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ABSTRACT
Visualizing flow structures according to the users’ inter-
ests provides insight to scientists and engineers. In previ-
ous work, a flow structure based on streamline predicates,
that examine, whether a streamline has a given property,
was defined. Evaluating all streamlines results in charac-
teristic sets grouping all streamlines with similar behavior
with respect to a given predicate. Since there are infinitely
many streamlines, the algorithm chooses a finite subset for
the computation of an approximated discrete version of the
characteristic sets. However, even the construction of char-
acteristic sets based on a finite set of streamlines tends to be
computationally expensive. Based on a thorough analysis
of all processing steps, we present and compare different
acceleration approaches. The techniques are based on sim-
plifications that result in characteristic set boundaries devi-
ating from the correct but computational expensive bound-
aries. We develop measures for objective comparison of the
introduced errors. An adaptive refinement approach turns
out to be the best compromise between computation time
and quality.
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1 Introduction

Flow visualization is an important topic in scientific visu-
alization. Many of its well-established methods are widely
used in science and various engineering disciplines. Es-
pecially feature-detection methods like theλ2-criterion for
vortex core regions proposed by Jeong and Hussain [1] or
the vortex core line extraction approach introduced by Su-
judi and Haimes [2] are extensively used. However, what
users really want to understand is the overall behavior of
the flow in connection with these features. For this task,
Salzbrunn and Scheuermann [3] recently introduced the
notion of flow structures based on streamline predicates.
The basic idea of this approach is a partition of the flow
based on user-defined properties. Predicates on stream-
lines evaluate whether a streamline has a given property.
In a next step, all streamlines fulfilling the predicate are
grouped and form the characteristic set of this predicate.
This can be done for as many predicates as are needed for
a satisfying description of the behavior of interest. A set
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Figure 1. Framework of flow structure methodology (taken
from [3]).

of predicates such that every streamline fulfills exactly one
predicate defines a partition of the whole flow. Such a par-
tition is called aflow structure- a structure tailored to the
users needs! We presented a framework explaining how to
work with flow structures in [3]. Fig. 1 shows the inter-
play of features, streamline predicates and flow structures.
In most cases, users know which features are important for
them. These features influence streamline behavior. So, af-
ter the specification and identification of features, the users
formulate the behavior of streamlines of interest as stream-
line predicates.

As vector fields contain infinitely many streamlines a
finite subset has to be chosen to be able to compute an ap-
proximate discrete representation of the characteristic sets
(see Sec. 3). Unfortunately, even this process tends to
be computationally expensive for a reasonable resolution
if computed in a brute force manner. Hence, a thorough
analysis of all processing steps is needed, in order to ex-
ploit all acceleration potentials. Based on such an analysis,
we present different acceleration approaches and compare
them by their time cost and accuracy. We also take their
memory demands into account. As basis for the accuracy-
based comparison, we define quantities measuring the er-
rors that are introduced by the different strategies.

2 Related Work

One of the acceleration strategies presented throughout this
paper produces AMR (adaptive mesh refinement) data. For



such data standard isosurface extraction schemes (e.g. [4]
or [5]) may produce surfaces with cracks. A scheme de-
signed to prevent such cracks was presented by Weberet
al. [6]. It can be applied for the AMR data if needed.

In Sec. 7 we define an error rate to compare the dif-
ferent acceleration techniques. As the error is influenced
by the shape of the surfaces we additionally define a mea-
sure for their complexity. This enables us to interpret the
error values in the correct context. A similar but more com-
plex measure was introduced by Bribiesca [7]. Hisdiscrete
compactnessis a description of complexity and compact-
ness of surfaces. We found our measure to be simpler and
sufficient for our case.

3 Flow Structures

In this section, we shortly review the formalism needed
to construct characteristic sets. LetD ⊂ R

3 be the do-
main of our steady three-dimensional flow. Let itsve-
locity field be represented by a Lipschitz continuous map
v : D → R

3, x 7→ v(x). A streamline of v passing
through a pointx ∈ D is a mapSx : Ix → R

3 where
0∈ Ix ⊂ R is an interval of maximal extent andSx(0) = x
and∂Sx(t)/∂ t = v(Sx(t)), ∀t ∈ Ix.

A streamline predicateSP is defined as a Boolean
map on the set of streamlinesS , i.e.

SP: S → {TRUE,FALSE},

S 7→ SP(S).

The correspondingcharacteristic setASP⊂ D is defined as

ASP=
⋃

Sx∈S , SP(Sx)=TRUE

Sx(Ix)

To set up the flow structure, we need a grouping
mechanism that creates a finite number of groups of stream-
lines with common properties. Our mechanism assumes a
finite set of streamline predicatesG with disjunct charac-
teristic sets, i.e.

G = {SPλ | λ ∈ Γ}, ASPλ ∩ ASPµ = /0 ∀λ ,µ ∈ Γ, λ 6= µ ,

whereΓ is an index set. We define aflow structure to be
the following partition:D =

⋃

SPλ∈G ASPλ .

3.1 Visualization

Isosurfaces or direct volume rendering can be used to visu-
alize the borders of the different characteristic sets. While
volume rendering often provides a better overview of the
whole partition, isosurfaces, when stored, can serve as ba-
sis for further processing steps. Hence, as we need the
boundaries of the characteristic sets for our acceleration
strategies, isosurfaces will be used throughout this paper.

One should notice that the process chain (Fig. 1) is
cyclic: insights gained in the visualization step are used to
improve streamline predicates for a next iteration. As we
will see later, the amount and the kind of reuse strongly
influence the choice of a acceleration strategy.

3.2 Example

A simple example of a streamline predicate is the devia-
tion of the flow from the principal in-flow direction. We
discuss this predicate to illustrate the concept of flow struc-
tures here, and will use it to compare different accelera-
tion strategies later. We obtain the deviation by integrat-
ing the difference between the streamline’s tangent vector
direction and the main in-flow direction along the stream-
lines. For the discretization we sample a representative fi-
nite subsetS̃ of all streamlinesS using a Cartesian grid
for the starting positions. Then we compute the deviation
and choose a minimum threshold for the deviation. This
defines the streamline predicate:

D =̂ (”Deviation of S̃ from given direction”> dmin)

The discretized characteristic set is comprised of all vox-
els visited by a streamline fulfilling the respective stream-
line predicate. For a formal description of this kind of dis-
cretization we refer the reader to [3].

We apply the deviation predicate to a dataset from
a simulation of the flow around a sphere with a drilled
hole in the center. The dominant flow pattern is a group
of three ring vortices on the lee side of the sphere. The
sphere has a diameter of 200. The underlying unstruc-
tured grid contains 2.5 million tetrahedra. For the finite
subsetS̃ we use a Cartesian grid in the area[−250,250]×
[−125,125]× [−125,125]with a spacing of 3.125 (6.25) in
all directions as starting positions. This is a set of 1056321
(136161) streamlines that densely fills the space around the
ball. We apply the predicate to this dataset withdmin = 0.6
anddmin = 0.1. Fig. 3 shows the boundary of the result-
ing characteristic setAD for both thresholds fordmin. The
simple flow structureGDev = { AD,AD̄ } is sufficient as a
benchmark for the different acceleration approaches.

4 Factors Determining Computation Time

The construction process of the characteristic set of a given
streamline predicate is built up of several tasks. For each
of the tasks the respective contribution to the overall com-
putation time can be determined.

compTime =

streamline integration
and rasterization

+
streamline evaluation


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
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part

+

isosurface generation
} visualization

part

Concerning streamline integration there is the known trade-
off between speed and accuracy. The required accuracy
depends on the streamline predicate. The effort to raster-
ize the streamlines depends on the resolution of the dis-
cretization of the characteristic sets: an increasing resolu-
tion of the grid yields an increasing computation time for



the voxelization of a streamline. To evaluate a predicate for
a streamline, the streamline needs to be sampled at some
points. The computation time for the evaluation depends
on the number of samples used for the evaluation and the
time needed for processing one sample. The visualization
part is the last step in the process chain. It builds upon the
finished predicate evaluations and, hence, is independent
of acceleration approaches applied in the previous steps.
Nevertheless, the creation of the isosurface can consume
considerable time. This depends on the number of voxels
that have to be examined.

The discussion in the previous paragraph shows that
the most promising idea for reducing computation time is to
compute and evaluate as few streamlines as possible when
creating a characteristic set with a prescribed quality. Ac-
celeration approaches aiming in this direction will be pre-
sented in Sec. 6. In the next section we will discuss possible
ways to speed up the computation if using all streamlines
starting at a regular sampling grid.

5 Using Precomputed Data

All ideas presented in this section are based on anoff-line
computation of data (e.g. streamlines) that can be used in
many steps of the cyclic process chain (Fig. 1). Given a suf-
ficient integration scheme accuracy, streamlines need to be
computed only once for the whole process chain. They can
be stored and reused in different parts of the process chain
and for the evaluation of different streamline predicates.

The straight-forward approach for off-line computa-
tion is to precompute streamlines starting at positions on
a regular grid. Obviously a critical parameter of this ap-
proach is the grid resolution. It should be fine enough to
represent all structures one wants to capture by a stream-
line predicate. Data on a grid with step sizeδ can represent
only structures that have at least a size of 2δ . It should be
noted that different streamline predicates are able to cap-
ture structures of different granularity.

The computation of streamlines for a given set of
starting points can be perfectly distributed to different com-
puting nodes. For computing more than one streamline
predicate with the same resolution of starting points, it is
useful to precompute also the rasterizations of all stream-
lines and not only the streamlines themselves. For param-
eterized predicates that use thresholds on scalar quantities
(e.g. integral of values like vorticity, deviation,. . . along
streamlines) it is useful to save these quantities as attributes
for each streamline. For all but the first threshold a stream-
line predicate evaluation thus can be reduced to a compari-
son of the stored attributes and the threshold. This is espe-
cially useful for quantities where are meaningful threshold
is not known a priori. In such a case, a sweep through a
range of threshold values is needed.

If a predicate evaluates true in case of attributes
greater than a threshold, the visualization of the resulting
characteristic set can be transformed into an isosurface-
problem by saving the maximum attribute values of stream-

lines visiting a voxel for all voxels. Using the threshold
as iso-value leads to an approximation of the characteristic
set’s boundary (with a maximal deviation of the size of one
voxel). Sweeping an isosurface through a range of thresh-
old values can be accelerated by common isosurface accel-
eration techniques like span-space (see e.g. [5]). Saving
additional rasterizations and streamline attributes as sug-
gested here increases the needed disc space. However, this
increase is negligible as it is far from the storage demands
of the streamlines (see Sec. 8).

The above user scenario does not need streamlines for
the computation of the flow structure. This permits to keep
the rasterization and streamline attribute data in main mem-
ory which results in a further speed-up. Even if streamline
data is needed, it is useful to store as many streamlines in
main memory as possible. A useful strategy is to exper-
iment with different streamline predicates with low reso-
lution and in-core computation before computing the final
high-resolution version of the chosen flow structure using
out-of-core computations.

The techniques described in this section are only use-
ful if more than one predicate are to be evaluated. If com-
puting only the characteristic sets for one streamline predi-
cate the additional time for storing/loading streamlines and
for computing many unnecessary streamlines (depending
on the streamline predicate) is wasted.

6 Acceleration Approaches

In case the user does not want to use precomputed data,
calculations can be accelerated by using only a subset of
the streamlines used in the brute-force approach. In [3],
Salzbrunn and Scheuermann presented different accelera-
tion approaches. As one of these approaches, a skipping
technique, can be combined with the adaptive refinement
we develop in Sec. 6.1, we recall the basics of this acceler-
ation approach in the following.

For the skipping technique, streamlines starting at
voxels already visited by previous streamlines are skipped
(”unconditional skipping”). If a streamline with negative
evaluation of a predicate passes many starting positions
of streamlines with a theoretical positive evaluation, many
elements of the characteristic set can be missed. This
can happen, if a streamline belongs to a border case of a
predicate evaluation where the streamline is evaluated to
false only due to small numerical inaccuracies. To han-
dle this problem the condition for skipping a voxel can be
changed such that starting positions are only skipped in
case a streamline with positive predicate visited the voxel
(”positive skipping”). This prioritizes positive predicates
in comparison to negative ones. While unconditional skip-
ping clearly is faster, positive skipping produces less errors.
This is confirmed by our experiments (see Sec. 8).

Another simple idea for accelerating the computa-
tions is to start streamlines on a grid that is coarser than
the one used for the rasterization. We refer to this approach
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Figure 2. Adaptive refinement of a border voxel: magenta
voxels belong to the characteristic set. Letters on the leftof
the images indicate evaluation of predicate: false and true.

as sparse seeding. This may result in holes in the character-
istic sets, because of voxels not visited by any streamlines.

6.1 Adaptive Refinement of Characteristic Sets

We are mainly interested in the borders of the characteris-
tic sets. They indicate where the behavior of the flow (with
respect to given streamline predicates) changes. Hence it is
useful to compute streamlines that are near the border case
of positive or negative predicate evaluation, because they
determine the borders of the characteristic sets. In order
to get a first approximation of the region and voxels con-
taining the border one can compute the characteristic set
with a coarse resolution. The left image in Fig. 2 shows
an example of such an border voxel. To compute the char-
acteristic set with increased resolution every border voxel
and its neighbor voxel not belonging to the characteristic
set are subdivided into 27 sub-voxels1. The right image
of Fig. 2 shows this subdivision in 2D. From the 54 sub-
voxels of the two voxels (border voxel and neighbor) the
18 sub-voxels being closest (w.r.t. center) to the border are
selected. A new streamline is started, evaluated and ras-
terized with new finer resolution for each of these 18 sub-
voxels. All other sub-voxels and voxels not belonging to
the border are directly assigned to the characteristic set in
the new resolution.

Fig. 3 shows the deviations of the characteristic setAD

for all acceleration approaches described in this section.

7 Measuring Errors

The different accelerations techniques presented in Sec. 6
produce different discrete characteristic sets. We would
like to use the characteristic sets produced by the brute
force approach as a reference to compare the accuracy of
the different acceleration strategies. Therefore, we needa
measure for the deviation of characteristic sets. LetASP

andÃSP be the characteristic sets computed by usage of all
streamlines and by using an acceleration approach respec-

1A subdivision into 8 sub-voxels does not allow the reuse of already
computed streamlines, since the old voxel center is not a voxel center of
any new sub-voxel.

tively. As deviation measure we use the following ratio:

error rate=
|(ÃSP∪ASP)− (ÃSP∩ASP)|

|ASP|

The lower the measure the better the discretization of the
characteristic set. The error rate depends on the complex-
ity of the surface of the characteristic set. A complex (ex-
treme case: fractal) surface would in most cases result in
a greater error rate than a smooth surface. Therefore, we
have to take the shape of a characteristic set into account.
A measure to describe shape complexity of a characteristic
set is the ratio between the number of voxels of the char-
acteristic set’s boundary and the number of voxels of the
characteristic set. The example characteristic setAD with
dmin = 0.6 (dmin = 0.1) has a complexity of 0.72 (0.46).

8 Results

Tables 2, 3, 4, and 5 show computation times and error
rates for the two characteristic sets used as benchmarks.
The figures are presented for two different voxel sizes. The
computations were carried out on an AMD Opteron 224
(1.8 GHz) with 8 GB main memory. The figures show that
”positive skipping” has the best error rates (especially for
dmin = 0.1) but also a time cost near that of the ”brute-
force” approach. ”Unconditional skipping” has very low
time cost, but nearly unacceptable error rates, especially
in case of high complexity characteristic sets. Even ex-
ploiting the short computing time to compute a higher res-
olution ”uncond. skip hi-res” (voxel size 1.5625) does not
improve accuracy enough to be able to compete with that
of the other approaches. A good compromise between
time cost and accuracy are ”sparse seeding” and ”adap-
tive”. While ”sparse seeding” has lower computing times
but higher error rates, especially for low resolutions, ”adap-
tive” has good error rates at cost of higher computing time.
Combining both approaches improves accuracy to a level
above that of the respective single methods and yields the
best balance between time and accuracy.

Tables 2 and 4 additionally contain figures for the
time cost of the strategies using precomputed data2.
Clearly, using precomputed data cuts time cost dramati-
cally. Of course, to generate the data, one has to invest the
time of the ”brute-force” approach once. Parallelization,
i.e. distributing the computation to different computing
nodes, can accelerate the generation. The shortest comput-
ing times can be achieved in the special but important case
of parameterized streamline predicates (see Sec. 5). Their
rasterizations (r) and attributes (a) are directly accessible
from main-memory (in-core) or have to be load from hard-
disk (out-of-core). All other streamline predicates need the
streamline information (s) and additionally the rasterization
for further acceleration. Table 1 summarizes the memory
consumption for different resolutions.

2For AD with dmin = 0.1 the values do not change significantly. We,
thus, omit the corresponding figures. The same is true for ”incore(s+r)”
for the higher resolution due to main memory limitations.



Figure 3. Comparison of different acceleration strategiesfor two exemplary characteristic sets (dmin = 0.6 (left) anddmin = 0.1
(right)) with voxel size 3.125. The upper row shows the original characteristic sets. The differences resulting from application
of the different acceleration strategies are shown in the rows below. The small images in the upper right of the differences
show the boundary of the characteristic set obtained with acceleration. The used acceleration strategies are, from second row
to bottom: positive skipping, unconditional skipping, sparse seeding, adaptive refinement, and a combination of the last two
approaches.



Resolution Streamline Data Rastered Attributes
12.5 190 MB 2.8 MB 142 KB
6.25 1.4 GB 41 MB 1.1 MB

3.125 11 GB 616 MB 8.1 MB

Table 1.Memory needed to store streamline, raster and attribute
data for different resolutions.

Obviously the acceleration still does not yield inter-
active cycling rates in the process chain. However, there-
mainingcomputation time is only a fraction of the original
simulation effort, and can therefore go almost unnoticed.

9 Conclusion

In this paper, we examined the time cost of all parts in-
volved in the process chain for computing a flow structure.
Based on this analysis we investigated different accelera-
tion approaches for different user scenarios. The adaptive
refinement approach in combination with the sparse seed-
ing turned out to be the best choice as it provides substantial
acceleration while not reducing quality too much.
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Method Computing Time Error Rate
in-core (r+a) 1.27 [s] -
in-core (s+r) 18.67 [s] -
out-of-core (r+a) 1.78 [s] -
out-of-core (s+r) 46.59 [s] -
brute force 22.67 [min] -
positive skipping 22.43 [min] 1715 (20.71%)
uncond. skipping 0.95 [min] 2531 (30.56%)
uncond. skip hi-res 5.62 [min] 1948 (23.53%)
sparse seeding 3.05 [min] 1943 (23.46%)
adaptive 8.53 [min] 1025 (12.38%)
combined 8.70 [min] 840 (10.14%)

Table 2.Comparison of different approaches for the construction
of GDev with dmin = 0.6, voxel size 6.25, and complexity = 0.72.

Method Computing Time Error Rate
brute force 22.67 [min] -
positive skipping 22.62 [min] 173 (0.74%)
uncond. skipping 1.0 [min] 3318 (14.24%)
uncond. skip hi-res 5.43 [min] 2741 (11.77%)
sparse seeding 3.05 [min] 2133 (9.16%)
adaptive 12.18 [min] 1362 (5.84%)
combined 12.35 [min] 1307 (5.61%)

Table 3.Comparison of different approaches for the construction
of GDev with dmin = 0.1, voxel size 6.25, and complexity = 0.46.

Method Computing Time Error Rate
in-core (r+a) 9.6 [s] -
out-of-core (r+a) 17.88 [s] -
out-of-core (s+r) 5.73 [min] -
brute force 3.09 [h] -
positive skipping 3.02 [h] 1560 (2.88%)
uncond. skipping 0.09 [h] 12756 (23.56%)
uncond. skip hi-res 0.54 [h] 9387 (17.34%)
sparse seeding 0.38 [h] 5950 (10.99%)
adaptive 0.75 [h] 5042 (9.31%)
adaptive (2 It.) 0.50 [h] 7120 (13.15%)
combined 0.77 [h] 4128 (7.62%)

Table 4.Comparison of different approaches for the construction
of GDev with dmin = 0.6 , voxel size 3.125, and complexity = 0.72

Method Computing Time Error Rate
brute force 3.09 [h] -
positive skipping 2.99 [h] 1110 (0.69%)
uncond. skipping 0.09 [h] 15427 (9.67%)
uncond. skip hi-res 0.62 [h] 11797 (7.39%)
sparse seeding 0.38 [h] 5751 (3.60%)
adaptive 0.97 [h] 5617 (3.52%)
adaptive (2 It.) 0.82 [h] 9306 (5.83%)
combined 0.99 [h] 5299 (3.32%)

Table 5.Comparison of different approaches for the construction
of GDev with dmin = 0.1, voxel size 3.125, and complexity = 0.46.


