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Abstract

We extend earlier cellular automata models of spatially extended hypercycles by
including an explicit genetic component into the model. This allows us to study the
sequence evolution of hypercyclically coupled molecular replicators in addition to
considering their population dynamics and spatial organization. In line with previ-
ous models, that considered either spatial organization or sequence evolution alone,
we find both temporal oscillations of the relative concentration of the species form-
ing the hypercycles as well as the formation of spatial organisations including spiral
waves. We also confirm the greatly increased robustness of the spatially extended
hypercycle against various classes of parasites.

We find the sequence evolution of each of the hypercyclically coupled populations
proceeds (after an inital selection-dominated phase) in a drift-like manner that can
be described by a diffusion process in sequence space. Kimura’s theory of neutral
evolution is therefore applicable on long time-scales despite the fact that the hyper-
cycle exhibits extreme periodic changes in population sizes and that are governed
solely by frequency-dependent selection.
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1 Introduction

The RNA World hypothesis [14,13] proposes a self-contained biochemical
system preceeding the origin of modern cellular life-forms, in which RNA
molecules act both as genetic material and as enzymes [37]. The possibility of
an RNA World depends on the capability of the RNA molecules to catalyze the
chemical reactions necessary to replicate RNAs [3]. This scenario is supported
both by the wide range of catalytic activities that can be realized by relatively
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small ribozymes [21,25,26,30,55], and by the usage of RNA catalysis at cru-
cial points in modern cells [24,7,35]. Plausible ribozyme catalyzed pathways
for a late-stage ribo-organism are discussed in [26], the role and evolution of
co-enzymes in a putative RNA world is explored in [22]. While the template-
induced synthesis of oligonucleotides from smaller oligonucleotide precursors
was successfully demonstrated in the laboratory [56,57,44,58], it seems im-
possible to replicate longer sequences without an enzyme [37]. Approaches to
engineering a ribozyme-replicase have been very promising [23,25,38]. These
experiments show that self-replication is most likely within the catalytic reper-
toire of nucleic acids [34]. So far, however, they have not resulted in an RNA
ribozyme that can catalyze its own replication with an efficiency that could
have sustained a genetic system on the early Earth.

A central issue in models of prebiotic evolution is the integration of infor-
mation that is necessary to bridge the gap between a simple system of repli-
cating molecules and the complexity of a modern cell [9,27]. The template
length is limited by the accuracy of the replication mechanism, which is nec-
essarily error-prone due to mutations [8]. In principle the error threshold can
be circumvented by evolving more accurate replicases that could be encoded
by longer sequences [40,39,52]. Such a bootstrapping mechanism, however,
requires a functional replicase-ribozyme to start with. By comparison with
known ribozymes such a molecule would probably be about 100nt long, while
the current limit for non-catalyzed replication is less than 20nt.

An alternative mechanism that allows the accumulation of heritable informa-
tion is the cooperation of self-replicators, introduced in the Hypercycle model

[9]. It was soon noticed, however, that hypercycles and similar models are
vulnerable to various kinds of parasites in homogeneous solution [33,5]. Not
surprisingly, the number of coupled replicators increases only very slowly in
models of self-replicators with mutation [32,15].

Boerlijst and Hogeweg [4] and, later, Streissler [51] (in a PDE setting) and
Cronhjort and Blomberg [6] showed that the problem of parasite invasion
can be alleviated by considering spatially organized systems. Most theoretical
studies have demonstrated that some kind of spatial structure is indispensable
for the persistence and/or the parasite resistance of any feasible replicator
system, see e.g. [53,1,59], although a chemical kinetics with product inhibition
can have a similar effect in some parameter ranges [46,48].

The shape of the fitness function, and more generally the accessibility of mu-
tants from a given population, crucially influences the dynamics of evolution
[42,10,47]. In the case of RNA it has been demonstrated that the genotype-
phenotype is dominated by so-called neutral networks that percolate through
sequence space, thereby allowing efficient exploration by means of neutral drift
confined to the neutral networks [42,20,19]. Recently, it was shown that a sim-
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ilar mechanism allows population of autocatalytic self-replicators to explore
sequence space in a diffusion-like manner [45].

Simple finite population models of hypercycles have been considered e.g. in
[2]. For larger, not necessarily hypercyclic, networks destabilization in homo-
geneous solution has been observed as a consequence of stochastic fluctuations
[36]. The only study of sequence evolution of a hypercycle based on an explicit
genotype-phenotype map is [11], which concentrates short cycles in a homo-
geneous medium. This study focusses on error-threshold phenomena similar
to those described for uncatalyzed replicators [12,20].

In this contribution we combine the macroscopic modelling of the spatio-
temporal population dynamics of self-replicators with the microscopic mod-
elling of the motion of populations of replicators in sequence space. To this
end, replicating polymers are explicitly represented by their sequence in a CA-
like universe. All reaction rates are derived from the (secondary) structures
of the molecules which can be computed directly from their sequences. The
parameters of the population dynamics are therefore not external ingredients
of the simulation but intrinsic in the model itself [41]. In addition to demon-
strating that we recover the typical dynamical features of simpler models of
hypercyclic systems, we focus here on the dynamics in sequence space and
show that Kimura’s model of neutral evolution is applicable at least when
time-scales are considered that are much larger than the oszillations of species
in the population dynamics of a hypercycle.

2 The model

We consider a stochastic version of a second order replicator equation [43]
with mutation, i.e., a replication mechanism of the form

x + y −→ x + y + z (1)

The symbol x represents the sequence of a template RNA molecule that, with
the aid of the replicase ribozyme y, is copied to produce an RNA sequence z,
which can be the same as the template, x = x, in the case of correct copying,
or a mutant z 6= x. In addition we consider a slow uncatalyzed replication
mechanism of the form x −→ x + z.

Each RNA sequence is interpreted as a self-replicator that also has the ability
to catalyze the replication of other RNAs. Catalytic activities and replica-
tion rates are dependent on the molecules’ secondary structure 1 . Secondary

1 A secondary structure S is a special type of contact structure, represented by a
list of base pairs [i, j] with i < j on a sequence x, such that for any two base pairs

3



Fig. 1. The target set is a hypercycle with 8 members. All sequences have length
n = 56.

structures of RNA molecules can be computed efficiently by means of a dy-
namic programming approach [60] based on empiral parameters [31]. We use
the Vienna RNA Package [17,16] for this purpose. The optimal reaction rates
are realized by the “perfect” target-hypercycle in Fig. 1. It is known that
self-organization providing resistance to parasites is possible only in cycles of
6 or more members, while cycles of 3-5 members are quickly destroyed [18].
Therefore we choose an 8 members hypercycle for our model.

The interaction topology of our target set is a hypercycle with 8 members
T1 through T8. The target structures Tk were picked at random. In order
to investigate resistance against parasites, we consider selfish parasites and
short-cut parasites besides the ordinary members of the hypercycle. All rates
for parasite sequences are computed in the same way as for the target-set
members. Indeed, technically, the parasites are treated as additional target-
structures.

For each sequence x in a population P we compute its secondary structure S(x)
using the Vienna RNA Package [17]. Then we determine its structure distance

[i, j] and [k, l] with i ≤ k holds: (i) i = k if and only if j = l, and (ii) k < j implies
i < k < l < j.
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D(Tk,S(x)) to the target shapes Tk. For simplicity we define D(X ,Y) as the
number of base-pairs that X and Y do not share. Finally, we assign S(x) to the
hypercycle-member h that minimizes the distance D(Tk,S(x)). We write P

h

for this sub-population of sequences whose structure ist closest to the target
shape Th.

Once the group h has been determined for every sequence the replication-
decay-catalysis process in simulated as outlined in [4], Fig. 2:
Decay: Sequence x has a decay probability that depends linearly on the dis-
tance to the target structure:
δx = 1 + D(Tk,S(x))
Replication: Sequence x has a probability to self-replicate without the help
of a catalyst that depends inversely on the distance to the target structure:
αx ∼ 1

1+D(Tk,S(x))

Catalyzed Replication: When a self-replicator has neighbors that corre-
spond to their catalysts in the direction of the reaction, the probability (rate)
of catalysis is largely improved. As well as self-replication rates depends on
fitness, also the performance of catalysts is defined by their distance to the
target. The similar a phenotype is to the corresponding target, the better its
rate as catalyst will be. The total replication rate is therefore

ρx =
1

1 + D(Tk,S(x))
+

∑

y catalyzes x

C

1 + D(Ty,S(y))
(2)

where C = 8000 is the relative rate of catalyzed versus uncatalyzed replication.

Mutations occur as errors during replication. As in Eigen’s quasispecies model
[8] we assume a uniform per-nucleotide rate p of incorporating an erroneous
letter. These point mutations of the parental sequence x have a high probabil-
ity of changing the secondary structure. Since these structural changes may be
large [42] we have significant probability that a mutant sequence will belong to
either a different class of hypercycle members or to one of the parasite classes.

The population P of replicators is spread out on a 2-dimensional grid with
periodic boundary conditions, typically consisting of 200 × 200 cells. In this
respect our simulation resembles those described in [4,6]. Each cell can be
empty or occupied by a RNA single sequence. Diffusion is modeled using the
Toffoli-Margolus scheme [54]. We use two diffusion steps within each simula-
tion time step. Simulations are initialized by randomly placing 200 to 1000
initial sequences on the grid. The sequence in an occupied cell dies with a
rate proportional to δx. For every empty cell we compute the replication rates
ρz for all its neighboring cells, assuming that the replication of z is catalyzed
only by those neighbors that correspond to the preceding class in the hyper-
cycle topology, Fig. 2. According to the model presented in [4], we consider
possible catalysts only in the direction of the replication. The sequence with
the largest values of ρz invades the empty cell. Cells are chosen for update in
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Fig. 2. Rules of replication. For each of the neighbors (•) of the empty cell (marked
by a bold outline) the replication rate ρz is computed taking into account their
neighbors in the direction of the replication (◦) as potential catalysts. The neigh-
bor with the largest values of ρz invades the empty position. In this example, for
the chosen replicator, only three of its neighbours are catalysts according to the
hypercycle topology.

random order until every occupied cell has been updated..

Several variables are measured througout the simulations: the number Nk =
|Pk| of individuals per group, the average distance D̄ to target over the whole
system and over each group, the diversity θk between individuals in a class of
replicators and number Yk of different sequences belonging to target class k.
The diversity of a group is computed as proposed in [45]

θk =
1

Nk(Nk − 1)

∑

x6=y∈Pk

dH(x, y) (3)

where dH(x, y) is the Hamming distance of the sequences x and y. In [45] it is
shown that replicators with interactions tend to minimize diversity until they
end in a quasispecies-like distribution.

3 Simulation Results

3.1 Spatial Pattern Formation

We first consider a universe without parasites, i.e., all sequences are assigned
to one of the structures of the hypercycle-members. As in [4] we observe spiral
waves when every member of the cycle has a minimum concentration. In almost
every run, a first period of disorder is followed by the birth of a spiral which
contains sequences of every group, ordered depending on the topology of the
targets. It is important to notice that without a minimum fitness, individuals
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Fig. 3. Spirals formed after 3000 generations in an evolution experiment started
with 300 random sequences in the absence of parasites.
Simulation parameters: grid size L × L = 200 × 200, sequence length n = 56,
mutation rate p = 3.5×10−4, 2 diffusion steps between replication steps. Simulation
parameters are the same in all figure unless explicitly stated otherwise.

of a group would die before they could get any help to replicate, so that
evolved enough sequences of every group must be present in order to the
spatial patterns to emerge. Once the spiral is formed, the sequences continue
approaching the target but in a much slower pace, in fact, in some simulations
we observed an oscillatory behavior of the fitness average depending on the
number of sequences present in the system at any given moment.

Some groups could reach the target, while others may stay away without
breaking the dynamics. In the case where one group will get to the target
while the others had a poor fitness, however, the system sometimes collapses
to the survival of only the single fittest species. This is only possible when the
group which is catalyzed by this “master species” is not present in the system:
since the rate of catalysis depends also on the fitness, so that the “follower”
will increase its concentration at the expense of the “master species”.

When all members of the cycle are present with a minimum concentration and
fitness, a change of behavior occurs and an oscillatory behavior in the number
Nk of sequences per group is observed, see Fig. 4. The amplitude of this waves
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Fig. 4. Evolution towards the target hypercycle. After a transient period of disorder,
the concentrations Yk of the individual member-classes of the hypercycle (different
colors) exhibit regular oscillations.

depends on the ratio between self-replication and catalyzed replication rates.
If this ratio is too large, the abundance of sequences of one group will lead to
a very fast growth of the next group in the hypercycle, giving almost no space
for other members to replicate. Only one or two groups fill the entire lattice
at any given point in time, making it more difficult or impossible to create the
spirals.

When a selfish parasite is introduced, a first period is observed where members
of the hypercycle, as well as the parasite, appear and disappear from the
system without much order. For some time both parasite and hypercycle can
coexist, but it ends in the parasite being expulsed from the system and the
spirals arise. Of course, mutations from regular sequences may jump to the
parasite group, implying that the parasite has members almost all the time
without being harmful for the system. These parasitic sequences typically are
erradicated before they can evolve towards high replication rates. The spirals
in this case are not as regular as those without parasite, nevertheless they are
stable and can coexist with an invading parasite.

The case of the short-cut parasite is quite similar. The system is stable against
this kind of parasite and only a few times the runs ended with the shorter cycle
formed in this topology. In the majority of the simulations, however, the par-
asite was expelled from system after some time. The reason for this increased
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Fig. 5. Evolution of the mean fitness of the individual classes (different colors).
After a period of disorder, the parasite (gray curve in the upper part of the plot)
in unable to re-invade the system. It dies our before it can reach sequences that are
near-optimal parasites (distance 0 to target).

resistance appears to lie in the the genotype-phenotype map derived from
the RNA folding algorithm. The fact that fitness depends on the secondary
structure gives allows the hypercycle to evolve towards a stronger configura-
tion while the parasite is left behind: from the fitness plot one can see how
for some period the parasite evolves more or less the same way as the other
members of the hypercycle. Nevertheless, everytime the parasite is expelled
from the system, it looses the fitness it could have won before, becoming a
much weaker species. It is clear that stability of the hypercycle is due not only
to the spatial configuration but also to the advantage of its members in an
evolutionary way.

3.2 Population Structure

Diversity depends strongly on the initial conditions, in particular on the num-
ber of sequences first introduced to the system. To make replicators evolve
towards the targets, it is important to keep a high selectivity among them,
this in turn can make it harder for the system to reach the desired organiza-
tion. Starting with less than 100 sequences leads, almost all the time, to the
death of all species or the survival of one. If selection is lowered it is possible
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Fig. 6. Diversity of the system with different initial conditions. Simulation param-
eters for both plots are the same except for the number of initial sequences in the
lattice. For figure (a) 300 sequences were used while in figure (b) 800 individu-
als started the simulation. It can be seen that when the number of species at the
begining is high enough, diversity is kept high until the end.

to start with one sequence but evolution towards the targets will be slower.
In most cases, starting with 200 or 300 sequences allows the system to survive
even with higher selection rates. In this case, diversity falls very quickly to
almost zero and is maintained like that until the end of the simulation, see
Fig. 6(a).

When the number of initial sequences is increased, diversity stays higher and
oscillates depending on the number of species per group, Fig. 6(b). This means
that if diversity is high enough at the beginning, then it is maintained by
the system. We believe that this is due to the interactions and catalyzed
replications: selection on a single member becomes less important when its
replication is improved by the others. Even a fast dying sequence can stay in
the lattice because of its even faster catalyzed replication.

A quasispecies-like behavior is observed if diversity is low. The distribution
of the number of individuals with the same sequence is centered around a
“master sequence” in each class of hypercycle-members; a large fraction of
the populations consists of individuals that occur only in a single copy. These
“explorers” of the sequence space are lost and replaced by others within a few
generations, Fig. 7.
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Fig. 7. Distribution of sequences in each class of hypercycle members. Only a few
sequences are present with almost all the individuals of the group while the rest
of sequences are represented by only one individual. Figures (a) and (b) show the
distribution of two different members in the same simulation.

3.3 Drift and Diffusion in Sequence Space

The profile of the class k of the hypercycle at time t is the 4 × n vector pk(t)
whose components are the frequencies of the 4 types of nucleotides at each
sequence position [45]. The overall movement of the population in sequence
space can be quantified in terms of the correlation function

g(τ) =
1

T2 − T1 + 1

T2∑

t=T1

‖p(t + τ) − p(t)‖2 (4)

computed for suitable intervals of measurement [T1, T2]. The mobility of the
population in sequence space is conveniently quantified in terms of the diffu-

sion constant D which is defined as the slope of g(τ) ∼ Dτ .

As expected from simulations both of RNA based quasispecies [20] and from a
simple model of interacting molecular replicators [45] we observe a linear de-
pendence of the diffusion constant on the per-site mutation rate p, see Fig. 8b.
We should expect that small differences in the diffusion constants of differ-
ent sub-populations should exist since the diffusion constant should depend
on the fraction ν of mutations that do not change the secondary structure.
It is known that ν depends on the secondary structure in question [20]. We
have not been able to detect significant difference in the diffusion constants
of individual sub-populations (data not shown) since the effects are small and
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Fig. 8. Displacement of the profile and diffusion constant D vs mutation rate. (a)
The Displacement of the profile with time, g(τ), is shown in gray for individual
sub-populations P

k. The average of g(τ) over all sub-populations is displayed as
bold black line. (b) The slope of g(τ) defines the diffusion constant in sequence
space. As expected, there is a linear dependence between diffusion constant D and
single digit mutatation frequency d. The data are averaged over 16 different runs
and all species.

would require much more extensive simulations in order to obtain sufficiently
accurate estimates of D for each species separately.

4 Discussion

We have simulated here a simple hypercyclic network that incorporates strong
interactions between species and hence a complicated population dynamics,
spatial organization, and an explicit representation in sequence space. Our first
main conclusion is that the behavior of such an integrated computer simulation
is consistent with earlier findings on both the population dynamics (such as
the existence of limit cycles) of hypercycles and on the effects of considering a
spatially extended system (such as the formation of spiral waves and resistance
against various types of parasites). The resistance of the system against short-
cut parasites in addition to “dead-end” parasites is a very important result
since it shows that spatially extended hypercycles are indeed evolutionarily
very stable systems. This is in sharp contrast to hypercycles in homogeneous
solution [9,5,49,50].

Furthermore, we demonstrate here a mode of sequence evolution that is domi-

12



nated by drift and hence can be described in terms of Kimura’s Neutral theory
[28,29]. This does not mean, of course, that selection does not play a role: the
exclusion of parasites, the internal dynamics of the population, as well as the
sequence-evolution in the initial phase of the simulation are clearly dominated
by selection.

Changing any of the initial conditions, parameters, target structures, or just
the random numbers used to model the mutation events, of course leads to
very different sequences. Nevertheless, the main characteristics of the system
are robust and differ only in small details from one set of conditions to the
other. We therefore conclude that the ability of such an RNA based system to
evolve towards a robust spatially extended organization is intrinsic to autocat-
alytic self-replicating molecules as soon as the sequence-structure relationship
is dominated by extensive neutral networks, as is the case for RNA.
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