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Abstract. We study the evolution of simple cells that are equipped
with a genome, a rudimentary gene regulation network at transcription
level and two classes of functional genes: motion effectors allow the cell
to move in response to nutrient gradients while nutrient importers are
required to actually feed from the environment. The model is inspired
by the protist Naegleria gruberi which can switch between a feeding
and dividing amoeboid state and a mobile flagellate state depending on
environmental conditions. Simulation results demonstrate how selection
in a variable environment affects the gene number and efficiency so that
the cells can rapidly switch from one expression regime to the other
depending on the external conditions.
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1 Introduction

A non-trivial task in Artificial Life research is to devise genotype-phenotype
maps, i.e., relations between genomic sequence information and the shape, struc-
ture, and behavior of the organism that is encoded by the genome. The difficulties
stem from the complexity of even the simplest cells, which precludes a represen-
tation of an entire cell at the molecular level. On the other hand, at present
there are no established “intermediate-level” theories that would provide con-
sistent but simplified representations of cellular processes (energy metabolism,
biomass production, cell division, sensory responses, intracellular transport, gene
expression, etc.). One therefore has to resort either to simulations based on a
large number of ad hoc assumptions, or to the construction of minimal models
based on biophysical and biochemical principles.

The process of RNA folding, for example, can be viewed as a minimal model
of a genotype-phenotype map. Here, the sequence of the RNA molecule acts as
the genotype (the sequence information is actually heritable in in vitro selection
(SELEX) experiments [16]), while the (secondary) structure of the molecule is
interpreted as the phenotype (SELEX experiments indeed often demonstrate a
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strong structure dependence of the selected nucleic acids). Detailed investiga-
tions of the RNA model lead to the development of important concepts, such
as neutral networks percolating sequence space, the phenomenon of shape space
covering, and the importance of accessibility for phenotypic evolution [20, 7].
The structure of the genotype-phenotype map determines the structure of the
fitness landscape [21] which in turn determines the dynamics of an evolving
population. The high degree of neutrality of the RNA folding map, for example,
explains punctuated equilibria in the absence of external events [8, 13], leads to
a selection for robustness against mutations [22] and influences evolvability [4].

Concepts such as epistasis and phenotypic plasticity easily translates into this
RNA folding metaphor [6], however, important characteristics of the genotype-
phenotype maps of biological organisms, do not have a counterpart in this frame-
work:
While genotype and phenotpye are embodied in the same physical entity in the
RNA model, there is a rather strict separation between genomic information
and functional molecules in all biological organisms. This allows an organism to
exist in different internal states (that depend on its individual history) which
may cope with environmental conditions in different ways. Regulatory networks
are at the core of the mechanism by which cells individually adapt to changing
conditions, see e.g. [9, 3]. The majority of the artificial gene regulation mod-
els used today [1, 5, 11, 19] are based on the well established “operon model” of
gene expression [14], which divides the genes into two classes: (i) the transcrip-
tion factors capable of binding to the DNA thereby modulating the expression
of downstream located genes; and, (ii) structural proteins which perform some
functions different from the regulation of the gene expression. In the simplest
case, regulatory networks arise when transcription factors also enhance or inhibit
the expression of other transcription factors. (Note that such models still ignore
crucial regulation mechanisms of real cells such as signal transduction networks
and post-transcriptional gene silencing.)

The CelloS model described in this contribution combines a simple compu-
tational cell model, the extended Potts model (see [18] and references therein),
with an artificial genome and a minimal model of gene expression [19]. This com-
bination allows us to study the coupling of the environmental dynamics to the
cell internal dynamics of gene expression within the framework of an evolving
cell population.

Our approach is motivated by the cell differentiation of the amoeba Naegleria

gruberi, which is capable of changing cell shape, from a crawling amoeba to an
asymmetric elongated cell, and of growing flagella when nutrients are scarce.
It has been shown [10] that all proteins necessary for the differentiation are
synthesized de novo, i.e., due to transcriptional regulation. The initiation of
morphological changes require the synthesis of sufficient amounts of proteins,
i.e., a significant investment. The transformation is temporal and the organism
returns back to the amoeba state when nutrients are again available. N. gruberi

divides in the amoeba state only, while the flagellate state is much more mobile
and hence better suited to explore novel nutrient sources.



2 The model

The basic tool for our simulations is the Potts model with some extensions [17]
on a 2D lattice. A cell C is a maximal connected subset of the lattice such that
all lattice points in C have the same type or “color” u. Cells interact with each
other with strength Juv at neighboring lattice points depending on their types
u and v. A special type 0 denotes empty lattice sites. Each cell is characterized
by its energy

EC =
∑

i∈∂C

∑

j∈N(i)\C

JuC ,uj
+ λ(vol(C) − V )2 (1)

where vol(C) is the volume of the cell, i.e., its number of lattices points, V is
a user-defined target volume, and λ is a compressibility parameter. The double
sum runs over all lattice edges that point from the boundary (surface) of the
cell C to other cells or into the environment. The enviroment contains a nutrient
with concentration ci at lattice point i.

Cell motion is implemented by a simple Metropolis Monte Carlo step in which
a cell attemps to modify its boundary at lattice point i ∈ ∂C by changing the
type of an adjacent site i′ to its own type, or by changing one of its boundary
sites to 0. The cells feel the gradient in the nutrient by evaluating ci′ − ci. The
transition probability is min{1, exp(−(∆EC + µ0(ci′ − ci) + H∂)/T )} where H∂

is the energy cost of deforming the cell’s boundary, µ0 describes the reactivity of
the cell to changes in the nutrient concentration, and T a temperature-like pa-
rameter. Note that cell motions are internally driven and hence consume energy
rather than the result of molecular Brownian motion. Our cells have a finite life
expectancy and require energy to stay alive. This is modeled by a “battery” that
is used up when enzymes are synthesized or the cell moves. When the “battery”
is empty, the cell dies and the corresponding lattice sites are reset to 0.

Each cell on the lattice contains an RNA sequence of length 1000 that rep-
resents its genome and contains the information necessary to decode the cell’s
behavior. This genome can encode two types of effector molecules (corresponding
of course to proteins in N. gruberi, but modeled as RNAs here for computational
convenience) and a simple regulation mechanism. The “genetics” of the CelloS

model is summarized in Fig. 1.

A short signal sequence (corresponding e.g. to the TATA box in real cells)
marks the beginning of a “coding region” on the genomic sequence. We use
the signal GC and define a gene the following 40 nucleotides. This subsequence
is folded into its secondary structure using the RNAfold program of the Vienna

RNA Package [12]. The structure is then compared with two target shapes for the
“motion effectors” and the “nutrient importers”, which are kept fixed throughout
the simulation. The closer target shape determines the function of the gene, while
the number of base pairing differences measures the gene’s efficiency.

In the current implementation we keep the gene regulation network fixed.
In order to implement the switching between the motion effectors and nutrient
importers we use the simple negative feedback system shown in Fig. 1 (bottom).
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Fig. 1. Genetics of the Cellos model. (a) Genomic organization. Two classes of func-
tionally different RNAs are distiguished by archetypic shapes: motion effectors (b) and
metabolic effectors that act as nutrient importers (c). Panel (d) summarizes the logic
of regulation in Cellos: expression is down-regulated when an RNA from the other
function-class binds to the regulatory region of the gene.

The differential equations for this scheme are:

∂GA

∂t
= γA · k

1

1 + G3
B

− d · GA

∂GB

∂t
= γB · k

1

1 + G3
A

− d · GB

(2)

where GA and GB are the concentrations of the two types of gene products, γA

and γB are their efficiencies, and k and d fixed constants. A 4th order Runge-
Kutta method is used to numerically integrate these differential equations.

Once the genome is decoded, the concentrations of the gene products are
computed. The cell is then able to feed depending on the available nutrient in
the environment provided it expresses nutrient importers, and to move if motion
efforts are expressed. The battery level B is decreased depending on the gene
products that are produced and it is recharged if the cell is in a food source:

B′ = B − c0(GA + GB) + φ0GB (3)



The parameteres c0 and φ0 describe the ratio of nutrients obtained from the
environment against the cost of producing the importers and motion effectors,
respectively. The mobility of the cell depends on the concentration of expressed
motion effectors which is reflected in a modified transition probability for chang-
ing the cells boundery by replacing the constant µ0 with µ0 · GB .

The products of metabolic genes play two different roles: first, they recharge
the battery of the cell; and second, they increase the cell’s target volume. Once
a cell has doubled its normal size, it divides by fission copying its genome to
the new cell. This process is usually inaccurate, producing mutations in the new
RNA string. In this model every replication implies one random point mutation
in the genome.

Food sources are depleted when cells feed from them. Once a source is empty,
it is replaced by a new one in a randomly chosen spot of the lattice. This way,
cells are forced to switch between the metabolic and movement states, reinforcing
the selection of only those capable of doing so.

Individual cells with very similar genomes belong to the same species. The
definition of species in our model is similar to that proposed by Kenneth and
Risto in [15]. Each gene in the population has a unique historical number. Every
time a mutation creates a new one or changes the type of an old gene, this
global variable is increased and assigned to the new gene. In order to compare
two genomes, we use a linear combination of the number of excess (T ) and
disjoint (D) genes, and the average efficiency difference between common genes
(W ). If the result of

δ =
c1T

N
+

c2D

N
+ c3 · W (4)

is below a threshold value, the new cell is assigned to the same species as the
old one. Whenever a new species is created, a genome is set to represent the
whole species. Every time a new cell is born, its genes are compared to all
species’ genomes and included in the first one for which the distance is below
the threshold.

3 Simulation Results

Some fixed parameters are used in all simulations: we use a lattice of 200× 200
sites with periodic boundary conditions, Jx,0 = 11 for the contact with an empty
site, Jab = 37.5 for the contact between different cell types, and Jaa = 35 for the
contact with a cell of the same species. Furthermore T = 3, H∂ = 0.8, µ0 = 5000,
c0 = 0.4, V = 30, λ = 5.

Figure 2 shows the evolution of the system for two different simulation runs.
In the first four images three food sources were available for the cells to eat.
Population size changes depending on the conditions. The last two images were
produced with only one food source.



Fig. 2. First four images for three food sources. Last two with only one source.
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Fig. 3. Left: Number and efficiency of genes in a simulation with parameters: number
of food spots 3, mean life 600, volume increment per generation 0.6. Right: Population
and energy of the sources. The zoom in the bottom shows how population grows only
when cells are feeding from the sources.

3.1 Genome structure

We measure the impact of the external conditions in the genome by looking at
the number of metabolic and movement genes, their efficiencies and the effectors
expression inside and outside a food source.

The regulatory network we are using, imposes a well defined range in which
gene efficiency must lay in order to obtain the necessary switch between states. In
our simulations it is clear how these numbers are controlled by natural selection
when the genome is mutating randomly. In Fig. 3 it can be seen how after a
period of adjustment, the population falls in a regime where gene number and
efficiency are inside a small interval for both kind of genes.

The population grows depending on the availability of nutrients. Every time
a food source is depleted, cells must migrate to the next one. This periods are
usually reflected in a diminution of the population and increase in the average
number of movement genes in it. The second panel in Fig. 3 shows the energy of
the sources and the change in the number of cells. Source energy staying at its
maximum means that there are no cells feeding from it. This is clearly related
with a decrease of the population size (Fig. 3).

This combination of gene types allows a switching in their products expres-
sion depending only in the presence or absence of food from the environment.
Figure 4 shows this behavior for a single cell with the right number of genes.

One special case of study, is when there is only one food spot of infinite life
in the lattice. Cells that are in the spot are thrown out of it by the newborns.
Even when there is no need of traveling long distances, the fact that cells have
to be constantly coming back into the source makes the presence of movement
genes indispensable. At the same time, since food is easily available, there is
no need to increase the efficiency of metabolic genes. Battery may be refilled
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Fig. 4. Switching of gene products expression depending on the presence/absence of
nutrients. Same parameters as in the previous figure.

slowly without killing the cell since the time they spent outside the food source
is usually very short.

3.2 Phylogenetics

With our simple definition of species the number of species depends directly on
the volume increase per generation. Phylogenetic trees can be recorded based
on the speciation events, see Fig. 5 for a characteristic example. The Darwinian
evolution is dominated by one or a few species at any given point in time. The
coexistence of distinct lineages over longer times is comparably rare. In some
runs one of the initial species survives until the end of the run, failing to find
any important improvement in phenotype via mutations.

4 Concluding Remarks

In this first (and very simple) implementation of the model, we observe the
response of the genome to variable environmental conditions. After an initial
phase of selection the number of genes stays approximately constant. The cells
can then use their gene regulation network to cope with environmental changes.
Population dynamics also reflect the presence or absence of nutrients, together
with an increase of the number and/or the efficiency of movement genes. We
found that, at least in our simple environment, it is not important to have a
large number of genes, but to have the right amount of them depending on
the environmental inputs and the regulatory network modifying their products’
expression.

Since the mechanism of the regulation of gene expression in the current im-
plementation of the CelloS model can itself not be a target of evolution, we
plan to add transcription factors as a third class of gene products to the arti-
ficial genome. This will allow the cells to find innovative regulatory strategies
based on post transcriptional interaction. A fruitfull route will then be to study
the mixing of regulatory strategies under sexuall reproduction of the cells.



18
.0

16
.0

14
.0

12
.0

10
.08.
0

6.
0

4.
0

2.
0

0.
0 time

Fig. 5. Phylogenetic tree for a run with three food spots. Nodes in the tree represent
the dissapearance of a species, while saddles stand for the split of two of them. Time
unit is 1000 simulation steps.

Extending the set of mutation operators from point mutation to gene du-
plication and horizontal gene transfer, turns Cellos into a tool for generating
test data for phylogenetic reconstruction methods. Comparing the simulated
evolutionary scenario with the reconstructed one will allow to evaluate the per-
formance of such methods.

The environmental dynamics can also be improved by switching to an artifical
chemistry like the Toy Chemistry Model [2]. This forces for an additional decod-
ing layer in the internal structure of the cells, which links our representation of
the nutrient importers to organic molecules in the environment. Improvements
of the CelloS model along these lines are under way.
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