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Abstract. In [ASTW] it was given a Gr�obner reduction based division

formula for entire functions by polynomial ideals. Here we give degree

bounds where the input function can be truncated in order to compute

approximations of the coe�cients of the power series appearing in the

division formula within a given precision. In addition, this method can

be applied to the approximation of the value of the remainder function

at some point.

1 Introduction

At almost the same time Hironaka and Buchberger independently developed

their theories of standard bases ([Hi]) of ideals of formal power series and of

Gr�obner bases ([Bu]) of polynomial ideals. The theory of graded structures due to

Robbiano ([Ro2]) and Mora ([Mo]) uni�es both theories and provides a powerful

frame for generalizations also to various other rings. The main di�erence between

Gr�obner and standard bases consists in the use of noetherian and non-noetherian

term orders, respectively. Gr�obner like generalizations use noetherian term orders

and, therefore, have always terminating reduction relations. Some topological

rings allow, and actually require, the use of non-noetherian term orders. Roughly,

in such an approach it is important that any in�nite reduction sequence converges

to some element in the completion of the ring. Examples for rings of such type

are rings of power series with the p-adic topology [AMR].

Though, also rings of entire functions are situated somewhere between poly-

nomial rings and rings of formal power series, none of the both generalization

directions seems to be applicable to them. Actually, in some sense entire func-

tions inherit the bad properties of both polynomials and formal power series

such that neither noetherian nor non-noetherian term orders are applicable. Us-

ing a noetherian term order we inherit from the ring of formal power series the

non-existence of leading terms for proper power series, i.e. such not being a poly-

nomial. Therefore, we will not have a graded structure. If we assume that the

term order is non-noetherian then the reduction process will not be convergent

in the topology of local uniform convergence. This we inherit from the subring

of polynomial functions.
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In [ASTW] it could be given a partial solution of the problem using a Gr�obner

like approach, i.e. based on a noetherian term order, which presents a division

formula for everywhere convergent power series by polynomial ideals. This paper

will deal only with complex coe�cients but large parts of the theory extend also

to the real case (see [ASTW]).

The paper is organized as follows: Section 2 will sketch the algebraic and

analytic background of the theory. In Section 3 the main ideas developed in

[ASTW] concerning the division formula are presented. In Section 4 we show

how the entire functions occurring in the division formula can be approximated

in an algorithmic way up to a given precision. Furthermore, we show how the

value of the reduced power series at given points can be estimated. Finally, we

discuss some open problems connected with the theory in Section 5.

The author wants to thank J.St�uckrad, P.Tworzewski, and T.Winiarski for

the pleasant and fruitful cooperation on the subject of Gr�obner theory for ev-

erywhere convergent power series.

2 Preliminaries

The basic algebraic structures involved in this paper are the polynomial ring

R = C[X ], the ring S = C[[X ]] of formal power series, and the ring E of entire

functions from Cn into C, i.e. the ring of all formal power series which are

convergent at each point of the space Cn, in the variables X = (X1; : : : ; Xn)

over the �eld C of complex numbers. We have the inclusions R � E � S.

It follow some basic ideas of the theories of Gr�obner and standard bases. A

comprehensive introduction to the Gr�obner basis theory can be found in the text

book [BW]. For the standard basis case we refer to [AMR]. We assume that the

free commutative monoid T generated by X , the elements of T will be called

terms, is ordered by an admissible term order �, i.e. by a linear order which

is (strong) monotonic with respect to the multiplication. A detailed description

and classi�cation of admissible term orders can be found in [Ro1]. Each formal

power series f has got a unique representation f =
P

t2T ctt, ct 2 C, in terms

of T . The set of terms t having non-zero coe�cient ct will be called the support

supp(f) of f . In case of existence the maximal element of supp(f) is called the

initial term of f with respect to � (denotation in(f)). If f has got an initial term

then its coe�cient in f will be called the initial coe�cient of f with respect to �.

For an arbitrary set F � R of polynomials we de�ne the initial R-ideal in(F ) �R

as the ideal generated in R by all initial terms of elements of F . The probably

most frequently used de�nition of a Gr�obner basis is:

De�nition 1. Let F � R be a set of non-zero polynomials and I � R be the

ideal generated by F . Then F is called a Gr�obner basis of I with respect to the

admissible term order � i�

in(F ) �R = in(I) �R ;

i.e. F and I have the same initial R-ideal.



Let us assume that � is an admissible term order such that each non-zero

formal power series has got an initial term. Then the ideal in(F ) � S generated

in S by all initial terms of elements of the set F � S will be called the initial

S-ideal of F . Similar to Gr�obner bases of polynomial ideals we de�ne:

De�nition 2. Let F � S be a set of non-zero formal power series and I � S be

the ideal generated by F . Then F is called a standard basis of I with respect to

the admissible term order � i�

in(F ) � S = in(I) � S :

Both, R and S, are noetherian rings. Hence, all initial ideals appearing in

the De�nitions 1 and 2 are �nitely generated. Therefore, the existence of a �nite

Gr�obner, respectively standard, basis of the ideal I is ensured. In order to obtain

a constructive method for the computation of Gr�obner bases we de�ne a division

notion:

De�nition 3. Let� be a noetherian admissible term order and F = ff1; : : : ; fmg

be a �nite set of non-zero polynomials with initial coe�cient 1. The term t is

called reducible modulo F with respect to � if t 2 in(F ) � T . A polynomial is

called reducible modulo F with respect to � if its support contains at least one

term which is reducible modulo F with respect to �. Otherwise, a polynomial

is called irreducible modulo F with respect to �. Let

in(F ) � T = I1 [ I2 [ � � � [ Im

be the disjoint decomposition of the set of all modulo F reducible terms which

is de�ned by t 2 Ii i� t is reducible modulo ff1; : : : ; fig but irreducible modulo

ff1; : : : ; fi�1g with respect to � (i = 1; : : : ;m). Let g 2 R be a polynomial and

h 2 R be a polynomial which is irreducible modulo F with respect to �. Finally,

assume that g and h are connected by an equation

g =

mX
i=1

hifi + h ; (1)

where t � in(fi) 2 Ii for all i = 1; : : : ;m and t 2 supp(hi). Then h is called a

normal form of g modulo F with respect to� (denotation h = NfF (g)). Equation

(1) is called a division formula of g by F .

The de�nition of division in the case of formal power series is analogous. We

remark that the polynomials h and hi (i = 1; : : : ;m) are uniquely determined

by g, F (including the �xed enumeration of the elements fi) and �. Hence,

�xing F and � we get operators mapping from R into R assigning g its normal

form h or the cofactor hi of the i-th basis polynomial fi, respectively. We will

call these operators normal form operator or i-th cofactor operator, respectively.

Note, that all these operators are linear. Furthermore, it is well-known that for

Gr�obner, respectively standard, bases F the normal form NfF (g) depends only

on the residue class of g modulo the ideal I generated by F . Furthermore, the



normal forms NfF (g) are equal for all Gr�obner bases F of I with respect to �.

This justi�es to call the normal form modulo a Gr�obner, respectively standard,

basis F with respect to � a normal form modulo the ideal I generated by F

with respect to � (denotation NfI(g)). For the same reason Equation (1) will

become a division formula of g by the ideal I .

Buchberger's algorithm and appropriate reduction procedures based on De�-

nition 3 provide algorithms for the computation of Gr�obner and standard bases.

However, there is one serious di�erence. While it is straight forward to construct

a reduction algorithm for the computation of division formulas in the polynomial

case an analogue procedure will be non-terminating in the case of formal power

series. But in the latter case the reduction sequence will be convergent in the

p-adic topology and it can be used the limes of the sequence as the result of the

reduction.

At the end of this section we present a convergence criterion which will be

used for a similar convergence proof for the reduction process in the case of entire

functions with the topology of local uniform convergence. Let g =
P

t2T ctt 2 S

and let r = (r1; : : : ; rn) be an n-tuple of positive real numbers. Following [GR]

we de�ne the norm

kgkr :=
X
t2T

jctjt(r) ;

where t(r) = r�11 � � � r�nn for t = X�1
1 � � �X�n

n .

Let Br := fg 2 Sj kgkr < +1g be the set of formal power series of �nite

norm. Clearly, we have E � Br for any r. Note, that the topology determined by

the system of norms k�kr corresponding to all r coincides with the local uniform

convergence. The set Br of all formal power series having a �nite norm with

respect to r forms a Banach algebra. For each subset D � T the set Br(D) :=

fg 2 Brjsupp(g) � Dg of formal power series of Br having a support contained

in D is a closed subspace of Br. Hence, Br(D) is a Banach space. Furthermore,

the set E(D) of all entire functions having a support contained in D is a closed

subspace of the ring E of entire functions. From this and from elementary facts

concerning power series it will follow the convergence criterion:

Lemma4 [GR]. Let r� = (r1� ; : : : ; rn�); � = 1; 2; : : :, be a sequence of n-tuples

of positive real numbers such that

rj� ! +1 when � !1; for j = 1; 2; : : : ; n:

If gt 2 E(D), for t 2 T , and

X
t2T

kgtkr� < +1 ; for � = 1; 2; : : :

then the series
P

t2T gt is convergent in E and its sum g 2 E(D).



3 The division formula

Our aim is to �nd a generalization of Gr�obner or standard bases to the ring of

entire functions. Already the following very simple example shows that there is

no hope for the use of a non-noetherian order � similar to the case of formal

power series. Let g = X1 and F = f1 � X1g. We obtain a reduction sequence

X1
F
�! X2

1

F
�! X3

1

F
�! � � �. Obviously, this sequence is not convergent in the

topology of local uniform convergence since, for instance, the values at the point

P = (2) tend to in�nity. Note, that 1�X1 is a unit in the ring S of formal power

series. Hence, F � S = S. But the inclusion F � E � E is proper in the case of

entire functions.

From now, let � be a �xed noetherian admissible term order. Again there is

no hope for a complete Gr�obner theory since in that case the support of a proper

power series will not have a maximal element. Consequently, proper power series

will have no initial terms. Furthermore, the ring E is not noetherian in contrary

to R and S and, hence, an ideal has no �nite Gr�obner basis, in general. A �rst

partial solution could be given in [ASTW] where the division formula presented

in De�nition 3 could be generalized to the case that g is an entire function. It

follows the main theorem of that paper:

Theorem5 [ASTW]. Let � be a noetherian admissible term order,

g =
X
t2T

ctt 2 E

be an entire function, and I � R be an ideal generated by the �nite set F =

ff1; : : : ; fmg of non-zero polynomials with initial coe�cient 1 with respect to �.

Then there exists a division formula

g =

mX
j=1

hjfj + h ;

where h 2 E and hj 2 E for j = 1; : : : ;m. Furthermore, the support of h

contains only terms which are irreducible modulo F with respect to �. If F is

a Gr�obner basis of I then h is the only entire function which is congruent to g

modulo IE and which is irreducible modulo F with respect to �.

Proof. We will sketch only the basic ideas. The aim is to show that normal form

operator and cofactor operators can be linearly extended from R to E. So, the

central problem is to check that the linear extensions are sound. We ask whether

the in�nite sum X
t2T

ctNfF (t)

exists. Note, that the coe�cients of each term in the sum are in�nite sums of

complex numbers. So, we need at least the convergence of all these sums in order

to have a well-de�ned object.



Let D be the set of all terms which are irreducible modulo F with respect to

�. Then there exist a sequence r� = (r1� ; : : : ; rn�); � = 1; 2; : : :, of n-tuples of

positive real numbers, satisfying

rj� ! +1 when � !1; for j = 1; 2; : : : ; n ;

such that the following conditions are satis�ed for all � = 1; 2; : : : and all poly-

nomials ĝ 2 R:

i) kNfF (ĝ)kr� +
Pm

i=1 kĥikr� � kĝkr� ,

ii) kNfF (ĝ)kr� � kĝkr� ,

iii) kĥikr� � kĝkr� for all 1 � i � m,

where

ĝ =

mX
i=1

ĥifi +NfF (ĝ)

is the division formula of ĝ by F de�ned in De�nition 3. In particular, condition

ii) holds for terms t, hence, kNfF (t)kr� � ktkr� .

Since g 2 Br� we have kgkr� < +1. Consequently,X
t2T

kctNfF (t)kr� �
X
t2T

jctj ktkr� < +1 :

Applying Lemma 4 it will follow that the sum exists and that it is not only

a formal power series but an entire function which in addition has a support

containing only terms of D.

Using condition iii) it can be proved in a similar manner that the linear

extension of the i-th cofactor operator to E is sound. ut

In [ASTW] it was also shown that the normal form operator is continuous.

Using this and linearity the uniqueness of the normal form modulo a Gr�obner

basis follows in the usual way. Again, the uniqueness justi�es the denotation

NfI(g) in the Gr�obner basis case.

4 Approximations

In the preceding section we presented a constructive method for the division of

entire functions by polynomial ideals. We have to compute a Gr�obner basis of

the polynomial ideal and then to reduce the entire function modulo this Gr�obner

basis. But, in general, the reduction process will not stop and we are faced with

the problem of approximation. We put the following questions:

{ Where we can truncate the entire function g such that the coe�cients of

NfI(g) and hj di�er from those obtained by reduction of the truncated power

series only within some given precision �?

{ How to compute an approximation of the value of NfI(g) at some given point

P 2 Cn?



Let g 2 E be an entire function and F = ff1; : : : ; fmg be the reduced Gr�obner

basis, i.e. the minimal autoreduced Gr�obner basis containing only polynomials

with initial coe�cient 1, of the (non-trivial) polynomial ideal I � R with respect

to the noetherian admissible term order �. We set ! := maxc2coef(F ) jcj, where

coef(F ) is the set of all coe�cients of polynomials contained in F . Furthermore,

let � denote the maximal length, i.e. number of terms, of polynomials from F .

Finally, we de�ne � := !(�� 1) as measure of the complexity of F in case that

I is not a monomial ideal. For monomial ideals I , i.e. � = 1, we set � := 1. In

the sequel we will estimate the coe�cients of normal form and cofactors of the

division formula of g by F in terms of the constant �.

Let w = (w1; : : : ; wn) be an n-tuple of positive natural numbers. We will call

w a positive weight vector and de�ne the w-degree of a term t = X�1
1 � � �X�n

n by

wdeg(t) =
Pn

i=1 wi�i. Bayer proved in his thesis [Ba] that for any polynomial

ideal I and any admissible term order � there exists a positive weight vector

w such that F � R is Gr�obner bases of I with respect to � if and only if F is

Gr�obner basis of I with respect to the admissible term order �w comparing �rst

the w-degrees and breaking ties by �. We can choose w such that, in addition,

for each element of F the w-degree of the initial term is strictly greater than

the w-degree of any other term contained in its support. The division formulas

of g by I will be the same for both orders for each g 2 E. So, without loss of

generality, we can assume that the order � itself has the above properties of �w.

In the following we �x a suitable weight vector w. Under this assumption we can

enumerate the terms of T by t1; t2; : : : such that ti � ti+1 for all i = 1; 2; : : :. We

start our investigation in the elementary case of the division formula of a term

ti by F :

ti =

mX
j=1

hi;jfj +NfI(ti) : (2)

The complex number coe�cients appearing in the entire functions contained in

Equation (2) are denoted according to the equations:

NfI(ti) =

1X
l=1

bi;ltl and (3)

hi;j =

1X
l=1

ai;j;ltl (1 � j � m) : (4)

A �rst trivial observation is bi;l = ai;j;l = 0 for l > i.

Approximation of normal form coe�cients The coe�cients of the normal form

of a term can be estimated by:

Lemma6. Let bi;l be the coe�cients of the normal form of the i-th term ti
modulo F with respect to � from Equation (3). Then we have the bound:

jbi;lj � �wdeg(ti) for all l = 1; 2; : : : : (5)



Proof. We proceed by induction on the w-degree of ti. First of all we observe

that the assertion is satis�ed for any term ti which is irreducible modulo F with

respect to � since in this case we have bi;i = 1 and bi;l = 0 for l 6= i. We assumed

I to be a proper ideal. Hence, t1 = 1 is irreducible modulo F and Inequality (5)

holds for the only term of w-degree 0.

Assume now, ti is reducible modulo F with respect to � and wdeg(ti) > 1.

Consider the division formula

ti =

mX
j=1

hi;jfj +NfF (ti)

of ti by F . De�nition 3 implies that there is exactly one pair 1 � k � m and t 2 T

such that t 2 supp(hi;k) and t � in(fk) = ti. Furthermore, it holds hi;k = t+ ĥi;k,

where ĥi;k = 0 or in(ĥi;k) � t. We have

ti � tfk =

pX
j=1

djtj ;

where dp 6= 0 and p < i. By the assumption that the w-degree of the initial term

of the element fk 2 F is strictly greater than the w-degree of any other term of

supp(fk) it follows

wdeg(tj) < wdeg(ti) for all j � p : (6)

So, by induction assumption the Inequality (5) is satis�ed for each coe�cient

bj;l of NfF (tj) (j = 1; : : : ; p). Obviously,

jdj j � ! (7)

and

# fdj jdj 6= 0g < � ; (8)

i.e. the number of non-zero coe�cients dj is less than �. Linearity of the normal

form operator implies

NfF (ti) = NfF (ti)�NfF (tfk) =

pX
j=1

djNfF (tj) :

Hence, we have the equation

bi;l =

pX
j=1

djbj;l : (9)

Finally, using the Inequalities (6), (7), (8) and Equation (9) we obtain the esti-

mation

jbi;lj � (� � 1) � ! � �wdeg(ti)�1 = �wdeg(ti) :

ut



Let NfI (g) =
P
1

j=1 djtj be the normal form of the entire function g =P
1

i=1 citi modulo I . The sum

NfI(g) =

1X
i=1

ciNfF (ti) =

1X
i=1

ci

1X
l=1

bi;ltl

is independent of the order of summation, hence,

NfI(g) =

1X
l=1

 
1X
i=1

cibi;l

!
tl :

Comparison of coe�cients yields

dj =

1X
i=1

cibi;j :

Using estimation (5) it will follow

jdj j �

1X
i=1

jcij�
wdeg(ti) = kgkrw ; (10)

where rw = (�w1 ; : : : ; �wn).

Since g is an entire function the above norm is �nite and we have an upper

bound for the coe�cient size. The following theorem shows that the problem of

�nding approximations of the coe�cients of NfI(g) within a given precision can

be reduced to the ability of norm computations.

Theorem7. Let g 2 E with

NfI(g) =

1X
j=1

djtj

and � be a positive real number. Furthermore, let g = h+ h0 be a decomposition

of g such that h 2 R is a polynomial having the normal form

NfI(h) =

1X
j=1

ajtj

and h0 2 E is an entire function satisfying kh0krw < � with respect to the norm

vector rw de�ned above. Then

jdj � aj j < � for all j = 1; 2; : : : :

Proof. The assertion follows immediately from (10) and linearity of NfI . ut



It follow some remarks on the truncation (with respect to �w) of g such that

su�ciently good approximations of the coe�cients of NfF (g) can be read o�

already from the normal form of the polynomial obtained by truncation of g.

Given the reduced Gr�obner basis F the computations of w, �, and rw are

algorithmic. The bottleneck will be the computation of N = kgkrw within a

given precision �
2
. Assume we were able to do this. Then there is no essential

di�culty �nding the term tl such that jN � k
Pl

i=1 citikrw j < �. This implies

k
P
1

i=l+1 citikrw < � since our norm is additive for power series with disjoint

supports. Hence, h =
Pl

i=1 citi and h0 =
P
1

i=l+1 citi satisfy the assumptions of

Theorem 7 and reduction of the polynomial h provides the coe�cients of NfF (g)

within the wished precision.

Approximation of cofactor coe�cients Now, we will show that the same trun-

cation is suitable also for a su�ciently good approximation of the coe�cients of

the cofactors hj appearing in the division formula of g modulo F . We start with

an estimation of the coe�cients ai;j;l of Equation (4).

Lemma8. Let ti be the i-th term with respect to �. Then the coe�cients ai;j;l
of Equation (4) satisfy the condition

jai;j;lj � �wdeg(ti) for all i; l = 1; 2; : : : and j = 1; : : : ;m : (11)

Proof. The proof is similar to that of Lemma 6. But instead of the linearity of

the normal form operator we have to use the linearity of the cofactor operators.

ut

By linearity of the j-th cofactor operator we have

hj =

1X
i=1

cihi;j

for the entire function g =
P
1

i=1 citi, the j-th cofactor hj of the division formula

of g by F , and the cofactors hi;j from Equation (2). Similar preparations as for

Inequality (5) yield jdj � kgkrw for any coe�cient d occurring in hj .

Theorem9. Let g 2 E with division formula

g =

mX
i=1

hifi +NfI(g)

and � be a positive real number. Furthermore, let g = h+ h0 be a decomposition

of g such that h 2 R is a polynomial with division formula

h =

mX
i=1

ĥifi +NfI(h)



modulo F and h0 2 E is an entire function satisfying kh0krw < � with respect to

the norm vector rw. Then

jcoef(hi; tj)� coef(ĥi; tj)j < � for all i = 1; : : : ;m and tj 2 T ;

where coef(f; t) denotes the coe�cient of the term t in the entire function f .

Proof. The proof is analogue to that of Theorem 7.

Approximation of values at given points Since we are working with functions

g =
P
1

i=1 citi it is natural to ask for their value g(P ) at a given point P 2 Cn.

For the zero point O = (0; : : : ; 0) we can immediately give a positive answer,

namely g(O) = c1. For an arbitrary point P we can transform the problem to

the value computation at zero by expanding g at the point P . The expansion

of g at P = (P1; : : : ; Pn) can be obtained by application of the automorphism

� of E de�ned by Xi 7! Xi � Pi to g. Clearly, g(P ) = �(g)(O). However, the

computation of �(g) is not algorithmic, too, and again we need truncations for

the approximation.

We introduce a set Y = (Y1; : : : ; Yn) of new variables and de�ne the poly-

nomial rings RY = C[Y ], RX;Y = R[Y ], and the corresponding rings EY and

EX;Y of entire functions. Furthermore, we set TY and TX;Y the sets of terms in

Y and X [ Y , respectively. Let TY be ordered by �Y in the same way as T ,

i.e. Y � �Y Y � i� X� � X�. In TX;Y we use an admissible term order which

coincides with � and �Y on T and TY , respectively, and which is such that

any term of TY is smaller than any term containing a variable of X . Clearly,

E;EY � EX;Y . E and EY are isomorphic by the natural isomorphism Xi 7! Yi
(1 � i � n). The composition of � and this isomorphism provides an isomorphism

' : E ! EY mapping Xi to Yi � Pi. We have

g(P ) = '(g)(O) for any g 2 E : (12)

Let J � RX;Y be the ideal generated by G = fXi � Yi + Piji = 1; 2; : : : ; ng.

It is easy to verify that G is reduced Gr�obner basis with respect to �X;Y and

that the computation of the image '(g) can be performed by reduction of g 2 E

modulo G, i.e

NfJ (g) = '(g) for all elements g 2 E : (13)

Lemma10. Let I � R be a polynomial ideal and F = ff1; : : : ; fmg � I be

a Gr�obner basis of I with respect to �. Then '(F ) is Gr�obner basis of the

polynomial ideal '(I) � RY with respect to �Y , where ', RY and �Y have the

same meaning as introduced above.

Proof. Let 0 6= g 2 '(I). Since F is Gr�obner basis we have

'�1(g) =

mX
i=1

hifi ;



where hi = 0 or in(hifi) � in('�1(g)) for 1 � i � m. Applying the isomorphism

' we obtain a representation

g =

mX
i=1

'(hi)'(fi)

of g in terms of '(F ). The particular structure of the isomorphism ' and the

choice of the term order �Y ensure that in(f) = X� implies in('(f)) = Y � for

arbitrary non-zero polynomials f 2 R. Therefore, '(hi) = 0 or in('(hifi)) =

in('(hi)'(fi)) � in(g) for 1 � i � m. Hence,

in('(I)) �RY � in('(F )) �RY :

This and trivial facts show that '(F ) satis�es the conditions of De�nition 1. ut

Lemma11. Let I � R be a polynomial ideal and F � I a Gr�obner basis of I

with respect to �. Furthermore, let G, J , RX;Y , ', and �X;Y be as above. Then

the set G [ '(F ) is a Gr�obner basis of J + I �RX;Y with respect to �X;Y .

Proof. '(F ) is Gr�obner basis of '(I) with respect to �Y according to Lemma

10. Since the initial terms of the elements of G depend only on X and those of

the elements of '(F ) only on Y , the union of the Gr�obner bases is Gr�obner basis

of the ideal sum with respect to �X;Y . ut

After these preparations we return to our initial problem, which was to cal-

culate an approximation of the value of the entire function NfI(g) at the point

P . According to the Equations (12) and (13) this is equivalent to the approx-

imation of the coe�cient of the term t1 = 1 in '(NfI(g)) = NfJ(NfI(g)). A

direct attempt to use the results about the approximation of the normal form

coe�cients involves one di�culty, namely, we would have to approximate the

coe�cients of NfI(g) �rst and then to continue the calculation with the ap-

proximated data. In order to do this we would need some knowledge about the

norm error of our approximation of NfI(g). But the estimation of the norm er-

ror will remain an open problem of this paper. However, the following theorem

shows that NfJ(NfI(g)) can be calculated using a single normal form calculation

modulo only one Gr�obner basis.

Theorem12. Let g 2 E be an entire function, I � R be a polynomial ideal and

F = ff1; : : : ; fmg � I a Gr�obner basis of I with respect to the admissible term

order �. Furthermore, let RY ; RX;Y ; EY ; EX;Y ;�Y ; and �X;Y be as introduced

above. Finally, let P = (P1; : : : ; Pn) 2 Cn be a point, J � RX;Y the ideal

generated by the reduced Gr�obner basis G = fXi � Yi + Piji = 1; 2; : : : ; ng, and

' : E ! EY the isomorphism de�ned by Xi 7! Yi � Pi. Then

'(NfI(g)) = NfJ (NfI(g)) = NfJ+IRX;Y
(g) :



Proof. Clearly, NfJ (NfI(g)) � g mod J + IRX;Y and supp(NfJ (NfI(g))) � TY .

Let Y � 2 supp(NfJ(NfI(g))). There must exists a term t 2 supp(NfI(g)) which

is multiple of X� due to the particular structure of G. Consequently, Y � is

irreducible modulo '(F ) and NfJ (NfI(g)) is irreducible modulo G [ '(F ). In

conclusion, NfJ(NfI(g)) is the unique normal form of g modulo J + IRX;Y with

respect to �X;Y . ut

In summary we can compute the value of NfI(g) at the point P by

Corollary 13.

NfI(g)(P ) = NfJ+IRX;Y
(g)(O)

The approximation of the right hand side can be solved by estimating the ab-

solute term of the normal form of g modulo G [ fNfJ(f1); : : : ;NfJ(fk)g with

respect to �X;Y .

Note, that the feature expressed in Theorem 12 that the normal form calcula-

tion modulo an ideal sum may be replaced by sequential normal form calculations

modulo the summands is very exceptional in the theory of Gr�obner bases and

strongly depends on the simple structure of J and the use of suitable term or-

ders. In our particular situation we have a second nice feature which is far from

being self-evident, namely, the very easy computation of the Gr�obner basis of

J + I � RX;Y which requires only reduction of the elements of one basis modulo

the other.

5 Closing remark

We presented a constructive method for the division of entire functions by poly-

nomial ideals. The main problem of our method is the norm estimation of entire

functions. The di�culty of this task depends on the concrete power series un-

der consideration. The �rst question which had to be answered is which type of

representation should be assumed for the input power series.

Another question which we could not solve in this paper is the computation

of an approximation of the normal form such that the error of its norm is within

some given precision.

The coe�cient bounds given in this paper are independent on the term to

which they belong. There are some obvious possible improvements of the bounds

depending on the concrete term under consideration. In this sense we could ask

also for the error of coe�cients of \large" enough terms. This could be a way

to attack the problem of computing approximations such that the norm error is

within some range.

A very important question is whether there are criterions which allow to prove

that a coe�cient is exactly zero. In particular, this is important for the question

whether the normal form of some entire function is a polynomial. Unfortunately,

up to now we are not able to give any hint how to solve the problem, unless I is

a monomial ideal.



A last remark concerns the input basis of the ideal. Looking for approxima-

tions one could ask whether also approximations of the input data are su�cient.

It is well known, that a Gr�obner basis computation starting from polynomials

with only approximated coe�cients makes no sense. Of course, we cannot expect

a continuous behaviour since little changes of the coe�cients of the input poly-

nomials may change the generated ideal drastical, e.g. the ideal dimension may

change. So we conclude, that in principal we have to make the hard assumption

that the polynomial ideal has to be given exactly. The only errors allowed, i.e.

which will e�ect a continuous behaviour, are little errors at the coe�cients of the

polynomials of the reduced Gr�obner basis F leaving the initial ideal unchanged.
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