
Representing Polynomials in Computer Algebra Systems

Joachim Apel� Uwe Klaus��

Universit�at Leipzig

Fakult�at f�ur Mathematik und Informatik

Augustusplatz 10{11

D{04109 Leipzig, Germany

There are discussed implementational aspects of the special-purpose computer algebra

system FELIX designed for computations in constructive algebra. In particular, data

types developed for the representation of and computation with commutative and

non-commutative polynomials are described. Furthermore, comparisons of time and

memory requirements of di�erent polynomial representations are reported.

1 Introduction

Developing our special-purpose computer algebra sys-

tem FELIX we have payed many attention to the space

and time e�ciency of representing polynomials. The

short introduction to the system given in section 2

should motivate our e�orts towards polynomials. Sec-

tion 3 illustrates the data management of the system.

In this paper we want to report about di�erent inves-

tigated possibilities of data representation. Primary, we

will not aim our attention at the question of complexity

formulas since we did not develop new algorithms for

performing the arithmetic operations. What we did is

to design special data types for the internal representa-

tion of polynomials and monomials. Such a data type

consists of the de�nition of the associated memory area,

the speci�cation of some basic functions acting on the

data, and the description of the memory management

for this data type. The result of such an approach is

mainly to diminish the constant factors rather than the

complexity. Storage complexity improvements could be

achieved using unique data representations. But unique

data representation has to be paid with management

overhead which, on the other hand, may inuence the

time complexity by changing the costs of the basic op-

erations.

In section 4 there are given di�erent possibilities for

representing polynomials. Both the question of building

up normal forms from an algebraic point of view and the

question of the internal representation of sums of terms

are discussed. All the facts stated in that section are

�japel@informatik.uni-leipzig.de
��uklaus@informatik.uni-leipzig.de

well-known and are included in the paper mostly for

completeness.

The sections 5 and 6 deal with questions concern-

ing data types designed for exponent vectors of com-

mutative monomials and for words representing non-

commutative monomials. Some di�erent data types

will be compared by analysing the computation of some

rather complex examples.

2 Algebraic scope of FELIX

FELIX is specially designed for computations in and with

algebraic structures and substructures. The basic do-

mains implemented so far are commutative polynomial

rings, free non-commutative algebras, quotient rings,

and �nitely generated modules.

The system not only manages the calculation with

elements of the above algebraic structures but also with

the structures themselves and mappings between them

as well. [AK91b] gives a more detailed overview about

the algebraic capabilities.

For simplicity we will call both, elements of polyno-

mial rings and of non-commutative algebras, polynomi-

als. Crucial for all applications is an e�ective implemen-

tation of the polynomial arithmetics. Besides the usual

ring arithmetics there are also to consider operations

related to term orderings since Buchberger's algorithm

plays a central rule in the system.

This is the reason why we put many e�orts in in-

vestigating di�erent data structures for monomials and

polynomials. Our experiments reach from using hard-

ware oriented data structures for monomials [AK91a]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226135046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: FELIX memory map

6

available memory

?

heap

node cells

rational number cells

long integer cells

short integer cells

character string cells

bitstring cells

exponent vector cells

packed list cells

name cells

FELIX machine code

6

?

m

o

v

a

b

l

e

a

e

r

a

up to organizing binary trees for the handling of terms.

Furthermore, we gathered the terms of a polynomial in

list form as well as in an array structure.

The data types di�er in the space requirements for

representing polynomials. The computing times for the

polynomial arithmetics depend on the data structures,

too. The choice of a data structure from the point of

view of time behaviour can always be only a compromise

since the behaviour depends on the proportions between

the use of the di�erent operations, on the number of

variables, on the number of terms of the polynomials,

etc. .

It proved to be preferable to introduce special

atomic data types for the implementation of monomi-

als. Atomic means that the data types including the

basic operations acting on them are completely part of

the system kernel.

3 Basic data types and memory

management

As already mentioned during the development of FE-

LIX a main goal was the implementation of special data

types which reect basic properties of the represented

algebraic objects.

Nevertheless, the structure of the FELIX data is LISP{

like. Any data is either an atom or a sequence of other

data (lists). But the classes of atoms implemented so

far are more extensive:

� names,

� integers,

� rational numbers,

� character strings,

� exponent vectors,

� bitstrings, and

� packed lists.

The conclusion is that in contrast to many LISP{

implementations the storage model of FELIX is inhomo-

geneous, i.e. di�erent data types are stored in di�erent

storage areas (see �gure 1).

The interpretation of names is context dependent.

The same name can be used as a notation of a global

variable as well as of an operator.

The implementation of integers distinguishes between

short and long numbers. Shorts are within the range of

a machine word and stored directly in their cells.

The data type of exponent vectors was created to sup-

port a commutative polynomial arithmetic. It is based

on a sparse representation of monomial exponent vec-

tors. Within FELIX there are included sixteen machine

routines which implementing a polynomial arithmetic

e�ciently perform most of the required operations (see

section 5).

The bitstrings correspond to the non-commutative

case. A non-commutative monomial is stored by a se-

quence of integers which represent the ring indetermi-

nates. These integers are coded with some bits only

since the number of ring indeterminates is usually small

(see section 6).

Long integers, character strings, exponent vectors, bit-

strings, and packed lists, which correspond to data of

variable size, are represented by two parts: a cell where

they are registered (see �gure 2), and a heap entry where

their elements are stored (see �gures 3).

Sequences (lists) are built either as binary trees by

node cells (see �gure 4) in the usual LISP{like way (see

�gure 5) or by arrays, the so called packed lists (see

�gure 6).

There are two di�erent kinds of garbage collection.

The �rst one is caused if no cells are available. It is

performed in a usual way. First, there are marked all the

current occupied data beginning with the initial data,

the name cells, the temporary computed elements on

runtime stacks, the constants of the linked modules, etc.

and then recycled all the unused cells.

2

Figure 2: Components of a cell which represents a vari-

able size object

pointer at heap entry

pointer at next `variable size'cell

Figure 3: Components of a heap entry

...

element #n

element #1

length of heap entry: n

Figure 4: Components of a node cell

pointer at next node cell or NIL1

pointer at sequence element

The whole available memory (see �gure 1) may be

used to extend the heap. If a new heap entry is re-

quested then it will be stored immediately behind the

heap and the pointer at the top of the available mem-

ory will be updated. It may happen that the remaining

available memory is too small to create a new entry,

although, lots of memory are unused. For this reason,

there is a second kind of garbage collection to compress

the heap. Since the chain formed by the �rst pointers of

all `variable size' cells reects the time of creation of the

heap entries, passing through this chain causes working

o� the heap linearly from the top to the bottom. This

enables compression without managing gaps.

A combined compression and movement of the heap

towards the memory end provides the necessary space

to extent the number of cells of any sort. So, cells can

be created at that time when they are requested.

The performed experiments related with unique data

representation have shown that in the case of integers a

unique representation of shorts only is a good compro-

mise. It guarantees a good memory exploitation and

does not require too much additional computing time

to manage corresponding hash tables.

1Marks end of sequence

Figure 5: Representation of the sequence

(< element #1 > , : : : , < element #n >) as a bi-

nary tree using n node cells

elem #1 elem #2 elem #n
cells

other

NIL

@@R

. . .

@
@@

@
@
@R

cells

node

u u

u u

u

???
� � �

Figure 6: Representation of the sequence

(< element #1 > , : : : , < element #n >) as a

packed list

u

u

u

...

elem #n

elem #2

elem #1

...

packed list cell heap entry other cells

-

-

-

length of

packed list: n

u

-pointer at next

`variable size' cell

4 Polynomial representation

Before starting to describe implementational tricks we

will discuss possible normal forms of elements of a poly-

nomial ring R = A[x1; :::; xn] from the algebraic point

of view.

First of all, we want to state that R is an A-module.

If A is a �eld it is even an A-vector space. The most

common way to represent the elements of a polynomial

ring in a computer algebra system is to utilize this mod-

ule structure. The polynomials will be expanded with

respect to the module basis formed by the elements

xi1
1
� � �xinn . Such a normal form is called distributed rep-

resentation.

Caused by the ring isomorphism R ' R0 =

A[x1; :::; xn�1][xn] it is possible to consider the polyno-

mials as elements of the ring R0. Using the distributed

3

Table 1: Times for reordering (1 + x1 + x2 + x3 + x4 + x5)
n (in sec.)

packed list representation list representation

n # of terms revlex lexic totdeg revlex lexic totdeg

10 3003 6:9 5:5 5:2 88:6 92:2 71:4

11 4368 10:2 7:9 8:1 195:5 202:3 137:5

12 6188 16:4 13:3 12:3 432:4 435:0 280:5

13 8568 21:9 19:3 16:8 846:2 793:4 548:6

14 11628 40:2 27:9 27:8 1697:5 1558:1 990:3

representation in R0 and representing the coe�cients re-

cursively also by this method provides a second normal

form of polynomials called recursive representation.

If in addition A is a unique factorization domain then

the same applies to the ring R. Presumed that the

factorization in R may be carried out algorithmically

there is another possibility of representing the elements

of R in a unique way, namely, as the product of its

factors.

To get really normal forms the module basis of R has

to be ordered. In the case of factorized representations

additional conventions about the use of units are neces-

sary.

Both module basis normal forms have the advantage

that all arithmetic operations are rather easy to per-

form. In opposite, using factorized normal forms causes

serious di�culties as soon as summation is envolved.

This is probably the main reason that such a form of

representation is not used in the computer algebra sys-

tems known to the authors, although, it often could save

a lot of memory.

In the following, we will neglect the factorized repre-

sentation since our investigations are also restricted to

the module basis normal forms.

The main advantage of the recursive representation

is the possibility of introducing new variables during

the session without reorganizing previously computed

expressions. If a new variable is considered to be the

last adjuncted one the previous expressions are simply

coe�cients of the module basis element 1. Therefore,

the recursive representation of polynomials is very of-

ten used in not algebraic structure oriented computer

algebra systems, i.e. in systems which do not require

the explicit de�nition of a working structure.

The distributed form of a polynomial is preferable for

many arithmetic operations. Some algorithms, particu-

larly, if Gr�obner basis techniques are involved strongly

depend on term orderings. In this case the distributed

representation is almost unavoidable.

Now, we consider the more technical details of the

internal representation of a polynomial. Independent

on recursive or distributive normal form a polynomial

appears as a sum of monomials where each monomial is

a product of a coe�cient and a module basis element.

If the ordering of the basis elements is equivalent to

the natural numbers, i.e. for any basis element there

are only �nitely many lower ones, then the polynomial

can be characterized simply by the sequence of its coe�-

cients. For instance, all degree compatible orderings, i.e.

such orderings where among two basis elements of di�er-

ent degree always that of lower degree is the smaller one,

have the required property. Otherwise, there are also a

lot of important even noetherian orderings which do not

satisfy the demand, e.g. pure lexicographical orderings.

If a term ordering is equivalent to the natural numbers

then the associated basis element can be deduced from

the position of its coe�cient in the sequence. In order

to get a �nite object this sequence will be broken o�

at the largest power product with non-zero coe�cient.

This method has the advantage that no space for stor-

ing the basis elements is required. Furthermore, there

are fast implementations for the arithmetic operations.

Otherwise, also zero coe�cients have to be stored which

makes only sense for dense polynomials.

In multivariate applications dense polynomials are

not of great interest as the number of basis elements

with a certain degree limit shows. There are
�
d+n
d

�

power products of degree not larger than d in the poly-

nomial ring in n indeterminates, i.e. in the case of 10

indeterminates we have already 184,756 power products

with degree up to 10. In the case of non-commutative

polynomials the situation is still worse. There are nd

power products in n indeterminates of exactly degree d.

Therefore, computer algebra systems work with

sparse representation. In this case a polynomial is repre-

sented by the sequence of its non-zero monomials given

by the coe�cients and the associated power products.

The question of the internal representation of the power

products will be discussed in the next two sections. The

internal structure of the coe�cients will not be consid-

ered since it depends on the coe�cient domain, e.g. a

ring of numbers or a polynomial ring.

Neglecting the question of a tag for the type of the ob-

ject there remain two principle forms of storing a poly-

nomial . First it can be a list (see �gure 5) of monomials.

The second variant is to arrange the monomials in an

4

array. An array, in FELIX also called packed list, is a co-

herent memory block of a certain length (see heap entry

in �gure 6). The array method saves a lot of memory

since pointers to succeeding monomials are not neces-

sary. Furthermore, the array method allows to access

any term of the polynomial in a constant time while the

average time required for the list representation depends

linearly on the number of terms. Working with Gr�obner

bases it might be useful to be able to reorder previously

computed expressions with respect to a new term order-

ing. FELIX uses the quick sort algorithm which is known

to have minimal complexity for sorting problems. The

array structure �ts much better to the required inplace

changes and access to arbitrary elements than the list

form. Actually, sorting a list it is better �rst to convert

it into an array, sort it, and then to convert it back.

Table 1 gives a comparison of times necessary to re-

order polynomials. The polynomials were computed

with respect to the degreewise reverse lexicographical

term ordering. Afterwards they have been reordered

according to the reverse lexicographical (revlex), lexi-

cographical (lexic), and the total degree (totdeg) term

orderings.

A disadvantage of the array representation is that the

computation of the tail of a polynomial depends linearly

on the number of terms since all terms but the �rst has

to be copied into a new array. In contrary this opera-

tion can be executed in constant time for list structures.

This consideration shows a second advantage of the list

representation. Two polynomials which have the small-

est terms in common may share this terms what may

save memory. Such polynomials occur not only if a tail

is computed but often also after adding two polynomi-

als.

Direct access to arbitrary monomials is not required

within the arithmetic operations. In principal it is su�-

cient to consider the operations of adding two polynomi-

als and of multiplying a polynomial by a monomial. All

other operations as subtraction, multiplication, and in

a certain sense also division can be reduced to these two

elementary operations. Neglecting the monomial oper-

ations addition is performed in a zipper like way and

multiplication by a monomial requires only going ones

through the polynomial. The aptitude of list and array

representation is almost equal. The list representation

has some small advantages with respect to the addition.

If one of the polynomials is completely worked o� it is

su�cient to append the whole list of remaining mono-

mials of the other polynomial in one single step at the

result. In contrary, the same situation requires copying

references to all remaining monomials into the array of

the resulting polynomial using the array representation.

Furthermore, the length of the result is unknown at the

beginning of the computation but an array can not be

enlarged subsequently. The length of the sum is lim-

ited by the sum of the lengths of the input polynomials.

This length bound of the result seems us good enough

to create an array of this limit length where the result

will be put in. The system FELIX includes an array op-

eration which allows to cut o� the result to the right

length at the end of the computation.

For elements of free non-commutative algebras

Ahx1; :::; xni the same remarks as to the distributed

normal form of polynomials apply. Recursive or even

factorized forms are not available for algebraic reasons.

5 Representation of commuta-

tive monomials

In this section monomial will denote a pure power prod-

uct, i.e. it contains no coe�cient.

5.1 Number lists

Using the distributed polynomial representation the se-

quence of indeterminates should be stored in one place

and not appear in each monomial. The simplest way

would be to assign the list of indeterminates to a global

variable. FELIX as an algebraic domain oriented system

holds such lists in the data describing the ring. Any

polynomial contains a reference to the domain it be-

longs to.

Forgetting the names of the indeterminates a mono-

mial is a (�nite) sequence of natural numbers, the ex-

ponents of the several indeterminates. In any computer

algebra system it is possible to arrange these numbers

in lists. Similar as in the case of polynomials there

can be distinguished sparse and dense representations

for the exponent lists. Which of these both forms is

preferable depends on the number of indeterminates in-

volved. Some tests were reported in [AK92]. The larger

the number of indeterminates the better gets the sparse

representation. This is not only valid from the point of

view of memory requirements but considering the com-

puting time as well.

5.2 Exponent vectors

The use of number lists for the representation of commu-

tative monomials wasts a lot of memory since there are

necessary connecting pointers between the components.

Operations which mainly utilize list properties such as

insertion and deletion of elements are not necessary in

monomial arithmetics. When a new exponent vector is

created its length is already known at the very begin-

ning. Furthermore, there is no distinguished component

of such a vector. Therefore, any component should be

accessable by the same e�ort.

An alternative form which avoids the additional mem-

ory requirement of lists and provides access to arbitrary

5

components in constant time is the principal data type

of arrays where the elements are stored as a sequence

in a coherent memory region. Such a data model was

already described in section 4. In the case of monomials

the situation is still better than for polynomials because

the entries are always integers. Since array entries have

to be of constant size which can not be assumed for ar-

bitrary objects the general type of packed lists which

is used for instance for representing polynomials con-

sists of a pointer sequence. Restricting the range of the

exponents to a certain maximal integer all array com-

ponents contain elements of the same size. This forces

the introduction of a new array type consisting directly

of integer entries.

In FELIX such a special data type representing com-

mutative monomials is formed by the exponent vectors.

Although, during computation in one speci�c algebraic

structure selected by the user the length of an exponent

vector is �xed we do not use arrays of that constant

length. The reason is analogous to the case of sparse

and dense list representation. The larger the number

of indeterminates the ofter zero has to be stored. Of

course, this alters some of the remarks made before, e.g.

that concerning the access to arbitrary components, but

the advantages dominate.

The decision to use arrays (e.g. exponent vectors) of

variable length forces a speci�c dynamic data manage-

ment. As already described in section 3 it is done by

the indroduction of two di�erent memory regions, the

region of exponent vector cells and the heap (see �g-

ure 1). Remember that in FELIX every algebraic object

is represented by a single cell. So, an exponent vector

contained in a more complex object is presented by a

pointer at its corresponding vector cell.

A vector cell is built up according to �gure 2. The

corresponding heap entry for a monomial x
j1
i1
x
j2
i2
� � �x

jm
im

from the polynomial ring R = A[x1; :::; xn] is shown in

�gure 7.

Implementing this feature we packed both parts, the

index of an indeterminate and its associated exponent,

into a single machine word (32 bits) which ensures good

memory exploition and fast access. For practical rea-

sons, the division of the word is asymmetrical. The in-

dex of an indeterminate is represented by only one byte

which restricts the total number of ring indeterminates

to 256. The remaining three bytes are dedicated to the

exponent. The vector components should be open also

for negative entries since the representation of monomi-

als is not the only purpose of exponent vectors. They

are also used for constructing ordering matrices neces-

sary for de�ning term orderings. In this case negative

numbers are required as soon as non-noetherian term or-

derings are considered. The exponent parts are stored

with respect to the two's complement which provides

the range �8388609 : : :8388608.

Figure 7: Heap entry of the exponent vector

x
j1
i1
x
j2
i2
� � �x

jm
im

length of heap entry: m
(number of non-zero exponents)

...

of ring indeterm. im

of ring indeterm. i2

of ring indeterm. i1

exponent jm

exponent j2

exponent j1

The facts described so far deal with the aim of stor-

ing exponent vectors in a compact way. Introducing

a special data type for some algebraic objects suggests

to equip the data type with the most important alge-

braic operations acting on the objects. This equipment

should be done in the system kernel where the perfor-

mance can be made much better than de�ning it in the

high level programming language. Since the FELIX ker-

nel is written in an assembler language the code of ker-

nel functions is generally fast. Furthermore, additional

features can be used which for non-kernel functions can

not be assumed, e.g. a kernel function may hold inter-

mediate results or arguments accessed more than once

directly in processor registers.

The list of operations contains constructors, selectors,

monoid operations, divisibility operations, and ordering

operations. It follows the list of the most important

functions associated to the data type of exponent vec-

tors. Some functions concerning computations in non-

commutative polynomial rings will be left out.

� VSET(integerlist) : : : Converts the list of integers

to a vector.

� VNTH(integer,vector) : : : Projects to a compo-

nent of a vector.

� VECTOR(expression) : : : Tests whether an arbi-

trary expression evaluates to a vector.

� VPLUS(vector#1,vector#2) : : : Adds both vec-

tors.

� VSCALAR(vector#1,vector#2) : : : Yields the

dot product of the vectors.

� VDEGREE(vector) : : : Yields the total degree,

i.e. the sum of the components, of the vector.

� VMAX(vector#1,vector#2) : : : Computes the

vector of maxima of the corresponding components

of the input vectors.

� VDIFF(vector#1,vector#2) : : : Computes the

di�erence of the two vectors.

6

Table 2: Hit rate of already computed exponent vectors

in per cent

n = 2 n = 5 n = 8 n = 15

(x1 + x
2

2 + x
3

3)
n 26.3 46.4 54.0 59.9

(x1 + : : : + x
5

5)
n 30.4 59.3 67.4 73.3

(x1 + : : : + x
10

10)
n 32.5 69.7 77.5 |

(1 + x1 + x2 + x3)
n 31.2 72.3 83.0 91.1

(1 + x1 + : : :+ x5)
n 38.9 75.7 84.9 92.0

(1 + x1 + : : :+ x10)
n 44.6 77.9 86.2 |

� VEQUAL(vector#1,vector#2) : : : Tests whether

two vectors are equal.

� VORDER(vector#1,vector#2, matrix) : : : Tests

whether the �rst vector is less than the second with

respect to the ordering described by the matrix.

� VLEXIC(vector#1,vector#2) : : : Especially de-

signed for the lexicographical ordering. Similar to

VORDER.

5.3 Implementation of AVL-trees

As far as discussed in the previous section there is noth-

ing mentioned about multiple creating and storing the

same exponent vector. A simple consideration shows

that it is very likely that many vectors will be created

several times during a session. If the product of two

polynomials is computed the result will contain only

monomials of degree at most the sum of the degrees

of them. Otherwise, there will appear l intermediate

monomials where l is the product of the numbers of

terms of the polynomials. Assumed the polynomials

contain n indeterminates and they are dense of degree

d1 and d2, respectively. Then the polynomials con-

sist of
�
d1+n
n

�
respectively

�
d2+n
n

�
terms. Consequently,

the product contains
�
d1+d2+n

n

�
monomials. The num-

ber of intermediate monomials is
�
d1+n
n

��
d2+n
n

�
. In the

univariate case that yields the enormous di�erence be-

tween d1 + d2 + 1 and (d1 + 1)(d2 + 1). For more vari-

ables the situation gets still more dramatical, e.g. if

n = 10; d1 = 4; d2 = 6 then the number of necessary

monomials is 352; 716 and this of intermediate com-

puted ones is 1; 001 � 8; 008 = 8; 016; 008. Note that

these numbers depend only on the polynomials and not

on the use of dense or sparse representation.

In practical, the situation is a bit better than de-

scribed above since dense polynomials are the worst case

which is very unlikely to appear as mentioned in section

4. In the best situation, which appears also not very of-

ten, no multiple vectors occur, as for instance in the

example (x2 + y)(x + y2).

Figure 8: Exponent vector cell with AVL-tree pointers

pointer at heap entry

pointer at next `variable size cell'

r

l

pointer at right subtree

pointer at left subtree

Looking at the exponent vectors computed e.g. dur-

ing usual polynomial arithmetics one can detect that

many of these exponent vectors are already stored

within the heap. Table 2 gives an impression on how of-

ten one meets already created exponent vectors during

arithmetics. There are choosen two families of sparse

and dense polynomials. The hit rate is much higher in

the dense case. Furthermore, the hit rate increases with

the complexity of the examples. In subsection 5.4 this

will be stressed once more by the tables 4 and 5 where

the hit rates are much higher than 90%.

Since the chances that the same exponent vector oc-

curs several times are very good it is natural to ask

for a storage strategy which keeps the vectors unique.

The most common way to implement data types where

any object is at most once in the memory is to arrange

them in hash tables. But how to �nd a suitable hash

key which splits the exponent vectors of an arbitrary

number of variables in balanced classes? Such natural

properties as the degree would not be a good key since

the resulting distribution is far from being balanced.

The danger is large that the exponents appearing in spe-

cial applications inherit some common structure which

could lead to an unbalanced distribution of the occuring

vectors.

Therefore, the �nal decision was to supplement the

basic data with another additional structure allowing

to search the heap for a certain exponent vector. Bi-

nary trees are usually a good choice for such processes.

Because insertion and deletion (caused by garbage col-

lections) play an important role special balanced binary

trees, the so called AVL-trees [AVL62] are applied to the

FELIX exponent vector management.

AVL-trees have the property that for every node the

di�erence of the depths of the left and the right subtree

is at most one. The complexity of searching, insertion,

and deletion of a certain node is O(logn) (n : : : number

of nodes) even in the worst case.

Implementing AVL-trees we have to supplement the

2C is optional
3D and E are optional but at least one has to appear

7

Figure 9: Reordering of AVL-trees during insertion

D E

B
BN

�
�
B rr

�
��

A
AU

A rr

HHHj
����

C rr

ED

�
�

B
BN

�
�

B
BN

CA

��+ QQs
B rr

r r r r

=)

? ?

ED orDouble left rotation for insertion of either

�
�

B
BN

A rr

@@R��	
B rr

B
BN

�
�
B rr

��	 @@R
A rr

��@@
��@@

? ?

=)

��@@Simple left rotation for insertion of

exponent vector cells to build a binary tree (see �gure

8). These two additional parts contain pointers at other

exponent vector cells or in the case of leaves NIL and can

be interpreted as left and right subtree. Since all cells

are alined at machine word size the least bit of all point-

ers is zero. The necessary information about balance is

packed into the least bits of the pointers at subtrees.

These two bits (l; r in �gure 8) of an exponent vector

cell contain zeros if the both subtrees have the same

depth or one if the corresponding subtree is deeper.

By convention, nodes of left subtrees always repre-

sent smaller and right subtrees greater exponent vec-

tors. The ordering necessary for constructing these bi-

nary trees is quite simple. It depends only on the expo-

nent vector's heap entry as shown in �gure 7. First the

lengths of the heap entries, i.e. the number of non-zero

exponents, is compared. If both lengths are equal the el-

ements of the heap entries will be compared according

to the usual lexicographical ordering. This procedure

has the advantage that the number of accesses to heap

entry components is minimal.

Whenever a monomial is computed a heap entry for

the exponent vector, which we will denote by (�), is

created on the top of the heap without allocation of

a corresponding vector cell. Beginning with the root

Figure 10: Reordering of AVL-trees during deletion

C
2

�
�

B
BN

B rr

��@@

J
Ĵ

�

A rr

C

B
BN

�
�
A rr

�

J
Ĵ

B rr

??

=)

��@@Simple left rotation for deletion of

D
3 E

B
BN

�
�
C rr

��	 @@R
B rr

@@��

@
@R

�
�	

A rr

?

D E

�� BBN �� BBN
B rr A rr

�
�	

@
@R

C rr

?

=)

��@@Double left rotation for deletion of

node the AVL-tree has to be searched recursively for (�).

As above described the node's heap entry is compared

with the just computed one. In the case of equality, the

node's vector cell is the desired result for the computed

monomial, and the heap memory of (�) can be released

immediately. Otherwise, according to the result of the

comparison the search has to be continued with the root

of the left or the right subtree. If branching is impossible

because the pointer at this subtree is NIL the entry (�)

has to be inserted into the AVL-tree.

Insertion is performed in the following way. First,

a vector cell is allocated and its four parts (see �gure

8) are initialized (both subtree pointers are set to NIL,

l = r = 0). Now, all parent nodes along the searching

path have to be checked for correct balance information

to keep the AVL-tree property. As explained in [W83]

after insertion into an AVL-tree at most one operation

is necessary to reorder the tree. Figure 9 sketches two of

these principal reorderings, the simple left (three point-

ers have to be updated) and the double left (�ve point-

ers have to be updated) rotation. The corresponding

simple and double right rotations are symmetric.

Deletion of nodes is part of the garbage collection.

It is performed analogously to the insertion. First, the

corresponding node is searched within the AVL-tree and

8

Table 3: Computation without AVL-trees

n = 5 n = 6 n = 7

comp. time (in sec) 24 1,780 165,959

+ garb. coll. time 10 180 10,039

Table 4: Computation using full AVL-tree management

n = 5 n = 6 n = 7

requested vectors 18,213 671,161 151,238,022

created vectors 1,093 16,031 1,109,253

deleted vectors 850 15,685 1,107,029

max. AVL-tree depth 10 12 16

average search length 6.8 8.1 10.7

insertion rotations 600 7,243 513,191

simple left 166 2,081 146,423

double left 138 1,909 129,668

simple right 127 1,707 123,394

double right 169 1,546 113,706

deletion rotations 210 3,093 252,113

simple left 71 1,135 90,460

double left 36 396 32,704

simple right 65 1,152 92,008

double right 38 410 36,941

comp. time (in sec) 27 1,804 173,437

+ garb. coll. time 8 153 6,718

removed by changing the subtree pointer of the parent's

node to NIL. Now, all parent nodes along the searching

path have to be checked for correct balance information.

In contrast to insertion reordering can be necessary in

every node of the searching path. Figure 10 shows the

two left deleting rotations, the right ones are again sym-

metric.

Note the particularity of deletion. In contrast to in-

sertion during garbage collection many vector cells have

to be removed all at once. If more than the half is to be

deleted it is better to rebuild the whole AVL-tree than

a successive deletion.

5.4 Example

The comparison of the proposed methods will be illus-

trated by an example which has been widely investi-

gated also by other authors (see e.g. [BF91] and [D87]).

The gained results are representative for most examples

treated by the authors.

The task consists in computing Gr�obner bases for a

family of systems of algebraic equations.

Table 5: Computation using restricted AVL-tree man-

agement

n = 5 n = 6 n = 7

requested vectors 18,213 671,161 151,238,022

created vectors 621 3,357 62,444

AVL-tree depth 12 15 20

average search length 8.1 10.0 13.8

comp. time (in sec) 24 1,793 173,227

+ garb. coll. time 6 157 7,334

Table 6: Comparison of heap memory requirements of

vectors (in byte)

n = 5 n = 6 n = 7

max. length of int. basis 23 65 402

no AVL-trees 4,488 35,724 1,235,992

full AVL-tree man. 1,772 5,628 37,336

restricted AVL-tree man. 8,512 58,460 1,247,608

�nal length of basis 21 44 209

no AVL-trees 3,312 14,344 421,012

full AVL-tree man. 1,268 2,952 18,376

restricted AVL-tree man. 9,548 61,952 1,755,456

x1 + x2 + : : :+ xn = 0

x1x2 + x2x3 + : : :+ xn�1xn + xnx1 = 0

: :

x1 � � �xn�1 + x2 � � �xn + : : :+ xnx1 � � �xn�2 = 0

x1 � � �xn = 1

The polynomials obtained by subtracting left and

right hand sides of each equation generate an ideal for

which the Gr�obner basis shall be computed. The term

ordering used in the tests is �rst according to the total

degree and then reverse lexicographical. Our considera-

tions cover the cases n = 5; 6; 7. Whereas we calculated

over the �eld of rational numbers for n = 5 and n = 6

there was applied characteristic 31991 in the case n = 7.

This prime is lucky for the example. In particular, the

vector space dimension of the quotient ring is the same

in both characteristics 0 and 31991.

We used three di�erent managing strategies for ex-

ponent vectors. The �rst strategy (see table 3) does

not use unique data representation and the exponent

vectors are stored at the heap linearly. Inside the both

other strategies the vectors are stored in a unique way

and arranged in AVL-trees. The di�erence is that in the

full management (see table 4) the space of unused ex-

ponent vectors will be recovered by garbage collections.

Although, the complexities of insertion and deletion of

exponent vectors are equal it seems that cancellation

9

is more costly. Therefore, we checked also a restricted

strategy (see table 5) which does not include deletion of

once created vectors. Finally, table 6 presents a compar-

ison of the memory requirements of the three strategies.

The experiments show that the linear model is the

fastest. This is caused by omitting the search for al-

ready existing vectors but it has to be paid partially

by garbage collection time since the exponent vectors

occupy much more heap memory than using the full

AVL-tree strategy as table 6 shows. Note, that the heap

memory occupied by exponent vectors is still larger in

the case of restrictive tree management. The inuence

to the garbage collection is smaller since these heap en-

tries at most move towards the top of the heap. The

near they are to the top the less likely gets another

transport.

Concerning the space requirement the full AVL-tree

management is the outstanding strategy. The amount

of heap memory occupied by exponent vectors was mea-

sured at two distinguished points. The �rst moment was

when the intermediate ideal bases reached their maxi-

mal sizes (see �rst part of table 6). This point was

choosen as one of large, not necessarily maximal, mem-

ory demand. Second, the situations after �nishing the

calculations were investigated (see second part of table

6).

To complete the comparisons it remains the time

analysis of full and restricted AVL-tree management.

Besides all deletion operations the restricted method

saves also many insertions. Nevertheless, the di�erence

of the computing times is not signi�cant. The time for

deletion and insertion economized using the restricted

AVL-tree strategy has to be paid back for longer average

searching.

In summary, the full AVL-tree management is the

most preferable strategy since its memory demand is

signi�cantly the smallest while the computing times are

almost the same for all three variants.

6 Representation of non{com-

mutative monomials

The words over the indeterminates form an A-module

basis of the non-commutative algebraAhx1; :::; xni. The

algebra arithmetic is based on some word operations.

First of all, the words form a monoid with respect to

the concatenation. Furthermore, the words have to be

ordered with respect to an ordering compatible to con-

catenation. Finally, there are required matching oper-

ations for detecting subword and overlaping properties.

In the following subsections there will be given some

possibilities to build up data types representing words

which also support the necessary operations.

Our test series dealing with non-commutative rings

are still very small. In comparison to polynomial rings

the examples split still more into two classes, the trivial

and almost unsolvable applications. A special handicap

is that the termination of the Buchberger algorithm is

not ensured [M86].

6.1 Lists of indeterminates

The most common representation of a word is the se-

quence of its letters. This way may be used in any com-

puter algebra system. If the system contains dynamic

array structures the sequence may be stored again more

memory e�cient. Of course, the indeterminates may be

enumerated and replaced by associated numbers in the

sequence.

6.2 Hardware supported data type

Considering the non-commutative monomials as se-

quences of natural numbers lower than a certain limit

they appear as representations of integers in a posi-

tion system to a su�cient large basis. So, any non-

commutative monomial will be assigned an integer in

a very natural way. This mapping should be surjec-

tive. Therefore, the enumeration of the indetermi-

nates should start with 1 to avoid leading zeros. In

[AK91a] it is shown how the arithmetic, matching, and

ordering operations between non-commutative monomi-

als can be transformed to integer operations between

their above described code numbers and another two

integers characterizing the monomials. These two ad-

ditional numbers reect the monomials forgetting the

non-commutativity. They are carrying only some help

information which makes some ordering and matching

tests faster. In conclusion, it may be stated that all cal-

culations between non-commutative monomials may be

done using coding triples of natural numbers without

decoding them.

But there is a snag in this method. The integers cod-

ing the monomials can be, and actually will be, rather

large. It is not advisable to use the long integers in-

cluded in FELIX for the monomial representation since

the integer operations applied to the coding numbers

are not very simple, e.g. they include the computation

of remainders of integer division.

A compromise between the restriction to machine size

integers, which allow to represent only a very small

range of monomials, and long integers, which are not

supported by direct processor instructions, is the use of

8-byte integers and to perform the arithmetic using the

coprocessor Intel 80x87.

6.3 Bitstrings

But also the restriction to 8-byte integers turned out

to be rather strong. Limitations going along with this

10

coding were presented in [AK91a]. Finally, we created

a new data type which is simpler but more general than

the coprocessor method.

The non-commutative monomials will be again repre-

sented by sequences of indicees of indeterminates. Using

an array for storing the sequence might waste memory

since depending on the number of ring indeterminates

some bits will be su�cient for any component of the ar-

ray. Therefore, we created the data type of bitstrings.

A bitstring employs a coherent memory region contain-

ing the total number of ring indeterminates, the degree

of the monomial, and the sequence of indicees.

There are �fteen kernel functions operating over bit-

strings. The list of these functions should not be given

but roughly it includes construtors, selectors, arithmetic

functions, ordering tests, and functions for converting

between exponent vectors and bitstrings. Among the

arithmetic functions there are besides the bitstring con-

catenation also such concerned with substring and over-

lapping problems.

Similar to the case of exponent vectors it arises the

question of unique representation. Within multiplica-

tion the portion of multiple created monomials will be

smaller than in the case of commutative polynomials.

Nevertheless, the advantages are still large enough to

justify a unique representation strategy. For this pur-

pose the bitstrings are again arranged in an AVL-tree.

The ordering used in the tree is �rst according to the

total number of ring indeterminates, then to the degree,

and last lexicographical with respect to the sequence of

digits.

When we developed the data type of bitstrings we

supposed that it would be not as fast as the coproces-

sor method since more operations have to be performed

digit by digit. But we were pleasently surprised that the

bitstring calculations are very fast even faster than the

coprocessor arithmetics. This is due to the facts that

the communication between main- and coprocessor is

very costly and the coprocessor method uses the more

expensive oating point arithmetic for simple integer

calculations.

References

[AVL62] G.M. Adelson-Velskij, E.M. Landis, Odin al-

goritm organisazii informazii. Doklady Aka-

demii Nauk SSSR, 146 (1962), pp. 263-266 (in

Russian).

[AK91a] J. Apel, U. Klaus, Implementation as-

pects for non-commutative domains. Proc.

Computer Algebra in Physical Research,

ed. D.V.Shirkov, V.A.Rostovtsev, V.P.Gerdt,

World Scienti�c, pp. 127-132, 1991.

[AK91b] J. Apel, U. Klaus, FELIX { an assistent for

algebraists. Proc. ISSAC'91, ed. S. M. Watt,

ACM Press, pp. 382-389, 1991.

[AK92] J. Apel, U. Klaus, Data Representation and

In-built Compilation in the Computer Algebra

Program FELIX. to appear in Proc. DISCO

92, Bath, 1992.

[BF91] J. Backelin, R. Froeberg, How we proved that

there are exactly 924 cyclic 7-roots. Proc. IS-

SAC'91, ed. S. M. Watt, ACM Press, pp. 103-

111, 1991.

[D87] J.H. Davenport, Looking at a set of equations.

Bath Computer Science Technical Report 87-

06, 1987.

[M86] T. Mora, Gr�obner bases for non-commutative

polynomial rings. L.N.C.S. 229, pp. 353-362,

1986.

[W83] N. Wirth, Algorithmen und Datenstrukturen,

B.G. Teubner Stuttgart, 1983 (in German).

11

