(2c)
2

(p
t the
f sub-
g intra-
par-

tion

d to
d to
ree of
encies.
rhead

bute,
strict-
e per-
essed
index
e as-
m can
over-
current

x at-
his
port

par-
fs, we
uding
men-
ever

orary
ged be-
ory ca-
disk.

paral-

irectly
verhead

s and
luster-
ow to
Logical index partitioning(approach 2) divides an index structure into multiple subindices
roots) with respect to an attribute IPA (index partitioning attribute). This approach can limi
search space for index queries referring to the IPA by only processing the relevant set o
indices. Furthermore, all selected subindices can be processed in parallel thus supportin
query parallelism without introducing (disk) contention between subqueries. Logical index
titioning can be combined with physical partitioning by declustering a single logical parti
across multiple disks to improve I/O parallelism.

The IPA may be different from the index attribute IA. In particular, the IPA may correspon
the TPA which is typically the case for SN. That is SN index allocation is usually restricte
case 2a with the additional limitation that the fragmentation and processor allocation (deg
declustering) coincides for tables and indices irrespective of index size and access frequ
As already pointed out, this often leads to a maximal processing parallelism and high ove
which is particularly harmful for smaller index queries.

SD-like architectures may also use a logical index partitioning on the table partitioning attri
if the table is logically partitioned. In this case, table and index scans on the TPA can be re
ed to a subset of the table data / subindices in order to reduce the amount of work to b
formed. Furthermore, range queries on the TPA covering multiple partitions can be proc
in parallel without disk contention between subqueries. In contrast to SN, the number of
partitions can be different from the number of table partitions and the index data may b
signed to different disks than the tables. Furthermore, the degree of intra-query parallelis
be chosen smaller than the number of relevant subindices (to limit the communication
head) and can be determined at query run time (e.g., depending on the query size and the
load situation).

Moreover, in SD-like architectures logical index partitioning may be based on the inde
tribute IA itself (case 2b) or other attributes than TPA or IA or attribute combinations (2c). T
again allows us to limit the index work to the really relevant subindices as well as to sup
intra-query parallelism.

All in all, we have a large spectrum of possible index allocation schemes with both logical
titioning and physical declustering possibilities. To better understand the various trade-of
plan a comprehensive performance study for various workloads and configurations, incl
data warehousing scenarios with parallel star joins in multi-user mode. Current SD imple
tations like Oracle Parallel Server [Or97] already support logically partitioned indices, how
without giving sufficient help on how to use them optimally3.

3 Disk Allocation of Temporary Data

One important aspect in a self-tuning PDBS is the efficient storage and retrieval of temp
data, such as large intermediate query results. Frequently, such temporary data is exchan
tween operators running on different processing nodes. When its size exceeds the mem
pacity of the participating nodes, the temporary data or parts of it must be stored on
Declustering the temporary data across multiple disks is required in order to support I/O
lelism [Wu95]. This type of data allocation can be determined at query run time.

In SD-like architectures, intermediate results can be written out by the sender nodes and d
read in by the receivers. Such a disk-based data transfer is convenient and reduces the o

3. In [Or97, Or99] it is just remarked that an index should be partitioned by TPA for decision support querie
by index attribute for OLTP queries, respectively. It remains unclear how to determine the degree of dec
ing for tables and indices, where to allocate index partitions, how to incorporate physical declustering, h
deal with mixed workloads, etc.
3

n op-
high
ents

with

me

Buck-
an
then

e de-
en-

tly ac-

n be
ch col-
des

stering,
ween

oces-
sm.
of communication between processing nodes that can be substantial for SN4. But with each re-
ceiver getting multiple fragments from every sender - as in many join, sort, and aggregatio
erations - a smart disk allocation is required to limit disk contention while supporting a
degree of I/O parallelism. For the latter we propose to even decluster individual fragm
across multiple disks.

We illustrate our approach [Mä99] for parallel hash join processing in a SD environment
n scan nodes andm join nodes (Fig. 2). The scan output is written tod disks where should be
selected such that the disks can write as fast as then scan nodes produce their data. We assu
the join nodes to perform local hash joins and thus we partition the join input intob buckets. A
given bucket contains input from all scan nodes but is processed by exactly one join node.
et partitioning, especially selection ofb, is performed so that the hash table of any bucket c
be kept entirely in the main memory currently available on the join nodes. A major aspect
becomes how to perform the disk allocation of buckets, in particular how to determine th
gree of declusteringv per bucket, in order to support I/O parallelism and to control disk cont
tion.

With these parameters, it can be shown that the minimal number of processors concurren
cessing a disk is achieved by a matrix-like arrangement of thed disks into columns and
rows as illustrated in Fig. 2. If buckets are allocated to each row, each bucket ca
declustered across the disks of that row. Now, scan nodes can be assigned to ea
umn and write their output to the bucket partitions stored there. Similarly, join no
can then read and process the buckets in a row, each reading in parallel from disks.

Based on this general allocation scheme, we must now select the degree of bucket declu
, in such a way as to minimize the overall disk access times. This involves a trade-off bet

parallel I/O and disk contention as can be seen from the following cases:

4. Smaller intermediate results not requiring overflow I/O should always be transferred directly by inter-pr
sor communication. This is much faster than a disk-based data transfer and supports pipeline paralleli

d

v d v⁄
b v d⁄⋅

v n v⁄
m v d⁄⋅

v

scan nodes

join nodes

buckets

bucket partitions

disks

Fig. 2. Example of the processing model and the allocation scheme. Eighty buckets
(not all shown) are processed using six scan nodes and four join nodes (n=6, m=4,
b=80). The buckets are declustered across twelve disks with a degree of three (d=12,
v=3). To minimize access conflicts, each disk is used by just two scan nodes and one
join node.

σ σ σ σ σ σ

v

4

ch
e is a
sulting

high
h join

ports
th of

loped
t that
ptimal
n this

ore,
s, non-

mpor-
se sys-
dex
igh

allo-
or de-

i-

ys-

a-

,

se

ent
• A straight-forward approach is to distribute the buckets across alld disks, but to keep indi-
vidual buckets on a single device (v = 1). However, this limits read parallelism because ea
join node has to sequentially access each bucket from a single disk. In addition, ther
high degree of write contention because each scan node contributes to each bucket re
in concurrent access of each disk by any of then scan nodes.

• v = d results in a maximal declustering of any bucket across all disks. This supports a
degree of I/O parallelism but suffers from serious read contention. This is because eac
node has to access all disks for each bucket.

• An intermediate case with good read performance is obtained for . This sup
read parallelism without any read contention while at the same time the full bandwid
all disks is used for join processing.

In order to quantify the performance of the various allocation alternatives, we have deve
a detailed analytical model for the disk access times as a function of [Mä99]. It turned ou
in most practical cases, the setting of is the best approach because it provides o
read performance with acceptable write performance. The example in Fig. 2 is based o
case.

Currently, we are in the process of validating our analytical model by simulation. Furtherm
we are adapting the allocation approach to other types of operations, such as merge join
equi joins, sorting, and various types of aggregation.

4 Conclusions

Effective data allocation for index and temporary data in parallel database systems is an i
tant area that has not yet sufficiently been investigated in the research community. To ea
tem administration, commercial DBMS have to provide sophisticated tool support for in
allocation. This is particularly the case for SD-like architectures in order to exploit their h
optimization potential as illustrated by our classification scheme. In addition, flexible data
cation for large intermediate results is to be supported at query run time. Our approach f
clustering temporary data may be a good starting point for this.

References

KFK96 Koudas, N., Faloutsos, C., Kamel, I.:Declustering Spatial Databases on a Mult
Computer Architecture. Proc. EDBT96, LNCS 1057, 592-614, 1996

MD97 Mehta, M.; DeWitt, D.:Data Placement in Shared Nothing Parallel Database S
tems. VLDB Journal 6 (1), 1997

Mä99 Märtens, H.:On Disk Allocation of Intermediate Query Results in Parallel Dat
base Systems. Proc. Europar99 Conf., LNCS, Springer 1999

Or97 Taking Advantage of Partitioning in Oracle8.Oracle Technical White Paper
www.oracle.com, 1997

Or99 Miscellaneous Oracle8 server manuals.
www.irm.vt.edu/oracle_803_docs (June 25, 1999)

RS95 Rahm, E., Stöhr, T.:Analysis of Parallel Scan Processing in Shared Disk Databa
Systems. Proc. Europar95, LNCS 966, 485-500, 1995

SWZ98 Scheuermann, P., Weikum, G., Zabback, P.:Data Partitioning and Load Balancing
in Parallel Disk Systems. VLDB Journal 7(1), 48-66, 1998

Wu95 Wu, K. et al.:A Performance Study of Workfile Disk Management for Concurr
Mergesorts in a Multiprocessor Database Systems. Proc. VLDB95 conf., 1995

v d m⁄=

d

v
v d m⁄=
5

	On Flexible Allocation of Index and Temporary Data in Parallel Database Systems
	1 Introduction
	2 Index Allocation
	Fig. 1. Classification of index partitioning strategies

	3 Disk Allocation of Temporary Data
	Fig. 2. Example of the processing model and the allocation scheme. Eighty buckets (not all shown)...

	4 Conclusions
	References

