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Networks are a common theme at all levels of molecular evolution: Networks of metastable

states and their connecting saddle points determine structure and folding kinetics of biopoly-

mers. Neutral networks in sequence space explain the evolvability of both nucleic acids and

polypeptides by linking Darwinian selection with neutral drift. Interacting replicators, be they

simple molecules or highly complex mammals, form intricate ecological networks that are cru-

cial for their survival. Chemical reactions are collected in extensive metabolic networks by

means of specific enzymes; both the enzymes and the chemical reaction network that they gov-

ern undergoes evolutionary changes. Networks of gene regulation, protein-protein interaction,

and cell signaling form the physico-chemical basis for morphogenesis and development. The

nervous systems of higher animals form another distinct level of network architecture. We

are beginning to understand the structure and function of each of the individual levels in some

detail. Yet, their interplay largely remains still in the dark.

Keywords: Conformational diversity, metabolic networks, molecular evolution, neutral net-
works, sequence space.

1 INTRODUCTION

N etworks of different kinds and sizes appear at differ-
ent levels of molecular evolution. Networks have a

natural representation as graphs or hypergraphs of var-
ious kinds. It is not surprising, therefore, that graph
theoretical methods are of utmost importance for both,
analyzing data and building models. Here we present a
brief overview of networks with increasing complexity of
the systems to be modeled.

The single biopolymer molecule is considered first.
Conformational diversity of biopolymers as encapsulated
by a free energy surface allows for straightforward appli-
cation of tree-like networks representing the saddle hier-
archies in conformation space. Replication and mutation
are the basis of evolution based on asexual reproduction.
The inherent limitations of such dynamical systems are
overcome by another class of dynamical bimolecular pro-

cesses, catalysis and inhibition representing the positive
or negative expression of this interaction, respectively.
The results are symbiosis and parasitism, where the for-
mer can give rise to dynamical networks of overall auto-
catalytic nature which may develop into functional units
at a higher hierarchical level. Neutrality in evolution is
a phenomenon that can be understood properly by the
consideration of networks in genotype or sequence space.
Networks involving the dynamics in entire cells or organ-
isms will be mentioned at the end of our tour through
structural and molecular biology.

Conformation spaces of biopolymers are highly com-
plex multidimensional objects. Traditionally focusing on
proteins, these objects were first approached in one di-
mension by considering the reaction coordinates of con-
formational changes or reversible denaturation. More re-
cently, they were replaced by statistical concepts yielding
folding funnels [7] which extend to two dimensions what
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Figure 1: The saddle point that is crossed by the lowest energy path corresponds the the interior vertex in the barrier
tree that connects two local minima.

in reality is a truly high-dimensional object. A simpli-
fied version of RNA structure allows, for the first time, to
compute and to analyze the conformational space in its
full complexity. The network of transitions can be sim-
plified and illustrated by barrier trees and saddle point
graphs [18].

The simplest examples of molecular evolution are pop-
ulations of macromolecules that evolve in vitro, for ex-
ample in test tubes. Experiments of this type have been
performed since the late 1960s [51], demonstrating that
’naked’ RNA molecules can exhibit Darwinian evolution,
i.e., the interplay of mutation and selection that leads to
adaptation and improvement of fitness, in the absence
of cellular life. A theoretical frame for handling evolu-
tion of molecules has been developed almost simultane-
ously through combining the concepts of population ge-
netics with the knowledge of molecular and structural
biology [11]. The mechanistic way how autocatalysis
shapes transitions from the evolution of molecules to-
wards higher functional units is essentially comprised
by the role of catalysis in autocatalytic kinetic networks
[15]. Extensive theoretical and computational studies of
RNA evolution in vitro by the Vienna group (for a re-
cent review see [45]) have revealed the far-reaching conse-
quences of the principles of RNA structure formation for
evolutionary phenomena. Neutrality making genotypes
indistinguishable for selection has long been postulated
in population genetics [37,38] and inferred from empirical
molecular sequence data [39]. More recently, using the
concept of networks in sequence space, it was shown that
neutrality is not only an unavoidable byproduct of molec-
ular replication and mutation but contributes also in an
essential way to the efficiency of optimization [20, 33].

Metabolic and genetic networks, finally, bring us to
the currently hottest topics in molecular genetics. Se-
quencing of entire genomes, DNA chip technologies, and
other methods handling the information of whole cells

and organisms produce enormous quantities of data and
this wealth of still unexploited information calls for new
global and comprehensive concepts of regulation and con-
trol. No doubt the solution to the problem lies in a still
to develop novel network theory that makes use of mod-
ules and hierarchical control elements in order to medi-
ate between partly autonomous local agents and global
properties.

2 NETWORKS OF METASTABLE STATES

L et us consider the energy landscape of a particular
biopolymer sequence. The “move set” of conforma-

tional changes arranges the set of conformations as a
graph with edges connecting structures that can be di-
rectly inter-converted. This implies a notion of neighbor-
hood that allows to speak of local minima of the energy
landscape, i.e., of metastable structures. A vertex x is
a local minimum of all its neighbors, y ∈ N(x), satisfy
f(x) ≤ f(y).

The basins of attraction of two metastable states x
and y are connected by saddle points, which are defined
as the maxima along the paths p ∈ Pxy that connect x
and y with smallest maximal energy. The height of the
saddle point is therefore

f̂(x, y) = min
p∈Pxy

max
z∈p

f(z) (1)

The saddle points can be arranged in a tree such that
the leaves of the tree are the metastable states while the
internal nodes corresponds to the saddle points separat-
ing the local optima from each other [4, 18, 24], Fig. 1.
The height of the energy barrier can be directly read off
the barrier tree, see Fig. 2. From the energy barriers ag-
gregate parameters describing the energy landscape can
be obtained, such as depth and difficulty, that play an im-
portant role e.g. in the theory of simulated annealing [8],
or the fractal dimension of the barrier tree itself [21].
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Figure 2: Top: Barrier Tree of an engineered the RNA
switch. Bottow: Saddle point network. The sequence of
this molecule is ACCGGUUUCUGGUCGAGCUGGCUCG.

We say that a saddle point s directly connects x and
y if there are two paths of steepest descent that start at
neighbor x′, y′ ∈ N(s) and end in the local minima x and
y, respectively. The metastable states and their directly
connecting saddle points therefore form a network that
encapsulates the most salient features of the topology of
the energy landscape [19]. As an example we show the
barrier tree and the saddle point graph of a small RNA
switch, i.e., an RNA molecule that may fold into two
alternative conformation with (almost) the same folding
energy. In case of the molecule in Fig. 2 the saddle-point
network is almost a tree. This need not be the case in
general, however. Examples of mesh-like saddle point

networks arise e.g. in the highly degenerate landscape of
certain combinatorial optimization problem such as the
low autocorrelated binary string problem [19].

The network structure of a biopolymer’s energy land-
scape determines its folding properties. Heuristic notions
such as the “folding funnel” [10, 24, 57] postulated for
most natural proteins can be described at a microscopic
level in terms of network properties. For example, one
might speak of a funnel if there are no local optima with
significant basins of attraction and/or substantial energy
barriers.

3 AUTOCATALYTIC NETWORKS

D ifferential selection as a consequence differences in
replication rates is one of the pillars of the Dar-

winian paradigm. One of the simplest models deals with
polymeric molecules that replicate according to the re-
action scheme

Ik + Il + (M) −→ 2Ik + Il , (2)

i.e., one polymer species Ik is copied by another polymer
species Il of the same type, thereby consuming building
material (M) which is assumed to be present in excess.

Although postulated and analyzed already in the nine-
teen-seventies [11,14], no direct experimental implemen-
tation of this system was possible since the known biopoly-
mers with the required properties were either (obliga-
tory) templates, like RNA molecules, or protein based
replicases. But recently an RNA replicating ribozyme
was obtained by means of artificial evolution [35], and
an RNA assay for the reaction (2) is now within reach.
Under the simplest assumptions on the environmental
boundary conditions, the replication mechanism (2) leads
to the dynamical system [29,30, 47, 49]

ẋk = xk

(

n
∑

i=1

Akixi − Φ(t)
)

; Φ(t) =
∑

i,j

Aijxixj . (3)

where xk is the relative concentration of the species Ik.
The flux term Φ(t) is adjusted such that the replica-
tor equation fulfils the conservation law

∑

k ẋk = 0.
Equ.(3) describes also the behavior in a continuously

stirred tank reactor with sufficiently small influx rates.
With properly chosen parameters Aij , replicator equa-
tions develop the full scenario of complex dynamics for
the minimum number of independent variables, e.g. os-
cillations for n = 3 and deterministic chaos for n = 4.

The second order replicator equation (3) is invariant
under the transformation Akj → Akj − Akk, i.e., the
dynamics depends only on the strength of the interac-
tions relative to the self-catalysis. An important class
are the so-called autocatalytic networks [48] for which
Akj −Akk > 0. The structure of the network can there-
fore be depicted by a graph in which the catalytic func-
tion is represented by an arrow (Fig.3).
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Figure 3: Autocatalytic Networks. Above: Phase
portraits of the autocatalyic networks with n = 3 species.
This is only part of the classification of three-species
replicator equations [53]. Symbols: sink •, source ◦, sad-
dle ⊕. Lines of fixed points are shaded according to their
stability.
Below: Non-Hamiltonian autocatalytic network compat-
ible with permanence [1].

There is a connection between the graph represen-
tation of the reaction networks and their dynamical be-
havior. For example, if the network is permanent [31,48]
(i.e., no member dies out over time) then the graph is
strongly connected [50]. The hypercycle model [14] of
cooperating replicators is probably the best-known ex-
ample of a permanent catalytic network. For n ≤ 5
the network must be “hypercycle like” by containing a

Hamiltonian cycle [1].
Permanent autocatalytic networks have been studies

extensively as a possibility to overcome limitations im-
posed on replication-mutation ensembles by the error-

threshold of molecular quasispecies model [11–13] which
places a restrictive limit on the length of self-replicating
polymers in the absence of a sophisticated mechanism
that reduces copying errors. These cooperative networks
are, however, susceptible to parasites, a threat that can
at least in part be alleviated by spatial pattern forma-
tion [6].

The networks of ecology behave similar to the au-
tocatalytic networks because the replicator equation (3)
and the Lotka-Volterra equations are related by a trans-
formation [28]. Permanence in Lotka-Volterra systems is
obviously related to the loss of species in ecosystems. A
survey of replicator systems [52] thus implies that perma-
nence is also an exceedingly rare and fragile phenomenon
in ecological networks that requires very special inter-
action structures. Those natural ecosystems which are
known to be stable over long periods thus owe their sta-
bility to an efficient evolutionary selection process.

4 NEUTRAL NETWORKS IN SEQUENCE SPACE

T he evolutionarily relevant relation between geno-
types I and phenotypes S can be visualized as a

mapping from sequence space, Qn with n being the se-
quence length, into a space of phenotypes, S. Pheno-
types are evaluated through selection by a differential
fitness criterion f . Accordingly, a mapping from pheno-
type or shape space into the real numbers completes the
weighting of genetic variants (Fig.4). Distance between
two genotypes I′ and I′′ of length n is readily expressed
by means of the Hamming metric dh(I′, I′′), whereas the
derivation of a distance in shape space (ds(S′, S′′)) that
is useful for understanding optimization and adaptation
is much more subtle. Formally, the two maps can be
written as

ψ : (Qn; dh) → (S; ds) S = ψ(I) and (4)

f : (S; ds) → R f = f(S) (5)

As indicated in Fig. 4 there is ample evidence that for re-
dundancy in genotype-phenotype maps in the sense that
many genotypes cannot be distinguished by a evolution-
arily relevant coarse grained notion of phenotypes which,
in turn, give rise to fitness values that cannot be faith-
fully separated through selection. Such indistinguishable
genotypes form graphs in sequence space called neutral

networks [46] when the genotypes are interpreted as
nodes and all Hamming distance one neighbors are con-
nected by an edge. In other words, the neutral network of
phenotype S in Qn is the graph G(S) formed on the pre-
image ψ−1(S) by means of the Hamming distance one
criterium for edges. The quantity that allows for global
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Figure 4: Mapping from sequence space into phenotype space and into fitness values. Evaluation of genotypes through
variation and selection is performed in two steps: (i) Development of phenotypes through unfolding of genotypes and (ii)
assignment of fitness values to individual phenotypes. The first step is modelled by means of a many-to-one mapping.

characterization of neutral networks is the fraction of
neutral Hamming distance one neighbors averaged over
all members of the net called the degree of neutrality
λ̄. Neglecting the influence of the distribution of neutral
sequences over Qn, the degree of neutrality will be the
higher, the larger the pre-image is.

Generic properties of neutral networks [41] are readily
derived by means of a random graph model. The neutral
network, in essence, is based on random introduction of
nodes into Qn whose number is determined by the prede-
termined value of λ̄. Theory predicts a phase transition
like change in the appearance of neutral networks with
increasing degree of neutrality at a critical value:

λcr = 1 − κ−
1

κ−1 , (6)

where κ is the size of the genetic alphabet. For example,
κ = 4 for the canonical genetic alphabet {A,U,G,C},
κ = 3 for {A,U,G}, and κ = 2 for {G,C}. If λ̄ < λcr

is fulfilled, the network consists of many isolated parts
with one dominating giant component. On the other
hand, the network is generically connected if λ̄ > λcr.
The critical value λcr is the connectivity threshold. This
property of neutral networks reminds of percolation phe-
nomena known from different areas of physics, although
the high symmetry of sequence space, with all points
being equivalent, introduces a difference in the two con-
cepts.

Although qualitatively there is ample evidence for
neutrality in natural evolution as well as in experiments
under controlled conditions in the lab, very little is known
about regularities in general genotype phenotype rela-
tions. In the RNA model [44] the phenotype is replaced
by the minimum free energy structure of RNA. This
simplifying assumption is met indeed by RNA evolu-
tion experiments in vitro [5] as well as by the design of

Figure 5: Nucleotide sequence and secondary structure
of phenylalanyl-transfer-RNA.

RNA molecules through artificial selection [56]. Three-
dimensional RNA structures are very complex objects
still and they are replaced by so-called secondary struc-
tures that allow for efficient handling of large numbers of
individuals in computer simulation experiments (Fig.5).
RNA secondary structures are planar graphs and they
can be represented, for example, by trees. They allow for
straightforward application of combinatorial methods for
counting structural features. For example, asymptotical
formulas are available for the number of thermodynam-
ically acceptable structures as functions of chain length
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n [27]. Genotype-phenotype mappings are dependent on
the ratio of sequences to structures and in case of the
RNA model this ratio can be calculated analytically:

|Q|/|S| = 0.67n
3

2 × (2.16)n .

It grows exponentially with chain length n and reaches
several orders of magnitude already at n ≥ 10. Effi-
cient computer algorithms and implementations for RNA
secondary structure prediction are available and RNA
genotype-phenotype mappings are readily computed by
folding all sequences of entire hypercubes and exhaus-
tive enumeration. Although these studies are obviously
limited to short RNAs, since the number of objects like
sequences and structures that can be handled on con-
ventional present day computers is limited to some 109,
four properties of the RNA map were derived:

(i) More sequences than structures. For sequence
spaces of chain lengths n ≥ 10 there are orders
of magnitude more sequences than structures and
hence, the map is many-to-one (as predicted ana-
lytically above).

(ii) Few common and many rare structures. Rel-
atively few common structures are opposed by a
relatively large number of rare structures, some of
which are formed by a single sequence only (“rela-
tively” points at the fact that the numbers of both
common and rare structures increase exponentially
with n, but the exponent for the common struc-
tures is smaller than that for the rare ones).

(iii) Shape space covering. The distribution of neu-
tral genotypes, these are sequences that fold into
the same structure, is approximately random in se-
quence space. As a result it is possible to define a
spherical ball, with a diameter dcov being much
smaller than the diameter of sequence space (n),
which contains on the average for every common
structure at least on sequence that folds into it.

(iv) Existence and connectivity of neutral net-

works. Neutral networks, being pre-images of phe-
notypes or structures in sequence space, of com-
mon structures are connected unless specific and
readily recognizable special features of RNA struc-
tures require specific non-random distribution in
the {A,U,G,C} sequence space, Q(AUGC) (For struc-
tures formed from sequences over a {G,C} alphabet
the connectivity threshold is higher, whereas, at
the same time, the mean number of neutral neigh-
bors is smaller).

All four properties of genotype-phenotype mappings can
be casted into quantitative expressions for the RNA model
and, at least, the features (i), (ii), and (iv) seem to hold

for the more complicated protein spaces as well. Pro-
teins, in contrast to RNA molecules, do not form struc-
tures but aggregate in aqueous solution when their con-
stituents are too hydrophobic. This means that no useful
structures will be available in certain parts of sequence
space and the protein landscape is “holey” therefore.
The concept of holey landscapes has been transferred
also to the much more sophisticated problem of evolu-
tion of higher organisms and speciation [25].

Sequences at the intersection of the compatible sets
of two neutral networks upon the same sequence space
were found to be of actual interest since they can si-
multaneously carry the properties of the different RNA
folds. For example, they can exhibit catalytic activi-
ties of two ribozymes [43]. The set of nodes of the neu-
tral network G(S) is embedded in a compatible set C(S)
which includes all sequences that can form the struc-
ture S as suboptimal or minimum free energy conforma-
tion: G(S) ⊆ C(S). The intersection theorem [41] states
that for all pairs of structures S ′ and S′′ the intersection
C(S′) ∩ C(S′′) is non-empty. In other words, for each
arbitrarily chosen pair of structures there will be at least
on sequence that can form both. Schultes & Bartel [43]
presented one particularly interesting experimental case.
RNA switches, mentioned in section 2 above, are other
applications of the intersection theorem.

Analogous results were reported for proteins. Com-
putational studies predict the existence of neutral net-
works and shape space covering also for polypeptides
[2, 3]. So far, these predictions are in agreement with
experiments(see, for example, [36]).

5 METABOLIC REACTION NETWORKS

O nce we leave the realm of in vitro evolution and pro-
ceed to living organism we have to consider at least

two additional classes of networks: Metabolic networks
describe the chemical pathways that process nutrients to
build up essential substances and the networks regulat-
ing gene expression (see Andreas Wagner’s contribution
in this issue for a discussion of the latter).

A reaction network, for simplicity referred to as net-

work is a pair N = (S,R) of a set S of substrates and a
set R of reactions “using” these substrates. For instance,
consider

CaO + 2CO2 + H2O → Ca(HCO3)2 (7)

Another way of writing this is equation would be

ρ = −1 · CaO − 2 · CO2 − 1 · H2O + 1 · Ca(HCO3)2 (8)

This representation suggests to view a reaction as (for-
mal) linear combination of substrates ρ =

∑

x
sρ,xx with

stoichiometric coefficients sρ,x. Equivalently, a reaction
can be thought of as a directed hyperedge in a directed
weighted hypergraph that connects the substrates on the
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Figure 6: Description of a reaction as hyperedge con-
necting its substrate vertices and as (part of) the bipar-
tite network graph in which both substrates and reactions
are represented as vertices.
Below the bipartite graph of the Krebs citric acid cy-
cle and its alternative pathways is shown (H2O and H

+

omitted); reactions (in ovals) are labelled by enzyme that
catalyzes the reaction.

left hand side of the reaction with its right hand side.
Equivalently, we may draw a bipartite graph in which
substrates and reactions are different classes of vertices
(Fig. 6). The bipartite graphs are particularly appropri-
ate in the context of metabolic reaction networks since
there the reactions are specifically catalyzed by enzymes
or enzyme complexes. The catalysts appear as one class
of vertices while the small substrates such as sugars or
amino acids form the other class.

Metabolic flux analysis [9, 16, 40, 42] consists in find-
ing a basis of elementary “flux modes” that describe the
dominant reaction pathways within the network. From
the mathematical point of view the problem is to find
the extremal rays of the cone defined by the intersection
of the non-negative orthant { ~J |Ji ≥ 0} and the kernel

kerS+ = { ~JS = ~o} of (the transpose of) the stoichio-

metric matrix S = (sx,ρ). The extremal flux vectors ~J
spanning this cone are closely related to the (directed)
cycles of the network graph [26].

Comparative studies of metabolic networks reveal a
surprising variety of pathways even in the core of the

metabolism. For instance, most organisms use only small
parts of the citric acid cycle [32] (Fig.6). Functional
differences can be explained in terms of differences of
metabolic pathways [22, 23], allowing a first glimpse on
a genotype-phenotype map that is much more complex
than biopolymer folding.

On a global scale, recent surveys [17, 34, 54] have re-
vealed that metabolic reaction networks belong to the
class of small world networks [55] in the wider sense:
they have a diameter that is much smaller than what
one would expect for an uncorrelated random graph with
the same number of vertices and edges and a power-law
distribution of vertex degrees. The evolutionarily oldest
metabolites play the role of “hubs” exhibiting the largest
vertex degree. A comparison with reaction networks
from planetary atmospheres [26] suggests that small world
features are a generic property of chemical reaction net-
works rather than the product of evolution. On the other
hand, there is an over-abundance of small cycles that
could be the result of an evolutionary optimization for
resilience against perturbations.

W e have discussed here only four classes of the net-
works which play a central role in molecular bi-

ology. Networks of gene regulation, both at level of the
single cell and the signaling networks of multicellular or-
ganisms are just as important. In higher organisms neu-
ral networks form an additional layer of complexity (see
Olaf Sporn’s contribution in this issue).

While we begin to understand structure and function
of networks within each class, for which ample data are
available at least in some cases, little is known on the
interaction of the various levels. The mechanisms gov-
erning crosstalk between hierarchical levels are, never-
theless, equally important if not more relevant for proper
functioning of organisms. They are in the center of top-
down control and regulation, without which every form
of organization is doomed to break down. What makes
this type of control tricky in but not only in biology is
the partial autonomy of agents at the lower level. More
and more detailed knowledge on communication between
cells will help us to explore successfully the subtle inter-
play between local independence and global control.
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