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Abstract

The fusion Ll 
 Lr of two normal modal logics formulated in languages with dis-

joint sets of modal operators is the smallest normal modal logic containing Ll [ Lr.

This paper proves that decidability, interpolation, uniform interpolation, and Halld�en-

completeness are preserved under forming fusions of normal polyadic polymodal logics.

Those problems remained open in [Fine & Schurz [3]] and [Kracht & Wolter [10]]. The

paper de�nes the fusion `l 
 `r of two classical modal consequence relations and

proves that decidability transfers also in this case. Finally, these results are used to

prove a general decidability result for modal logics based on superintuitionistic logics.

Given two logical system L1 and L2 it is natural to ask whether the fusion (or join) L1
L2

of them inherits the common properties of both L1 and L2. Let us consider some examples:

(i) It is known that the �rst order theory of one equivalence relation has the �nite model

property and is decidable. However, the �rst order theory of two equivalence relations

does not have the �nite model property and is in fact undecidable (see Janiczak [7]). This

result shows that even if we know the �rst order properties of the individual relations of

a theory, there may be no algorithm to determine the purely logical consequences of these

properties. (ii) Various positive and negative results are known for joins of term rewriting

systems (TRSs) whose vocabularies are disjoint. For example, the join of two TRSs is

conuent i� the two TRSs are conuent but there are complete TRSs whose join is not

complete (see e.g. Klop [8]). In fact, the literature on TRSs shows how useful the study

of joins of systems can be. (iii) In contrast to �rst order theories the join of two decidable

equational theories in disjoint languages is decidable as well. This was proved by Pigozzi

in [12]. So we observe interesting di�erences between logical systems by investigating the

behavior of joins.

To form the join of two modal logics (in languages with disjoint sets of modal operators)

is { in a sense { a generalization of forming the join of two equational theories in disjoint

languages. Namely, it is well-known that each modal logic corresponds to an equational

theory of boolean algebras with operators. So the join of two modal logics corresponds to
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1 SYNTAX 2

the join of equational theories of boolean algebras with operators. However, in this case

the equational theories are not in disjoint languages since we have common symbols: the

boolean operations conjunction and negation.

The �rst who discussed fusions of modal logics was S. Thomason. In [15] he proved that

fusions of modal logics are conservative extensions of their unimodal fragments by using

the fact that two countably in�nite atomless boolean algebras are isomorphic (cf. e.g. [9]).

About ten years later the transfer of properties under forming fusions was investigated

in detail in [3], [10], and [14]. Some results where also obtained in [6] and [4]. All those

papers, however, are technically based on Kripke semantics and prove general results

only for logics which are complete with respect to Kripke frames. For instance, transfer

of decidability and interpolation for Kripke-complete logics was proved independently in

[3] and [10], but the method did not give any positive result for incomplete logics. In

this paper we shall combine Thomason's use of the @0-categoricity of atomless boolean

algebras with some techniques introduced in [10] to prove that decidability, interpolation

and uniform interpolation in the sense of Pitts [13] transfer in general. The paper does

not use Kripke semantics but only algebraic methods.

Acknowledgements. I thank M. Kracht, W. Rautenberg and M. Zakharyaschev for

helpful discussions.

1 Syntax

A modal similarity type S = hF; �i consists of a set F of modal operators and a map

� : F ! ! assigning to each f 2 F a �nite arity �(f) 2 !. The propositional modal

language L(S) over S is de�ned in the usual way by using countably many propositional

variables, the operators in F and the boolean connectives ^;_;!;$;?;>.

Let us �x a modal similarity type S = hF; �i. A S-consequence relation ` is a �nitary

structural consequence relation1 over L(S) with the following properties.

� ` ', for each classical tautology '.

� p; p! q ` q.

1Recall that a �nitary structural consequence relation ` over a propositional language L is a relation `

between sets of formulas and formulas satisfying

� ' 2 �) � ` '.

� If �1 � �2 and �1 ` ', then �2 ` '.

� If �1 ` �2 and �2 ` ', then �1 ` '.

� � ` ') s� ` s', for all substitutions s.

� If � ` ', then there exist a �nite subset �0 of � with �0 ` '.
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� For all f 2 F ,

p1 $ q1; : : : ; p�(f) $ q�(f) ` f(p1; : : : ; p�(f))$ f(p1; : : : ; p�(f)):

We call a subset � of L(S) a S-logic i� there exists a S-consequence relation ` such that

� = �(`), where

�(`) = f' 2 L(S) : ; ` 'g:

Conversely, denote by cons(�) the set of all S-consequence relations ` satisfying � = �(`).

It is known that cons(�) contains a smallest and a largest consequence relation: the

consequence relation `� which is de�ned by � `� ' i� ' is derivable from � [� by using

the rules above and the consequence relation `a� determined by the set of all �-admissible

rules, i.e. rules '1; : : : ; 'k= under which � is closed.

Call a S-logic � normal if the following holds for all f 2 F and 1 � i � �(f):

� f(p1; : : : ; pi _ qi; : : : ; p�(f))$ f(p1; : : : ; pi; : : : ; p�(f)) _ f(p1; : : : ; qi; : : : ; p�(f)) 2 �.

� :f(p1; : : : ; pi�1;?; pi+1; : : : ; p�(f)) 2 �.

This de�nition is a natural generalization of the well-known notion of a normal modal logic

when all modal operators are unary. Let us now consider two disjoint modal similarity

types Sl and Sr and take the language L = L(Sl [ Sr). Then the fusion

`l 
 `r

of a Sl-consequence relation `l and a Sr-consequence relation `r is the smallest Sl [ Sr-

consequence relation containing `l [ `r. Correspondingly, the fusion

�l 
 �r

of a Sl-logic �l and a Sr-logic �r is the smallest Sl [ Sr-logic containing �l [ �r. Here l

abbreviates the logic on the left and r abbreviates the logic on the right. In what follows

we shall assume that the similarity types Sl = hE; li and Sr = hG; ri are �xed and disjoint

and that `l, �l, `r and �r are formulated in L(Sl) and L(Sr), respectively. Fusions of

consequence relations and fusions of logics are connected as follows.

Theorem 1 (1) For all `l and `r,

�(`l 
 `r) = �(`l)
 �(`r):

(2) For all modal logics �l and �r,

�l 
 �r = �(`a�l 
 `a�r):

Certainly (2) is a consequence of (1) and obviously �(`l 
 `r) � �(`l) 
 �(`r). The

proof of the other inclusion is not so easy and will be delivered in the section Decidability

of the consequence relation.
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2 Semantics

S-consequence relations (and S-logics) are interpreted in S-algebras, i.e., algebras

A = hA;_;�;>;?; hfA : f 2 F ii

in which the boolean reduct hA;_;�;>;?i is a boolean algebra and the fA, f 2 F , are

functions of arity �(f). A valuation v in A is a homomorphism from the algebra of formulas

L(S) into A. Quite often we shall specify a valuation v only for a certain set V of

propositional variables. In all those cases it is assumed that v is de�ned arbitrarily but

�xed for all the variables not in V . WithA we associate a (not always �nitary) consequence

relation j=A de�ned by

� j=A ', (8v)(v(�) � f>g ) v(') = >):

De�ne for a class of S-algebras Q the consequence relation

j=Q =
\
fj=A: A 2 Qg

and call it the consequence relation determined by Q. Correspondingly de�ne

LogA = f' : ; j=A 'g and LogQ =
\
fLogA : A 2 Qg;

and call LogQ the logic determined by Q. Conversely, we put

Alg `= fA : `A � `g:

Members of Alg ` are called ` - algebras. For a S-logic � we put

Alg� = fA : A j= �g;

where A j= � abbreviates j=A ', for all ' 2 �. The following result is well-known and

easy to prove. (For information on varieties and quasivarieties consult e.g. [11].)

Theorem 2 For each class Q of S-algebras the following conditions are equivalent.

1. There exists a S-consequence relation ` with Q = Alg `.

2. Q is a quasivariety.

Also the following conditions are equivalent.

1. There exists a S-logic � such that Q = Alg�.

2. Q is a variety.
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Call an element a of a boolean algebra A an atom if a 6= ? and

fx 2 A : x � ag = f?; ag:

A is called atomless i� A contains no atoms. In what follows we shall call a S-algebra A a

c.i.a. algebra i� the boolean reduct of A is a countably in�nite atomless boolean algebra.

Denote the class of c.i.a. algebras in Alg ` by Atg ` and denote the class of c.i.a. algebras

in Alg� by Atg�. The following result states that S-consequences are determined by c.i.a.

algebras.

Theorem 3 (1) For each S-consequence relation `,

` = j=Alg` = j=Atg` :

(2) For each S-logic �,

� = LogAlg� = LogAtg�:

Proof. (1) It su�ces to show that for � 6` ' there exists an A 2 Atg ` such that � 6j=A '.

Certainly we may assume that for each formula  there is a propositional variable p which

is not in � and not in  . De�ne a congruence relation on the algebra of formulas L(S) by

putting

�1 � �2 , � ` �1 $ �2

Now it is well-known (and easy to check) that A = L(S)=�2 Alg ` and that A refutes

� ` '. It remains to show that A is countably in�nite and atomless. ClearlyA is countably

in�nite whenever it is atomless. So it su�ces to show that A is atomless. Denote by [�]

the equivalence class containing �. Let  2 L(S) with [ ] 6= ? and take a propositional

variable p which is not in � and not in  . It follows immediately that

? < [ ] ^ [p] < [ ]:

So [ ] is not an atom of A and we conclude that A is atomless. (2) is proved similarly. a

Suppose that Ql is a class of Sl-algebras and Qr is a class of Sr-algebras. The fusion

Ql 
Qr

of Ql and Qr is the class of those Sl [ Sr-algebras whose Sl-reducts are in Ql and whose

Sr-reducts are in Qr. The following model theoretic characterization of fusions follows

immediately from Theorem 3.

Theorem 4 (1) For all consistent `l and `r,

Alg(`l)
 Alg(`r) = Alg(`l 
 `r):

(2) For all consistent �l and �r,

Alg(�l)
 Alg(�r) = Alg(�l 
 �r):
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3 Basic results

We �rst recall some basic facts on atomless boolean algebras. (See e.g. [9] for more

details.) For a boolean algebra A = hA;_;�;>;?i and a 2 A recall that the algebra

Aa = hfa ^ b : b 2 Ag;_a;�a; a;?i

is a boolean algebra as well which is called the relative of A. Here we put b1_
a b2 = b1_ b2

and �ab = a^�b. A �nite set fai : i 2 Ig is called a partition of A i� it is pairwise disjoint,

i.e. ai ^ aj 6= ?, for all i; j 2 I, and
W
fai : i 2 Ig = >. The following is well-known.

Lemma 5 Suppose that fai : i 2 Ig is a partition of A. Then

� : A !
Y
hAai : i 2 Ii;

de�ned by �(a) = ha ^ ai : i 2 Ii, is a surjective isomorphism.

Clearly b � a is an atom in A i� it is an atom in Aa. So we have

Lemma 6 If A is atomless, then Aa is atomless, for each a 2 A with a 6= ?.

In what follows we shall use the following conventions for mappings. If mappings �i :

Ai ! Bi, i 2 I, are given, then � =
Q
h�i : i 2 Ii denotes the mapping from

Q
hAi : i 2 Ii

into
Q
hBi : i 2 Ii which is de�ned by putting �hai : i 2 Ii = h�i(ai) : i 2 Ii. For a

sequence of valuations vn in algebras An, n 2 I, however, we denote by v =
Q
hvn : n 2 Ii

the valuation of
Q
hAn : n 2 Ii which is de�ned by putting v(p) = hvn(p) : n 2 Ii.

Proposition 7 Suppose that A and B are c.i.a. boolean algebras and fai : i 2 Ig and

fbi : i 2 Ig are partitions of A and B, respectively. Then there exists an isomorphism �

from A onto B such that

�(ai) = bi;

for all i 2 I.

Proof. By Lemma 6, the algebras Aai , Bbi , i 2 I, are c.i.a.. Hence there are isomorphisms

�i from Aai onto Bbi . We get an isomorphism

� =
Y
h�i : i 2 Ii :

Y
hAai : i 2 Ii !

Y
hBbi : i 2 Ii

By Lemma 5, � is as required. a

The second part of the following theorem was already proved in [15].

Theorem 8 (1) For all consistent `l and `r the fusion `l 
 `r is a conservative extension

of both `l and `r. (2) For all consistent �l and �r the fusion �l 
 �r is a conservative

extension of both �l and �r.
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Proof. (1) Put ` = `l 
 `r. Suppose that �;' � L(Sl) and � 6`l '. By Theorem 3 there

exists

A = hA;_;�;>;?; hfA : f 2 Eii 2 Atg `l

and a valuation v in A such that v(�) � f>g and v(') 6= >. Take any

B = hB;_B;�B;>B;?B; hgB : g 2 Gii 2 Atg `r :

Such an algebra exists since `r is consistent. Now the boolean reducts of A and B are

isomorphic. Hence we may assume that A = B and that the boolean operations of A and

B coincide, i.e. _ = _B and � = �B. But then

D = hA;_;�;>;?; hfA : f 2 Ei; hgB : g 2 Gii 2 Alg `

refutes � ` '. (2) is proved similarly. a

4 Decidability of the consequence relation

For each formula ' of the form t('1; : : : ; '�(t)) 2 L(Sl [ Sr), t 2 E [G, we reserve a new

variable q' which will be called the surrogate of '. We assume that the surrogate variables

are di�erent from our original set of variables. If ' 2 L(Sl [ Sr) then varp(') denotes the

set of variables in ' which are not surrogates. For a formula ' without surrogate variables

denote by 'l 2 L(Sl) the formula which results from ' when all occurences of formulas

g('1; : : : ; '�(g)), g 2 G, which are not within the scope of a g 2 G are replaced by their

surrogate variable qg('1;:::;'�(g)). For a set � of formulas put �l = f'l : ' 2 �g and de�ne

�r as well as �r correspondingly. For instance, if Sl consists of two operators f1 and f2 of

arity 1 and Sr consists of one operator g of arity 1, then

(gp ^ f1p ^ g(p ^ f2p))
l = qgp ^ f1p ^ qg(p^f2p):

(gp ^ f1p ^ g(p ^ f2p))
r = gp ^ qf1p ^ g(p ^ qf2p):

Denote by sf(�) the set of subformulas of formulas in � and by sf l(�) the set of variables

of formulas in � as well as all subformulas of g('1; : : : 'r(g)) 2 sf(�), g 2 G. Formally we

can de�ne

sf l(�) = sff : q 2 var(�l)g [ varp(�):

De�ne sf r(�) correspondingly. Suppose now that � � L(Sl [Sr) is a �nite set of formulas

closed under subformulas. De�ne the consistency-set of � by

C(�) = f c : c � �g;

where for c � �,

 c =
^
h� : � 2 ci ^

^
h:� : � 2 �� ci:

We abbreviate Cl(�) = C(sf l(�)) and Cr(�) = C(sf r(�)).
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Theorem 9 Suppose that `l and `r are consequence relations in Sl and Sr, respectivel,

and that '; 2 L(Sl [ Sr). Put ` = `l 
 `r. The following conditions are equivalent.

1. ' 6`  .

2. There exists D � Cl(f'; g) such that

'l; (
_
D)l 6`l  

l (1)

and, for all � 2 D,

'l; (
_
D)l 6`l :�

l and (
_
D)r 6`r :�

r (2)

3. There exists D � Cr(f'; g) such that 'r; (
W
D)r 6`r  

r and, for all � 2 D,

'r; (
_
D)r 6`r :�

r and (
_
D)l 6`l :�

l:

If D satis�es 2., then ';
W
D 6`  and

W
D 6` :�, for all � 2 D.

Proof. 2. ) 1. Take a D � Cl(f�;  g) satisfying (1) and (2). By Theorem 3 for each

� 2 D [ f: g there exists a A� 2 Atg `l and a valuation v� in A� such that

v�((
_
D)l ^ 'l) = > and v�(�

l) > ?:

Put

A =
Y
hA� : � 2 D [ f: gi

and de�ne a valuation v in A by

vl =
Y
hv� : � 2 D [ f: gi:

We have A 2 Atg `l, v
l('l) = >, vl( l) 6= > and the set

fvl(�l) : � 2 Dg

is a partition of A. On the other hand we get in a similar way from (
W
D)r 6`r :�

r, for

all � 2 D, a B 2 Atg `r with a valuation vr such that the set

fvr(�r) : � 2 Dg

is a partition of B. By Proposition 7 there exists an isomorphism � from the boolean

reduct of B onto the boolean reduct of A such that

�(vr(�r)) = vl(�l);

for all � 2 D. Hence we may assume, by identifying B with A, that we have an algebra

D = hA;_;�;>;?; hfD : f 2 Ei; hgD : g 2 Gii 2 Alg `
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with two valuation vl and vr satisfying

vr(�r) = vl(�l);

for all � 2 D, and such that vl still has the properties mentioned above. By using the

properties of Cl(f'; g) it is now easily shown that for all � 2 sf l(f�;  g),

vl(�l) =
_
hvl(�l) : � 2 D; � is a conjunct of �i

=
_
hvr(�r) : � 2 D; � is a conjunct of �i

= vr(�r):

We de�ne a new valuation v in D by putting, for all non-surrogate variables p in '; ,

v(p) = vl(p) (= vr(p)):

Claim. v(�) = vl(�l) (= vr(�r)), for all � 2 sf l(f�;  g).

The proof of this claim, which is almost trivial now, is by induction on the subformulas

of �. The interesting steps are for � = f('1; : : : ; '�(f)) and � = g('1; : : : ; '�(g)), for f 2 E

and g 2 G. Let us consider f. Then

v(f('1; : : : ; '�(f))) = fD(v('1); : : : ; v('�(f)))

= fD(vl('l1); : : : ; v
l('l�(f)))

= vl(f('1; : : : ; '�(f))):

The case � = g('1; : : : ; '�(g)) is dual by using the induction hypothesis for vr.

Clearly, by the Claim above, v(') = vl('l) = > and v( ) = vl( l) 6= >. Hence � 6`  ,

as required.

1. ) 2. Suppose that ' 6`  . There is an A 2 Alg ` with a valuation v such that

v(') = > and v( ) 6= >. Put

D = f� 2 sf l(f'; g) : v(�) > ?g:

Certainly D is as required in 2.

The equivalence of 1. and 3. can be proved in the same way. a

Corollary 10 Suppose that `l and `r are consistent. Then `l 
 `r is decidable i� both

`r and `l are decidable.

Proof. Put ` = `l 
 `r. One direction follows immediately from the fact that ` is a

conservative extension of both `l and `r. The other direction follows from Theorem 9 and

the observation that Cl(f'; g) is �nite. a
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Corollary 11 Suppose that Ql and Qr are nontrivial quasivarieties. Then the set of

quasi-identities valid in Ql 
Qr is recursive i� both the set of quasi-identies valid in Ql

and the set of quasi-identies valid in Qr are recursive.

De�ne for a consequence relation ` in L(Sl [ Sr) the following subsets of Cl(f'g) and

Cr(f'g):

�l(`)(') = f� : � 2 Cl('); ; 6` :�g and �r(`)(') = f� : � 2 Cr('); ; 6` :�g:

Correspondingly, put for a logic �,

�l(�)(') = �l(`�)(') and �r(�)(') = �r(`�)('):

Notice that `
W
�l(`)(') and that

W
�l(`)(') 6` :�, for all � 2 �l(`)('). Thus, if 6` ' then

(
_

�l(`)('))
l 6` :�l and (

_
�l(`)('))

l 6` 'l and (
_

�l(`)('))
r 6` 'r;

for all � 2 �l(`)('). So we obtain from Theorem 9 by putting D = �l(`)(') the following

Corollary 12 Suppose that `l and `r are consistent and ' 2 L(Sl[Sr). Put `=`l 
 `r.

Then the following conditions are equivalent.

1. ; ` '.

2. (
W
�l(`)('))

l `l '
l.

3. (
W
�r(`)('))

r `r '
r.

We shall �rst use Corollary 12 to prove Theorem 1. In a certain sense all the formulas in

�r(`)(') or all the formulas in �l(`)(') are less complex than ' itself so that the corollary

above allows to prove results by induction on a measure of this complexity, namely the

alternation depth. First de�ne the left-alternation-depth of ', al(') 2 !. It is the length

of a longest sequence hg1; f1; g2; f2; : : :i such that

g1(: : : f1(: : : g2(: : : (f2(: : : : : :))))

is in ' and g1; g2; : : : 2 G and f1; f2; : : : 2 E. Correspondingly the right-alternation-depth

ar(') 2 ! is the length of a longest sequence hf1; g1; f2; g2; : : :i such that

f1(: : : g1(: : : f2(: : : (g2(: : : : : :))))

is in ' and g1; g2; : : : 2 G and f1; f2; : : : 2 E. The alternation depth of ' is a(') =

al(') + ar('). The following Lemma is easily shown.

Lemma 13 For all ' 2 L(Sl [ Sr) which contain a modal operator,

a(') > a(�); for all � 2 Cl('),

or

a(') > a(�); for all � 2 Cr(').
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Proof of Theorem 1. It remains to show the following implication: ' 2 �(`l 
 `r

) ) ' 2 �(`l)
 �(`r). The proof is by induction on a('). The case a(') = 0 is trivial.

Now suppose that a(') = n > 0 and that the implication holds for all � with a(�) < n.

Then, by Lemma 13, we may assume w.l.o.g. that a(') > a(�), for all � 2 Cl('). So, by

induction hypothesis,

�l(`l
`r)(') = �l(�(`l)
�(`r))('):

Hence

(
_

�l(`l
`r)('))
l `l '

l , (
_

�l(�(`l)
�(`r))('))
l `l '

l

and we conclude (with Corollary 12) that ' 2 �(`l 
 `r) i� ' 2 �(`l)
 �(`r). a

5 Decidability of normal logics

This section deals with the problem whether Ll 
 Lr is decidable whenever both Ll and

Lr are decidable. Here we found an answer in the positive only for normal S-logics, the

question of transfer of decidability for subnormal logics remains open. So in this section

we assume that all logics and algebras are normal. Corollary 12 shows already the way

we choose to prove transfer of decidability.

The smallest normal S-logic is denoted by K(S). For each f 2 F de�ne a new modal

operator f2 by putting

f2(p1; : : : ; p�(f)) =
^
h:f(>; : : : ;:pi; : : : ;>) : 1 � i � �(f)i:

Then we have for all f 2 F

� f2(p1 ^ q1; : : : ; p�(f) ^ q�(f))$ (f2(p1; : : : ; p�(f)) ^ f2(q1; : : : ; q�(f))) 2 K(S).

� f2(>; : : : ;>) 2 K(S).

De�ne, for each ' 2 L(S), the formula

2S' =
^
hf2('; : : : ; ') : f 2 F i

and put inductively

2
�0
S ' = ' and 2�m+1

S ' = 2�mS ' ^2m+1
S ':

The crucial and easily proved property of 2S is stated in the following

Lemma 14 For all normal S-algebras A and all f 2 F and c; a1; b1 : : : ; a�(f); b�(f) 2 A, if

ai ^ c = bi ^ c;

for all 1 � i � �(f), then

fA(a1; : : : ; a�(f)) ^2
�1
S c = fA(b1; : : : ; b�(f)) ^2

�1
S c:
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One can also show the following deduction theorem.

Proposition 15 Suppose that � is a normal S-logic. Then

' `�  , (9m 2 !)(2�mS '!  2 �):

The proof is left to the reader, however, since we shall not use this proposition. But it

motivates our next steps. For suppose that �r and �l are decidable and assume that we

have an algorithm for deciding � 2 �l 
 �r, for all � with a(�) < n. Take a ' with

a(') = n. By Lemma 13 we may assume w.l.o.g. that a(�) < a('), for all � 2 Cl(').

Hence we can construct �l('). Now, if we can e�ectively determine m 2 ! such that

(
_

�r('))
l `�l '

l , 2
�m
Sl

(
_

�l('))
l ! 'l 2 �l;

then we can decide whether ' 2 �r 
 �l, by Corollary 12. Here and in what follows

�l(') = �l(�l
�r)(') and �r(') = �r(�l
�r)('). It will turn out that the left-depth and

the right-depth of ', in symbols dl(') and dr('), are as required for m. De�ne inductively

dl(p) = 0

dl(' ^  ) = maxfdl('); dl( )g

dl(:') = dl(')

dl(f('1; : : : ; 'l(f))) = maxfdl('1); : : : ; d
l('l(f))g+ 1; for f 2 F

dl(g('1; : : : ; '�(g))) = maxfdl('1); : : : ; d
l('�(g))g; for g 2 E

dr(') is de�ned correspondingly.

Theorem 16 Suppose that �l and �r are consistent normal logics. Let ' 2 L(Sl [ Sr)

and put m = dl('), n = dr('). Then the following conditions are equivalent.

1. ' 2 �l 
 �r.

2. 2�mSl (
W
�l('))

l ! 'l 2 �l.

3. 2�nSr (
W
�r('))

r ! 'r 2 �r.

In what follows we shall write 2l and 2r for 2Sl and 2Sr , respectively. For the proof of

Theorem 16 we shall need two Lemmas.

Lemma 17 Suppose that 2�ml (
W
�l('))

l ! 'l 62 �l. Then there exists A 2 Atg�l such

that there is a valuation vl and a sequence han : 0 � n �mi satisfying

(a1) am � 2
�1
l am�1 � 2

�1
l am�2 � : : : � 2

�1
l a0.

(a2) an � v(2�nl (
W
�l('))

l), for all 0 � n � m.
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(a3) am ^ v(:'
l) 6= ?.

(a4) The set fvl(�l) ^ am : � 2 �l(')g is a partition of Aam .

(a5) The sets fvl(�l) ^ (an � an+1) : � 2 �l(')g are partitions of A(an�an+1), for all

n < m.

Proof. Certainly there is a B 2 Atg�l and a valuation v such that

v(:'l ^2�ml (
_

�l('))
l) > ?:

We put for 0 � n � m,

bn = v(2�nl (
_

�l('))
l):

Now take for each n � m an algebra An 2 Atg�l with a valuation wn such that

fwn(�
l) : � 2 �l(')g

is a partition of An. Put

A = B �
Y
hAn : n � mi; vl = v �

Y
hwn : n � mi

and put for 0 � n � m,

an = hbn;

nz }| {
?; : : : ;?;>; : : : ;>| {z }

m+1

i:

We show that han : 0 � n � mi and vl are as required. (a1) follows from

an ^2lan = hbn+1;

nz }| {
?; : : : ;?;>; : : : ;>| {z }

m+1

i:

(a2) follows from vl(2�n(
W
�l(')

l)) = hbn;>; : : : ;>i and (a3) follows from

am ^ v
l(:'l) = hbm ^ v(:'

l);?; : : : ;?;> ^wm(:'
l)i

and bm ^ v(:'
l) > ?.

(a4) vl(�l1)^ am and vl(�l2)^ am are disjoint for di�erent �1 and �2, by the de�nition

of �l('). By the de�nition of am we have vl(�l)^am > ?, for all � 2 �l('), and it is also

clear that
W
fvl(�) ^ am : � 2 �lg = am. (a5) is proved similarly to (a4) and is left to the

reader. a

Lemma 18 Suppose that 2
�m
l (

W
�l('))

l ! 'l 62 �l. Then there exists A 2 Atg�l 
 �r
such that there are valuations vl and vr and a sequence han : 0 � n � mi satisfying the

conditions (a1), : : : ; (a5) and

(a6) vl(�l) ^ a0 = vr(�r) ^ a0, for all � 2 �l(').
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(a7) For all g 2 G, all 0 � n � m, and all b1; : : : ; br(g) 2 A,

gA(b1; : : : ; br(g)) ^ an = gA(b1 ^ an; : : : ; br(g) ^ an):

Proof. For each n � m take an An 2 Atg�r and a valuation vn such that

fvn(�
r) : � 2 �l(')g

is a partition of An. Also take an arbitrary A�1 2 Atg�r and an arbitrary valuation v�1
of A�1. De�ne a valuation v

r of the product B =
Q
hAn : �1 � n � mi by putting

vr =
Y
hvn : �1 � n � mi:

Take an A 2 Atg�l with a valuation vl and a sequence han : 0 � n � mi so that the

conditions (a1), : : :, (a5) are satis�ed. Put a�1 = >A � a0 and assume w.l.o.g. that

a�1 6= ?. Now there are surjective boolean isomorphisms

�m : Am ! Aam

�n : An ! Aan�an+1 ;

such that

�m(v
r(�r)) = vl(�l) ^ am and �n(v

r(�r)) = vl(�l) ^ (an � an+1):

for all n < m and all � 2 �l('). Take also an arbitrary boolean isomorphism ��1 from

A�1 onto Aa
�1
. We get a boolean isomorphism � from B onto A by putting

� =
Y
h�n : �1 � n � mi :

Y
hAn : �1 � n � mi ! A:

Using this isomorphism we can identify B with A in the obvious way and get the required

algebra D. (a6) is satis�ed by the properties of �. (a7) follows from the fact that the

Sr-reduct of D is isomorphic to a product of Sr-algebras based on the relative boolean

algebras Dan and D>�an , for all 0 � n � m. a

Proof of Theorem 16.

1. ) 2. Suppose that 2�ml (
W
�l('))

l ! 'l 62 �l. Take A 2 Atg�l
�r and valuations

vl and vr and a sequence han : 0 � n � mi satisfying the conditions (a1), : : : ; (a7).

By using the properties of �l(f'g) and (a4), (a5), (a6) it is easily shown that for all

� 2 sf l(f�g)

a0 ^ v
l(�l) = a0 ^

_
hvl(�l) : � 2 �l('); � is a conjunct of �i

= a0 ^
_
hvr(�r) : � 2 �l('); � is a conjunct of �i

= a0 ^ v
r(�r):

We de�ne a new valuation v in A by putting for all variables p in ',

v(p) = vl(p):
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Claim. For 0 � k � m and all � 2 sf(f'g) such that dl(�) � k :

ak ^ v(�) = ak ^ v
l(�l):

The proof of this claim is by induction on k.

Suppose that k = 0. The proof is by induction on the subformulas of � for dl(�) = 0.

For propositional variables this follows from the de�nition. The boolean steps are trivial.

So, assume that � = g('1; : : : ; 'r(g)), for a g 2 G. Notice that there do not occur f 2 E

in 'i since d
l(�) = 0. Hence � = �r and the equality v(�) ^ a0 = vr(�r) ^ a0 follows

immediately. Hence v(�) ^ a0 = vl(�l) ^ a0 since v
r(�r) ^ a0 = vl(�l) ^ a0.

From k to k + 1. The proof is again by induction on the subformulas of � for dl(�) �

k + 1. The interesting steps are for

� = f('1; : : : ; '�(f)) and � = g('1; : : : ; '�(g))

for f 2 E and g 2 G. Let us �rst consider f. By induction hypothesis, we have ak^v('i) =

ak ^ v
l('li), for all 1 � i � �(f). Hence, by Lemma 14,

2
�1
l ak ^ v(�) = 2

�1
l ak ^ fA(v('1); : : : ; v('�(f)))

= 2
�1
l ak ^ fA(vl('l1); : : : ; v

l('l�(f)))

= 2
�1
l ak ^ v

l(�l)

Now ak+1 ^ v(�) = ak+1 ^ v
l(�l) follows from ak+1 � 2

�1
l ak, i.e. condition (a1).

Assume � = g('1; : : : ; 'r(g)). We know, by induction hypothesis, ak+1 ^ v('i) =

ak+1 ^ v
r('ri ). Hence

gA(ak+1 ^ v('1); : : : ; ak+1 ^ v('�(g))) = gA((ak+1 ^ v
r('r1); : : : ; ak+1 ^ v

r('r�(g))):

Using condition (a7) we conclude

ak+1 ^ gA(v('1); : : : ; v('�(g))) = ak+1 ^ gA(vr('r1); : : : ; v
r('r�(g)));

which gives ak+1^v(�) = ak+1^v
r(�r) and we conclude ak+1^v(�) = ak+1^v

l(�l) since

ak+1 ^ v
l(�l) = ak+1 ^ v

r(�r).

2. ) 1. is clear.

3. , 1. can be proved similarly. a

We get the following Corollary, as explained above.

Corollary 19 Suppose that �r and �l are consistent normal logics. Then �l 
 �r is

decidable i� both �l and �r are decidable.
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By var� (var�) we denote the set of variables in ' (in formulas in �). Recall that a logic �

has the interpolation property i� for all '!  2 � there exists a formula � in var'\var 

such that both ' ! � 2 � and � !  2 �. � is Halld�en-complete i� ' _  2 � implies

' 2 � or  2 � whenever ' and  have no common propositional variables.

Corollary 20 (i) Suppose that �r and �l are normal modal logics with the interpolation

property. Then �l 
 �r has the interpolation property. (ii) Suppose that �r and �l are

normal modal logics which are Halld�en-complete. Then �l 
 �r is Halld�en-complete.

Proof. The proof uses Theorem 16 in the same way as this was done in [10] for Kripke-

complete logics. a

We say that a modal logic � has uniform interpolation if for any formula ' and variables

~q = fq1; : : : ; qkg there exists a uniform interpolant 9~q' for ', i.e.,

� '! 9~q' 2 �,

� var9~q' � var'� ~q,

� 9~q'!  2 � whenever '!  2 � and var \ ~q = ;.

Pitts [13] proved that intuitionistic propositional logic has uniform interpolation. [5] and

[16] prove that K, provability logic GL and Grzegorzcyk's system Grz have uniform

interpolation but that S4 lacks it. It is easily proved that a normal modal logic � has

uniform interpolation whenever it has interpolation and Alg� is locally �nite, i.e. each

�nitely generated algebra in Alg� is �nite. (Take as the uniform interpolant for ' the

conjunction over all interpolants for ' !  , ' !  2 �.) Hence e.g. S5 has uniform

interpolation.

To prove that �l
�r has uniform interpolation whenever both �l and �r have uniform

interpolation we require the following observations. Let

r('; ) = f'1 ! : 1 : '1 2 �l(');  1 2 �l( ); '1 ! : 1 2 �l 
 �rg:

Then
W
�l('!  ) equals (modulo boolean transformations)

W
�l(')^

W
�l( )^

V
r('; ).

Now the proof of Theorem 16 is easily extended to show the following, for any two formulas

',  : '!  2 �l 
 �r if and only if, for n1 = dl(') and n2 = dl( ),

(y) (2�n1l (
_

�l('))
l
^2

�n2
l (

_
�l( ))

l
^2

�n1
l (

^
r('; ))l)! ('!  )l 2 �l:

Theorem 21 � = �l 
 �r has uniform interpolation whenever both �l and �r have

uniform interpolation.

Proof. Let us �x ~q = fq1; : : : ; qkg. We prove by induction on a(') that there exists a

uniform interpolant 9~q' for '. This is clear if ' contains no modal operators. Assume
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now that ' contains modal operators and that uniform interpolants exist for all � with

a(') > a(�). We may assume that a(') > a(�), for all � 2 Cl('), and take uniform

interpolants 9~q� for those �. Let, for n1 = dl('),

Q = ' ^2
�n1
l

_
�l(') ^2

�n1
l

^
f�! 9~q� : � 2 �l(')g;

~r = ~q [ fq� : � = g(�1; : : : ; ��(g)) 2 sf('); g 2 G; ~q \ var� 6= ;g:

�l has uniform interpolation. Thus we can take a uniform interpolant 9~rQl for Ql in the

logic �l. Certainly there exists a (uniquely determined) formula 9~q' such that

9~rQl = (9~q')l:

Note that ~q\var9~q' = ; by the de�nition of ~r. We show that 9~q' is a uniform interpolant

for '. We have Ql ! 9~rQl 2 �l. Thus Q ! 9~q' 2 � and so ' ! 9~q' 2 � since

Q$ ' 2 �. Assume now that '!  2 � and var \ ~q = ;. We show 9~q'!  2 �. It

follows from (y) that, for n2 = dl( ), Ql ! Rl 2 �l, where

R = (2�n2l

_
�l( ) ^2

�n1
l

^
f9~q'1 ! : 1 : '1 ! : 1 2 r('; )g) !  :

So 9~rQl ! Rl 2 �l since ~r \ varR
l = ;. But then 9~q' ! R 2 � and so 9~q' !  2 �

since  $ R 2 �. a

It follows that e.g. K(S) and S5 
 S5 have uniform interpolation. (That K(S) has

uniform interpolation was �rst proved in [1].)

6 An Application

Recall that a superintuitionistic logic L is a subset of the propositional language LI with

connectives !, ^, _, >, ? which contains intuitionistic logic and is closed under modus

ponens and substitutions. Benote by Int intuitionistic logic and denote by Int + � the

smallest superintuitionistic logic containing �. Denote by L2 the language L with a new

connective 2. A superintuitionistic modal logic is a subset of L2 which contains Int,

2(p ^ q)$ 2p ^2q and 2>

and which is closed under modus ponens, substitutions, and p ! q=2p ! 2q. For

information on superintuitionistic modal logics of this type consult e.g. [17]. Denote

by IntK the smallest superintuitionistic modal logic and denote by � � � the smallest

superintuitionistic modal logic containing � and �. We are going to prove the following

extension of [[17], Theorem 13].

Theorem 22 Suppose that a superintuitionistic logic Int+� is decidable. Then the logics

IntK� � and IntK� ��2p! p are decidable as well.
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We give a sketch of the proof only, since it is similar to the proof of [[17], Theorem 13].

In [17] the G�odel translation of intuitionistic formulas into modal formulas is extended to

a translation t of L2 into the bimodal language with operators 2I and 2M . Namely, t is

de�ned inductively by putting

t(p) = 2Ip;

t(?) = 2I?;

t(' �  ) = 2I(t(') � t( )); for � 2 f^;_;!g;

t(2') = 2I2M t('):

Denote for a normal modal logic � and a set of formulas � by �� � the smallest normal

modal logic containing � and �. A normal bimodal logic � is called a BM-companion of

a superintuitionistic modal logic L if

L = f' 2 L2 : t(') 2 �g:

Clearly L is decidable whenever a BM-companion of L is decidable. Hence it su�ces

to show that all the logics de�ned in the theorem have decidable BM-companions. It is

proved in [17] for all � � LI

� (S4� t(�))
K is a BM-companion of IntK� �.

� (S4� t(�))
 (K�2Mp! p) is a BM-companion of IntK� ��2p! p.

Hence it su�ces to prove that (S4 � t(�)) 
K as well as (S4 � t(�)) 
 (K �2Mp ! p)

are decidable whenever Int + � is decidable. But it is shown in [18] that S4 � t(�) is

decidable whenever Int+� is decidable and both K as well as K�2p! p are known to

be decidable. Hence all the fusions are decidable.
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