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Abstract

This paper investigates (modal) extensions of Heyting-Brouwer logic, i.e., the logic

which results when the dual of implication (alias coimplication) is added to the lan-

guage of intuitionistic logic. We �rst develop matrix as well as Kripke style semantics

for those logics. Then, by extending the G�odel-embedding of intuitionistic logic into

S4, it is shown that all (modal) extensions of Heyting-Brouwer logic can be embedded

into tense logics (with additional modal operators). An extension of the Blok-Esakia-

Theorem is proved for this embedding.

1 Introduction

1 It is known that the propositional intuitionistic logic Int (formulated in the propositional

language LInt with connectives ^, _, !, >, ?) is determined by Heyting algebras, i.e.,

algebras hA;^;_;!;?;>i such that hA;^;_;?;>i is a bounded distributive lattice and

a! c is the relative pseudo-complement of a with respect to c. That is to say,

a ^ b � c, b � a! c; for all b 2 A:

(Here and in what follows we put x � y , x ^ y = x.) While join and meet are dual to

each other in distributive lattices this is not the case in Heyting algebras since there is

no dual to the relative pseudo-complement. Hence this completeness result implies that

the algebraic interpretations of conjunction and disjunction of intuitionistic logic are not

dual to each other. Duality between conjunction and disjunction is restored, however, by

adding to the language of intuitionistic logic a connective interpreted as the dual relative

pseudo-complement: Denote by LHB the language obtained from LInt by adding the

connective �! . Then the Heyting Brouwer-logic HB is de�ned (in the language LHB)

1Keywords: Coimplication, Heyting-Brouwer-Logic, Tense Logic, Modal Logic, Blok-Esakia-

Isomorphism.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION 2

as the logic determined by the Heyting-Brouwer-algebras2 (HB-algebras, for short), i.e.,

Heyting algebras equipped with a new operation �! satisfying for all a; b; c,

a _ b � c, b � a �! c:

Clearly, in HB-algebras we have complete symmetry between the operators ^;>;! and

_;?; �! , respectively, and it is interesting to investigate the consequences for HB and its

extensions and compare the results with Int and the lattice of super-intuitionistic logics3

(alias intermediate logics).

In the formulation ofHB given above the meaning of the connective �! corresponding

to the dual relative pseudo-complement remains unclear and its main motivation is just

symmetry. For an interpretation of �! Kripke type semantics is helpful4. Call a partially

ordered set hg;�i an Int-frame. With hg;�i we associate the Heyting-algebra

hg;�ih = hC(g);\;[;!; ;; gi;

where C(g) denotes the set of all cones5 in hg;�i and

a! b = fx 2 g : (8y 2 g)(x � y ^ y 2 a) y 2 b)g:

Then Int is the logic determined by the class of Heyting-algebras of the form hg;�ih.

What is the meaning of �! formulated in terms of �? It will turn out that for the

operation

a �! b = fx 2 g : (9y 2 g)(y � x ^ y 2 b� a)g; for all a; b 2 A;

the algebra hg;�i+ = hC(g);\;[;!; �! ; ;; gi is a HB-algebra, and that each HB-algebra

can be represented as a subalgebra of an algebra of the form hg;�i+. If we interpret

with Kripke [25] the points in g as points in time, at which we may have certain pieces of

information, then extending the language LInt to the language LHB means that we add,

in a symmetrical way, a connective talking about the past to the connectives of Int which

talk about the future only. Truth of ' �!  at a point x means that at some moment in

the past (of x)  was known while ' was unknown6. A similar step has been taken in

classical modal logic: We start with modal logics above S4 with one modal operator 2

talking about sets of the form fy : x � yg and get tense logics by adding another modal

operator 2�1 talking about sets of the form fy : x ��1 yg. We note that in tense logic

the operator 2 is mostly denoted by G (it is always going to be) and the operator 2�1 is

2Notice that Heyting-Brouwer-algebras are called double Heyting algebras in [22], biHeyting-algebras in

[26], and Semi-Boolean algebras in [29] and [31]. We choose the name Heyting-Brouwer-algebras in order

to emphazise the connection with Heyting-Brouwer logic, a term introduced by Rauszer in [29].
3A subset � of LInt is called super-intuitionistic i� it contains Int and is closed under modus ponens

and substitutions.
4Consult [29] and [31] for some other reasons to study HB-logic. In [26] one may �nd a motivation in

terms of category theory.
5A subset a of g is a cone i� y 2 a whenever x � y and x 2 a.
6Obviously, also for the interpretation of Int as the logic of scienti�c research in the sense of Grzegorczyk

[21], the connective �! has a clear meaning. We do not see however a natural interpretation of �! in

terms of the interpretation of Int as the logic of constructive proofs, see e.g. [36] page 9.
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mostly denoted by H (it has always been). (See e.g. [2], [3], [6] and below for information

on tense logics.) The connection between Int and S4 has been formalized by G�odel's [18]

embedding of Int into S4. Moreover, this embedding also interprets all intermediate logics

in extensions of S4, as has been observed by Dummett and Lemmon in [10]. [27], [4], and

[11] are investigations of the structure of those embeddings and a survey of the results is

given in [8]. We shall investigate in this paper the extent to which there holds a similar

relation between tense logics and extensions of HB.

Quite often symmetry allows the introduction of elegant concepts and techniques. In

the present paper we show this for the operators! and �! by taking into account modal

operators based on HB and its extensions. That is to say, we shall develop a theory of

modal logics based on extensions of HB and compare them with modal logics based on

intermediate logics. We can indicate already why certain things become more elegant in

the present case. Let us call a unary connective 
 3-like (or a possibility-operator) in a

logic � i�

F3 = f
(p _ q)$
p _
q; :
?g (1)

is contained in � and let us call 
 2-like (or a necessity-operator) in a logic � i�

F2 = f
(p ^ q)$
p ^
q; 
>g (2)

is contained in �. For modal logics based on classical logic each 3-like connective
 de�nes

a 2-like connective 2 via 2 := : 
 : satisfying moreover :2:p $ 
p and vice versa.

In intuitionistic logic, however, this duality does not hold, i.e., : 
 : does not always

distribute over disjunctions when 
 distributes over conjunction and it is not dual to


. Adding a 3-like connective to intuitionistic logic results in modal logics which behave

rather di�erent from those obtained by adding a 2-like connective to intuitionistic logic

(consult e.g. [17], [7], [41], and [39] for discussions of modal logics based on intuitionistic

logic and the di�erence between 3- and 2-like connectives based on intuitionistic logic.)

The reason is - of course - the lack of duality between conjunction and disjunction in

intuitionistic logic as explained above. So, by adding �! to the language 2- and 3-like

operators will become dual to each other again and we shall be able to develop a quite

elegant theory for modal logics based on extensions of HB.

The paper is organized as follows. Section 2 introduces (modal) super-HB-logics from

the syntactical point of view. Sections 3 and 4 deal with matrix and Kripke semantics

for them. Also in Section 4 various super-HB-logics are introduced with the help of their

Kripke frames. Section 5 is concerned with duality between matrices and Kripke frames.

In Section 6 the classical modal logics into which (modal) super-HB-logics are embedded,

i.e. (extended) tense logics, are introduced. Sections 7 and 8, where this embedding is

studied, form the main part of this paper. Section 5 is not required for those sections and

Kripke semantics is used only to explain certain constructions. A reader familiar with

algebraic reasoning can read the sections on the embedding without knowledge of Kripke

semantics. Section 9 shows that the embedding can be used to obtain rather general

results on completeness and the �nite model property of (modal) super-HB-logics.

We assume that the reader has basic knowledge of algebraic as well as Kripke semantics

for modal logics, tense logics, and intermediate logics. A number of proofs and derivations
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are left to the reader since they are straighforward combinations of techniques known from

those three types of logics. Sometimes proofs are omitted since they are straightforward

extensions of results obtained by C. Rauszer, who has investigated the logic HB itself

(and the predicate logic based on HB) in [29], [30], and [31]. We advise the reader to have

a look at [29].

Acknowledgments. The �rst to thank is Piotr Lukowski for it was his talk at the MLG-

workshop 1995, Kanazawa, which convinced me that logics with coimplication are worth

studying. I also wish to thank Hiroakira Ono for a number of helpful discussions of the

subject. I am grateful to an anonymous referee for a number of helpful remarks and for

pointing out an error in an earlier version of this paper.

2 Syntax

We shall introduce the logics which will be investigated in this paper. All propositional

languages L investigated will contain the connective! and we call a set � � L a L-logic i�

it is closed under substitutions and modus ponens: p; p! q=q. The following Hilbert style

axiomatization of HB was delivered by C. Rauszer in [29]. We abbreviate �:p := p �! >

and :p := p! ?. Take any set of formulas H1 � LInt such that Int is the closure of H1

under substitutions and modus ponens and put

H2 = fp! (q _ (q �! p)); (q �! p)! �:(p! q);

(r �! (q �! p))! ((p _ q) �! p);:(q �! p)! (p! q);:(p �! p)g:

Then HB is the smallest LHB-logic containing H1 [H2 and closed under the rule

(RN:�:) p=:�:p:

We note that HB can also be axiomatized by replacing the rule (RN:�:) by the axiom

:�:> and the rule

(RC�:) p$ q=�:p$ �:q:

A super HB-logic � is a LHB-logic containingHB. The smallest super HB-logic containing

a super-HB-logic � and a set of formulas � is denoted by � + �. Notice that not all

super-HB-logics are closed under (RN:�:). So we call a super-HB-logic normal i� it is

closed under (RN:�:) or, equivalently, under (RC�:)
7. The smallest normal super-HB-logic

containing a logic � and a set of formulas � is denoted by ���. Notice that both the set

of super-HB-logics as well as the set of modal HB-logics form complete lattices induced

by the inclusion relation.

Denote by LML the language obtained from LHB by adding two modal connectives 2

and 3. The basic modal HB-logic ML is the smallest LML-logic which contains HB, the

7The distinction between normal and non-normal super-HB-logics will turn out to re
ect the well-

known distinction between non-normal and normal modal logics (cf. e.g. [33]). This is the reason for our

terminology. Note that there is no such natural subclass of the class of intermediate logics. So we shall

denote by both Int+� as well as by Int�� the smallest intermediate logic containing a set � of formulas.
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formulas in F2 and F3 formulated for the connectives 2 and 3, respectively, and which

is closed under (RC�:),

(RC2) p$ q=2p$ 2q and (RC3) p$ q=3p$ 3q:

A modal HB-logic is a LML-logic containing ML. A normal modal HB-logic is a modal

HB-logic which is closed under the rules (RC�:), (RC2) and (RC3). We note that normal

modal HB-logic are precisely those modal HB-logic which are closed under (RN:�:),

(RN2) p=2p and (RN:3�:) p=:3�:p:

An interesting consequence of this easily proved observation is that Ker� is the maximal

normal modal HB-logic contained in a modal HB-logic �. Here we put8

Ker� = f' : s' 2 � for all sequences s 2 f:�:;2;:3�:g�g;

where S� denotes the set of �nite strings over a set S. Similar to the de�nition for super-

HB-logics we denote by � + � (� � �) the smallest (normal) modal HB-logic containing

a modal HB-logic � and a set of formulas �. Examples of super-HB-logics and modal

HB-logics will be given in the section on Kripke semantics. We note that it is certainly of

interest to investigate modal logics based on super-HB-logics with only one modal operator,

2 or 3. Those logics, however, are included in our de�nition of modal HB-logics since we

may identify them in a straightforward way with extensions of ML2 := ML � p $ 3p

and ML3 :=ML� p$ 2p, respectively. Also, we shall mostly formulate our results for

modal HB-logics and not for super-HB-logics since we can identify HB with ML23 :=

ML2 � p$ 2p.

3 Matrix semantics

Recall some basic de�nitions from matrix theory (cf. e.g. [37], [5], or [9]). Consider a

propositional language L with connectives f1; : : : ; fk. A L-matrix is a structure M =

hA; F i such that A = hA; fA1 ; : : : ; f
A
k i is an L-algebra and F � A. A valuation V inM is

a homomorphism from the algebra of formulas L into A. A formula ' is valid in a matrix

M, in symbolsM j= ', if V (') 2 F , for all valuations V . The logic ThM of a matrixM

is the set of all formulas ' which are valid in M and the logic of a class of matrices M is

ThM =
\
fThM :M 2Mg:

We also say that � = ThM is determined by M. Conversely, for each L-logic � and each

class of L-matrices M we put

MatM� = fM 2M :M j= �g:

We put Mat� = MatM� when M is the class of all L-matrices. Suppose that A and B are

L1 and L2-algebras, respectively, and that L � L1\L2. We say that a mapping f : A ! B

8We take the notation Ker� from modal logic, see e.g. [[33], page 174] and [9].
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is a L-homomorphism i� f(gAa1; : : : ; ak) = g
B
f(a1); : : : ; f(ak), for all connectives g in L

and a1; : : : ; ak 2 A. A number of operations on matrices are required. Given two L-

matrices hA; F i and hB; Gi we shall call hB; Gi a homomorphic image of hA; F i if there

exists a L-homomorphism f from A onto B such that f [F ] � G. hB; Gi is called a relative

of hA; F i if there exists a L-homomorphism from B into A such that f�1F � G. Also, for

each ordinal � and family hMi = hAi; Fii : i 2 �i of matrices we call

�Y

i=0

Mi := h
Y
hAi :2 �i;

Y
hFi : i 2 �ii

the direct product of this family. If U is an ultra�lter on the powerset of � and Mi =

M = hA; F i, for all i 2 �, then

�Y

i=0

M=U := h
Y
hAi : i 2 �i=�U ;

Y
hFi : i 2 �i=�U ii;

is the ultrapower of M, where g1 �U g2 , fi 2 � : g1(i) = g2(i)g 2 U . (We use, for a

relation R and a congruence relation �, R=� to denote the canonical quotient relation

induced by �.) For two classes of matrices V and M we denote by HVM the class of

homomorphic images of matrices in M which are in V , by PM the class of products of

families of matrices in M , by RVM the class of relatives of matrices in M which are in V ,

and by PUM the class of ultrapowers of matrices in M . The following proposition is easy

to check (cf. similar results in e.g. [37] and [5]).

Proposition 1 For all logics �, Mat� is closed under the operations HV ;RV ;P;PU; for

all V .

Now call an algebra A = hA;^;_;!; �! ;2;3;?;>i a modal HB-algebra (a ML-

algebra, for short) if the reduct without 2 and 3 is a HB-algebra and 2> = >; 3? = ?;

2(a ^ b) = 2a ^2b; and 3(a_ b) = 3a_3b. A �lter in a modal algebra is a �lter in the

underlying Heyting algebra. Call a matrix M = hA; F i a modal HB-matrix (ML-matrix,

for short) if A is a ML-algebra and F is a �lter in A. Let us call a ML-matrixM = hA; F i

a pointed ML-algebra i� F is a prime �lter and let us call M a normal ML-matrix i�

F = f>g. Often we shall identify the normal matrix hA; f>gi with the algebra A. The

following is a standard result on the existence of prime �lters which we shall use.

Lemma 2 Suppose that F1; F2 are subsets of a Heyting-algebra A such that (i) F1 is

closed under ^, i.e. b1; b2 2 F1 ) b1 ^ b2 2 F1 holds, (ii) F2 is closed under _, i.e.

b1; b2 2 F2 ) b1 _ b2 2 F2 holds, and (iii) a 6� b, for all a 2 F1 and b 2 F2. Then there

exists a prime �lter P in A such that F1 � P and P \ F2 = ;.

Theorem 3 (1) Each modal HB-logic � is determined by a class of ML-matrices hA;Di

satisfying A j= Ker�. Conversely, each ML-matrix determines a modal HB-logic.

(2) Each modal HB-logic � is determined by a class of pointed ML-algebras hA;Di

satisfying A j= Ker�.
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(3) A modal HB-logic is determined by normal ML-matrices i� it is normal. Moreover,

a class of normal ML-matrices M is a variety i� there exists a normal modal HB-logic �

such that M = Mat�.

Proof. First observe the

Claim. Let � be a normal modal HB-logic. Then the relation �� de�ned by ' ��

 , ' $  2 � de�nes a congruence on LML and the quotient algebra LML=�� is a

ML-algebra.

For the proof observe that the corresponding result is shown for normal super-HB-

logics in [29]. Now the implication ' ��  ) 2' �� 2 and 3' �� 3 , for all formulas

' and  , follows from the closure of � under (RC2) and (RC3). Hence �� is a congruence

relation. That LML= �� is a ML-algebra follows from the condition F2 [F3 � �.

Fix a modal HB-logic �.

(1) Form the matrix M = hA;Di where A := LML= �Ker� and D := f['] : ' 2 �g

with ['] = f : ' �Ker�  g. By the claim above A is a ML-algebra and D is a �lter. It is

easy to show now that � = ThM and Ker� = ThA. The converse direction is left to the

reader.

(2) Suppose that ' 62 �. By (1) we �nd a ML-matrix M = hA; F i validating � such

that there is a valuation V with V (') 62 F . By Lemma 2 we �nd a prime �lter P with

F � P and V (') 62 P . Hence hA; P i is a pointed ML-algebra validating � (since F � P )

and refuting '.

(3) One direction follows from (1) and the fact that Ker� = � i� � is normal. For

the other direction it su�ces to observe that :�:> = 2> = :3�:> = > holds in all ML-

algebras. The second part of (3) follows from the fact that for all equations ' =  with

'; 2 LML and all ML-algebras A, we have A j= ' =  , A j= '$  = >. a

Note that by the second part of (3) we know that the lattice of normal modal HB-

logics containing ML3 (ML2) is isomorphic to the lattice of subvarieties of the variety

of ML-algebras validating the equation a = 2a (a = 3a). Certainly those two lattices of

varieties are isomorphic to each other (by duality) and we conclude:

Corollary 4 The lattice of normal modal HB-logics containing ML3 is isomorphic to the

lattice of normal modal HB-logics containing ML2.

Recall that this result on the equivalence of possibility-operators and necessity-operators

is in contrast with the situation for modal logics based on intermediate logics (cf. e.g. [39]

and [17]).
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4 Kripke semantics

Having established a simple and standard algebraic completeness result for modal HB-

logics we now develop Kripke semantics. A HB-frame is a structure G = hg;�; Ai such

that hg;�i is a partial ordering and A is a set of cones with respect to hg;�i which is

closed under intersection, union and the operations ! and �! introduced above. We

extend the notion of a HB-frame to the notion of a ML-frame by saying that a structure

G = hg;�; R2; R3; Ai is a ML-frame if the reduct hg;�; Ai is an HB-frame and A is closed

under the modal operations

2a := fx 2 g : (8y 2 g)(xR2y ) y 2 a)g;

3a := fx 2 g : (9y 2 g)(xR3y ^ y 2 a)g;

and R2 and R3 satisfy

� �R2� �= R2; (3)

�
�1 �R3� �

�1= R3: (4)

We call G a full frame i� A consists of all cones in hg;�i. In this case we often write

g = hg;�; R2; R3i instead of G. We note that the set of all cones is always closed under

the operations 2 and 3, since � �R2 � R2 and ��1 �R3 � R3 follow from (3) and (4),

repectively9.

With each ML-frame G we associate the ML-algebra G+ de�ned by

G+ = hA;\;[;!; �! ;2;3; ;; gi:

(We leave the straightforward proof that G+ is a ML-algebra to the reader. One may also

combine proofs of similar results from [29] and [42].) A �ltered ML-frame is a structure

F = hG; F i such that G is a ML-frame and F is a �lter in G+. A pointed ML-frame

is a structure hG; xi such that G is a ML-frame and x 2 g. We identify hG; xi with

the �ltered ML-frame hG; fa 2 G+ : x 2 agi and we identify a ML-frame G with the

�ltered ML-frame hG; fggi. The ML-matrix corresponding to a �ltered frame F = hG; F i

is F+ = hG+; F i. Filtered frames form a semantics for modal HB-logics in the standard

way: A valuation in a �ltered frame is a homomorphism from LML into G+. Now all the

semantic notation can be translated from matrices to �ltered frames, e.g., a formula is

valid in hG; F i i� it is valid in hG+; F i. We are going to show that all modal HB-logics are

determined by �ltered frames. To this end we asscociate with each ML-algebra A its Stone

representation A+ = hA+;�; R2; R3; �[A]i, where A+ denotes the set of prime �lters in

A and, for X;Y 2 A+,

X � Y , X � Y;

XR2Y , (8a 2 A)(2a 2 X ) a 2 Y );

XR3Y , (8a 2 A)(a 2 Y ) 3a 2 X);

9It is possible to work with frames satisfying only these weaker conditions on the connection between

�, R2 and R3. However, for the investigation of embeddings into tense logics with modal operators the

stronger conditions (3) and (4) will be quite useful.
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�[A] = f�(a) : a 2 Ag; where �(a) = fX : a 2 Xg:

We leave it to the reader to prove that A+ is a ML-frame and that (A+)
+ ' A. (The proof

is standard by using Lemma 2. The reader may also combine proofs of similar results from

[19], [7], [42], [29].) Clearly the converse, i.e. (G+)+ ' G, only holds for a special class of

frames: We call - following [42] - a ML-frame G descriptive i�

(8x; y)(x � y , (8a 2 A)(x 2 a) y 2 a));

(8x; y)(xR2y , (8a 2 A)(x 2 2a) y 2 a));

(8x; y)(xR3y , (8a 2 A)(y 2 a) x 2 3a));

and for every X � A and Y � fg� a : a 2 Ag we have
T
(X [Y) 6= ; whenever X [Y has

the �nite intersection property.

Let us also put, for each ML-matrix M = hA; F i, M+ := hA+; f�(a) : a 2 Fgi. The

proof of the following theorem is left to the reader who may consult again [19], [7], [42]

for proofs of similar results.

Theorem 5 (M+)
+ 'M, for all ML-matrices M. (F+)+ ' F i� F is descriptive, for

all �ltered ML-frames F . (Here hG; F i is called descriptive i� G is descriptive.)

We are in a position now to state the completeness result for Kripke-semantics.

Corollary 6 (1) Each modal HB-logic is determined by a class of �ltered descriptive ML-

frames.

(2) Each modal HB-logic is determined by a class of pointed descriptive ML-frames.

(3) A modal HB-logic is normal i� it is determined by a class of ML-frames.

Proof. (1) Consider a modal HB-logic �. � is determined by a class of modal HB-matrices

M , by Theorem 3 (1). Hence, by Theorem 5, � is determined by M+ = fM+ :M 2Mg.

(2) � is even determined by a class of pointed ML-algebras M 0, by Theorem 3 (2).

Certainly M+ is a descriptive pointed ML-frame whenever M is a pointed ML-algebra.

Thus, by Theorem 5, (M 0)+ = fM+ :M2M 0g is as required.

(3) Left to the reader. a

We call a normal modal HB-logic complete i� it is determined by its full �ltered frames.

It is time to introduce some examples. Certainly HB is the logic determined by all full

HB-frames and ML is the logic determined by all full ML-frames.
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1.1 The logic Tree := HB � :((p �! q) ^ (q �! p)) is determined by the class of full

frames hg;�i which are trees.10

Notice that Tree is a conservative extension of Int, i.e., Tree\LInt = Int, since Int

is determined by the class of trees. It seems that for the semantic interpretations of

Int in terms of information structures (cf. [25]) as well as for the interpretation as

the logic of scienti�c research (cf. [21]) the extension of Int to Tree is more natural

than the one given by HB.

1.2 The logic LIN := Tree � (p ! q) _ (q ! p) is determined by the class of linear

orderings.

1.3 HBC := HB + p _ :p is the logic determined by the pointed frames hhg;�i; xi in

which x is �-�nal, i.e. fy : x � yg = fxg.

Maybe this logic can be interpreted by extending Grzegorczyk's interpretation [21]

of Int to the situation in which scienti�c research has come to an end.

1.4 The logic HB� p _ :p coincides with classical logic.

The last two examples show the di�erence between logics de�ned by � (i.e. taking

closure also under p=:�:p) and logics de�ned by using +.

1.5 The normal Heyting-Brouwer-extension �B of an intermediate logic � is the smallest

normal super-HB-logic containing �. For a class of Heyting-algebras M denote

by MB the class of all those HB-algebras whose reducts without the dual relative

pseudocomplement are in M . It is easily shown that �B = Th(fA : A j= �gB). It

is an interesting open problem whether �B is always a conservative extension of �.

However, note that this is true for complete intermediate logics � because for each

Heyting algebra of the form hg;�ih 2M we have hg;�i+ 2MB .

1.6 Call a logic � formulated in the language L23 of intuitionistic logic with two new

modal operators 2 and 3 a normal intermediate modal logic if it contains Int, F2,

F3, and is closed under (RC2) and (RC3). We denote the smallest normal interme-

diate logic by IntK23. Normal intermediate modal logics have been investigated in

e.g. [7], [28], [15], [41], [42], [39]. Omitting the closure conditions concerning �! for

A, ML-frames hg;�; R2; R3; Ai form a complete semantics for those logics (cf. [42]).

Now we denote by �B the smallest modal HB-logic containing a normal intermediate

modal logic �. Again for complete � it is easily seen that �B is a conservative ex-

tension of �. One may prove completeness results for �B for a number of interesting

systems �, e.g., the systems introduced by Fischer-Servi (see [15], [16]). We note

only that the logics ML � 3n2mp ! 2k3l
p, for n;m; l; k 2 !, are determined by

the full ML-frames satisfying

(xRn
3y ^ xR

k
2z)) (9v)(yRm

2 v ^ zR
l
3v):

10For the proof the following observation is useful: For a formula ' 2 LInt denote by 'd 2 LHB
the formula which results when !, ^, and _ are replaced in ' by �! , _ and ^, respectively. It is

readily checked that if HB� ' is determined by a class of frames M , then HB � :'d is determined by

fhg;��1i : hg;�i 2Mg. Now it is well-known that HB� (p! q) _ (q ! p) is determined by the class of

converse trees.
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(Here, as usual 2n denotes a string of n boxes. The same applies to 3n and Rn.)

This can be proved similarly to the proof of correponding results in [42].

5 Duality

One of the most important steps in the development of classical modal logic was the

introduction of p-morphisms, generated subframes and the observation that they are the

duals of the algebraic notions of subalgebras and homomorphisms, respectively. In [42]

an analogous result is proved for modal logics based on intuitionistic logic. It turned out,

however, that in the intuitionistic case those duals are non-standard and not as natural

as in the classical case. We show now that in the presence of duals of relative pseudo-

complements we have the canonical and natural concepts again. Let G = hg;�; R2; R3; Ai

be a ML-frame and W a non-empty subset of g such that

(8x; y)(x 2W ^ xSy ) y 2W ) for S 2 f�;��1; R2; R3g: (5)

Then certainly

hW;�� W;R2 � W;R3 � W; fW \ a : a 2 Agi

is a ML-frame as well and is called a generated subframe of G. If H = hh;�0; S2; S3; Bi is

another ML-frame then a mapping f : g ! h onto h is called a p-morphism i�

(8x; y 2 g)(xRy ) f(x)Sf(y)); (6)

(8x 2 g; y 2 h)(f(x)Sy ) (9z 2 g)(xRy ^ f(z) = y); (7)

for all (R;S) 2 f(�;�0); (��1;�0�1); (R2; S2); (R3; S3)g, and such that f�1b 2 A, for all

b 2 B.

Theorem 7 Let G = hg;�; R2; R3; Ai and H = hh;�0; S2; S3; Bi be ML-frames.

(1) If H is a generated subframe of G then the mapping f de�ned by

f(a) = a \ h; for all a 2 A;

is a homomorphism from G+ onto H+.

(2) If f : G ! H is a p-morphism, then f+ de�ned by

f
+
b = f

�1
b; for all b 2 B;

is an embedding of H+ into G+.

Suppose that A and B are ML-algebras.

(3) If f is a homomorphism from A onto B, then the mapping f+ de�ned by

f+X = f
�1
X; for all prime �lters X in B;
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is an isomorphism of B+ onto a generated subframe of A+.

(4) If B is a subalgebra of A then the mapping f de�ned by

f(X) = X \B; for all prime �lters X in A;

is a p-morphism from A+ onto B+.

Proof. The proof is quite similar to proofs of corresponding results in e.g. [42] and [9].

We shall sketch, however, some steps of the proof in order to keep the paper reasonably

self-contained. (1) and (2) are easy and left to the reader. (3) and (4) are similar, so we

shall check (4) only. Suppose that A+ = hg;�; R2; R3; Ai and B+ = hh;�0; S2; S3; Bi

and that B is a subalgebra of A. Now f
�1
b 2 A, for all b 2 B, is clear and condition

(6) is straightforward for all the relations. Hence it remains to prove (7) for �, ��1, R2,

and R3. We start with ��1. Suppose that f(X)(�0)�1Y for a Y 2 h and a X 2 g. We

construct a Z 2 g with (a) f(Z) = Y and (b) X �
�1

Z. It su�ces to show that

F1 = Y and F2 = fc _ d : c 2 (A�X); d 2 (B � Y )g

satisfy the conditions (i), (ii), (iii) of Lemma 2 because then, by Lemma 2, there exists a

Z 2 g with F1 � Z and F2 \ Z = ;. It is easily shown that such a Z is as required. Now,

(i) and (ii) are obvious and it remains to show (iii). Assume that there are a 2 F1 and

b 2 F2 with a � b. We may assume that b = c_ d with c 2 A�X and d 2 B � Y . Hence,

by the de�nition of the dual relative pseudocomplement d �! a � c. Now c 62 X, hence

d �! a 62 X. We know d �! a 2 B and X \ B � Y . Hence d �! a 62 Y . We also know

d 62 Y . Note that, in general

Fact. For all prime �lters P and all c1; c2; c3, ((c1 �! c2 62 P ^ c1 62 P )) c2 62 P ).

(We note that this is just the dual statement to the well-known fact that prime �lters

are \closed under modus ponens".) Applying this fact we conclude that a 62 Y , which is

a contradiction.

Let us now consider R3. Suppose that f(X)S3Y for a Y 2 h an X 2 g. We construct

a Z 2 g with (a) f(Z) = Y and (b) XR3Z. Again it su�ces to show that

F1 = Y and F2 = fc _ d : c 2 A ^3c 62 X; d 2 (B � Y )g

satisfy the conditions (i), (ii), (iii) of Lemma 2 because then a Z 2 g with F1 � Z and

F2 \ Z = ; is as required. Again, (i) and (ii) are obvious and we show (iii). Assume that

there are a 2 F1 and b 2 F2 with a � b and that b = c _ d with 3c 62 X and d 2 B � Y .

By the de�nition of the dual relative pseudocomplement we conclude d �! a � c. By

monotonicity of 3 we get 3(d �! a) � 3c. From 3c 62 X we get 3(d �! a) 62 X. This

means, since f(X)S3Y , d �! a 62 Y . We also know that d 62 Y and get from the fact above

that a 62 Y . We have derived a contradiction. The cases � and R2 are similar and left to

the reader. a
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6 Tense Logics

We shall introduce the logics into which super-HB-logics and modal HB-logics shall be

embedded. But �rst we require some notation and basic results on polymodal quasi-

normal logics (consult e.g [33], [5] and [9] for information on monomodal quasi-normal

logics). Proofs will be omitted since they are straightforward extensions of the monomodal

case. We introduce the notation with some care, however, since we do not know of any

investigation of polymodal quasi-normal logic. Denote the propositional modal language

with n modal operators 
1; : : : ;
n by L = Lf
1;:::
ng. We shall �x this language for

this section. A normal modal logic (nm-logic, for short) is a L-logic containing classical

propositional logic, the axioms F2, formulated for all the operators
1; : : : ;
n, and closed

under (RN
i
) p=
i p, for all 1 � i � n. The smallest nm-logic containing a nm-logic �

and a set of formulas � is denoted by � � � and the smallest nm-logic in the language

L is denoted by Kf
1;:::;
ng. nm-logics �1 and �2 formulated in languages L1;L2 with

di�erent modal operators are combined by forming the fusion �1 
 �2, i.e., the smallest

nm-logic in the language L1 [L2 containing �1 [�2. (See [24] for an investigation of the

properties of fusions.)

For a set S � f
1; : : :
ng we call a L-logic � a S-normal modal logic (S-logic, for

short) i� � contains Kf
1:::;
ng and is closed under (RN
i
), for all
i 2 S. The smallest

S-logic containing a S-logic � and a set of formulas � is denoted by �+S �. The following

proposition generalizes a well-known characterization from monomodal logic (cf. [32]).

Proposition 8 Suppose that � is a nm-logic in the language L
1;:::;
n
and � � L
1;:::;
n

such that for all ' 2 � and 
i, 1 � i � n, there exists  2 � such that  ! 
i' 2 �.

Then � +S � is normal, for all S � f
1; : : : ;
ng.

Proof. Certainly it su�ces to prove the Proposition for S = ;. Recall that ' 2 � +; �

i� ' is derivable from � [ � by using modus ponens and substitutions. Hence closure of

� +; � under the rules (RN
i
), 1 � i � n, follows inductively from:

1. ' 2 � [ �)
i' 2 �+; �, for all 1 � i � n.

2. 
i';
i('!  ) 2 �+; �)
i 2 � +; �, for all 1 � i � n.

3. 
i' 2 �+; �) s(
i') 2 �+; �, for all substitutions s and 1 � i � n.

(2.) and (3.) are clear. Condition (1.) is trivial for ' 2 �. Suppose now ' 2 � and

1 � i � n. Then there exists  2 � such that  !
i' 2 �. Hence 
i' 2 �+; �. a

A modal L-algebra is an algebra A = hA;^;_;�;
1; : : : ;
n;?;>i such that the

reduct hA;^;_;�;?;>i is a boolean algebra and so that


i(a ^ b) =
ia ^
ib; 
i> = >;
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for all 1 � i � n. For S � f
1; : : :
ng, we call a matrix M = hA; F i a S-matrix i� F is

a boolean �lter which is closed under a=
i a, for all 
i 2 S. If F is an ultra�lter, then

we call hA; F i a pointed L-algebra and if F = f>g, then we call hA; F i a normal matrix

(which we shall often identify with the algebra A). Generalising the notation from [33] we

put, for a S-logic �,

Ker� = f' : s' 2 � for all sequences s 2 f
1; : : : ;
ng
�g:

and realize that Ker� is the maximal normal logic contained in �. For a modal L-algebra

A and two ultra�lters X and Y in A we put

XRiY , (8a 2 A)(
ia 2 X ) a 2 Y ):

Now we have the following result on algebraic semantics for S-logics.

Theorem 9 (1) Each S-logic � is determined by a class of S-matrices hA;Di such that

A j= Ker�. (2) A modal logic � is a S-logic i� it is determined by a class M of pointed

algebras hA; F i satisfying A j= Ker� and, for all 1 � i � n:

(hA;Xi 2M ^XRiY ^
i 2 S)) hA; Y i 2M:

(3) A S-logic is normal i� it is determined by normal matrices.

Proof. The proof is similar to the proof of Theorem 3, see also [5] or [9] for proofs in the

monomodal case. a

On the other hand we have Kripke-type semantics for S-logics. Recall that a L-

frame is a structure G = hg;R1; : : : ; Rn; Ai such that A is closed under intersection and

complements and


ia := fy 2 g : (8x 2 g)(yRix) x 2 a)g:

With G we can associate the L-algebra G+ = hA;\;[;�;
1; : : : ;
n; ;; gi. Conversely,

for each classical L-algebra A we �nd a descriptive L-frame A+ such that A ' (A+)
+.

Following [19] we call a L-frame G = hg;R1; : : : ; Rn; Ai descriptive i�

x = y , (8a 2 A)(x 2 a, y 2 a);

xRiy , (8a 2 A)(x 2 
ia) y 2 a);

and if
T
U = fxg, for some x, for each ultra�lter U in A. One can show that a L-frame G

is descriptive i� G ' (G+)+. A S-frame is a pair hG; F i such that hG+; F i is a S-matrix. A

pair hG; xi with x 2 g is a pointed frame11. We certainly have the following reformulation

of Theorem 9 in terms of frames.

Theorem 10 (1) Each S-logic � is determined by a class of descriptive S-frames hG;Di

such that G j= Ker�. (2) A logic � is a S-logic i� it is determined by a class M of

descriptive pointed frames hG; xi satisfying G j= Ker� and, for 1 � i � n:

(hG; xi 2M ^ xRiy ^
i 2 S)) hG; yi 2M:

(3) A S-logic is normal i� it is determined by frames.

11Again, we identify the pointed frame hG; xi with the �ltered frame hG; fa 2 G+ : x 2 agi.
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We are in a position now to introduce the logics into which the logics with coimplication

shall be embedded. The language of tense logic is LfG;Hg and the minimal tense logic we

deal with in this paper is

S4:t := KfG;Hg � p! GPp� p! HFp�Gp! p�Gp! GGp:

(Here and in what follows F := :G: and P := :H:.) The ;-modal logics containing

S4:t will be called tense logics. We note that this notion of a tense logic is not standard.

Mostly in the literature the condition Gp! p (corresponding to re
exivity of the frames)

is omitted and only normal logics are considered (cf. [2], [6], [20], [38]). A LfG;Hg-algebra

validating S4:t will be called a tense algebra12. Let us call an element a of the form

a = Gb G-open and let us call an element a of the form a = Pb P -closed. Then it is

readily checked that tense algebras are precisely those LfG;Hg-algebras in which G is an

interior operator, P is a closure operator, and in which the G-open elements are precisely

the P -closed ones.13

A S-matrix hA; F i, S � fG;Hg, in which A is a tense algebra will be called a S-tense

matrix. We note that in all fGg-tense matrices we have Ga 2 F , a 2 F , for all a 2 A.

(This follows from Ga � a, for all a 2 A.) This means that F is determined by its G-closed

elements. Let us now call a frame hg;R;R�1
; Ai a tense frame i� R is a quasi-ordering14.

It follows immediately from Theorem 10 that tense logics � are determined by classes of

descriptive pointed tense frames hG; xi such that G j= Ker�.

Recall now the Grzegorzcyk-axiom

grz = 2(2(p! 2p)! p)! p:

The logic Grz = Kf2g � grz is known to be the maximal normal modal logic into which

Int is embedded by G�odels interpretation (cf. [8]) and plays a major role in investigations

on the relation between extensions of S4 and intermediate logics (cf. e.g. [8], [4], [11].)

An analogous role will be played here by the tense logic

Grz:t := S4:t� grzG � grzH :

Here, for a monomodal formula ' we denote by '
 the translation of ' into the language

with the operator
. Notice thatGrz is the logic determined by the �nite partial orderings

(cf. e.g. [13]) and that the same is true for Grz:t, see Corollary 27 below.

Tense logics will interpret super-HB-logics. To interpret modal HB-logics we need two

more modal operators and obtain the language LTL = LfG;H;21;22g. The basic extended

tense logic is TL := S4:t 
 Kf21;22g and, for S � fG;H;21;22g, an extended S-tense

logic is a LTL-logic containing TL which is closed under p=
 p, for
 2 S. LTL-algebras

in which the reduct without 21 and 22 is a tense algebra will be called TL-algebras and

12Some authors call tense algebras bi-topological boolean algebras, e.g. Rauszer in [29].
13An operator C is called an interior operator i� Ca � a, Ca = CCa, and C(a ^ b) = Ca ^ Cb, for all

a; b. The formulation for closure operators is dual.
14Consult [35] for the �rst introduction and investigation of tense frames. There full tense frames were

called second order frames and tense frames were called �rst order frames.
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fGg-matrices based on TL-algebras will be called TL-matrices. Correspondingly, we call

frames hg;R;R�1
; R1; R2; Ai in which R is a quasi-ordering TL-frames. In TL-matrices

there is no connection between the tense operators and the modal operators. In order to

simulate the conditions (3) and (4) for R2 and R3 on the classical side we introduce

mix = fG21Gp$ 21p; P32Pp$ 32pg

and put

Mix = TL�mix; GMix = Grz:t�mix:

One can easily prove

Proposition 11 The full frames hg;R;R�1
; R1; R2i validating Mix are precisely those

full TL-frames in which the following versions of (3) and (4) hold.

R � R1 � R = R1 and R�1 �R2 � R
�1 = R2:

The full frames validating GMix are precisely the Mix-frames without in�nite R-chains.

7 Embeddings

We extend the G�odel translation of LInt into LfGg to a translation t from LML into LTL
as follows:

t(p) = Gp

t(' �  ) = t(') � t( ); for � 2 f^;_g

t('!  ) = G(t(')! t( ))

t(' �!  ) = P (:t(') ^ t( ))

t(2') = G21t(')

t(3') = P32t(')

Note that everything we shall show below for this mapping t holds also if we manipulate

t by putting t0(p) = Fp, or t0(' �  ) = G(t(') � t( )), or t0(' �  ) = P (t(') � t( )),

for � 2 f^;_g. This follows immediately from the following easily proved but important

observation.

Lemma 12 For all ' 2 LML,

t(')$ Gt(') 2 TL and t(')$ Pt(') 2 TL:

Proof. By an easy induction using the fact that Gp$ PGp 2 TL and Pp$ GPp 2 TL.

a
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In order to analyse the translation t we shall transform ML-matrices into TL-matrices

and vice versa. For a TL-algebra B = hB;^;_; G;H;21;22;?;>i de�ne another TL-

algebra Bmix by putting

Bmix = hB;^;_; G;H;G21G;H22H;?;>i:

It is easy to show that Bmix is a TL-algebra as well. Moreover

Lemma 13 (1) Bmix j=mix.

(2) hB; F i j= t('), hBmix; F i j= t('), for each TL-matrix hB; F i and ' 2 LML.

Proof. (1) follows immediately from the condition that both G and H are interior opera-

tors. (2) Let V be a valuation of B and V 0 be a valuation of Bmix so that V and V 0 coincide

on the propositional variables. It can be shown by induction that V (t(')) = V
0(t(')), for

all ' 2 LML. (2) follows immediately. a

Remark 1 At the level of TL-frames G = hg;R;R�1
; R1; R2; Ai, forming B

mix corre-

sponds to the operation G 7! Gmix de�ned by

Gmix = hg;R;R�1
; R �R1 � R;R

�1 � R2 � R
�1
; Ai;

since it is easily shown that (G+)mix = (Gmix)+.

Now consider a TL-algebra B = hB;^;_; G;H;21;22;?;>i validatingmix. We de�ne

a ML-algebra �B by putting

�B := h�B;^;_;!; �! ;2;3;?;>i;

where

a! b := G(�a _ b); a �! b := P (�a ^ b);

2b := 21b; 3b := 32b;

and �B := fGb : b 2 Bg. In other words, �B is the set of all G-open sets (or equivalently,

the set of all P -closed sets). Thus a ! b and a �! b are well de�ned. Also, since

B j= mix, we know that 2b;3b 2 �B. Now it is easily shown that �B is a ML-algebra.

For an arbitrary TL-algebra B let �B := �(Bmix) and for a TL-matrix M = hB; F i let

�M = h�B; �F i, where �F := fGb : b 2 Fg. Certainly �F is a �lter and so �M is a

ML-matrix.

Remark 2 At the level of TL-frames G = hg;R;R�1
; R1; R2; Ai validating mix the op-

eration � corresponds to the following construction. De�ne an equivalence relation � on

g by putting x � y i� xRy and yRx. Now form the quotient frame

F = hg=�; R=�; R�1
=�; R1=�; R2=�; A=�i:

From F we form the ML-frame �G = hg=�;�; R2; R3; fGa : a 2 A=�gi, where �= R=�,

R2 = R1=�, R3 = R2=�. Then one can show (�G)+ ' �(G+).
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For an extended fGg-tense logic (a fGg-tense logic) � we call the modal HB-logic (the

super-HB-logic)

�� := f' 2 LML : t(') 2 �g

the modal HB-fragment (HB-fragment) of �. Conversely, we say that an extended fGg-

tense logic (a fGg-tense logic) � is a companion of a modal HB-logic (super-HB-logic) �

i� �� = �.

Lemma 14 (1) For all TL-matrices M and all ' 2 LML, M j= t('), �M j= '.

(2) If an extended fGg-tense logic (a fGg-tense logic) � is determined by a class of

TL-matrices K then �� is determined by the class �K = f�M :M 2 Kg.

(3) If an extended fGg-tense logic (a fGg-tense logic) � is complete, then �� is com-

plete.

(4) If � is a normal (extended) tense logic, then �� is a normal logic.

Proof. (1) is easily proved by induction on the subformulas of ' by using Lemma 13.

(One may also use Remark 2.) (2) Suppose that � is determined by K. We have �M j= ',

for all ' 2 �� and M 2 K, by (1). Conversely, suppose that ' 62 ��. Then t(') 62 �.

Hence there exists M 2 K with M 6j= t('). Thus, by (1), �M 6j= '. (3) By (2) it su�ces

to show that for each full �ltered TL-frame hG; F i there exists a full �ltered ML-frame

hH; Gi such that �hG; F i ' hH+
; Gi. But this is the contents of Remark 1 and Remark 2

above. (4) follows from (2), Theorem 3 (3), Theorem 9 (3), and the fact that �F = f>g

whenever F = f>g. a

Corollary 15 The mapping � preserves completeness, the �nite model property and de-

cidability.

Having de�ned a mapping � from the class of TL-matrices into the class of ML-matrices

we are now going to de�ne a mapping � in the opposite direction. We shall need the notion

of a free Boolean extension. Suppose that A is a Boolean algebra and D is a subset of A.

The Boolean algebra generated by D in A is denoted by [D]BL. For a bounded distributive

lattice D = hD;^;_;?;>i there always exists a (uniquely determined) Boolean algebra

A = hA;_;^;�;?;>i such that [D]BL = A and such that, for each homomorphism (for

the signature _;^;? and >) f : D ! B, B a Boolean algebra, there exists a unique

Boolean homomorphism h : A ! B with h � D = f . (Consult [1] for more information.)

We denote the set A by �D.

Remark 3 Clearly, for each a 2 �D there are ai; bi; ci; di 2 A, 1 � i � n, such that

a =
Vn
i=1(�ai _ bi) =

Wn
i=1(�ci ^ di).

Consider a ML-algebra A = hA;^;_;!; �! ;2;3;?;>i and take the free Boolean exten-

sion �hA;^;_;?;>i = h�A;^;_;�;?;>i of the distributive lattice hA;^;_;?;>i. We
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extend this Boolean algebra to a TL-algebra �A by de�ning the operations 21;32; G; and

P as follows: Let a 2 �A and take ai; bi; ci; di 2 A, 1 � i � n, such that

a =
n̂

i=1

(�ai _ bi) =
n_

i=1

(�ci ^ di):

Now we put

Ga :=
n̂

i=1

(ai ! bi); Pa :=
n_

i=1

(ci �! di):

21a = 2Ga; 32a = 3Pa:

The operators G as well as P are well de�ned. For G this follows immediately from the

easily proved fact that
Vn
i=1(ai ! bi) 6� a ! b implies

Vn
i=1(�ai _ bi) 6� �a _ b, for all

ai; bi; a; b 2 A. The argument for P is dual. IfM = hA; F i is a modal matrix then we put

�M = h�A; �F i, where �F = fb 2 �A : Gb 2 Fg.

Remark 4 The construction of �A corresponds to the following operation on ML-frames

G = hg;�; R2; R3; Ai. Namely, for �G = hg;R;R�1
; R1; R2; �Ai such that R =�, R1 =

R2 and R2 = R3 and �A = f
Tn
i=1(�ai [ bi) : ai; bi 2 A;n 2 !g it follows easily that

(�G)+ ' �(G+).

Lemma 16 Let M = hA; F i be a ML-matrix and M0 be a TL-matrix.

(1) �M is a TL-matrix. Moreover, �M is the only TL-matrix such that ��M'M.

(2) �A j= GMix.

(3) ��M0 2 RM0.

(4) M j= ', �M j= t('), for all ' 2 LML.

Proof. The proof is a straightforward combination of known proofs from [29] and [42].

The reader may, however, easily prove this herself by using Remark 4. a

For each modal HB-logic � = ML + � put �� := GMix +fGg t(�) and �� :=

TL +fGg t(�). Both � and � are well-de�ned, by Lemma 16. Correspondingly, for each

super-HB-logic � = HB+ � put �� := Grz:t+fGg t(�) and �� := S4:t+fGg t(�).

Lemma 17 If � is a normal super-HB-logic, then both �� as well as �� are normal

tense logics. Correspondingly for normal modal HB-logics.

Proof. We prove the second part. Suppose that � is normal. Then �� = TL+fGg t(�)

and �� = GMix:t+fGg t(�). By Proposition 8, it su�ces to show that for each  2 t(�)

and 
 2 fG;H;21;22g there exists a  
0 2 t(�) such that  0 ! 
 2 TL. For
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 = G this follows from Lemma 12. For the other three operators observe that :�:',

2', :3�:' 2 � whenever ' 2 �. Hence GHGt('), G21Gt('), GH22HGt(') 2 t(�)

whenever t(') 2 t(�). Moreover,

GHGp! Hp; G21Gp! 21p; GH22HGp! 22p 2 TL:

a

It follows that for each representation � = ML � � we have �� = TL � t(�) and

�� = GMix� t(�).

Theorem 18 Suppose that � is a modal HB-logic (super-HB-logic). Then �� = �, for

each extended fGg-tense logic (fGg-tense logic) � in the interval [��; ��]:

Proof. Assume � = ML + �. Suppose that M j= ��. Then M j= t(�). Hence, by

Lemma 14 (1), �M j= �. It follows that �M j= �. Conversely, suppose that M j= �.

Then �M j= �� (by Lemma 16 (2) and (4)) and ��M ' M (by Lemma 16 (1)). Thus

� is determined by f�M : M j= �g, for each � 2 [��; ��]. The Theorem follows with

Lemma 14. a

The most important consequence of this Theorem is that each normal modal HB-logic

can be embedded in a natural way into a normal classical modal logic with four modal

operators. So we have indeed (modulo the Blok-Esakia-Theorem to be proved below) a

reduction of modal HB-logics to classical modal logics which belong to the mainstream of

research on modal logic. This is far from true for modal logics based on intuitionistic logic

with a 3-like operator (called IM-logics in what follows). It is proved in [42] that IM-logics

are embedded into classical modal logics in a natural way. Those classical modal logics are,

however, not quasi-normal but only monotonic (i.e., we do not have 3(p_ q)! (3p_3q)

since the interpretation of 3 cannot be forced to be possibility-like). This is, we believe,

not only a technical obstacle for the embeddings introduced in [42] but also of philosophical

interest. We proceed with some examples.

2.1 We certainly have �S4:t = �Grz:t = HB and �TL = �Mix = �GMix =ML.

2.2 �(S4:t+fGg Gp$ p) = HBC , see Example 1.2.

2.3 For each set of formulas � � LHB we have t(�) � LfG;Hg. Now, for S4:t � � �

Grz:t,

�((�� t(�))
Kf2122g) =ML� �:

�((�� t(�))
 (Kf21g �21p! p)
Kf22g) =ML� ��2p! p:

�((�� t(�))
Kf21g 
 (Kf22g �22p! p)) =ML� �� p! 3p:

We show the third part. Put � = (� � t(�)) 
Kf21g 
 (Kf22g � 22p ! p). By

Theorem 18 it su�ces to show that

TL� t(�)� t(p! 3p) � � � GMix� t(�)� t(p! 3p):
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Now t(p ! 3p) is, modulo TL, deductively equivalent with Pp ! P32Pp and,

modulo Mix, it is deductively equivalent with Pp ! 32p. The inclusions follow

immediately.

2.4 De�ne a mapping �G from the lattice of monomodal nm-logics containing S4 (for-

mulated in the language LfGg) into the lattice of intermediate logics by putting

�G� = f' 2 LInt : t(') 2 �g (For information on �G consult the survey [8], where

�G is denoted by �.) Also, de�ne the minimal tense extension �:t of a normal ex-

tension � of S4 to be the smallest normal tense logic containing �. The mapping

� 7! �:t has been investigated in e.g. [38] and [40]. Now we have, for all normal

logics containing S4,

�(�:t) = (�G�)
B
:

(See Example 1.5 for the de�nition of (�)B .) The proof of this observation is left

to the reader. We derive e.g. that �S5:t coincides with classical logic and that

�S4:3:t = HB � (p ! q) _ (q ! p) (by using that �GS5 is classical logic and that

�GS4:3 = Int + (p ! q) _ (q ! p), cf. [8]). We leave it to the reader to compute

more examples.

2.5 We have

�(Mix�3n
221

m
p! 21

k
3
l
2p) =ML�3n

2
m
p! 2

k
3
l
p;

for all m;n; l; k 2 !. The (easy) proof is left to the reader.

8 A Blok-Esakia-Theorem

Independently, Blok [4] and Esakia [11] have proved the fundamental result that the lattice

of normal modal logics containingGrz and the lattice of intermediate logics are isomorphic

(cf. also [8]). Here we shall prove an analogous result for logics with coimplication and

tense logics.

Proposition 19 Let A be a ML-algebra, B be a TL-algebra validating mix and suppose

that f : A ! �B is a LML-homomorphism. Then there exists a (uniquely determined)

LTL-homomorphism h : �A ! B with h � A = f .

Proof. There exists a unique Boolean homomorphism h : �A ! B extending f , by the

de�nition of the free Boolean extension. It remains to show for a 2 �A

h(
a) =
h(a); for 
 2 f21;32; G; Pg:

We show this for P and 32. Take ai; bi 2 A, 1 � i � n; such that a =
Wn
i=1(�ai ^ bi) and

compute as follows:

h(Pa) = f(P
n_

i=1

(�ai ^ bi)) = f(
n_

i=1

(ai �! bi))
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=
n_

i=1

(f(ai) �! f(bi))

= P

n_

i=1

(�h(ai) ^ h(bi)) = Ph(a):

For the following computation for 32 note that we use h(Pa) = Ph(a).

h(32a) = f(3Pa) = 3f(Pa)

= 3h(Pa)

= 3Ph(a) = 32h(a):

a

We denote by ML the class of ML-matrices and by TL the class of TL-matrices. The

following result characterizes de�nable classes of ML-algebras by means of closure con-

ditions with respect to operators. Similar results are well-known from the literature on

matrices (cf. [37], [5],[8]). We sketch the proof, however, since the result is crucial for the

proof of the Blok-Esakia-Theorem.

Theorem 20 Suppose that M � ML and � = ThM . Then M = MatML� i� M is closed

under P, RML, and HML.

Proof. Only one directions remains to be shown, by Proposition 1. Suppose that M =

hA;Di j= � and that M is closed under P, RML, and HML. We show that M 2 M . Take

a set X of cardinality maxfjAj;@0g and denote by Fr(X) the free modal HB-algebra with

free generating set X. Take a homomorphism f from Fr(X) onto A and put E := f
�1
D.

Clearly we have M 2 HMLM
0, for M0 = hFr(X); Ei and we are done if M0 2 M . To

this end let I be a set of matrices which contains an isomorphic copy of each matrix

in M of cardinality � maxfjAj;@0g. For each matrix hB; PBi 2 M and each mapping

h : X ! B denote by B[h] the algebra generated by fh(x) : x 2 Xg in B. We have

hB[h]; PB \ B[h]i 2 RMLM , for all such matrices hB; PBi and mappings h. Denote by T

the collection of all those h. Then

hH;D0i =
Y
hhB[h]; PB \B[h]i : h 2 T i

belongs to M . De�ne a homomorphism g : Fr(X)!H by putting

g(x) := hh(x) : h 2 T i; for x 2 X:

It remains to show that g�1D0 � E, for then M0 2 RMLhH;D
0i, by Proposition 1. Let

g(a) 2 D0, for some a 2 Fr(X). There exists a formula ' 2 LML and x1; : : : ; xk 2 X with

a = '(x1; : : : ; xk). Now, by the de�nition of hH;D0i, g(a) 2 D0 means that

'(h(x1); : : : ; h(xn)) 2 PB \B[h];

for all h 2 T , which is equivalent with ' 2 �. But then f('(x1; : : : ; xk)) 2 D since

M j= �. This means that a = '(x1; : : : ; xn) 2 E. a
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Theorem 21 Suppose that � is an extended fGg-tense logic and M = MatTL�. Then

�M is closed under the operations HML, P, and RML: Thus MatML�� = �M .

Proof. The second part follows from the �rst part with Theorem 20 and Lemma 14 (2).

So it remains to show the closure conditions for �M . Closure of �M under P is obvious.

For closure under homomorphic images assume that hA;Di 2 M and that hB; Ei 2 ML

such that there is a homomorphism f from �A onto B with E � f [�D]. By Proposition

19 there exists a unique homomorphism h from ��A onto �B such that h � �A = f . We

show that �E � h[��D]. Let a 2 ��D. Then Ga 2 ��D and so Ga 2 �D. We know

f [�D] � E and derive

Gh(a) = h(Ga) = f(Ga) 2 E:

So Gh(a) 2 �E and therefore h(a) 2 �E. Hence �hB; Ei is a homomorphic image of

��hA;Di. We have ��hA;Di 2 RhA;Di, by Lemma 16. Hence ��hA;Di 2 M and we

conclude that �hB; Ei 2M . Now hB; Ei 2 �M follows from ��hB; Ei ' hB; Ei.

For closure under RML assume that hA;Di 2 M and that hB; Ei is a ML-matrix

such that f is a homomorphism from B into �A with f
�1
�D � E. By Proposition 19

there is a unique homomorphism h from �B into A with h � A = f . We show that

h
�1
D � �E. Suppose that c 2 h�1D. From h(c) 2 D we conclude Gh(c) 2 �D. We have

f(Gc) = h(Gc) = Gh(c). It follows Gc 2 E because f�1�D � E. But then c 2 �E. We

have shown that �hB; Ei 2 RhA;Di. So �hB; Ei 2M and hB; Ei ' ��hB; Ei 2 �M . a

Theorem 22 Suppose that M = hA;Di is a TL-matrix with A j= GMix:t. Then

ThM = Th��M:

Proof. By Lemma 16 (3) ��M 2 RM. Thus it su�ces to show that ThM � Th��M.

First we observe that it su�ces to prove this for �nitely generated matrices M. (We call

a matrix hB; Ei �nitely generated if the algebra A is �nitely generated.) For suppose that

there is a matrix M = hA;Di such that ThM 6� Th��M. There exist ' 2 Th��M

and a valuation V of M with V (') 62 D. Denote by A0 the subalgebra of A generated

by fV ( ) :  is a subformula of 'g and put D0 = D \ A0. Then V
0(') 62 D

0, for the

restriction V 0 of V to the variables in '. Thus hA0
;D

0i 6j= ' but ' 2 Th��hA0
;D

0i since

��hA0
;D

0i 2 R��M. So we shall restrict attention to �nitely generated matrices.

Claim. Suppose that hA;Di is �nitely generated and assume that B is a subalgebra

of A such that �A � B and such that A = [B [ fcg]BL, for a c in A. Then hA;Di 2

RPUhB;D \Bi.

Proof. We extend the proof of Lemma 7.6 in [4]. Some notation is needed. Enumerate

the elements of B by B = fb0; b1; : : :g. Let U be a non-principal ultra�lter on !. Put, for

g 2
Q!
i=0B, [g] := fg0 : g �U g

0g. Also put, for b 2 B, b̂ = hb; b; : : :i 2
Q!
i=0B. Now it is

well known that the mapping

f : hB;D \Bi !
!Y

i=0

hB;D \Bi=U; de�ned by putting f(b) = [b̂],
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is a matrix-embedding, i.e. f is a 1-1 homomorphism from the algebra B into
Q!
i=0 B=U

and b 2 D \B , [b̂] 2
Q!
i=0D \B=U , for all b 2 B. Put

ĉ := h
_
hbi : bi � c; i � nii!n=0:

It is proved in Lemma 7.6 of [4] that there exists a (uniquely determined) LfGg-homomorphism

h from A into
Q!
i=0 B=U which extends f and so that h(c) = [ĉ]. By dualising the proof

in [4] it can be shown that h(Pa) = Ph(a), for all a 2 A, i.e., that h is an LfG;Hg-

homomorphism. We proceed by proving that h is a LTL-homomorphism. But

h(21a) = h(G21Ga) = f(G21Ga) = G21f(Ga) = G21h(Ga) = G21Gh(a) = 21h(a);

since �A � B. The proof for 32 is similar and left to the reader. We now show that

D � h
�1[
Q!
i=0(B \ D)= �U ]. Suppose that h(a) 2

Q!
i=0(B \ D)= �U . Then, sinceQ!

i=0hB; B \Di=U is a TL-matrix, h(Ga) 2
Q!
i=0(B \D)=�U . Thus f(Ga) 2

Q!
i=0(B \

D)=�U . It follows that Ga 2 B \D because f is a matrix-embedding. Hence a 2 D. We

have proved that hA;Di 2 R
Q!
i=0hB;D \Bi=U .

Now assume that M = hA;Di and A is �nitely generated by fa1; : : : ; akg. De�ne a

sequence of subalgebras of A by putting A0 = ��A,

Ai+1 = [Ai [ fai+1g]BL;

for 0 � i < k. We show that ThhAi; Ai \Di = ThhAi+1; Ai+1 \Di, for 0 � i < k, from

which we get

Th��M = ThhA0; A0 \Di = ThhAk; Ak \Di = ThM:

Certainly it su�ces to show that hAi+1; Ai+1 \ Di 2 RPUhAi; Ai \ Di. But this is the

contents of the claim above. a

Theorem 23 (1) � is an isomorphism from the lattice of modal HB-logics onto the lattice

of extended fGg-tense logics containing GMix. (2) The restriction of � to the lattice

of normal modal HB-logics is an isomorphism onto the lattice of normal extended tense

logics containing GMix. (3) The restriction of � to the lattice of super-HB-logics is an

isomorphism onto the lattice of fGg-tense logics containing Grz:t. (4) The restriction of

� to the lattice of normal super-HB-logics is an isomorphism onto the lattice of normal

tense logics containing Grz:t.

Proof. (1) We show that � is onto. The other conditions are easy and left to the reader.

Certainly it su�ces to show that ��� = �, for all extended fGg-tense logics � containing

GMix. We have ��� � �, by de�nition. Conversely, suppose that � 6� ���. There

exists an M 2 MatTL��� such that M 6j= �. We have �M j= ���� and ���� = ��. By

Theorem 21 there existsM0 2 TL with �M0 ' �M andM0 j= �. But then ��M0 ' ��M

and therefore ��M j= �. Hence, by Theorem 22, M j= �. We have a contradiction. (2)

follows with Lemma 17. (3) and (4) are proved analogously. a

The following result follows immediately from the proof above.
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Theorem 24 If a modal HB-logic � is determined by a class of matrices M , then �� is

determined by �M = f�M : M 2 Mg. Hence � re
ects and preserves the �nite model

property.

9 Applications

We are now going to list a number of results on super-HB-logics and modal-HB-logics

which follow from known results in tense logic and polymodal logic by using the embedding

studied above15. The list is far from complete and we encourage the reader to transfer

more results from e.g. [38] and [40].

Theorem 25 Suppose that � � LInt is a set of disjunction free formulas. Then HB� �

has the �nite model property. HB� � is a conservative extension of Int+ �.

Proof. Suppose that � � LInt is disjunction free. Then, by a result of [43], S4� t(�) is a

co�nal subframe logic whose frames form a �rst order de�nable class. It is proved in [38],

that in this case the minimal tense extension (S4� t(�)):t of S4� t(�) also has the �nite

model property. Now �(S4 � t(�)) = HB � � and � preserves the �nite model property.

Hence HB�� has the �nite model property. HB�� is a conservative extension of Int+�

since Int+ � is complete. a

Theorem 26 De�ne wdn =
W
hpi !

W
hpj : j 6= ii : 0 � i � ni. Then all logics of the

form HB�wdn�� with � � LInt are complete. HB�wdn�� is a conservative extension

of Int+ wdn + �.

Proof. It su�ces to show that all minimal tense extensions of normal modal logic con-

taining S4 � t(wdn) are complete (because � preserves completeness). But K4 � t(wdn)

coincides with the logic of width n from [12] and it is shown in [40] that all minimal

tense extensions of logics of �nite width are complete. The second part follows from the

completeness of all logics of the form Int+wdn +�, which follows from the completeness

of all logics of the form K4� t(wdn)� � (cf. [12]). a

Corollary 27 Grz:t has the �nite model property.

15We shall always transfer from tense logic and polymodal logic to super-HB-logic and modal HB-

logic, respectively. There is, however, at least one mathematically interesting transfer result in the other

direction: It is readily checked that the lattice of congruences of an HB-algebra A is isomorphic to the

lattice of congruences of �A. Especially, A is simple i� �A is simple and A is subdirectly irreducible i�

�A is subdirectly irreducible. Now, in [22], the non-trivial result is shown that there exists a subdirectly

irreducible HB-algebra which is not simple. So we get the non-trivial and interesting result that there

exists a tense algebra which is subdirectly irreducible but not simple.
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Proof. HB has the �nite model property, by Theorem 25. So the �nite model property of

Grz:t follows from �HB = Grz:t and the fact that � preserves the �nite model property,

see Theorem 24. a

Theorem 28 All tense logics containing TLin = Grz:t � linG � linH have the �nite

model property. Here lin = 2(2p! q) _2(2q ! p).

Proof. Suppose that � � TLin and that ' 62 �. Certainly there is a pointed descriptive

frame hG; xi = hhg;R;R�1
; Ai; xi validating � such that G j= Grz:t and so that hg;Ri is

connected (i.e. (8x; y)(xRy _ yRx)) such that there is a valuation V with x 62 V ('). Now

call, for a 2 A and S 2 fR;R�1g, a point y 2 a S-maximal in a i� there does not exist a

proper S-successor of x which is in a. The following fact is shown in [38].

Fact. (1) For all non-empty a 2 A and S 2 fR;R�1g there exists a S-maximal z 2 a.

(2) If y is S-maximal in a for an a 2 A and an S 2 fR;R�1g, then fz : zRy^yRzg = fyg,

i.e., the cluster containing y consists only of y.

We take, for each subformula  of ' with V ( ) 6= ; the S-maximal z 2 V ( ) for

S 2 fR;R�1g and denote the set of all those z together with x by W . Consider the

�nite pointed frame hH; xi := hhW;R � W;R�1 � W i; xi and de�ne a valuation V 0 of this

frame by putting V 0(p) = V (p) \W , for all propositional variables p. Then it follows by

induction from (1) of the fact above that V 0( ) = V ( ) \W , for all subformulas  of '.

Hence x 62 V
0('). On the other hand it is easily proved (by using (2) of the fact above)

that there is a p-morphism f from G onto H with f(x) = x. It follows that the logic

determined by hH; xi contains the logic determined by hG; xi. Hence hH; xi validates �

and refutes '. a

It is of some interest to note that there are indeed a lot of logics containing TLin

which are not normal. TLin +fGg Gp $ p is an example. So the situation is di�erent

from monomodal logic where it is known that there are no non-normal logics containing

S4:3 (cf. [34]).

Corollary 29 All super-HB-logics containing LIN have the �nite model property.

Proof. By Theorem 28, all logics containing TLin have the �nite model property. Now

�� � TLin, for all � � LIN. So all extensions of LIN have the �nite model property

since � re
ects the �nite model property. a

Theorem 30 Suppose that HB � � has the �nite model property, � � LHB. Then also

the logics ML��, ML���2p! p, ML� �� p! 3p have the �nite model property.

Proof. Fix a logic � = HB � � with the �nite model property. Then the logic �� =

Grz:t� � has the �nite model property, by Theorem 24. By example 2.3 above we know
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that

�(�(�) 
Kf2122g) =ML� �:

�(�(�)
 (Kf21g �21p! p)
Kf22g) =ML� ��2p! p:

�(�(�)
Kf21g 
 (Kf22g �22p! p)) =ML� �� p! 3p:

Certainly the logics Kf2g andKf2g�2p! p have the �nite model property. Thus, for all

the logics � of the theorem there always is a fusion �1 
�2 
�3 such that �i, 1 � i � 3,

has the �nite model property and so that �(�1 
 �2 
 �3) = �. Now the �nite model

property of � follows from the fact that the �nite model property is preserved under �

and under forming fusion (cf. [24], [14]). a

It is interesting to notice that we also obtain results on the �nite model property of

modal logics based on intermediate logics. Indeed, if � = IntK23 � �, � � LInt is

complete, then �B = ML � � is a conservative extension of � and obviously � has the

�nite model property whenever �B has the �nite model property. Thus, e.g., IntK23��

has the �nite model property whenever � is disjunction-free.

Finally we note some consequences concerning the structure of the lattice of normal

super-HB-logics. Since � restricted to the lattices of normal super-HB-logics is an iso-

morphism onto the lattice of normal tense logics containing Grz:t every result on the

lattice of normal tense logics has a straightforward translation for the lattice of normal

super-HB-logics. One of the most important concepts in the study of lattices of logics is

the notion of a splitting (cf. e.g. [4], [32], [23], [39]). Recall that a �nite rooted frame

G (or, equivalently, a �nite subdirectly irreducible algebra A) is said to split a lattice D

of logics i� there exists a smallest logic � 2 D such that G 6j= �. In this case � is called

the splitting-companion of G. Spittings are basic for studying intermediate logics since all

�nite rooted Int-frames split the lattice of intermediate logics (cf. e.g. [4], [32]). Split-

tings of lattices of modal logics based on intermediate logics are studied in [39]. Now the

situation for normal super-HB-logics is clari�ed to some extent by the following result.

Theorem 31 A �nite and rooted HB-frame splits the lattice of normal super-HB-logics

i� it coincides with � or with �-� . The splitting companion of � is the inconsistent

logic and the splitting companion of �-� is the logic determined by � . Thus the lattice

of normal super-HB-logics contains precisely one coatom16, namely the logic determined

by � and it contains precisely one logic of codimension 2, namely the logic determined by

�-� . It contains, however, in�nitely many logics of codimension 3.

Proof. All this is shown in [23] for the lattice of normal tense logics containing Grz:t.

Now apply �. a

16An element d of a lattice D has codimension n, n 2 !, i� n is the length of the maximal strict �-chain

from d to >. Elements of codimension 1 are called coatoms.
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