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Abstract

This paper is a comparative study of the propositional intuitionistic

(non-modal) and classical modal languages interpreted in the standard

way on transitive frames. It shows that, when talking about these frames

rather than conventional quasi-orders, the intuitionistic language displays

some unusual features: its expressive power becomes weaker than that

of the modal language, the induced consequence relation does not have a

deduction theorem and is not protoalgebraic. Nevertheless, the paper de-

velops a manageable model theory for this consequence and its extensions

which also reveals some unexpected phenomena. The balance between

the intuitionistic and modal languages is restored by adding to the former

one more implication.

1 Both modal and intuitionistic propositional languages may be regarded as
talking about quasi-orders F = hW;Ri, R a reexive and transitive binary rela-
tion on a set W . The modal languageML with the primitive connectives, say,
^, _, !, ? and 2 is interpreted in F by means of valuations V of propositional
variables in the power-set 2W of W and the truth-relation j= in the following
way:

x j= p i� x 2 V(p); p a variable; (1)

x 6j= ?; (2)

x j= ' ^  i� x j= ' and x j=  ; (3)

x j= ' _  i� x j= ' or x j=  ; (4)

x j= '!  i� x j= ' implies x j=  ; (5)

x j= 2' i� 8y 2 W (xRy ) y j= '): (6)

�School of Information Science, JAIST, Tatsunokuchi, Ishikawa 923{12, Japan; e-mail:

x-suzuki@jaist.ac.jp.
yInstitut f�ur Informatik, Universit�at Leipzig, Augustus-Platz 10-11, 04109 Leipzig, Ger-

many; e-mail: wolter@informatik.uni-leipzig.de.
zFachbereich Mathematik, FU Berlin, Arnimallee 3, 14195 Berlin, Germany; e-mail:

mishaz@math.fu-berlin.de.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The intended interpretation of the intuitionistic language L =ML� 2 di�ers
from that above in two respects: variables are evaluated in the set

UpW = fX �W : 8x; y (x 2 X ^ xRy ) y 2 X)g

of cones (or upward closed sets) and (5) is replaced by

x j= '!  i� 8y 2W (xRy ^ y j= ') y j=  ): (7)

By the de�nition, the truth-sets V(') = fx 2 W : x j= 'g of modal formulas
may be arbitrary subsets of W , while those of intuitionistic ones are restricted
to UpW ; in particular, intuitionistic formulas cannot distinguish between points
in the same cluster C(x) = fxg[fy 2W : xRy^yRxg. However, as far as only
cones are concerned, the modal and intuitionistic languages are of the same
expressive power at both functional (local) and axiomatic (global) levels. To
make this statement more precise, we require some de�nitions.

With everyL-formula '(p1; : : : ; pn) of variables occurring in the list p1; : : : ; pn
we associate an operator 'F(X1; : : : ; Xn) such that, for any �xed quasi-order
F = hW;Ri, 'F is the n-ary function on UpW determined by ', i.e., for every
intuitionistic valuation V in F,

'F(V(p1); : : : ;V(pn)) = V('):

For a modal formula '(p1; : : : ; pn) we �rst construct an operator '
�
F(X1; : : : ; Xn)

such that, for each F = hW;Ri, '�F is the n-ary function on 2W determined by

' (under arbitrary modal valuations), and then de�ne '4
F
to be the restriction

of '�F to cones when '�F(X1; : : : ; Xn) 2 UpW for every F = hW;Ri and all

X1; : : : ; Xn 2 UpW , and '4
F
= ?�F otherwise.

Proposition 1 f'F : ' 2 Lg = f'
4
F
: ' 2MLg:

Proof As is well known (see e.g. [20], [8]), for every L-formula ', we have

'F = (T')4
F
, where T is the G�odel translation pre�xing 2 to all subformulas of

' (save conjunctions and disjunctions). Thus f'F : ' 2 Lg � f'
4
F
: ' 2 MLg.

The converse inclusion follows from the fact (see e.g. [20] or Lemmas 8.32
and 8.33 in [8]) that every cone constructed from cones X1; : : : ; Xn using the
Boolean operations and 2 can be also obtained from X1; : : : ; Xn in a uniform
way with the help of intuitionistic operations. In other words, given an ML-
formula '(p1; : : : ; pn), one can construct an L-formula  (p1; : : : ; pn) such that

(2')4
F
=  F. 2

A class C of quasi-orders is said to be L- (or ML-) axiomatic if there is a
set � of L- (respectively, ML-) formulas such that, for every quasi-order F,

F j= � i� F 2 C:

(F j= � means that all formulas in � are true at all points in F under all possible
valuations.) Since L-formulas do not distinguish between points in one cluster,
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when comparing the axiomatic power of modal and intuitionistic formulas we
should consider frame classes modulo clusters. More precisely, say that a class
of quasi-orders is skeleton-closed if with every F it contains also all the quasi-
orders whose skeletons are isomorphic to the skeleton of F. Here by the skeleton
of F = hW;Ri we mean the partial order F� = hW �; R�i in which W � is the set
fC(x) : x 2 Wg of clusters in F and C(x)R�C(y) i� xRy.

Proposition 2 A skeleton-closed class C of quasi-orders is L-axiomatic i� it is

ML-axiomatic.

Proof If C is axiomatized by a set � of L-formulas then it is clearly axiomati-
zable by the set fT' : ' 2 �g of ML-formulas. Conversely, suppose C is ML-
axiomatic. Then, as follows from [30], it can be axiomatized by a set of modal
canonical formulas f�(Fi;Di;?) : i 2 Ig built on quasi-orders (see also Section
5 below). By the refutability criterion for canonical formulas, F j= �(F�i ;Di;?)
implies F j= �(Fi;Di;?), and F 6j= �(F�i ;Di;?) implies G 6j= �(Fi;Di;?), for
some quasi-order G with G� �= F�. Since C is skeleton-closed, it follows that it
is axiomatizable by the set f�(F�i ;Di;?) : i 2 Ig and so, in view of Corollary
9.60 of [8], C is axiomatizable by the set f�(F�i ;Di;?) : i 2 Ig of intuitionistic

canonical formulas (see also Corollary 24 below). 2

Example 3 The class of all partial orders without in�nite strictly ascending
chains is ML-axiomatic; it is axiomatizable by the Grzegorczyk formula

2(2(p! 2p)! p)! p

but not L-axiomatic; it is not skeleton-closed.

Another manifestation of this connection between ML and L is the fact
that the G�odel translation T embeds extensions of intuitionistic logic Int into
extensions of classical modal logic S4. We remind the reader that Int and S4
are the sets of L- and, respectively, ML-formulas that are valid in all quasi-
orders. ExtInt, the class of extensions of Int known as superintuitionistic or
intermediate logics (si-logics, for short), consists of all sets L � L that contain
Int and are closed under substitution and modus ponens

MP: if ' 2 L and '!  2 L then  2 L.

The smallest si-logic containing a set of L-formulas � is denoted by Int + �.
NExtS4 is the class of normal extensions of S4 which are sets of ML-formulas
containing S4 and closed under substitution, modus ponens and necessitation
'=2'. S4� � is the smallest normal extension of S4 to contain � �ML.

De�ne three maps � : NExtS4 7! ExtInt and � ;� : ExtInt 7! NExtS4 by
taking, for any M 2 NExtS4 and L 2 ExtInt,

�M = f' 2 L : T' 2Mg; (8)

�L = S4� fT' : ' 2 Lg; (9)

�L = �L�2(2(p! 2p)! p)! p: (10)
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As was shown in [18, 6, 11] (see also [8]), � is a surjective lattice homomorphism,
while � and � are lattice isomorphisms "into", with � being an isomorphism of
hExtInt;�i onto hNExtGrz;�i, where Grz = �Int;

�
�1L = fM 2 NExtS4 : �L �M � �Lg:

It is relevant here to recall that the translationTwas introduced by Orlov [19]
and G�odel [12] in order to obtain a classical interpretation of the intuitionistic
connectives via the necessity operator 2 of S4 understood as \it is provable"|
a sort of re�nement of the Brouwer{Heyting{Kolmogorov proof interpretation.
Thus S4 can be regarded as a logic of informal provability, even in a very precise
sense, as has been recently shown by Artemov [3].

An embedding of Int into the logic of formal provability (in Peano arith-
metic) GL was constructed by Boolos [7], Goldblatt [14] and Kuznetsov and
Muravitskij [16]. Here we need the map T+ which �rst takes the G�odel transla-
tion T' of an L-formula ' and then|to simulate reexivity in irreexive frames
for GL|replaces every 2 in T' by 2+ =  ^ 2 . T alone is not able to
embed Int into GL; for instance,

T(p ^ (p! q)! q) =2 GL:

What is �GL, i.e., what is the logic in the language L having the formal
provability interpretation? Or, in other words, what is the set of L-formulas that
are valid in strict orders without in�nite ascending chains under the standard
intuitionistic valuations? This problem was raised and solved by Visser [25] who
described �GL and �K4 (K4 is the modal logic of all transitive frames) in the
form of natural deduction systems.

To analyze the behavior of L-formulas on di�erent variations of conventional
quasi-orders, say, by giving up the requirement of reexivity or transitivity, is
interesting not only from the technical point of view. For instance, Wansing [26]
claims that when L is used for \talking about the development of information
stages, one might want to dispense with the assumption that such states always
possibly develop into themselves. There might be information states which in
practice simply `must' be changed, say, in the light of overwhelming and unde-
niable evidence. In other words, it may make sense not to require reexivity".
Ruitenburg [22], criticizing the BHK interpretation of Int for not explaining
the logical connectives in simpler terms, proposed to interpret implication in
the following way:

� a proof of '!  is a construction that uses the assumption ' to produce
a proof of  .1

\Using assumption ', rather than a proof of ', to produce a proof of  avoids
the need for converting proofs as in the BHK interpretation. It also makes
it harder to prove  , since less information is provided." Under Ruitenburg's

1The standard BHK interpretation looks like this: a proof of '!  is a construction that

converts proofs of ' into proofs of  .
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interpretation, the formula (> ! ') ! ' is not valid, \for a proof of it is
a construction p that uses the assumption that there is a construction q that
produces a proof of ' to produce a construction that produces a proof of '.
However, the construction q is assumed to exist rather than explicitly given. So
we may not be able to deliver p without the assumption >! ' being `satis�ed',
that is, being proven." Actually, Ruitenburg shows that his proof interpretation
gives rise not to Int but to a weaker logic which is characterized by the class of
arbitrary transitive (not necessarily reexive) frames.

The aim of this paper is to clarify how far the relationship between L and
ML considered above can be extended on the class of frames F = hW;Ri with
arbitrary transitive relations R. More generally, our concern is to �nd a suitable
non-modal propositional language which could talk about transitive frames as
uently as L can talk about quasi-orders.

It is worth emphasizing here once again that in this paper we consider only
upward closed valuations of L in transitive frames. Axiomatizations of the sets
of L formulas valid in various classes of frames without this restriction can be
found in [9], [10], [26].

2 From now on by a (Kripke) frame we mean a pair F = hW;Ri in which R
is a transitive binary relation on a set W 6= ;. A model of the language L is a
pair M = hF;Vi, where F is a frame and V maps propositional variables into
UpW ; such valuations will be called intuitionistic. The truth-relation j= in M
is de�ned by (1){(4) and (7). M j= ', ' is true in M, means that x j= ' for
every x 2 W (or V(') =W ), and F j= ', ' is valid in F, that ' is true in every
model on F. Needless to say that V(') 2 UpW for every formula '.

Example 4 Every implication, in particular, > ! ? (where >, the constant
\truth", is ? ! ?), is true at every dead end, a �nal irreexive point, in any
model.

Analogous semantical notions for the modal languageML are introduced in
the standard way (no restrictions on modal valuations; j= is de�ned by (1){(6)).

We begin our analysis of the behavior of L-formulas on transitive frames by
observing that now they de�ne less functions on cones than ML-formulas.

Proposition 5 f'F : ' 2 Lg � f'
4
F
: ' 2MLg, where F ranges over the class

of all transitive frames.

Proof It is not hard to show by induction on the construction of an L-formula
' that 'F = (T0')4F , where T

0 pre�xes 2 to every subformula of ' of the form

 ! �. On the other hand, for no L-formula ' do we have 'F = (2+:p)4
F

(as usual, :p abbreviates p ! ?). Indeed, consider the frame F = hfa; bg; ;i.

Clearly, (2+:p)4
F
(fag) = fbg. However, for every L-formula '(p), 'F(fag) 6=

fbg because F validates all implications  ! �. 2
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Also, not all ML-axiomatic classes of transitive frames are L-axiomatic
even if they are skeleton-closed. (The de�nitions of clusters and skeleton-
closed classes remain the same as in Section 1; the only di�erence is that now
F� = hW �; R�i is not necessarily a partial order, for it may contain degenerate
clusters, i.e., irreexive points.)

Proposition 6 The class Q of all quasi-orders is ML-axiomatic but not L-

axiomatic.

Proof As is well known, F 2 Q i� F j= 2p! p. On the other hand, every L-
formula ' 2 Int (and even ' 2 Cl) is valid also in the frame hfag; ;i, as is easily
shown by induction on the construction of '. So if Q would be axiomatizable
by a set of L-formulas � then � � Int and consequently hfag; ;i 2 Q, which is

a contradiction. 2

Let us consider now the set

V = f' 2 L : 8F F j= 'g:

According to the completeness theorem of Visser [25], V coincides with the set
of formulas derivable in the basic propositional logic BPL2 represented by Visser
in the form of a natural deduction system. A Gentzen-style system axiomatizing
V can be found in [2]. Quite recently H. Ono (personal communication) has
observed that a Hilbert-style representation of V can be easily extracted from
the completeness proof of Corsi [9]. We formulate this observation as

Proposition 7 V coincides with the closure under substitution and modus po-

nens of the following set of 12 axioms:

� p! p; p ^ q ! p; p ^ q ! q,

� (r ! p) ^ (r ! q)! (r ! p ^ q),

� p! p _ q; q ! p _ q,

� (p! r) ^ (q ! r)! (p _ q ! r),

� >; ? ! p; p! (q ! p),

� p ^ (q _ r)! (p ^ q) _ (p ^ r),

� (p! q) ^ (q ! r)! (p! r).

Proof We show only that V is closed under MP. Suppose otherwise, i.e., there
are formulas ' and  such that '; ' !  2 V but  =2 V. This means that
there is a model M = hF;Vi in which  is refuted at some point y. Add to
F a new root x and denote the resulting frame by G. Let U be the valuation
in G such that U(p) = V(p) for every variable p, and N = hG;Ui. Clearly,
(N; y) 6j=  . On the other hand, we have (N; y) j= ' and so (N; x) 6j= ' !  ,

contrary to '!  2 V. 2

2Visser gave this name to the logic in view of that K4 is sometimes called the basic modal

logic (cf. [24]).
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Note that only the axiom

(p! (q ! r)) ! ((p! q)! (p! r))

in the standard axiomatization of Int, say in [8], does not belong to V.
Semantically the consequence relation `Int in intuitionistic logic can be de-

�ned as
� `Int ' i� 8M8x ((M; x) j= �) (M; x) j= ');

where M ranges over intuitionistic models and x over points in M. As was
shown by Visser [25], the relation `V de�ned by

� `V ' i� 8M8x ((M; x) j= �) (M; x) j= ');

where M ranges over all transitive models of L, is the consequence relation of
his natural deduction system for V.

Now, considering hL;`Vi as a deductive system, we see that modus ponens
is not a derivable rule in it: p; p ! q `V q is refuted by the model based on a
single irreexive point at which only p is true. Moreover, the deduction theorem
does not hold in hL;`Vi either.

Proposition 8 There exists no formula �(p; q) such that, for all �, ',  ,

�;  `V ' i� � `V �( ; '):

Proof Suppose on the contrary that such a formula �(p; q) exists. Then we
have

>! ?;  `V ' i� > ! ? `V �( ; '): (11)

It should be clear that > ! ?; p 6`V q. On the other hand, if > ! ? holds in
a model M then M is based on the disjoint union of irreexive points, and so
every implication � ! � holds in it. It follows that all formulas are monotone
in M. Consequently,

> ! ?; �(p ^ q; q) `V �(p; q):

By (11) and > ! ?; p ^ q `V q, we must have > ! ? `V �(p ^ q; q), from
which > ! ? `V �(p; q) and so, again by (11), > ! ?; p `V q, which is a

contradiction. 2

Unfortunately, as far as we know, no �nite Hilbert-style axiomatization of
`V has been found yet.

3 The Kripke semantics we considered in the previous section is not enough
for dealing with extensions of V. An algebraic semantics for V was introduced
by Ardeshir and Ruitenburg [2]. The aim of this section is to de�ne a notion of a
general frame for V and develop to some extent duality theory for the algebraic
and relational semantics.
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We can get an impression how algebras for V may look like by representing
transitive frames F = hW;Ri as the algebras of cones F+ = hUpW;\;[;!; ;;W i

in which
X ! Y = fx 2W : 8y (xRy ^ y 2 X ) y 2 Y )g (12)

(the logical connectives ^, _, !, ?, > are interpreted in F+ by the operations
\, [,!, ;, W , respectively). Every such algebra is clearly a bounded (i.e., with
top and bottom) distributive lattice satisfying the following equations (a � b

means a ^ b = a):
a! b ^ c = (a! b) ^ (a! c);

b _ c! a = (b! a) ^ (c! a);

a! a = > and a � > ! a;

(a! b) ^ (b! c) � a! c:

Let us take these properties as a de�nition and call a bounded distributive
lattice A = hA;^;_;!;?;>i satisfying the equations above a V-algebra. Our
goal now is to show that all V-algebras are induced by frames, are subalgebras
of the corresponding algebras of cones, to be more exact. To this end we require
the following lemma on the existence of prime �lters in V-algebras.

Lemma 9 Suppose A = hA;^;_;!;?;>i is a V-algebra, r a prime �lter in

A and let C and D be subsets of A such that

8c1; : : : ; cm 2 C 8d1; : : : ; dn 2 D c1 ^ : : : ^ cm ! d1 _ : : : _ dn 62 r: (13)

Then there exists a prime �lter r0 in A such that C � r0, r0 \ D = ; and

rRr0, where

rRr0 i� 8a; b 2 A (a! b 2 r ^ a 2 r0 ) b 2 r0): (14)

Proof By Zorn's lemma, there is a maximal set r0 � C satisfying (13). We
show that r0 is the prime �lter we need. First, it is easily checked that r0 is a
�lter such that b 2 r0 whenever a 2 r0 and a! b 2 r. Since a ! a = > 2 r

for every a 2 A, we have r0 \ D = ;. So it remains to show that r0 is prime,
i.e., b1 _ b2 2 r

0 implies b1 2 r
0 or b2 2 r

0. Suppose b1; b2 62 r
0. Then there

are a 2 r0 and d1; : : : ; dn 2 D such that, for i = 1; 2,

a ^ bi ! d1 _ : : : _ dn 2 r:

Hence
(a ^ b1) _ (a ^ b2)! d1 _ : : : _ dn 2 r

and so, by distributivity,

a ^ (b1 _ b2)! d1 _ : : : _ dn 2 r;

which means that b1 _ b2 62 r
0. 2
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Theorem 10 All subalgebras of algebras of the form F+, F a transitive frame,

comprise (up to isomorphism) the variety (equational class) of V-algebras.

Proof Each subalgebra of F+ is clearly a V-algebra. Conversely, with each V-
algebra A = hA;^;_;!;?;>i we can associate the frame Ay = hW;Ri, where
W is the set of prime �lters in A and R is de�ned by (14). It is easily seen that
R is transitive, and using Lemma 9 one can prove that the map s : A 7! (Ay)

+

de�ned by s(a) = fr 2 W : a 2 rg is an embedding of A into (Ay)
+. Here

we show only that s(a) ! s(b) � s(a ! b). Suppose r 62 s(a ! b). Then
a! b 62 r. Put C = fag and D = fbg. By Lemma 9, we have a prime �lter r0

in A such that rRr0, a 2 r0 and b 62 r0, from which r 62 s(a)! s(b).

Thus, A is isomorphic to a subalgebra of hW;Ri+. 2

Following the standard model-theoretic terminology of modal logic, we call
a general V-frame any structure F = hW;R; P i in which hW;Ri is a transitive
Kripke frame and P a set of R-cones containing ; and closed under \, [, and
the operation ! de�ned by (12). If P = UpW then, as before, we call F a
Kripke frame and may not mention P explicitly. The dual of F, denoted by F+,
is the subalgebra of hW;Ri+ with domain P .

The proof of Theorem 10 shows that every V-algebra A is isomorphic to
its bidual (A+)

+, where A+ = hW;R; P i, hW;Ri = Ay and P = fs(a) : a 2
Ag. On the other hand, it is easy to construct a general V-frame F which is
not isomorphic to its bidual (F+)+. The following theorem gives an intrinsic
characterization of those frames that are isomorphic to their biduals.

Theorem 11 A general V-frame F = hW;R; P i is isomorphic to (F+)+ i� F

is descriptive in the sense that

� x = y i� 8X 2 P (x 2 X , y 2 X);

� xRy i� 8X;Y 2 P (x 2 X ! Y ^ y 2 X ) y 2 Y );

� hW;P i is compact, i.e., for all X � P and Y � fW � X : X 2 Pg, if

X [ Y has the �nite intersection property then
T
(X [ Y) 6= ;.

Proof Similar to the proof of Theorem 8.51 in [8]. 2

Example 12 Two examples of descriptive V-frames are shown in Fig. 1. The
frame F = hW;R; P i on the left consists of two irreexive points (represented
by �) which do not see each other; all the cones in the set P of possible values,
save W and ;, are indicated explicitly by curve lines. Arrows in the second
frame G de�ne its accessibility relation. It may be of interest to notice that
although these frames are �nite, they are not Kripke frames (i.e., their sets of
possible values do not contain all cones), which contrasts with the standard case
of frames for modal and intuitionistic logics.

Given a general V-frame F = hW;R; P i and a cone V in it, the structure
G = hV;R\ (V � V ); fX \ V : X 2 Pgi turns out to be a V-frame as well; it is
called a generated subframe of F.
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Figure 1:

A map f from W onto V is said to be a reduction (or p-morphism) of a
frame F = hW;R; P i to a frame G = hV; S;Qi if, for all x; y 2 W and X 2 Q,

xRy ) f(x)Sf(y),

f(x)Sf(y)) 9z 2 f�1(y) xRz,

f�1(X) 2 P .

The following duality theorem is proved in the standard way using Lemma 9
(cf. [8]).

Theorem 13 (i) If G = hV; S;Qi is a generated subframe of F = hW;R; P i

then the map f de�ned by f(X) = X \V , for X 2 P , is a homomorphism from

F+ onto G+.

(ii) If f is a homomorphism from a V-algebra A onto a V-algebra B then

f+ de�ned by f+(r) = f�1(r), for r a prime �lter in B, is an isomorphism

from B+ onto a generated subframe of A+.

(iii) If h is a reduction of F = hW;R; P i to G = hV; S;Qi then h+ de�ned by

h+(X) = h�1(X), for X 2 Q, is an embedding of G+ into F+.

(iv) If B is a subalgebra of a V-algebra A then the map h de�ned by h(r) =
r\B, r a prime �lter in A and B the universe of B, is a reduction of A+ to

B+.

Proof We show only (iv); the other items are proved analogously. Suppose
A+ = hW;R; P i and B+ = hV; S;Qi. It is straightforward to check that h is
well-de�ned, surjective, and that h�1(X) 2 P , for every X 2 Q. Let r1Rr2.
Then for all a; b 2 B with a ! b 2 r1 and a 2 r2, we have b 2 r2. Hence
h(r1)Sh(r2). Suppose now that h(r1)Sr2, where r1 2 W andr2 2 V . Then
condition (13) of Lemma 9 holds for r = r1, C = r2 and D = B � r2. So
there exists r0

2
2 W such that r1Rr

0
2
, C � r0

2
and r0

2
\ (B �r2) = ;. But

this means that h(r0
2
) = r2. 2

Although V and `V are characterized by the variety of V-algebras, the
connection between algebraic properties of this variety and the consequence
relation `V is not as close as it is between, say, intuitionistic logic and Heyting
algebras or normal modal logics and modal algebras. For instance, almost all
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non-pathological propositional logics are protoalgebraic in the sense of Blok and
Pigozzi [4]. However, as we show below, this is not the case for `V.

Roughly speaking, a consequence relation ` is protoalgebraic if there is a
close connection between designated elements and congruences in matrices for
`. A syntactic de�nition looks like this. ` is called protoalgebraic i� there exists
a set of formulas � = f'(p; q) : '(p; q) 2 �g in two variables p and q such that

� ` '(p; p), for all '(p; q) 2 �,

� p; f'(p; q) : '(p; q) 2 �g ` q.

Theorem 14 `V is not protoalgebraic.

Proof We use the following algebraic characterization of protoalgebraic conse-
quence relations. Consider a matrixM = (A; D), i.e., an algebra A together with
a subset D of the domain A of A. M is a matrix for a consequence relation ` if
V(�) � D implies V(') 2 D whenever � ` ' and V is a valuation in A. By 
D
we denote the largest congruence relation in A which respects D, i.e., such that
(a; b) 2 
D implies a 2 D i� b 2 D. Blok and Pigozzi [4] showed that a conse-
quence relation ` is protoalgebraic i� D1 � D2 implies 
D1 � 
D2 whenever
(A; D1) and (A; D2) are matrices for `. Consider now the matrices (F+; f>g)
and (F+; f>; ag), where F is the frame de�ned in Example 12. Clearly, both
of them are matrices for `V. It is easily veri�ed that 
f>g identi�es only a
and ? and 
f>; ag only > and a. Hence 
f>g 6� 
f>; ag, and so `V is not

protoalgebraic. 2

4 Let us now have a quick look at extensions of V. The �rst problem we
encounter with is what kind of extensions are worth considering. Of course,
as in the case of ExtInt, we can de�ne a formula-extension of V as a set of
formulas L that contains V and is closed under substitutions and `V (in the
sense that  2 L whenever � � L and � `V  ). Int as well as classical logic are
certainly formula-extensions of V. However, as we observed above, the class Q
of quasi-orders is not L-axiomatic. In other words, there is no formula-extension
of V whose frames are precisely all the quasi-orders. Many other natural classes
of frames, e.g. frames with the diagonal accessibility relations, are not de�nable
by means of formula-extensions.

A possible solution to this problem is to consider extensions not of the logic
V but of the consequence relation `V. The most general class of such extensions
consists of arbitrary �nitary (i.e., if � ` ' then � ` ' for some �nite � � �)
structural (i.e., closed under substitution) consequence relations containing `V.
Each of them can be looked at as the result of adding to `V a set � of inference
rules. Let `V + � denote the smallest �nitary structural consequence relation
containing `V and respecting the rules in �.

Example 15 Here are three consequence relations considered in [25].

`FPC = `V +
(> ! p)! p

>! p

11



is the consequence relation whose set of tautologies coincides with �GL (FPC
stands for \formal propositional calculus").

`Int = `V +
p; p! q

q
:

Formulas, as we know, are not enough to axiomatize `Int over `V, for they are
not able to separate the irreexive point from the class of quasi-orders. However,
it is not hard to see that

`FPC = `V + ((> ! p)! p)! (> ! p):

The consequence relation

`VL = `V + (p! q) _ ((p! q)! p):

is determined by the class of linear frames.

The semantic equivalents of the consequence relations introduced above are
the �nitary consequences j=�F determined by classes F of general V-frames in
the following way: � j=�F ' i� for any model M based on a frame in F ,

M j= �)M j= ':

Note, however, that in general the frame classes de�nable by such consequence
relations are not closed under the formation of generated subframes. To see this,
one can consider the consequence relation determined by the canonical frame for
Int. It is generated by the set of admissible rules in Int whose class of frames
is not closed under generated subframes simply because there are admissible
but not derivable rules in Int (for details see [23]). Although such consequences
are of de�nite interest from both logical and algebraic points of view,3 in this
paper we con�ne ourselves to considering only those of them that are de�nable
by classes of frames closed under the formation of generated subframes. They
can be obtained by \localizing" the de�nition above.

Namely, we say that a consequence relation ` is a V-consequence if it is
�nitary and characterized by a class F of general V-frames in the sense that `
coincides with the relation j=F such that � j=F ' i� for any modelM based on
a frame in F and any point x in M,

(M; x) j= �) (M; x) j= ':

The class fF : ` � j=Fg of frames for ` will be denoted by Fr `.
The corresponding notions for V-algebras can be de�ned as follows. For a

class A ofV-algebras we write � j=A ' i� there exists a �nite subset �0 of � such
that the equation

V
�0 � ' is valid in all members of A. The class fA :`�j=Ag

of algebras for ` is denoted by Alg `.
As follows from [25], all the consequence relations considered in Example 15

are V-consequences (the \�nitary part" of `FPC is characterized by the class
of all irreexive Kripke frames without in�nite ascending chains).

3Their algebraic equivalents are quasi-varieties of V-algebras.

12



Theorem 16 (i) A class of V-algebras is of the form Alg ` for a V-consequence

` i� it is a subvariety of the variety of all V-algebras.

(ii) A class of general V-frames is of the form Fr ` for a V-consequence `

i� it is closed under generated subframes, reductions, disjoint unions and it as

well as its complement are closed under the formation of biduals.

Proof (i) Let A = Alg `, for a V-consequence `. Then A is the class of
V-algebras de�ned by the equations

f
^

� � ' : � ` '; � is �niteg

and so A is a variety. Conversely, given a variety A contained in the variety of
V-algebras, one can easily check that Alg j=A coincides with A.

(ii) The closure conditions for classes of the form Fr ` are clear. Conversely,
assume that F is a class of general V-frames closed under generated subframes,
reductions, disjoint unions and it as well as its complement are closed under the
formation of biduals. First we show that j=A is �nitary. To this end suppose
that �0 6j=A ', for every �nite subset �0 of a set of formulas �. Take for each
such �0 a frame F 2 F refuting �0 ` ' and form the disjoint union G of all those
F. Then in view of the compactness of the descriptive frame (G+)+ 2 F , it must
refute � ` '. It follows that j=F is a V-consequence. So it remains to show
that F = Fr j=F . But this is obtained from (i) by using the results on duality
between general V-frames and V-algebras (see [13] for a similar argument).

2

The consequence relations in Example 15 are complete in the sense that,
for any �nite set of formulas � and formula ', if � 6` ' then there exists a
Kripke frame F 2 Fr ` such that � 6j=F '. Moreover, `Int and `VL are even
strongly complete (i.e., � in the previous de�nition may be in�nite), but this is
not so for `FPC (the proof is similar to the proof that GL is not strongly com-
plete). In contrast with superintuitionistic logics it is almost trivial to construct
incomplete V-consequences.

Proposition 17 (i) The consequence relation j=G, where G is the frame de�ned

in Example 12, is not complete.

(ii) `V + (p! q) _ (q ! p) is not complete.

Proof Let

'1 = (p! q) _ ((p! q)! p); '2 = (p! q) _ (q ! p):

One can easily show that a Kripke frame validates '1 i� it validates '2 i� it is
linear. However, G refutes '1 but validates '2. The claims of the proposition
follow immediately. 2

The class of all V-consequences ordered by inclusion forms a complete lat-
tice; we denote it by Ext `V. Having the isomorphism � between ExtInt and
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NExtGrz, it is natural to conjecture that there exists an isomorphism also be-
tween Ext `V and NExtL, for some L 2 NExtK4. A natural candidate for
L would be the logic Grz0 determined by all transitive frames without proper
clusters and in�nite strictly ascending chains. However, this is not the case.
Here we only illustrate the proof by the following weaker statement.

Theorem 18 The lattice of V-consequences containing `FPC is not isomorphic

to the lattice NExtGL.

Proof The codimension of an element c in a lattice D is the length of a longest
chain from c to the top element of D. For each frame F in Fig. 2, construct
the V-consequence characterized by F. One can check (by a straightforward
but rather tedious proof following, for example, [21]) that the consequence re-
lations associated with the frames in the �rst, second and third rows in Fig. 2
comprise all the

T
-irreducible consequences in Ext `FPC of codimensions 2,

3, and 4, respectively. However, one can show that NExtGL contains only 5T
-irreducible logics of codimension 4. Thus, the lattices under consideration

are not isomorphic. 2

5 From the semantical point of view, all the \peculiarities" of the language L
interpreted on transitive frames as well as of the logic V and its extensions we
observed in the three previous sections are explained by the fact that being in
an irreexive world x, we can talk about x using only ^ and _; ! is for talking
about successors of x. A way of improving the expressive power of L must be
clear: we just can add to it one more implication|let us denote it by ,!|whose
intended meaning in a transitive frame hW;Ri is the same as the meaning of
the standard intuitionistic implication in the quasi-order hW;Rri, where Rr is
the reexive closure of R:

x j= ' ,!  i� 8y 2W ((x = y _ xRy) ^ y j= ') y j=  ): (15)

The resulting \biarrow" language is denoted by L2.
Notice now that the original implication ! can be de�ned via ,! and the

standard necessity operator 2 on transitive frames:

x j= '!  i� x j= 2(' ,!  ):

And conversely, 2 is de�nable via ! and >:

x j= 2' i� x j= > ! ':

So instead of the biarrow language L2 we may consider the modal language
ML,! which results fromML by replacing! with ,!. ML,! is interpreted in
transitive frames F = hW;Ri by means of valuationsV of propositional variables
in UpW and the truth-relation de�ned by (1){(4), (15) and (6).

Let U be the set of ML,!-formulas that are valid in all transitive frames
and let

� `U ' i� 8M8x ((M; x) j= �) (M; x) j= '):

14
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It should be clear that the deduction theorem holds for `U and ,!:

�; ' `U  i� � `U ' ,!  :

One can easily check also that `U is algebraizable in the sense of [5] and so it
is protoalgebraic.

U can be considered as a normal modal logic on the intuitionistic basis. This
observation and completeness results of [28] provide a Hilbert-style axiomatiza-
tion for U and `U.

Theorem 19 The calculus U in the language ML,! with modus ponens and

substitution as its inference rules and the axioms

1. those of Int,

2. 2(p ,! q) ,! (2p ,! 2q), 2p ,! 22p, p ,! 2p,

3. 2p ,! (q _ (q ,! p))

is strongly complete with respect to the class of transitive frames, i.e.,

� `U ' i� � `U ':

Proof According to [28], any normal intuitionistic modal logic in the language
ML,!, in particular that axiomatized by U , is characterized by a class of de-
scriptive IM-frames F = hW;R,!; R; P i in which hW;R,!; P i is a descriptive
(quasi-ordered) frame for Int (i.e., ,! is interpreted via R,!), P is closed under
the standard 2 interpreted via R, F is tight with respect to R, i.e.,

xRy i� 8X 2 P (x 2 2X ) y 2 X);

and R,!�R�R,! = R. The logicU0, axiomatizable by 1{2 in the formulation of
our theorem, is characterized by the class of all descriptive IM-frames such that
R is transitive and R � R,!, and moreover, it is d-persistent in the sense that
for every descriptive frame hW;R,!; R; P i validating U

0, its underlying Kripke
frame hW;R,!; Ri also validates U

0.
Let us observe now that if a descriptive IM-frame hW;R,!; R; P i for U

0

validates 2p ,! (q _ (q ,! p)) then

Rr = R,!: (16)

Conversely, every (not necessarily descriptive) IM-frame for U0 satisfying (16)
validates this axiom. It follows that U is d-persistent and so canonical and
strongly complete for IM-frames with (16) or, in other terms, for the class of

transitive Kripke frames we are dealing with. 2

Remark. Not every general frame for V can be regarded as an IM-frame
because it is not necessarily closed under ,!; examples of that sort are presented
in Fig. 1. IM-frames for U de�ned in the proof above will be called U-frames (it
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will be always clear from the context whether the U-frames under consideration
are general or Kripke frames). Since R,! is uniquely determined by R, we may
omit R,! and denote these frames by F = hW;R; P i.

Let us consider now the class NExtU of normal extensions ofU, that is sets of
ML,!-formulas containing U and closed under modus ponens and substitution
(the closure under necessitation is ensured by the axiom p ,! 2p). The following
completeness result is an immediate consequence of the considerations above.

Proposition 20 Every logic in NExtU is characterized by a class of (descrip-

tive) U-frames. Conversely, every class of general U-frames determines a logic

in NExtU.

Here is a couple of examples of logics in NExtU. Kuznetsov [15] (see also
[17]) introduced an intuitionistic analog of classical provability logic GL:

I4 = U� (2p ,! p) ,! p:

The logic I4 is characterized by the class of irreexive Kripke frames without
in�nite ascending chains, i.e., by the same frames as GL but with a di�erent
interpretation of the implication.

Another example is due to Yashin [29] who showed that the logic

Y = I4 �22p ,! (p ,! q) _ (q ,! p)

is Novikov-complete in the sense that 2 is not de�nable in Int (it is \a new intu-
itionistic connective") and Y is a maximal logic in NExtU which is conservative
over Int.

Kuznetsov and Muravitskij [17] proved that there is a lattice isomorphism
between NExtI4 and NExtGL. Moreover, it turns out that in general the re-
lationship between the lattices NExtU and NExtK4 is similar to that between
ExtInt and NExtS4 discussed in Section 1. To show this, we take advantage of
the results on embeddings of intuitionistic modal logics into classical polymodal
logics obtained in [27, 28].

Let ML2 be the language with two necessity operators 2I and 2 (and the
implication !), and let T00 be the translation from ML,! into ML2 pre�xing
2I to all subformulas and replacing ,! with !. Given logics L1 and L2 in the
unimodal languagesML2 �2 and ML2 �2I , respectively, denote by L1 
L2
their fusion, the smallest bimodal logic inML2 to contain L1[L2. By IntK we
mean the minimal normal intuitionistic modal logic in the languageML,! (i.e.,
the smallest set of formulas containing Int, the modal axiom of K and closed
under modus ponens, substitution and necessitation). As is shown in [27],

(i) the map
�M = f' 2 ML,! : T00(') 2Mg;

is a lattice homomorphism from NExt(S4
K) onto NExtIntK (preserving the
�nite model property and decidability);
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(ii) each logic IntK� � is embedded by T00 into any logic M in the interval

(S4
K)� T00(�) �M � (Grz 
K)�mix� T
00(�);

where mix = 2I22Ip$ 2p, and

(iii) the map

�(IntK � �) = (Grz 
K)�mix� T
00(�)

is a lattice isomorphism from NExtIntK onto NExt(Grz 
 K) �mix. (As
before, the operation � means \take the union and close it under the postulated
inference rules".)

If we consider nowK4 as a bimodal logic inML2 by de�ning 2I' = '^2',
then we may assumeK4 to be in the class NExt(S4
K4). Since this \bimodal"
K4 is characterized by the class of frames of the form hW;Rr; Ri and in view of
Proposition 21 in [28], �K4 = U. Therefore, U has the �nite model property
and � is a lattice homomorphism from NExtK4 onto NExtU. The logic

Grz0 =K4�2(2(p! 2p)! p)! 2p

is known to be determined by the class of �nite Kripke frames without proper
(i.e., containing � 2 points) clusters (see e.g. [1]). U is characterized by this
class too. It follows that �Grz0 is also U. And since mix 2 K4 and the
\bimodal" Grz0 is in NExt(Grz 
K4), we �nally obtain

Theorem 21 The map � is an isomorphism from NExtU onto NExtGrz0.

It is not hard to see also that modulo clusters the languages ML,! and
ML have the same functional power on the class of transitive frames. For an
ML,!-formula ', let 'F be the operator induced by ' on the class of transitive
frames (under valuations ofML,!) in the same way as in the intuitionistic case.

Proposition 22 f'F : ' 2 ML,!g = f'
4
F

: ' 2 MLg, where F ranges over

the class of all transitive frames.

Proof Similar to the proof of Proposition 1. 2

To prove that the languages under consideration have the same axiomatic
power we require frame-basedML,!-formulas simulating canonical formulas for
K4 of [30]. Namely, with every �nite rooted transitive frame F = hW;Ri without
proper clusters|let a0; : : : ; an be all its points and a0 the root|and a set D of
antichains in F we associate a formula (F;D;?) which is the implication (,!)
whose consequent is p0 and the antecedent is the conjunction of all formulas of
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the form

2p0 if :a0Ra0;

2pi ,! pi if aiRai;

ij = (
V
�j ,! pj) ,! pi if aiRaj ;

d =
^

aj2W�d"

(
V
�j ,! pj) ,!

_
ai2d

pi if d 2 D;

? =

n̂

i=0

(
^

�j ,! pj) ,! ?;

where

�j =

(
fpk : ak =2 aj"g if ajRaj

f2pj ; pk : ak =2 aj"g if :ajRaj ,

and
X"= fy 2W : 9x 2 X xRyg; X" = X [X";

X#= fy 2 W : 9x 2 X yRxg; X# = X [X# :

Given a frame G = hV; Si, a partial map f from V onto W is called a subreduc-
tion of G to F if, for all x; y 2 domf ,

(R1) xSy implies f(x)Rf(y);

(R2) f(x)Rf(y) implies 9z 2 x" f(z) = f(y).

A subreduction f is said to be co�nal if domf" � domf#.

Proposition 23 For any transitive frame G = hV; Si, G 6j= (F;D;?) i� there

is a co�nal subreduction of G to F satisfying the following (closed domain)

condition

(CDC) :9x 2 domf" �domf 9d 2 D f(x") = d".

Proof ()) Suppose G refutes (F;D;?) under some valuation (in UpV ) and
� is the premise of (F;D;?). De�ne a partial map from V onto W by taking,
for x 2 V ,

f(x) =

�
ai if x 6j= pi, x j= �i, x j= �

unde�ned otherwise

and show that it is a co�nal subreduction of G to F satisfying (CDC). Notice
�rst that f is a partial function. Indeed, since F contains no proper clusters, if
ai 6= aj then either :aiRaj or :ajRai; in the former case pj 2 �i and in the
latter pi 2 �j .

Let xSy, f(x) = ai and f(y) = aj . Then (since the valuation is intuitionistic)
x 6j= pj from which pj =2 �i and so aj 2 ai", i.e., either aiRaj or ai = aj . Now,
if ai = aj and :aiRai then 2pi 2 �i, so x j= 2pi and y j= pi, which is a
contradiction. Thus, f satis�es (R1). To show that it satis�es (R2) suppose
f(x) = ai and aiRaj . If ai 6= aj then x 6j= pi, x j= ij , and so there is y 2 x"
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such that y j= �j and y 6j= pj , i.e., f(y) = aj . And if ai = aj then, since x 6j= pi
and x j= 2pi ,! pi, we have x 6j= 2pi, i.e., there is y 2 x" such that y 6j= pi, and
again f(y) = ai.

Since, by the de�nition, f(x) = a0 whenever x 6j= (F;D;?), the map f is a
surjection. The fact that f is co�nal is clearly ensured by the conjunct ? and
that it satis�es (CDC) by d.

(() Let f be a co�nal subreduction of G to F satisfying (CDC). De�ne a
valuation in G by taking

x j= pi i� x =2 f
�1(ai)#:

By a straightforward inspection one can easily verify that under this valuation
x 6j= (F;D;?) for every x 2 f�1(a0). 2

Corollary 24 For every Kripke frame G, every �nite rooted frame F without

proper clusters and every set D of antichains in F,

G 6j= �(F;D;?) i� G 6j= (F;D;?):

Proof Follows from Proposition 23 and the refutability criterion for canonical
formulas in [30]. 2

Remark. Actually, it is not hard to show that Proposition 23 holds for any
general U-frame G. It follows that the formulas of the form (F;G;?) are
enough to axiomatize all logics in NExtU.

Proposition 25 A skeleton-closed class C of transitive frames is ML,!-axio-

matic i� it is ML-axiomatic.

Proof If C is axiomatized by a set � of ML,!-formulas then it is also ax-
iomatizable by the set T00(�). Suppose now that L is the logic in ML char-
acterized by C. Since C is skeleton-closed, it is axiomatizable by a set � of
canonical formulas for K4 built on frames without proper clusters. The logic
�L 2 NExtU is also characterized by C. It follows that (F;D;?) 2 �L

whenever �(F;D;?) 2 �. Now, if G =2 C then G 6j= �(F;D;?), for some
�(F;D;?) 2 � and so G 6j= (F;D;?). Thus, C is axiomatized by �L (or by

the ML,!-formulas (F;D;?) such that �(F;D;?) 2 �). 2

As we saw in Section 2, not allML-de�nable skeleton-closed classes of tran-
sitive frames are L-de�nable. The situation changes drastically, however, when
we consider frame classes de�nable by rules. Call a class of general V-frames
L-rule de�nable if it is of the form Fr `, for some V-consequence `. A class of
transitive Kripke frames is L-rule de�nable if it coincides with the subclass of
all Kripke frames in some L-rule de�nable class of general V-frames.

Theorem 26 (i) Let C be an L2-de�nable class of general U-frames. Then

there exists an L-rule de�nable class C0 of general V-frames such that C coincides

with the subclass of all U-frames in C0.

(ii) A class of Kripke frames is L2-de�nable i� it is L-rule de�nable.
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Proof Clearly, (ii) follows from (i), and to prove (i) it su�ces to show that for
any L2-de�nable class of descr iptive U-frames, there exists an L-rule de�nable
class C0 of descriptiveV-frames such that C consists of precisely the U-frames in
C0 (for a V-frame F is a U-frame i� (F+)+ is a U-frame). To this end consider
the variety V of V-algebras generated by C+ = fF+ : F 2 Cg. V = HSPC+,
where H denotes the operation of taking homomorphic images, S the operation
of taking subalgebras, and P the operation of forming direct products. It is
enough to show that for any A 2 V such that A+ is a U-frame, we have A+ 2 C.
Suppose that A 2 HSPC+ and A+ is a U-frame. Then A 2 HSC+, since C+

is closed under products. By Theorem 13, there are descriptive frames H and
G such that G 2 C, A+ is a generated subframe of H and G is reducible to H
by some f . For a frame F = hW;R; P i, denote by P b the smallest set of cones
containing P and such that Fb = hW;R; P bi is a U-frame. In other words, P b

is the closure of P under the operations ,!, !, \ and [. One can easily show
that Hb is a reduct of Gb = G (since f�1(X � Y ) = f�1(X) � f�1(Y ), for
� 2 f,!;!;\;[g) and that A+ = (A+)

b is a generated subframe of Hb. And
since C is closed under generated subframes, which are U-frames, and reducts,
which are also U-frames, we �nally obtain A+ 2 C. 2
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