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RNA molecules interact by forming inter-molecular base pairs that compete with the

intra-molecular base pairs of their secondary structures. Here we investigate the patterns

of neutral mutations in RNAs whose function is the interaction with other RNAs, i.e.,

the co-folding with one or more other RNA molecules.

We find that (1) the degree of neutrality is much smaller in interacting RNAs compared

to RNAs that just have to coform to a single externally prescribed target structure, and

(2) strengthening this contraint to the conservation of the co-folded structure with two

or more partners essentially eliminates neutrality. It follows that RNAs whose function

depends on the formation of a specific interaction complex with a target RNA molecule

will evolve much more slowly than RNAs with a function depending only on their own

structure.
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1. Motivation

The properties of the folding map for a single RNA sequence have been studied

in much detail in the last decade [3, 6, 4, 8, 9, 5]. These studies showed that a

large fraction of point mutations are neutral in RNA molecules in the sense that

the mutation does not change the base pairing pattern (secondary structure) of

the ground state structure. Due to this high degree of neutrality, there are “neu-

tral networks” of sequences folding into the same ground state structure. These

neutral networks “percolate” through sequence space and contain neutral paths

that connect sequences without detectable sequence similarity. This structure of

the RNA folding map implies a diffusion-like behavior of evolving populations of
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RNA molecules in sequence space, which conforms to Kimura’s neutral theory [13].

Indeed, expressions e.g. for fixation rates, can be derived which reproduce the pre-

diction of the neutral theory save an additional scaling factor that depends on the

fraction of neutral mutations [12].

More recently, simple models of strongly interacting RNA molecules have been

studied from this perspective, in which selection for a common resource is replaced

by frequency-dependent fitness terms. In these models, each RNA species depends

on the presence of specific catalysts. A prime example of this class of models is the

hypercycle model of interacting replicators [2]. While such a system has not (yet?)

been realized experimentally, there has been substantial progress in constructing

RNA replicase ribozymes. We refer to [14] for a description of the state of the art.

It is thus worthwhile to study the evolutionary properties of such models.

In [19], the diffusion (in sequence space) of a population of interacting replica-

tors is studied, where the replication rates depend only on the sequence similarity

of the parent molecules. A model of hypercycles with interactions depending on the

secondary structures of the individual RNAs is described in [7] and later in more

detail in [20]. In the latter contribution, we emphasize the importance of the neu-

trality of the genotype-phenotype map for both persistence of the hypercyle and for

diffusion in sequence space.

In this letter we consider a more sophisticated model of RNA-RNA interac-

tions. In previous work, the basic assumption was that the actions of each RNA

molecule are determined by its own secondary structure only. For example, the

replication rate of sequence x under the influence of sequence y as catalyst is

axy = a(f(x), f(y)), i.e, a function of the (ground state) secondary structures of

both molecules. Here we explore the situation when axy = a(f(x ◦ y)), i.e., when

the rate is a function of the structure of the interaction complex of the two sec-

ondary structures x and y. To this end, we study in detail the statistical properties

of the RNA co-folding map f : (x, y) 7→ f(x ◦ y) which assigns to each pair of

RNA sequences the secondary structure of their thermodynamically most stable

co-folding.

2. The Model

The common secondary structure f(x◦y) of two interacting RNA molecules can be

computed using a simple extension of the usual dynamic programming algorithms

for computing RNA secondary structures, see e.g. [11, 1]. The basic idea is to

compute the secondary structure of the concatenated RNA sequences x ++y (or

y++x), where the “loop” that contains the split between x and y does not contribute

to the folding energy. We use here the program RNAcofold implemented in the

Vienna RNA Package [11, 10]. If the ground state structure is unique then f(x◦y) =

f(y ◦ x), otherwise the structures will in general be different since the backtracking

routine implemented in RNAcofold yields one of the set of degenerate ground state

structure in a deterministic way that depends, however, on the input order.
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Fig. 1. Distribution of structure distances of interaction complexes before and after a single muta-
tion mutation. (a) Point mutations. Data extracted from 600000 sequences of length 100. Fraction
of neutral mutations: λ̄ = 0.32. (b) Compensatory mutations: 1000 sequences of length n = 100
cofolded with a fixed one of length also n = 100. On average there are 66 possible compensatory
mutations, out of which λc = 0.35 are neutral.

In the following we will study two different versions of defining neutrality in a

cofold map:

(1) We say that a mutant x′ of x is neutral when f(x′ ◦ y) = f(x ◦ y) for a given

partner sequence y. This scenario corresponds to RNA switches or RNAs such

as microRNAs [15] that bind to target molecules in a specific way.

(2) We say that a mutant x′ of x is neutral when f(y◦x′) = f(y◦x) and f(x′ ◦z) =

f(x◦z) for two different interaction partners y and z. This scenario corresponds

e.g. to an RNA hypercycle [2]: the mutant x′ simultaneously must be a template

(and hence retain the structure of its complex with the catalyst z), and a

catalyst (and hence be able to replicate the template y).

In the first case, i.e., cofolding of the mutating sequence with a fixed partner,

we consider both point and compensatory mutations. In order to obtain accurate

stastics we compute all point mutations and all compensatory mutations (where a

base pair is replaced with another type of base pair) using samples of 600000 and

1000 sequences, respectively. We use the symmetric difference of the set of base

pairs as a measure for the structural distance of two RNA secondary structures.

This first case is similar to folding the concatenated sequence f(x ++y) instead

of the co-folding complex f(x◦y), the only difference being the energy contribution

from the “exterior loop” that contains the split between the two sequences. Indeed,

we observe a fraction of neutral mutations λ̄ similar to that reported in [8] for an

individual RNA sequence.

The second case, where the RNA molecule is mutated and cofolded with two
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different partners, is more imporant e.g. in the context of models of prebiotic evo-

lution. Here a single sequence has to satisfy at least two different contraints: it has

to be a recognizable template and it has to perform its catalytic function in two

different contexts. In this case we sample in the following way. We randomly gen-

erate three different RNA sequences of the same length, x, y, and z, and compute

f(x ◦ y) and f(x ◦ z). We then mutate x and recompute the cofolding structures

f(x′ ◦ y) and f(x′ ◦ z) and determine the distance from the original structures. In

this case, a “compensatory mutation” must be compensatory with respect to both

f(x ◦ y) and f(x ◦ z), i.e., only base pairs shared by both cofolding structures are

candidates for compensatory mutations.

We sampled approximately 300, 000 randomly generated sequences with point

mutations for chain length n = 50, about 570, 000 of length n = 100, and 450, 000 of

length n = 200. Furthermore, 3000 sequence triplets with compensatory mutations

were constructed for each of the three chain lengths.

In addition to estimating the fraction of neutral mutations, we also estimated

the length of neutral paths [18]. A neutral path L is defined a follows. Starting from

a sequence x0, a sequence of RNA sequences {xi|i = 1, . . .} is constructed such that

(i) f(xi) = f(x0), i.e., the structures do not change along the path, (ii) xi is a

point mutant or compensatory mutant of xi−1 and (iii) the Hamming distance from

the starting point x0 strictly increases with each step. The path terminates after

at most n steps when no further acceptable mutant can be found. The Hamming

distance between x0 and the last point in the path is the length L of the neutral

path. Here we constructed 1200 neutral paths for sequences of length n = 100. In

the case of one sequence cofolding with two partners, the algorithm is basically the

same except that compensatory mutations must be possible in both structures and

only mutations that are neutral in both interaction complexes are accepted along

the path.

3. Results

The behavior of RNAcofold when taking into account only two sequences is very

similar to that of RNAfold for a single RNA sequence of the same length [11]. The

fraction of neutral point mutations is almost a third of the total. One difference

compared to folding single sequences is that almost no point mutations change all

base pairs of the structure.

In the case of compensatory mutations the situation is different since we allow

mutations only in one of the two sequences. Inter-molecular base pairs can only

change from GU to AU or CG to UG. Therefore, two thirds of the possible

compensatory mutations are not allowed anymore and neutrality is hardly increased

by them: Only 35 percent of the remaining mutations are neutral. From [17] we know

that in order to change from one connected component to some other inside the

neutral network, compensatory mutations may be needed. This is important from

the evolutionary point of view, since a fitter structure may be accessible only from
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Fig. 2. Distribution of structure distances D(f(x ◦ y), f(x′
◦ y)) and D(f(x ◦ z), f(x′

◦ z)) of RNA-
RNA interaction complexes. The two curves give the smaller and the larger distance of each pair of
complexes. (a) 300, 000 sequences of length n = 50, point mutations; fraction of neutral mutations:
λ̄ = 0.185. (b) 568, 000 sequences of length n = 100, point mutations, fraction of neutral mutations:
λ̄ = .186. (c) 445, 000 sequences of length n = 200, point mutations, fraction of neutral mutations:
λ̄ = 0.180.
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Fig. 3. Distribution of distances between interaction complexes as in Fig. 2 when compensatory
mutations are used. 3000 sequences of length n = 100 were used. On average, we found on average
only 15 possible compensatory mutations for both structures at the same time. Of these, only
about 15% are neutral.

a particular connected component of the neutral network.

In the case of more than a single structural constraint, however, the situation be-

comes even more difficult. As shown in Fig 3b, the degree of neutrality is drastically

descreased both for point mutations and for compensatory mutations. This fact is of

crucial importance for models where cofold defines the interactions between RNA

molecules.

Fig. 2 shows that neutral mutations occurring simultaneously for both cofolding

structures are only about 18 percent of all possible mutations, i.e., less than two
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Fig. 4. (a) Length of neutral paths for 1200 sequences of length 100 cofolded with a single fixed
sequence. (b) Length of neutral paths for 1200 sequences of length 100 when cofolding with two
fixed sequences.

thirds of the fraction of neutral mutations in individual sequences. Note that the

shape of the distributions depends very little on the sequence length. Furthermore,

the distances scale linearly with chain length.

It is known that for single folding sequences, it is possible to exchange almost

all nucleotides without leaving the neutral network [11, 8]. In the case we study

here, the length of neutral paths for cofolding one sequence with one fixed inter-

action partner is shorter than in single-sequence RNA folding. The reason are the

intermolecular base pairs. For some of these it would be impossible to find neutral

mutations and so some bases of x cannot change without leaving the neutral net-

work. In Fig. 4a we show the results for 1200 sequences of length n = 100 cofolding

with fixed sequences of the same length.

The length of the path when cofolding one sequence with two different interact-

ing RNAs is much shorter than the previous case and, of course, than in the case

of folding an isolated RNA. Indeed, there are no paths along which all nucleotides

of x could be replaced, Fig. 4b.

4. Concluding Remarks

An overview of the results obtained in this study is compiled in Table 1. We find

that the cofolding map of two RNAs and the folding map of a single RNA secondary

structure are similar, although the cofolding map is somewhat more constrained. In

contrast, neutrality is drastically reduced in the case of multiple contraints, as one

would expect. While the cofolding map f(x◦y) admits long neutral paths and large

neutral networks, we find that the neutrality of the double-constraint co-folding

map f(x ◦ y)∧ f(x ◦ z) is already too small (λ̄ ≈ 0.18) to allow extensive connected

neutral networks.
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Neutral mutations Length of path

Single fold 0.33 100

Cofold with one sequence 0.32 75

Cofold with two sequences 0.18 40

Table 1. Fraction of neutral mutations and average path length for RNA sequences of length
n = 100 and the three different definitions of neutrality.

Indeed, the connectivity thresholds for neutral networks with 4- and 6-letter

alphabets (corresponding to the unpaired and pair parts of the RNA structure) are

λ∗ ≈ 0.37 and λ∗ ≈ 0.30, respectively, as derived from a random graph approach

[16]. While the observed neutrality λ̄ is at or above the threshold for interactions

with a single partner, the doubly contrained networks have an average connectivity

that falls well below this threshold.

The distinction between the single-constraint and the multiple constraint sit-

uation is important from an evolutionary point of view. Neutral networks allow

efficient adaptation on the corresponding fitness landscapes and imply easy evolu-

tion at the sequence level even in the limiting case of very strong stabilizing selection

on the secondary structure level. This is what is observed for most functional non-

coding RNA molecules, including tRNAs, rRNAs, RNAse P RNA, and microRNA

precursors. In contrast, multiple constraints reduce neutrality to a point where the

neutral networks decompose into disconnected components and sequence evolution

becomes restricted by multiple structural constraints.

We suggest that the very slow rates of evolution of mature microRNAs could be

due to multiple targets; indeed, structural constraints on the interaction complex

with a single mRNA target cannot explain the almost perfect conservation of mature

miRNA sequences.

Similarly, the evolution of hypercyclically coupled RNA replicators, e.g. in a

prebiotic or in a laboratory setting, would be dramatically slowed down by the

requirement that each RNA must properly interact as templates with its own ribo-

replicase and as a catalyst with other templates. This restriction implies an advan-

tage in evolvability for systems in which template function and enzyme function are

well separated, so that each RNA molecule has to satisfy only a single structural

constraint.

Acknowledgments

This work was supported in part by Consejo Nacional de Ciencia y Tecnologia,

México, the DFG Bioinformatics initative, Germany, and the European Science

Foundation in the framework of COST D27 “Prebiotic Chemistry and Early Evo-

lution”.



8 Camille Stephan-Otto Attolini & Peter F. Stadler

References

[1] R. A. Dimitrov and M. Zuker. Prediction of hybridization and melting for double-
stranded nucleic acids. Biophys. J., 87:215–226, 2004.

[2] M. Eigen and P. Schuster. The Hypercycle. Springer-Verlag, New York, Berlin, 1979.
[3] W. Fontana, T. Griesmacher, W. Schnabl, P. F. Stadler, and P. Schuster. Statistics

of landscapes based on free energies, replication and degradation rate constants of
RNA secondary structures. Monatsh. Chem., 122:795–819, 1991.

[4] W. Fontana, D. A. M. Konings, P. F. Stadler, and P. Schuster. Statistics of RNA
secondary structures. Biopolymers, 33:1389–1404, 1993.

[5] W. Fontana and P. Schuster. Continuity in evolution: On the nature of transitions.
Science, 280:1451–1455, 1998.

[6] W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker,
M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster. RNA folding landscapes
and combinatory landscapes. Phys. Rev. E, 47:2083–2099, 1993.

[7] C. V. Forst. Molecular evolution of catalysis. J. Theor. Biol., 205:409–431, 2000.
[8] W. Gruener, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F.

Stadler, and P. Schuster. Analysis of RNA sequence structure maps by exhaustive
enumeration. I. neutral networks. Monath. Chem., 127:355–374, 1996.

[9] W. Gruener, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Hofacker, P. F.
Stadler, and P. Schuster. Analysis of RNA sequence structure maps by exhaustive
enumeration. II. structures of neutral networks and shape space covering. Monath.
Chem., 127:375–389, 1996.

[10] I. L. Hofacker. Vienna RNA secondary structure server. Nucl. Acids Res., 31:3429–
3431, 2003.

[11] I. L. Hofacker, W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker, and P. Schus-
ter. Fast folding and comparison of RNA secondary structures. Monatsh. Chemie,
125:167–188, 1994.

[12] M. A. Huynen, P. F. Stadler, and W. Fontana. Smoothness within ruggedness: the
role of neutrality in adaptation. Proc. Natl. Acad. Sci. (USA), 93:397–401, 1996.

[13] M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge University Press,
Cambridge, UK, 1983.

[14] K. E. McGinness and G. F. Joyce. In search of an RNA replicase ribozyme. Chem.
Biol., 10:5–14, 2003.
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