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Abstract

The notion of spaces of orderings was introduced by Murray Marshall in the 1970’s and

provides an abstract framework for studying orderings on fields and the reduced theory of

quadratic forms over fields. The structure of a space of orderings (X,G) is completely deter-

mined by the group structure of G and the quaternary relation (a1, a2) ∼= (a3, a4) on G – the

groups with additional structure arising in this way are called reduced special groups. The

theory of reduced special groups, in turn, can be conveniently axiomatized in the first order

language LSG. Numerous important notions in this theory, such as isometry, isotropy, or be-

ing an element of a value set of a form, make an extensive use of, so called, positive primitive

formulae in the language LSG. Therefore, the following question, which can be viewed as a

type of very general and highly abstract local-global principle, is of great importance:

Is it true that if a positive primitive formula holds in every finite subspace of a space of

orderings, then it also holds in the whole space?

This problem is now known as the pp conjecture. The answer to this question is affirmative

in many cases, although it has always seemed unlikely that the conjecture has a positive

solution in general. In this thesis, we discuss, discovered by us, first counterexamples for

which the pp conjecture fails. Namely, we classify spaces of orderings of function fields of

rational conics with respect to the pp conjecture, and show for which of such spaces the

conjecture fails, and then we disprove the pp conjecture for the space of orderings of the field

R(x, y). Some other examples, which can be easily obtained from the developed theory, are

also given. In addition, we provide a refinement of the result previously obtained by Vincent

Astier and Markus Tressl, which shows that a pp formula fails on a finite subspace of a space

of orderings, if and only if a certain family of formulae is verified.
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Introduction

The concept of an ordered field goes back to David Hilbert and his 1899 work on the

foundations of geometry. In §13 of [Hil99] he introduced the notion of, what he called,

“complex number systems”, and listed 16 axioms of ordered fields, as well as the Archimedean

axiom. This axiomatization was later used in §28, where he showed that the “algebra of

segments”, constructed to study plane geometry, was indeed an ordered field, and also in §29,

where the first example of a non-Archimedean geometry was built. The significance of this

discovery was widely appreciated; Henri Poincaré, well-known for his hostility towards the

formalist viewpoint, wrote in his review of Hilbert’s book:

This notion may seem artificial and puerile; and it is needless to point out how

disastrous it would be in teaching and how hurtful in mental development; how

deadening it would be for investigators, whose originality it would nip in the

bud. But, as used by Professor Hilbert, it explains and justifies itself, if one

remembers the end pursued [Poi02].

However, it was not until the series of papers by Emil Artin and Otto Schreier published

in 1926 and 1927, that the systematic development of the theme of orderings of fields started.

The fifth issue of Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

contained three fundamental works [Art27], [ArtSch27-1] and [ArtSch27-2], where it was

shown that fields admitting orderings are those in which −1 is not a sum of squares, that an

element of a field is a sum of squares if and only if it is positive with respect to every order in

that field, and where the notion of real closed fields was first introduced, along with the proof

that every real closed field admits the unique order, and every ordered field has a unique,

up to an isomorphism, real closed algebraic extension, called the real closure, whose ordering

induces the ordering of the underlying field; last but not least, all those considerations led
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to the solution of the celebrated Hilbert’s 17th Problem. The importance of this theory was

fully acknowledged in 1931 by Bartel van der Waerden, when he devoted the whole Chapter

11 of his book Moderne Algebra [Wae31] to real fields, which therefrom became a part of

every standard algebra textbook.

Artin’s solution of Hilbert’s problem related for the first time the theory of ordered fields

with the real algebraic geometry; his proof used, along with the newly developed Artin-

Schreier theory, a specialization argument and Sturm’s theorem on counting the real zeros of

polynomials. This relationship became even more evident in Serge Lang’s proof of the same

theorem [Lan65], where he used his Homomorphism Theorem and replaced the specializa-

tion argument with the use of real places [Lan53]. These techniques later led to the Real

Nullstellensatz by Didier Dubois [Dub70] and Jean-Jacques Risler [Ris70]. On the other

hand, Alfred Tarski discovered his famous Tarski Transfer Principle (first announced without

proof in [Tar31], later published in [Tar51]), whilst Abraham Robinson proved the model

completeness of the elementary theory of real closed fields [Rob56]; these results greatly

contributed to the field of model theory. The Artin-Schreier theory has been also applied to

the algebraic theory of quadratic forms; in our work we shall concentrate on this application.

The relationship between orderings and quadratic forms traces back to works by James

Joseph Sylvester [Syl52] and his notion of a signature, which was later revitalized by Albrecht

Pfister in the proof of his celebrated Local-Global Principle [Pfi66]. For a given ordering P

and a quadratic form φ over a formally real field F , he defined the signature sgnP (φ), just as

Sylvester did for the field R. If XF denotes the set of all orderings of the field F , this gave a

rise to a “total signature” of the form φ, that is the function Sgnφ : XF → Z defined by the

following formula:

Sgnφ(P ) = sgnP (φ).

Assigning to every form φ its total signature Sgnφ yielded a well-defined homomorphism from

the Witt ring W (F ) of the field F to the ring C(XF ,Z) of continuous functions defined over

the set XF (with suitably chosen topology) with values in Z. Pfister’s main result stated that
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the kernel of this homomorphism was precisely the torsion ideal Wt(F ) of W (F ). Therefore,

the study of the reduced Witt ring W (F )/Wt(F ) is essentially tied to the study of the space

of orders of the field F .

This theory was soon generalized to subspaces of spaces of orderings, which, in turn,

first appeared in works of Jean-Pierre Serre [Ser49], where he attempted to – according

to his own words – “try to catch the orderings” and introduced the notion of preorderings.

If T is a fixed preordering of a formally real field F , let XT denote the set of orders of

F extending T (we hope that the reader shall not be confused with the similarity of the

notation XF and XT , which seems to be widely accepted in the literature). In papers by

Bröcker [Brö74], Becker and Köpping [BecKöp77], Scharlau [Sch69], Knebusch, Rosenberg

and Ware [KneRosWar73], and Marshall [Mar77] results similar to the mentioned above

were proven, with the space of orderings XF replaced with XT (and, even more generally,

with spaces of orders over commutative rings instead of just over fields), which paved the

way to the reduced theory of quadratic forms. The systematic exposition of the latter one

was given, for example, in [Lam81]. It turned out, that it was possible to construct a very

elegant theory in which reduced Witt rings were constructed in a natural way, analogous to

the classical case.

The observation that the space XT of orderings extending a given preordering T of a field

F may be viewed as a subset of the character group χ(G) of the group G = (F \{0})/(T \{0})

of generalized square classes of F with respect to T , led to the development of an extensive

axiomatic theory of abstract ordering spaces, where arbitrary elementary Abelian 2-groups are

considered. This theory was constructed by Murray Marshall in a series of papers [Mar76],

[Mar79-1], [Mar79-2], [Mar80-1], [Mar80-2] and [Mar80-3].

This was not the only attempt to develop the algebraic theory of quadratic forms on

an axiomatic basis. Most notable among other works on that theme is the one by Mur-

ray Marshall, where the quaternionic structures are introduced [Mar80-3], and the one by

Mieczys law Kula, Lucyna Szczepanik and Kazimierz Szymiczek [KulSzcSzy88], where the

quaternionic schemes are studied. In the beginning of the 1990s the notion of special groups
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was introduced by Max Dickmann [Dic93]; there exists an algebraic-topological duality be-

tween the category of reduced special groups and that of abstract spaces of orderings, which

was studied in detail, for example, by Arileide Lira De Lima in [Lim93-1] and in her the-

sis [Lim93-2]. The monograph [DicMir00] provides a detailed discussion of these topics.

Due to the mentioned duality, the language of reduced special groups is a convenient and

frequently used tool to work with spaces of orderings.

The notion of positive primitive (abbreviated pp) formulae appeared in the study of pure

embeddings in the theory of reduced special groups [DicMir00]. This terminology was

borrowed from the theory of modules [Ho93, p. 56], where pure embeddings are rather

natural objects, and some examples arise in the study of fields. In general, a pp formula is a

formula of the form

P (a1, . . . , ak) = ∃t1 . . .∃tn[θ1(t1, . . . , tn, a1, . . . , ak) ∧ . . . ∧ θm(t1, . . . , tn, a1, . . . , ak)]

where θ1, . . . , θm are atomic formulae and a1, . . . , ak are some parameters. In order to shorten

this rather lengthy and inconvenient notation, we shall simply write

P (a) = ∃t
m∧

j=1

θj(t, a),

where a = (a1, . . . , ak) and t = (t1, . . . , tn). In the language of reduced special groups numer-

ous important properties of quadratic forms over spaces of orderings can be expressed as pp

formulae. In particular, “two forms are isometric”, “an element is represented by a form”, or

“a form is isotropic” are all examples of pp formulae [Mar96]. The following question, which

can be viewed as a type of very general and highly abstract local-global principle, and which

is now known as the pp conjecture, was posed by M. Marshall in [Mar02]:

Is it true that if a pp formula holds in every finite subspace of a space of orderings, then

it also holds in the whole space?

The answer to this question is affirmative for all the examples of pp formulae mentioned

above; for the formula “two forms are isometric” this fact is a trivial observation, for the
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formula “an element is represented by a form” this is a deep result first proven by Becker and

Bröcker in [BecBrö78], and later proven in the context of spaces of orderings by Marshall

in [Mar80-1]. Another example of an important pp formula for which the pp conjecture is

true is provided by the Extended Isotropy Theorem, discussed for the first time by Marshall

in [Mar84]. In a recent paper [Mar06] a still larger class of pp formulae, called product-free

and one-related, is introduced and it is shown that, for every such formula and for any space

of orderings having finite stability index, the answer to the pp conjecture is “yes”. It has also

been proven, that the class of spaces for which the conjecture is true for every pp formula

contains spaces of orderings of finite chain length, spaces of orderings of stability index 1

(which includes spaces of orderings of curves over real closed fields), is closed under direct

sum and group extension (see [Mar02]), and under the operation of taking subspaces (which

is a consequence of results by Vincent Astier and Markus Tressl presented in [AstTre05]).

It has always seemed unlikely that the conjecture has an affirmative solution in general,

though no examples had been known until quite recently. A positive answer would automat-

ically imply a positive answer to a question of representation modulo 2n posed by Michel

Coste in 1999; this problem is discussed in Isabelle Bonnard’s work [Bon00]. Another con-

sequence would be the complete solution of Lam’s Open Problem B, formulated by Lam in

[Lam77], and recently solved in the field case by Dickmann and Miraglia [DicMir03]. If the

pp conjecture was true, that would also provide a positive answer to the separating depth

problem stated in [Mar94] which, in turn, relates to Bröcker question about the relationship

between the stability index and the t-invariant (see [Brö84]). All mentioned relationships

are studied in details in [Mar02].

In view of the above remarks, it has been always desired to find some counterexamples

to the pp conjecture. Due to the mentioned results, such counterexamples cannot be found

among spaces of orderings of stability index 1. As of spaces of higher stability index, both

the space of orderings of the field Q(x), spaces of orderings of function fields of rational conic

sections, and the space of orderings of the field R(x, y) have stability index 2. For the first

one, the conjecture holds true, which was shown by Dickmann, Marshall and Miraglia in
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[DicMarMir05]; in this thesis we concentrate on the remaining two cases – following our

work in [G laMar-1] and [G laMar-2], we classify spaces of orderings of conics with respect

to whether the pp conjecture holds true or not, and also give a negative solution to the

conjecture for the space of orderings of R(x, y). We also discuss some general properties of

pp formulae, such as behavior of the pp conjecture in subspaces of spaces of orderings, or

constructions of families of formulae testing a given pp formula on finite subspaces of some

space of orderings; these topics have not been covered in our previous papers.

In the first chapter we introduce some basic notions in the theory of spaces of orderings.

These are classical results and the reader who is already familiar with the notion of spaces

of orderings and special groups may wish to skip this part of our work. There are essentially

no proofs included in this chapter – only a few lemmas and examples at the beginning are

explained in some detail, with the intention of providing as gentle and painless introduction

to the subject as possible. We show how the concept of ordering relations in fields can be

generalized to the notion of spaces of orderings, and we give some examples of such spaces,

with emphasis on the relationship between the discussed theory and the theory of valuations.

Next, we define quadratic forms in spaces of orderings, and we explain how the well known

Sylvester’s criterion for isometry of quadratic forms over the field R leads to the definition

of isometry of quadratic forms in spaces of orderings – similarly, we define value sets of

quadratic forms in spaces of orderings, and show how this definition relates to what we

understand as a “classical” definition of a value set. We then proceed to investigate some of

the basic properties of isometry and value sets, and recall the notions of subspaces of spaces

of orderings, of the Harrison topology, of fans, generating sets and dual bases, of the stability

index and the strong approximation property, of group extensions, direct sums and connected

components of spaces of orderings, and, finally, of the chain length. We quote major theorems

that shall be frequently used in the course of our work, such as the Structure Theorem or

the Isotropy Theorem, and we conclude this chapter with brief introduction to the theory of

reduced special groups.
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In Chapter 2 we introduce pp formulae and formally state the pp conjecture. We then

investigate some basic properties of pp formulae; in Section 1 we quote some old results,

and in Section 2 we prove a theorem explaining how the pp conjecture behaves in subspaces

(Theorem 2.2.1). This result is used to show how the pp conjecture is preserved under direct

sums and group extensions. In Section 3 we define product free and one-related pp formulae,

and quote the result stating that the pp conjecture holds for this type of formulae in spaces

of orderings of finite stability index (Theorem 2.3.1). Finally, in Section 4 we investigate

products of value sets of quadratic forms, which lead us to some examples of pp formulae

which are not product free or one-related – proofs of few well known lemmas which will be

used later in the work are also given for completeness.

Chapter 3 is the extended version of our paper [G laMar-1]; after introducing the neces-

sary tools in Section 1, in Sections 2, 3 and 4 we classify spaces of orderings of function fields

of rational conic sections with respect to the pp conjecture. We recall that every rational

conic is affine isomorphic to a parabola, an ellipse or a hyperbola, or to two parallel lines.

Function fields of irreducible rational parabolas are isomorphic to Q(x), and in this case the

question of validity of the pp conjecture is settled by the result in [DicMarMir05] mentioned

earlier. Irreducible conics with rational points are either two parallel lines, or hyperbolas, or

ellipses. Irreducible “degenerate” ellipses or hyperbolas of the form ax2 + by2 = 0, a, b 6= 0

are birationally equivalent to two parallel lines without a rational point. Moreover, function

fields of irreducible rational hyperbolas or ellipses with rational points are isomorphic to Q(x).

Thus we are down to considering irreducible hyperbolas or ellipses, and irreducible parallel

lines without rational points. For each of those two types of curves we construct pp formulae

which hold true in every finite subspace of the space of orderings of the function field of the

given curve, but fail in the whole space, and thus we provide counterexamples to the pp con-

jecture. The key ingredient of the proof is the fact that the coordinate ring of an ellipse, or

a hyperbola, or two parallel lines without rational points, is a principle ideal domain, which

allows us to describe all valuations of the function field of such a curve; this result is an

easy observation in the case of two parallel lines, while for an ellipse or a hyperbola a finer
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argument is required – the respective theorem has been known at least since the 1960’s (see

[Sam61]), but an elegant and elementary proof is given here for completeness. We conclude

this chapter with Section 5, where we show how the results obtained before can be used to

disprove the pp conjecture for the field Q(x1, . . . , xn), n ≥ 2.

Chapter 4 is concerned with the third of the above mentioned examples of spaces of

orderings of stability index 2, and in Section 1 we show how the pp conjecture can fail for

the space of orderings of the field R(x, y). Due to rather complicated valuations of that field

here new, “valuation theory free” methods are developed and used. This chapter basically

covers the material contained in our paper [G laMar-2]. In Section 2 we disprove the pp

conjecture for spaces of orderings of fields R(x1, . . . , xn), n ≥ 2, and we state some open

questions. In particular, we ask for validity of the pp conjecture in spaces of orderings of

formally real finitely generated extensions of R of transcendence degree at least two, or in

spaces of orderings of power series fields. We also discuss the case of the field R replaced with

an arbitrary real closed field R.

We conclude our work with Chapter 5, where we present some refinements of the re-

sults previously obtained by Astier and Tressl in [AstTre05]. The main result proven in

[AstTre05] is a theorem, which shows that a pp formula fails on a finite subspace of a space

of orderings if and only if a certain family of formulae is verified. We strengthen this result

by constructing another family of formulae with the same property, whose elements are given

explicitly. In the final section of our work we show how these considerations can be applied

to some problems concerning the pp conjecture, such as determining whether the conjecture

holds true on subspaces of a given space of orderings. We also give another proof of the

theorem stating that the pp conjecture is preserved with respect to subspaces of a space of

orderings.
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List of notation

We will use standard notation for sets N, Z, Q and R. For a subset A of a field K we will

write A∗ for the set A \ {0}, and for a domain D we shall denote by (D) its field of fractions.

A list of some more special symbols used in the text is given below.

K2 set of squares of a field K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ΣK2 set of sums of squares of a field K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
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≤P total order relation associated to an ordering P . . . . . . . . . . . . . . . . . . . . 2

XK set of all orderings of a field K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Av valuation ring associated to a valuation v . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Mv maximal ideal of a valuation ring Av . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Uv group of units of a valuation ring Av . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Kv residue field of a valuation v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Xv set of orderings compatible to a valuation v . . . . . . . . . . . . . . . . . . . . . . . . 3

XT set of orderings containing a preordering T . . . . . . . . . . . . . . . . . . . . . . . . . 6

GT quotient group K∗/T ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

φ(P ) signature of a quadratic form φ at P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

D(φ) value set of a quadratic form φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

(X,G) abstract space of orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

φ(x) signature of a quadratic form φ in a space of orderings . . . . . . . . . . . . . 9

D(φ) value set of a quadratic form φ in a space of orderings . . . . . . . . . . . . . .9

⊕ direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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⊗ tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

k × φ
the form φ⊕ . . .⊕ φ

︸ ︷︷ ︸

k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

((a1, . . . , an)) the Pfister form (1, a1) ⊗ . . .⊗ (1, an) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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CHAPTER 1

Preliminaries

The theory of spaces of orderings was developed by Murray Marshall in a series of papers

[Mar76], [Mar79-1], [Mar79-2], [Mar80-1], [Mar80-2] and [Mar80-3], and this chapter

briefly outlines main definitions and theorems that will be later used in our work. For the

reader’s convenience all references here point to the monograph [Mar96], which provides a

systematic treatment of the theory. The Baer-Krull correspondence is explained in a manner

borrowed from [Mar00], and the reader more interested in the subject should probably refer

either to that book, or to [Pre84]. The last section, where the theory of special groups is

discussed, is based on [DicMir03]. A good reference for the reduced theory of quadratic

forms and interconnections between valuations, orderings and quadratic forms is [Lam81].

1.1. Orderings and preorderings of fields

Let K be a field. Some of the following results hold true in every field K, but we will

assume for simplicity that charK 6= 2. Denote by K2 the set of squares of elements of K

and by ΣK2 the set of (finite) sums of squares of K. A preordering of K is a subset

T ⊂ K closed under addition and multiplication, and containing the set K2, i.e., T +T ⊂ T ,

TT ⊂ T , K2 ⊂ T . For example, the set of all nonnegative reals is a preordering of R, ΣK2

is a preordering of every field K – moreover, ΣK2 is the unique smallest preordering of K –

the set ΣK2[S] of all finite sums of elements of the form σ2g1 . . . gs, for σ ∈ K, g1, . . . , gs ∈ S,

s ∈ N, where S ⊂ K is some subset, is the preordering of K generated by the set S. A

preordering T of K is called a proper preordering if T ( K; we shall mainly deal with

proper preorderings and exclude cases when, e.g. K is algebraically closed and ΣK2 = K.

By Zorn’s Lemma, every proper preordering can be extended to an ordering, that is, a

subset P ⊂ K such that P + P ⊂ P , PP ⊂ P , P ∪ −P = K, and P ∩ −P = {0}, where
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−P = {a ∈ K : −a ∈ P}. Actually, one has a slightly finer result ([Mar96, Theorem 1.1.1]):

1.1.1. Lemma. Let T ⊂ K be a preordering, charK 6= 2, let a ∈ K \ T . Then there is an

ordering P ⊂ K, such that T ⊂ P and a /∈ P .

Proof. One easily verifies that T ′ = {s − at : s, t ∈ T} is also a preordering in K.

Observe that −1 /∈ T ′: for if −1 = s − at ∈ T ′ for some choice of s, t ∈ T , then at = 1 + s.

If 1 + s = 0, then −1 = s ∈ T , so a = (a+1
2

)2 − (a−1
2

)2 = (a+1
2

)2 + (−1)(a−1
2

)2 ∈ T – a

contradiction. If 1 + s 6= 0, then t 6= 0, so a = 1+s
t

= (1
t
)2(t)(1 + s) ∈ T – a contradiction.

By Zorn’s Lemma, there is a preordering P maximal subject to the conditions P ⊃ T ′

and −1 6= P . We shall see that P is also an ordering: for if b ∈ K and b /∈ P then, as before,

P ′ = {p − br : p, r ∈ P} is a preordering, −1 /∈ P ′ and P ⊂ P ′, so, by maximality of P ,

P = P ′. In particular, −b ∈ P , so that P ∪ −P = K. Moreover, if c ∈ P ∩ −P and c 6= 0,

then −1 = (1
c
)2(c)(−c) ∈ P – a contradiction. Therefore P ∩ −P = {0}.

Finally, a 6= 0 (0 is a square) and −a ∈ P , so a /∈ P . �

If P is an ordering of K and a, b ∈ K, we write a ≤P b to indicate that b−a ∈ P . ≤P is a

relation of total order on K which is also compatible with addition and multiplication (that

is, if a, b, c ∈ K and a ≤P b, then a + c ≤P b + c and if, moreover, 0 ≤P c then ac ≤P bc).

Thus P = {a ∈ K : 0 ≤P a} and P symbolizes the set of “nonnegative” elements. A field

equipped with an ordering shall be called a formally real field.

Of course every ordering is also a preordering, but the converse is not true – although

ΣR2 and ΣQ2 are orderings (obviously m
n

=
(

1
n

)2
(mn) =

(
1

n

)2

+ . . .+

(
1

n

)2

︸ ︷︷ ︸

mn

; actually, by

the Lagrange’s Four Squares Theorem, a much stronger result is valid), the set ΣR(X)2 is a

preordering, but not an ordering: a polynomial attaining both positive and negative values

clearly can not be ± a sum of squares of rational functions.

1.2. Orderings and valuations

Let K be a field, charK 6= 2. Let XK denote the set of all orderings ofK. We shall describe

the structure of the set XK in more detail. An ordering P of K is called Archimedean if,

for each a ∈ K, there exists an integer n ≥ 1 such that n − a, n + a ∈ P (or, equivalently,

2



just n + a ∈ P ). Recall that a surjective map v : K → G ∪ {∞}, where G is an ordered

additive Abelian group (that is, an Abelian group endowed with a total ordering compatible

with addition) and ∞ is larger than any element of G, is called a valuation of K if

(1) v(a) = ∞ if and only if a = 0,

(2) ∀a, b ∈ K \ {0}(v(ab) = v(a) + v(b)),

(3) ∀a, b ∈ K \ {0}(v(a+ b) ≥ min{v(a), v(b)}).

A valuation v such that v(a) = 0 if and only if a 6= 0 is called the trivial valuation. We

introduce the usual notation:

Av = {a ∈ K : v(a) ≥ 0}, Mv = {a ∈ K : v(a) > 0}, Uv = Av \Mv.

Av is a valuation ring of K (that is a subring such that, for all a ∈ K, if a /∈ Av then

a−1 ∈ Av), and Mv is its unique maximal ideal. In particular, Kv = Av/Mv is a field called

the residue field of v.

An ordering P of K will be called compatible with a valuation v of K if

∀a, b ∈ K(0 <P a ≤P b ⇒ v(a) ≥ v(b)).

We will denote by Xv the set of all orderings of K compatible with v. The set XK is the

union of the set of all Archimedean orderings of K and the sets Xv, where v is a nontrivial

valuation of K whose residue field Kv is formally real (see [Pre84, Theorem 7.14]).

Archimedean orderings on K arise from embeddings K →֒ R (compare [Pre84, Theorem

1.24]) by taking the counter-images of the nonnegative reals via such embeddings. Let, for

example, K be a number field, i.e. K ∼= Q[x]/(p), where p is an irreducible polynomial. Then

every ordering on K is Archimedean, and the number of embeddings of K into R is equal to

the number of real roots of p. For example, x2−2 has two real roots, so Q(
√

2) = Q[x]/(x2−2)

has two orderings, one making
√

2 positive, and the other one making
√

2 negative.

Orderings compatible to a valuation v ofK are described by the Baer-Krull correspondence

([Pre84, Lemma 7.5, Lemma 7.7]), which we shall now briefly outline. Let v : K → G∪{∞}
3



be a valuation with formally real residue field Kv. Let Q be an ordering of Kv and define

U+
v = {a ∈ Uv : a +Mv ∈ Q}.

Denote by (K∗)2 the set {a2 : a ∈ K∗}. Observe that −1 /∈ U+
v (K∗)2, for if −1 = ab2,

a ∈ U+
v , b ∈ K∗, then, by comparing values, v(b) = 0, and b + Mv ∈ Kv is well defined.

Further, a+Mv ∈ Q and, consequently, −1 +Mv = (a+Mv)(b+Mv)
2 ∈ Q – a contradiction.

By Zorn’s Lemma, there is a subgroup P ∗ of K∗ containing U+
v (K∗)2 and maximal subject

to −1 /∈ P ∗. P = P ∗ ∪ {0} is an ordering of K compatible with v ([Mar96, Theorem 1.3.1]).

Any subgroup P ∗ of K∗ containing U+
v (K∗)2 and maximal subject to −1 /∈ P ∗ has index

2 in K2, and thus the set of such subgroups corresponds in a natural way to characters of

the group K∗ into the group {−1, 1} (that is group homomorphisms χ : K∗ → {−1, 1}; we

shall refer to the characters into {−1, 1} simply as to the characters) which satisfy:

(1) χ(−1) = −1, and (2) U+
v (K∗)2 ⊂ kerχ

. Indeed, if P ∗ is such a subgroup, then the function χ : K∗ → {−1, 1} given by

χ(a) =







1, if a ∈ P ∗,

−1, if a /∈ P ∗

is a character satisfying (1) and (2). Conversely, for a character χ : K∗ → {−1, 1} satisfying

(1) and (2), P ∗ = kerχ is a subgroup of K∗ of index 2 such that −1 /∈ P ∗ and U+
v (K∗)2 ⊂ P ∗.

Fix a character χ0 : K∗ → {−1, 1} satisfying (1) and (2). Since Uv = U+
v ∪ −U−

v ,

χ : K∗ → {−1, 1} is a character satisfying (1) and (2) if and only if χ = χ0ρ, where

ρ : K∗ → {−1, 1} is a character trivial on Uv(K
∗)2. Thus the set of characters of K∗

satisfying (1) and (2) corresponds to the set of characters of K∗ trivial on Uv(K
∗)2.

The set of such characters is a group isomorphic to the character group of K∗/Uv(K
∗)2.

Finally, K∗/Uv(K
∗)2 ∼= G/2G via the mapping aUv(K

∗)2 7→ v(a) + 2G. To sum up, we have:

1.2.1. Lemma. For a fixed valuation v : K → G ∪ {∞} with formally real residue field,

the set Xv is in a one-to-one correspondence to the set XKv
× χ(G/2G), χ(G/2G) denoting

the character group of the group G/2G.
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Therefore, we have a clear description of the set XK as long as the valuations of the field K

are well understood. Take, for example, K = Q(x) and let p ∈ Q[x] be an irreducible monic

polynomial. The polynomial p gives a rise to a valuation v : Q(x) → Z ∪ {∞}, which acts

on polynomials as follows: if f = pkg and p ∤ g, f, g ∈ Q[x], then v(f) = k. The residue field

Q(x)v is isomorphic to Q[x]/(p), and the number of orderings of Q(x)v is equal to the number

of real roots of p. Say ξ is one of these roots – then the evaluation map Q[x] ∋ f 7→ f(ξ) ∈ R

gives a rise to an ordering Q of Q(x)v, and g + Mv ∈ Q if and only if g(ξ) > 0, g ∈ Q[x],

p ∤ g. Next, there are two characters of the group Z/2Z ∼= {−1, 1}, one which maps −1 to

−1, and the other one mapping −1 to 1. The first one is identified with the character σ1 of

Q(x)∗/Uv(Q(x)∗)2 which maps all cosets fUv(Q(x)∗)2 for which v(f) is odd to −1, and the

second one with the character σ2 of Q(x)∗/Uv(Q(x)∗)2 which maps all cosets fUv(Q(x)∗)2

for which v(f) is odd to 1. In turn, σ1 is identified with a character ρ1 of Q(x)∗ trivial on

Uv(Q(x)∗)2, which maps p to −1, and σ2 with a similar character ρ2 of Q(x)∗, mapping p to

1. Finally, ρ1 gives rise to an ordering Q−
ξ of Q(x), which, in terms of polynomials, can be

described as follows: if f = pkg, p ∤ g, f, g ∈ Q[x], then

f ∈ Q−
ξ ⇔ [(g(ξ) > 0 ∧ k is even) ∨ (g(ξ) < 0 ∧ k is odd)],

and ρ2 to an ordering Q+
ξ such that

f ∈ Q+
ξ ⇔ [g(ξ) > 0].

All nontrivial valuations v of Q(x) trivial on Q and such that Q[x] ⊂ Av are induced

by irreducible polynomials in the way described above ([Pre84, Proposition 7.1]). Suppose

that v is a valuation with formally real residue field with Q[x] * Av. Then Q ⊂ Av and,

consequently, x−1 ∈ Av; one shows that, for f

g
∈ Q(x), f, g ∈ Q[x], v(f

g
) = ρ·(− deg f+deg g),

where ρ ∈ Z is the positive integer such that v(x−1) = ρ. This valuation induces two orderings

Q+
∞ and Q−

∞, which, in terms of polynomials, can be described as follows: if f ∈ Q[x], then

f ∈ Q+
∞ ⇔ [f has a positive leading coefficient],
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f ∈ Q−
∞ ⇔ [(deg f is even and f has a positive leading coefficient)∨

(deg f is odd and f has a negative leading coefficient)].

Finally, if P is an ordering of Q(x), consider the set

B = {f ∈ Q(x) : n + f, n− f ∈ P for some integer n ≥ 1}.

B is a valuation ring of Q(x) [Mar96, Theorem 1.3.1]. If B = Q(x), then P is Archimedean

and comes from an embedding Q(x) →֒ R, where x is mapped onto some transcendental

number. Otherwise B is associated with some nontrivial valuation v, and P is one of the

orderings compatible with v and described above.

1.3. Quadratic forms and axioms for spaces of orderings

Let K be a field, charK 6= 2, and let T be a proper preordering of K. Define the set:

XT = {P : P is an ordering of K,P ⊃ T}.

For example, if v : K → G ∪ {∞} is a valuation with formally real residue field, let

S = {1 + a : a ∈Mv},

and consider the preordering ΣK2[S]. The set XΣK2[S] is in this case equal to the set Xv (see

[Lam81, Theorem 2.3]). Clearly XΣK2 is just XK .

Observe that the set T ∗ = T \{0} is a subgroup of K∗: if t ∈ T ∗, then 1
t

= (1
t
)2t ∈ T . Thus

K∗/T ∗ is a well defined group, which will be denoted by GT . GT is naturally identified with a

subgroup of the group {−1, 1}XT of all functions from XT to {−1, 1}, with the multiplication

defined pointwise: a ∈ K∗ gives a rise to the function XT ∋ P 7→ a(P ) ∈ {−1, 1}, where

a(P ) =







1, if a ∈ P

−1, if a ∈ −P.

This correspondence is a homomorphism with kernel equal to T ∗; indeed, if a /∈ T , for

some a ∈ K∗, then, by Lemma 1.1.1, there is an ordering P ∈ XT such that a /∈ P , so
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that a(P ) = −1. When T = ΣK2, we shall write GK instead of GT , and when T is a

preordering underlying all orderings compatible with a valuation v, that is T = ΣK2[S],

S = {1 + a : a ∈ Mv}, we shall denote GT by Gv.

A quadratic form with entries in GT is an n-tuple φ = (a1, . . . , an), a1, . . . , an ∈ GT ,

and the number n is called the dimension of φ. Let ai = aiT
∗, ai ∈ K∗, i ∈ {1, . . . , n}. The

integer φ(P ) =
∑n

i=1 ai(P ) ∈ Z is said to be the signature of φ at P , where P ∈ XK . We

say that an element b ∈ GT , b = bT ∗, is represented by φ if, for some t1, . . . , tn ∈ T :

b = t1a1 + . . .+ tnan,

and we denote by D(φ) or by D(a1, . . . , an) the value set of all elements represented by φ.

With a slight abuse of the notation we shall use the same symbol to denote an element of K∗,

a coset in GT , and a function in {−1, 1}XT ; in particular, in the future we will not underline

entries of a quadratic form to stress that we deal with cosets.

We shall say that the form φ = (a1, . . . , an) is isotropic, if there exist t1, . . . , tn not all

equal zero such that

0 = t1a1 + . . .+ tnan

(we point out the apparent ambiguity in notation mentioned before: entries a1, . . . , an of φ

are considered as cosets, whilst terms in the equation 0 = t1a1 + . . .+tnan are just elements of

the field). Observe that, for a binary form (a1, a2), this just means that a1 = −a2, for a1, a2

viewed as cosets. Thus a binary form which is isotropic is of the shape (a,−a) for a ∈ GT .

Obviously, for a ∈ GT , D(a) = {a}. For n ≥ 3

b ∈ D(a1, . . . , an) ⇔ b ∈ D(a1, c) for some c ∈ D(a2, . . . , an);

this is clear when b = t1a1 + . . . + tnan for some t1, . . . , tn ∈ T , and t2a2 + . . . + tnan 6= 0.

If t2a2 + . . . + tnan = 0, we have b = t1a1 = t1a1 + 0c for any c and, since we do not allow

c = 0, we may take c arbitrary in D(a2, . . . , an). Thus the study of value sets reduces to the

2-dimensional case, where we shall use the following characterization, which does not refer to

the addition in K ([Mar96, Lemma 2.1.2]):
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1.3.1. Lemma. D(a1, a2) = {b ∈ GT : ∀P ∈ XT (b(P ) = a1(P ) ∨ b(P ) = a2(P ))}.

Proof. Let b ∈ K∗, b = t1a1 + t2a2, t1, t2 ∈ T , and let P ∈ XT . If a1(P ) = −a2(P ),

then, clearly, b(P ) = a1(P ) or b(P ) = a2(P ). Otherwise, assume that a1(P ) = a2(P ) = 1.

Then the equation b = t1a1 + t2a2 forces b(P ) = 1. Similarly, when a1(P ) = a2(P ) = −1,

then b(P ) = −1.

Conversely, assume that, for each P ∈ XT , b(P ) = a1(P ) or b(P ) = a2(P ). We want to

show that b ∈ Ta1 + Ta2 or, in other words, that b
a1

∈ T + T a2
a1

. Suppose, a contrario, that

b
a1

/∈ T + T a2
a1

, and consider the preordering T ′ = T + T a2
a1

. By Lemma 1.1.1, there is an

ordering P such that T ′ ⊂ P and b
a1

/∈ P . Since T ⊂ T ′ and a2
a1

∈ T ′, this implies P ∈ XT ,

a2
a1

(P ) = 1 and b
a1

(P ) = −1 which, in turn, forces a1(P ) = a2(P ) and b(P ) = −a1(P ). �

The above considerations lead us to the definition of an abstract space of orderings. A

space of orderings is a pair (X,G), where X is a non-empty set, G is a subgroup of {−1, 1}X

containing the constant function −1, and such that the following axioms are satisfied:

(A1): ∀x, y ∈ X[(x 6= y) ⇒ ∃a ∈ G(a(x) 6= a(y))].

We can view elements of X as characters on G: a natural embedding of X into the character

group χ(G) is obtained by identifying x ∈ X with the character a 7→ a(x). If a, b ∈ G, we

define the value set D(a, b) as follows:

D(a, b) = {c ∈ G : ∀x ∈ X(c(x) = a(x) ∨ c(x) = b(x))}.

With those remarks we can state the remaining two axioms:

(A2): If x ∈ χ(G) satisfies x(−1) = −1, and if

∀a, b ∈ ker x (D(a, b) ⊂ ker x),

then x is in the image of the natural embedding X →֒ χ(G).

(A3): For a1, a2, a3 ∈ G, if b ∈ D(a1, c) for some c ∈ D(a2, a3), then b ∈ D(d, a3) for

some d ∈ D(a1, a2).
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Not surprisingly, if T is a proper preordering in a formally real field K, then the pair

(XT , GT ) is a space of orderings ([Mar96, Theorem 2.1.4]). In particular, taking T = ΣK2,

(XK , K
∗/(ΣK2)∗) is a space of orderings as long as K is formally real.

1.4. Quadratic forms in spaces of orderings

Definitions of forms, dimensions, signatures, and value sets in this general setting are

defined exactly as before: for a fixed space of orderings (X,G), a quadratic form with

entries in G is an n-tuple φ = (a1, . . . , an), a1, . . . , an ∈ G, the number n is called the

dimension of φ, the integer φ(x) =
∑n

i=1 ai(x) the signature of φ at x, and, finally, the

value set of a form is defined by induction: for a one-dimensional form (a), the value set D(a)

is just {a}, for a binary form the definition has been already stated, and for an n-dimensional

form (a1, . . . , an), n ≥ 3, it is as follows:

D(a1, . . . , an) =
⋃

b∈D(a2,...,an)

D(a1, b).

For two quadratic forms φ = (a1, . . . , an) and ψ = (b1, . . . , bm), and for an element c ∈ G,

we define the direct sum, scalar product and tensor product as, respectively:

φ⊕ ψ = (a1, . . . , an, b1, . . . , bm), cφ = (ca1, . . . , can), φ⊗ ψ = a1ψ ⊕ . . .⊕ anψ.

We shall also denote by k×ψ the form ψ ⊕ . . .⊕ ψ
︸ ︷︷ ︸

k

. Forms of the shape (1, a1)⊗ . . .⊗ (1, an)

will be called Pfister forms, and denoted by ((a1, . . . , an)). Some properties of value sets

are summarized in the following lemma ([Mar96, Theorem 2.2.1 and Corollary 2.2.2]):

1.4.1. Lemma. (1) D(φ) does not depend on the order of the entries of φ,

(2) D(cφ) = cD(φ), c ∈ G,

(3) c ∈ D(φ⊕ ψ) if and only if c ∈ D(a, b), for some a ∈ D(φ) and b ∈ D(ψ),

(4) D(ψ ⊕ ψ) = D(ψ).

The relation of isometry of two forms, denoted φ ∼= ψ, is defined by analogy to the

isometry of quadratic forms over formally real fields with two square classes: two forms of
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the same dimension φ and ψ are isometric if and only if, for every x ∈ X, φ(x) = ψ(x).

Some properties of the isometry are listed below ([Mar96, Theorems 2.2.3 and 2.2.5]):

1.4.2. Lemma. (1) b ∈ D(φ) if and only if φ ∼= (b, c2, . . . , cn) for some c2, . . . , cn ∈ G,

where n = dimφ,

(2) if φ ∼= ψ, then D(φ) = D(ψ),

(3) if bi = aπ(i), i ∈ {1, . . . , n}, for some permutation π of the set {1, . . . , n}, then

(a1, . . . , an) ∼= (b1, . . . , bn),

(4) if φ ∼= ψ, then cφ ∼= cψ, c ∈ G,

(5) the relation ∼= is transitive,

(6) if, for any forms φ1, φ2, ψ1, ψ2, φ1
∼= φ2 and ψ1

∼= ψ2, then both φ1 ⊕ ψ1
∼= φ2 ⊕ ψ2

and φ1 ⊗ ψ1
∼= φ2 ⊗ ψ2,

(7) (Witt cancellation theorem) if, for any forms φ1, φ2, ψ1, ψ2, φ1 ⊕ ψ1
∼= φ2 ⊕ ψ2 and

ψ1
∼= ψ2, then also φ1

∼= φ2,

(8) (alternate description of isometry) if φ = (a1, . . . , an) and ψ = (b1, . . . , bn), then

φ ∼= ψ ⇔ ∃a, b, c3, . . . , cn ∈ G[(a2, . . . , an) ∼= (a, c3, . . . , cn)∧

∧ (a1, a) ∼= (b1, b) ∧ (b2, . . . , bn) ∼= (b, c3, . . . , cn)].

Finally, we introduce the notion of the isotropy. A form φ will be called isotropic, if

there exists a form ψ such that φ ∼= (−1, 1) ⊕ ψ. Otherwise, φ will be called anisotropic.

1.5. Subspaces of spaces of orderings

As before, let (X,G) be a space of orderings. In X we introduce a natural topology, called

the Harrison topology, as the weakest topology such that the functions a : X → {−1, 1},

a ∈ G, are continuous, given that {−1, 1} has the discrete topology. In other words, the sets

U(a) = {x ∈ X : a(x) = 1}, a ∈ G,

are clopen and form a subbasis for the topology on X, and the sets
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U(a1, . . . , an) =

n⋂

i=1

U(ai)

form a basis for the topology on X. X endowed with the Harrison topology is a Boolean

space (that is: compact, Hausdorff, and totally disconnected) ([Mar96, Theorem 2.1.5]).

A subset Y ⊂ X will be called a subspace of (X,G), if Y is expressible in the form
⋂

a∈S U(a) for some, not necessarily finite, subset S ⊂ G. For any subspace Y we will denote

by G|Y the group of all restrictions a|Y , a ∈ G. Not surprisingly, the pair (Y,G|Y ) is a space

of orderings itself ([Mar96, Theorem 2.4.3]).

Let K be a formally real field and consider the space of orderings (XK , GK). Subspaces of

(XK , GK) are of the form XT , where T ( K is a proper preordering in K. Indeed, if Y ⊂ XK

is a subspace, Y =
⋂

a∈S U(a), then Y = XT , where T = ΣK2[S]. Conversely, if T is a proper

preordering, then XT =
⋂

a∈T ∗ U(a). Clearly GK |XT
∼= GT .

Consider a form φ = (b1, . . . , bk) in an arbitrary space of orderings (X,G). When we refer

to the form φ in a subspace Y , we mean the form

φ|Y = (b1|Y , . . . , bk|Y ).

However, to avoid the use of lengthy and illegible notation, we shall simply write φ for both

the form in (X,G) and the form in (Y,G|Y ), as long as it is clear with which space we work.

Similarly, when we refer to isometry of two same-dimensional forms φ and ψ in Y , we mean

isometry in this particular space, that is:

∀x ∈ Y (φ(x) = ψ(x)),

and when we refer to the value set D(φ) of the form φ in Y , we mean the set D(φ|Y ) in the

space (Y,G|Y ). This set will sometimes be denoted by DY (φ|Y ) – however, for the sake of

simplicity, we will avoid using separate notation for most of the time.
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1.6. Fans

Let G be a multiplicative group of exponent 2 with an element e 6= 1 (to play the role of

the constant function −1). The pair (X,G), where

X = {x ∈ χ(G) : x(e) = −1}.

will be called a fan. Elements of G can be viewed as functions on X by defining a(x) = x(a)

for a ∈ G, x ∈ X. Any fan is a space of orderings ([Mar96, Theorem 3.1.1]).

Let K be a formally real field, and let v be a valuation on K whose residue field Kv is

uniquely ordered, or has precisely two orderings. Then the subspace (Xv, Gv) of the space

(XK , GK) is an example of a fan; in general, if the space of orderings of the residue field is a

fan, then (Xv, Gv) is also a fan ([Mar96, Theorem 3.6.1]).

Fans can be characterized in many ways. Later in our work we will need the following

lemma ([Mar96, Theorem 3.1.2]):

1.6.1. Lemma. Let (X,G) be a space of orderings. Then the following are equivalent:

(1) (X,G) is a fan,

(2) if a 6= −1, then D(1, a) = {1, a},
(3) if aiaj 6= −1, for i 6= j, a1, . . . , an ∈ G, then D(a1, . . . , an) = {a1, . . . , an}.

We will be mostly dealing with finite fans, and thus we need to know how to recognize

when a finite space of orderings is a fan. Let (X,G) be a finite space of orderings. Since G is

of exponent 2, we can view G as a vector space over the field F2, and χ(G) as a dual space

to G. Thus G is a direct sum of cyclic groups of order 2, and so is χ(G); since G is finite,

G ∼= χ(G). If we view elements of X as characters, we have
⋂

x∈X ker x = {1}, and thus we

can find some smallest subset {x1, . . . , xn} of X such that
⋂n
i=1 ker xi = {1}. Any such set

will be called a minimal generating set of (X,G). Main properties of fans and minimal

generating sets are summarized in the following lemma ([Mar96, Theorem 3.1.3]):

1.6.2. Lemma. Let (X,G) be a space of orderings with a minimal generating set {x1, . . . , xn}.

(1) |G| = 2n,
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(2) {x1, . . . , xn} is an F2 basis for the character group χ(G); in particular:

∀x ∈ X∃e1, . . . , en ∈ {0, 1}(x =

n∏

i=1

xei

i ),

(3) if x ∈ X and x =
∏n

i=1 x
ei

i , for some e1, . . . , en ∈ {0, 1}, then:

n∑

i=1

ei ≡ 1 mod 2;

in particular, n ≤ |X| ≤ 2n−1,

(4) (X,G) is a fan if and only if X consists of all products
∏n

i=1 x
ei

i such that
∑n

i=1 ei ≡ 1

mod 2; in particular, |X| = 2n−1.

It follows that if (X,G) has a finite generating set, then (X,G) is finite. If {x1, . . . , xn}

is a minimal generating set, then the set of elements {a1, . . . , an} of G such that

ai(xj) = xj(ai) =







1, if i 6= j,

−1, if i = j

will be called the dual basis. By evaluating at each xj we check that a1a2 . . . an = −1.

We shall investigate a few simple cases of minimal generating sets. For a minimal gener-

ating set consisting of one or two elements, the generated space has only one or two elements,

respectively. In both cases such a space is a fan – we shall call it a trivial fan. A one element

space shall be also called a singleton space.

A space X generated by three elements x1, x2, x3 can consist of three or four elements. If

|X| = 4, then X is a fan. By Lemma 1.6.2, it contains the character x1x2x3, and consists of

4 distinct elements, y1, . . . , y4, such that

∀a ∈ G(

4∏

i=1

a(yi) = 1).

The 4 element fans are especially important.
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1.7. The stability index

As before, let (X,G) be a space of orderings. The stability index of (X,G), denoted

stab(X,G), is the maximal integer n such that there exists a fan (Y,H) with Y ⊂ X and

|Y | = 2n, or ∞ if no such finite n exists. We shall frequently use the following equivalent

definition of the stability index ([Mar96, Theorem 3.4.2]):

1.7.1. Lemma. For a space of orderings (X,G) and k ≥ 1, the following two conditions

are equivalent:

(1) stab(X,G) ≤ k,

(2) every basic set V ⊂ X (in the Harrison topology) is expressible as V = U(a1, . . . , ak)

for some a1, . . . , ak ∈ G.

Spaces of stability index zero are just the singleton spaces. Spaces of stability index equal

at most one are said to satisfy the strong approximation property. The name is explained

by the following lemma ([Mar96, Theorem 3.3.1]):

1.7.2. Lemma. For a space of orderings (X,G) the following three conditions are equiva-

lent:

(1) stab(X,G) ≤ 1,

(2) G = C(X, {−1, 1}), where C(X, {−1, 1}) denotes the set of all continuous functions

f : X → {−1, 1},
(3) for each pair of disjoint closed sets Y1, Y2 in X, there is an element a ∈ G such that

a > 0 on Y1, whilst a < 0 on Y2,

(4) every closed subset of X is a subspace of X.

Computing the stability index of a space of orderings is usually a complicated matter. For

what we need in the further course of our work, we shall quote the following result ([ABR,

Proposition VI.3.2 and Proposition VI.3.5]):

1.7.3. Lemma. (1) If F is a formally real algebraic function field over a real closed

field K, and d = trdeg(F : K) is its transcendence degree, then stab(XF , GF ) = d.
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(2) If F is a formally real algebraic function field over Q, and d = trdeg(F : Q), then

stab(XF , GF ) = d+ 1.

In particular, stab(XR(x), GR(x)) = 1, stab(XQ(x), GQ(x)) = 2, stab(XF , GF ) = 2, for F a

formally real function field of a conic section over Q, and stab(XR(x,y), GR(x,y)) = 2.

1.8. Group extensions and direct sums

Let (X,G) be a space of orderings. We say that a pair (X,G) is a group extension of

(X,G), if G is an extension of the group G (that is, G is a subgroup of G), and X is the

subset of the set χ(G) consisting of all characters x on G such that x|G ∈ X. Any group

extension of a space of orderings is a space of orderings ([Mar96, Theorem 4.1.1]).

We shall be interested in describing value sets of quadratic forms in group extensions.

Since G has exponent 2 and can be viewed as a vector space over F2, G can be decomposed

as a direct product G = G × H for some group H (note that this decomposition is never

unique except for the trivial case when G = G), and, consequently, X = X × χ(H), where

χ(H) denotes the group of characters of H . We will view H as a vector space over F2. If φ is

a form with entries in G, then φ can be represented as a direct sum φ = h1φ1⊕ . . .⊕hsφs, for

some distinct h1, . . . , hs ∈ H , and for forms φ1, . . . , φs with entries in G. The forms φ1, . . . , φs

will be called the residue forms of φ. By [Mar96, Theorem 4.1.1], the value set of φ is:

D(φ) =







⋃s

i=1 hiD(φi), if φ1, . . . , φs are anisotropic,

G, if some of φ1, . . . , φs are isotropic.

As a special case we shall consider a form (1, a), where a ∈ G. According to the above,

the value set D(1, a) is the following one:

D(1, a) =







{1, a}, if a /∈ G,

G, if a = −1,

DX(1, a), if a ∈ G and a 6= −1,

where DX(1, a) denotes the value set considered in the space (X,G).
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Suppose that (X,G) is a space of orderings, and consider the group:

G̃ = {a ∈ G : ∀y ∈ χ(G)[yX = X ⇒ y(a) = 1]}

(here we identify X with its image under the natural embedding X →֒ χ(G)), and let X̃

denote the image of X under the restriction mapping χ(G) ⊃ X ∋ x 7→ x|G̃ ∈ χ(G̃). Then

the pair (X̃, G̃) is a space of orderings and (X,G) is a group extension of (X̃, G̃) ([Mar96,

Theorem 4.1.3]). Moreover, (X̃, G̃) is minimal in the sense that if (X,G) is a group extension

of some space (X,G), then G̃ ⊂ G. (X̃, G̃) will be called the residue space of (X,G).

We shall now introduce the notion of direct sums of spaces of orderings. A pair (X,G)

will be called the direct sum of the spaces of orderings (X1, G1), . . . , (Xn, Gn), denoted

(X,G) = (X1, G1) ⊕ . . . ⊕ (Xn, Gn), when X is the disjoint union of X1, . . . , Xn, and G

consists of all functions a : X → {−1, 1} such that a|Xi
∈ Gi, i ∈ {1, . . . , n}. Any direct sum

of spaces of orderings is a space of orderings ([Mar96, Theorem 4.1.1]). We will also need

the following lemma ([Mar96, Theorem 4.1.2]):

1.8.1. Lemma. Let (X,G) be a space of orderings, and let X1, . . . , Xn be a partition of X

into closed sets.

(1) If each Xi is a subspace of (X,G) and (X,G) = (X1, G1)⊕ . . .⊕ (Xn, Gn), then each

nontrivial fan in X lies in some Xi.

(2) If each 4-element fan in X lies in some Xi, then each Xi is a subspace of (X,G),

and (X,G) = (X1, G1) ⊕ . . .⊕ (Xn, Gn).

For a space of orderings (X,G) we define the connectivity relation ∼ on X: for x1, x2 ∈

X, x1 ∼ x2 if and only if either x1 = x2, or there exist x3, x4 ∈ X such that {x1, x2, x3, x4} is

a 4-element fan in X. ∼ is an equivalence relation on X ([Mar96, Theorem 4.6.1]), and the

equivalence classes of ∼ will be called the connected components of X.

1.9. Chain length and the Structure and Isotropy Theorems

We shall conclude this brief summary of the theory of spaces of orderings with the notion

of the chain length. The chain length of a space of orderings, denoted cl(X,G), is the
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maximal number d such that there exist a1, . . . , ad ∈ G with U(a0) ( . . . ( U(ad), or ∞ if

there is no integer with that property. Note that U(a) ⊂ U(b) is equivalent to b ∈ D(1, a),

a, b ∈ G. The fundamental result concerning spaces of orderings of finite chain length is the

following one ([Mar96, Theorem 4.2.2]):

1.9.1. Theorem (Structure Theorem). Every space of orderings of finite chain length is

built up, recursively, in an essentially unique way, from singleton spaces, using the direct sum

and group extension constructions.

Clearly every finite space of orderings has finite chain length. Next, we note:

1.9.2. Theorem (Isotropy Theorem). Let (X,G) be a space of orderings and let φ be an

anisotropic form with entries in G. There exists a finite subspace Y of X such that φ is

anisotropic in (Y,G|Y ).

This result, originally proven in [Mar80-2], has a strong, generalized version ([Mar84]):

1.9.3. Theorem (Extended Isotropy Theorem). Let (X,G) be a space of orderings and

let φ1, . . . , φn be quadratic forms with entries in G. If
⋂n

i=1D(φ) = ∅, then there exists a

finite subspace Y of X such that
⋂n
i=1D(φ) = ∅ in (Y,G|Y ).

1.10. The language LSG and special groups

In the last section of this chapter we shall recall the notion of the first order language LSG

and a theory in this language, which will serve as an abstract framework for studying the

theory of spaces of orderings. The language LSG consists of a quaternary relation symbol

∼= called isometry, a functional symbol · called multiplication, and two constants −1 and 1.

We use the usual set of logical symbols: ¬,→, a set of individual variables V , the quantifier

∀ and the identity symbol =. We define terms T by induction as the smallest set containing

individual variables and constants, which is closed under the functional symbol. For terms

t1, . . . , t4 ∈ T we define atomic formulae to be of the form either t1 = t2 or (t1, t2) ∼= (t3, t4).

In this language we build the theory of reduced special groups as the set of sentences:

(1) · is a group multiplication,
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(2) ∀a(a · a = 1),

(3) ∼= is an equivalence relation,

(4) ∀a, b[(a, b) ∼= (b, a)],

(5) ∀a[(a,−a) ∼= (−1, 1)],

(6) ∀a, b, c, d[(a, b) ∼= (c, d) → a · b = c · d],

(7) ∀a, b, c, d[(a, b) ∼= (c, d) → (a,−c) ∼= (−b, d)],

(8) ∀a, b, c, d{[(a, b) ∼= (c, d)] → ∀x[(x · a, x · b) ∼= (x · c, x · d)]},

(9) ∀a[(a, a) ∼= (1, 1) ↔ a = 1],

(10) ∼=3 is transitive, where

(a1, a2, a3) ∼=3 (b1, b2, b3) ⇔ ∃a, b, c3[(a1, a) ∼= (b1, b) ∧ (a2, a3) ∼= (a, c3) ∧ (b2, b3) ∼= (b, c3)].

Since we are more used to the value set notation than to the isometry relation, we shall

introduce the following abbreviation:

a ∈ D(b, c) ⇔ (b, c) ∼= (a, abc).

In view of the above axioms, we see that

[(a, b) ∼= (c, d)] ⇔ [ab = cd ∧ ac ∈ D(1, cd)]

and thus we may interchange the quaternary relation (a, b) ∼= (c, d) with the ternary one

a ∈ D(b, c). Furthermore, since a ∈ D(b, c) if and only if ab ∈ D(1, bc), and since a = b if

and only if ab ∈ D(1, 1), we shall generally accept a ∈ D(1, b) as atomic formulae.

Clearly any model of the theory of reduced special groups shall be called a reduced

special group. Since the language of special groups differs from the language of groups, we

shall denote special groups by (G,∼=,−1). An SG-morphism is a group homomorphism f

between two reduced special groups (G,∼=,−1) and (H,∼=,−1) such that f(−1) = −1 and

∀a, b, c, d ∈ G{[(a, b) ∼= (c, d)] ⇒ [(f(a), f(b)) ∼= (f(c), f(d))]},
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or, equivalently,

∀a, b ∈ G[(a ∈ D(1, b)) ⇒ (f(a) ∈ D(1, f(b)))].

For a reduced special group (G,∼=,−1) denote by XG the set of all SG-morphisms of G

into the two-element reduced special group Z2 = {−1, 1}. One shows that (XG, G) is a

space of orderings ([DicMir00, Propositon 3.10]). Moreover, for a space of orderings (X,G),

(G,∼=,−1) is a reduced special group (with the usual meaning of ∼= and −1) ([DicMir00,

Proposition 3.11]), and the two correspondences:

(G,∼=,−1) 7→ (XG, G) and (X,G) 7→ (G,∼=,−1)

are reciprocal to each other ([DicMir00, Proposition 3.14]).

19



CHAPTER 2

General properties of pp formulae

In this chapter we formally introduce the notion of pp formulae and state the pp conjec-

ture. Most of the material presented in Section 1 is drawn from [Mar02]. In Section 2 we

prove that the pp conjecture is preserved in subspaces, and use this result to describe the

behavior of the pp conjecture in direct sums and group extensions. Lemma 2.2.2 appeared in

print for the first time in [AstTre05], and Theorem 2.2.1 is proven in [AstTre05] using other

methods – the proof given in our work has not been published before; both our proof and the

proof by Astier and Tressl use Lemma 2.2.2. Product free and one-related pp formulae, which

we discuss in Section 3, were introduced in [Mar06], where Theorem 2.3.1 was also proven

– however, the proof of this theorem is a modification of the proof of the Extended Isotropy

Theorem and, in turn, the Isotropy Theorem, which trace back to the works [Mar80-2] and

[Mar84]. Theorem 2.2.9 was proven in [DicMarMir05]. Finally, in Section 4 we investigate

products of value sets of quadratic forms, following Section 3 of [Mar02]. Proofs given in this

section are not new, yet we decided to include them in our work for the sake of completeness.

2.1. Basic definitions

In this section we shall formally state the definition of a positive primitive formula, and

prove some elementary properties of pp formulae. Let L be a first-order language (we can

think of L as the language of special groups LSG). A first-order formula in the language L

with parameters a = (a1, . . . , ak) is said to be positive primitive (pp for short), if it is of the

form ∃tΨ(t, a), where t = (t1, . . . , tn), and Ψ(t, a) is a finite conjunction of atomic formulae.

We are interested in pp formulae arising in the theory of spaces of orderings. Let (X,G)

be a space of orderings. A pp formula P (a) with n quantifiers and k parameters in G is

expressible as

∃t
m∧

j=1

pj(t, a) ∈ D(1, qj(t, a)),
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where t = (t1, . . . , tn), a = (a1, . . . , ak), for al ∈ G, l ∈ {1, . . . , k}, and pj(t, a), qj(t, a) are

± products of some of the ti’s and al’s, i ∈ {1, . . . , n}, l ∈ {1, . . . , k}. We shall give a few

examples of pp formulae.

The formula “two forms are isometric” is a pp formula. Recall that, for two forms φ and

ψ of the same dimension d, φ ∼= ψ means that

∀x ∈ X(φ(x) = ψ(x)),

which, if φ = (a1, . . . , ad), ψ = (a′1, . . . , a
′
d), can be equivalently stated (see Lemma 1.4.2) as

∃t, t′, t3, . . . , td ∈ G[(a2, . . . , ad) ∼= (t, t3, . . . , td)∧

∧ (a1, t) ∼= (a′1, t
′) ∧ (a′2, . . . , a

′
d)

∼= (t′, t3, . . . , td)].

Now, by induction on d, we can easily see that the isometry φ ∼= ψ is expressible as a finite

conjunction of atomic formulae preceded by existential quantifiers.

The formula “an element is represented by a form” is a pp formula. Recall that, for a

form φ = (a1, . . . , ad), d ≥ 3, we have:

a ∈ D(φ) ⇔ ∃t ∈ G[a ∈ D(a1, t) ∧ t ∈ D(a2, . . . , ad)].

It is clear that the property of representability by a form is expressible as a pp formula.

Suppose that P (a) is a pp formula “two forms are isometric” or a pp formula “an element

is represented by a form”. In both cases the following “local-global principle” is true: if P (a)

holds true in every finite subspace of (X,G), then P (a) holds true in the whole space (X,G)

(while speaking of the formula P (a) in a subspace Y , we mean the formula obtained from

P (a) by replacing each atom p ∈ D(1, q) by p|Y ∈ DY (1, q|Y )). In the case of the formula

“two forms are isometric” this is a trivial observation: for two forms φ and ψ, dim φ = dimψ,

the equation φ(x) = ψ(x) holds for every x ∈ X if and only if it holds for x ranging over all

singleton subspaces of X. For the formula “an element is represented by a form” the above

mentioned “local-global principle” is a consequence of the Isotropy Theorem (Theorem 1.9.2).
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In view of the above observations, it is natural to ask the following question, now known

as the pp conjecture:

For a space of orderings (X,G), is it true that a pp formula P (a) with parameters a in

G, which holds in every finite subspace of (X,G), necessarily holds in (X,G)?

In addition to the above examples, the pp formula “∃t∧µ
i=1 t ∈ D(φi)”, where φ1, . . . , φµ

are some fixed forms, the pp conjecture also holds true; this fact follows from the Extended

Isotropy Theorem (Theorem 1.9.3). It had always seemed unlikely that the conjecture has

a positive solution in general, and the aim of our research summarized in this thesis was to

construct appropriate counterexamples. In the course of this work we shall first investigate

classes of spaces of orderings and types of pp formulae, for which the conjecture holds true,

and then discuss two main examples where it fails.

The following lemma, which allows us to restrict our considerations to subspaces minimal

subject to the condition that the pp conjecture fails, will be of frequent use. This result is

originally due to Astier, and appeared in print in [Mar02, Proposition 2.2].

2.1.1. Lemma. Let (X,G) be a space of orderings, let P (a) be a pp formula defined as

above. If P (a) fails to hold in (X,G), then there is a subspace Y minimal subject to the

condition that P (a) fails in Y .

2.2. Behavior of pp formulae in subspaces, direct sums, and group extensions

We shall now proceed to investigate some of the properties of pp formulae.

2.2.1. Theorem. Let (X,G) be a space of orderings, let Y be a subspace. If, for every pp

formula, the pp conjecture holds in (X,G), then it also holds in (Y,G|Y ) for every pp formula.

The proof given here is based on the following lemma proven by Marshall, which appeared

in print for the first time in [AstTre05]:

2.2.2. Lemma. ([AstTre05, Lemma 4]) Let B(n, 0) = 1 for n ∈ N, and let

B(n, k) = 2k22nkB(n,k−1), if k ≥ 1, n ∈ N.

Then, for every space of orderings (X,G),and for every pp formula P (a) with n quantifiers
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and k parameters, if P (a) fails to hold in (Z,G|Z), where Z is a finite subspace of (X,G)

(or, more generally, is a subspace Z such that (Z,G|Z) has a finite chain length), then there

is a subspace Y of (X,G) such that P (a) fails to hold in (Y,G|Y ) and |Y | ≤ B(n, k).

The proof of Theorem 2.2.1 is given in [AstTre05]; it uses rather general ideas from

model theory, and, implicitly, refers to Lemma 2.2.2 as well. We give another proof, which

makes use of some basic notions from topology. The reader might wish to consult [Eng89]

for the definitions of nets, cluster points, and for some of their basic properties. Firstly, we

will need two technical lemmas (see [Mar96, Theorems 2.4.1, 2.4.4]):

2.2.3. Lemma. Let (X,G) be a space of orderings, let a1, . . . , an, d ∈ G, n ≥ 1. Then

d ∈ D[((a1, . . . , an))] ⇔ ∀x ∈ X[a1(x) = 1 ∧ . . . ∧ an(x) = 1 ⇒ d(x) = 1].

Proof. (⇒). We proceed by induction on n. If n = 1 then there is nothing to prove.

Let n ≥ 2. By the inductive hypothesis and Lemma 1.4.1 (3):

d ∈ D[((a1, . . . , an))] ⇔ d ∈ D[((a1, . . . , an−1)) ⊕ an((a1, . . . , an−1))]

⇔ ∃t1, t2 ∈ G{d ∈ D(t1, t2) ∧ t1 ∈ D[((a1, . . . , an−1))] ∧ t2an ∈ D[((a1, . . . , an−1))]}

⇒ ∃t1, t2 ∈ G∀x ∈ X[(d(x) = t1(x) ∨ d(x) = t2(x))

∧ (a1(x) = . . . = an−1(x) = 1 ⇒ t1(x) = t2an(x) = 1)]

⇒ ∀x ∈ X[a1(x) = . . . = an(x) = 1 ⇒ d(x) = 1].

(⇐). Suppose that, for every x ∈ X, if a1(x) = . . . = an(x) = 1, then d(x) = 1. Comparing

signatures we see that

((a1, . . . , an)) ∼= d((a1, . . . , an))

(note that the signature of each side at x is either 2n or 0). Since 1 ∈ D[((a1, . . . , an))], we

have that d ∈ D[d((a1, . . . , an))] and, consequently, d ∈ D[((a1, . . . , an))]. �

2.2.4. Lemma. Let (X,G) be a space of orderings, let φ = (b1, . . . , bk) be a form in (X,G).

If Y = U(a1, . . . , an), then c|Y ∈ DY (φY ) if and only if c ∈ D[φ⊗ ((a1, . . . , an))]
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Proof. (⇒). If c|Y ∈ D|Y (φ|Y ) then, by Lemma 1.4.2 (1), (c|Y , c2|Y , . . . , ck|Y ) ∼= φ|Y
for some c2, . . . , ck ∈ G, and, comparing signatures, (c, c2, . . . , ck) ⊗ ((a1, . . . , an)) ∼= φ ⊗

((a1, . . . , an)) on X (the signature of each side at x is φ|Y (x) · 2n if x ∈ Y and 0 otherwise).

Since 1 ∈ D[((a1, . . . , an))], this proves c ∈ D[φ⊗ ((a1, . . . , an))].

(⇐). Using φ⊗ ((a1, . . . , an)) = b1((a1, . . . , an)) ⊕ . . .⊕ bk((a1, . . . , an)), by Lemma 1.4.1

(3), c ∈ D(b1d1, . . . , bkdk) for some d1, . . . , dk ∈ D[((a1, . . . , an))]. Since, by Lemma 2.2.3,

di = 1 on Y , this implies c|Y ∈ D|Y (φ|Y ). �

We note that the previous two lemmas are, in fact, needed to prove that a subspace of a

space of orderings is a space of orderings. We proceed to the proof of the main theorem.

Proof. Let P (a) = ∃t∧m
j=1 pj(a, t) ∈ D(1, qj(a, t)) be a pp formula, where t = (t1, . . . , tn),

a = (a1, . . . , ak), for al ∈ G, l ∈ {1, . . . , k}, and, for j ∈ {1, . . . , m}, pj(t, a), qj(t, a) are ±
products of some of the ti’s and al’s, i ∈ {1, . . . , n}, l ∈ {1, . . . , k}. Suppose that P (a) holds

in every finite subspace of (Y,G|Y ). We shall show that it also holds in (Y,G|Y ), which will

complete the proof. There are two cases to consider:

Case 1: Let Y = U(b1, . . . , bl). If Z is a finite subspace of (X,G) then Z ∩ Y is a finite

subspace of (Y,G|Y ) (possibly empty), so P (a) holds true in (Z ∩ Y,G|Z∩Y ). Let

P (a, Y ) = ∃t
m∧

j=1

pj(a, t) ∈ D((1, qj(a, t)) ⊗ ((b1, . . . , bl))).

By Lemma 2.2.4, P (a, Y ) is a pp formula which holds in (Z,G|Z) if and only if P (a) holds

in (Z ∩ Y,G|Z∩Y ). Since, for P (a, Y ), the pp conjecture holds true in (X,G), P (a, Y ) holds

in (X,G), so that P (a) holds in (Y,G|Y ).

Case 2: Let Y =
⋂

b∈S U(b), for an infinite set S ⊂ G. It suffices to show that, for some

finite subset T ⊂ S, P (a) holds in
⋂

b∈T U(b). Suppose, a contrario, that, for every finite

subset T ⊂ S, P (a) fails in
⋂

b∈T U(b). By case 1, it follows that, for every finite subset

T ⊂ S, there exists a finite subspace ZT of
⋂

b∈T U(b) such that P (a) fails in ZT . By Lemma

2.2.2, there is an integer B with the property that, for every finite subset T ⊂ S, there exists

a finite subspace YT of
⋂

b∈T U(b) of cardinality at most B, such that P (a) fails in YT . Let

YT = {xT1 , xT2 , . . . , xTB}. For i ∈ {1, . . . , B}, {xTi : T ∈ 2S, T is finite} is a net with entries
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directed according to the rule

xTi ≥ xT
′

i if and only if T ⊇ T ′.

Since X is compact, {xT1 : T ∈ 2S, T is finite} has a cluster point x1. Let {xT1

1 : T1 ∈ Σ1}

be a net finer than {xT1 : T ∈ 2S, T is finite} which converges to x1, where Σ1 ⊂ {T ∈ 2S :

T is finite}. Next, {xT1

2 : T1 ∈ Σ1} has a cluster point x2, so let {xT12

2 : T12 ∈ Σ12} be a net finer

than {xT1

2 : T1 ∈ Σ1} which converges to x2, where Σ12 ⊂ Σ1. By induction, we will eventually

construct the net {xT12...B

B : T12...B ∈ Σ12...B} finer than {xT12...B−1

B : T12...B−1 ∈ Σ12...B−1}
which converges to a cluster point xB of the net {xT12...B−1

B : T12...B−1 ∈ Σ12...B−1}, where

Σ12...B ⊂ Σ12...B−1. Clearly, for every i ∈ {1, . . . , B}, the net

{xT12...B

i : T12...B ∈ Σ12...B}

is finer than {xTi : T ∈ 2S, T is finite} and converges to xi, i ∈ {1, . . . , B}. Let Z be the

subspace of (X,G) generated by x1, . . . , xB.

We shall show that Z is a subspace of Y ; indeed, it suffices to show that all the generators

x1, . . . , xB are elements of Y . Fix an arbitrary i ∈ {1, . . . , B} and b0 ∈ S – we shall show

that xi ∈ U(b0). Suppose that xi /∈ U(b0). Since X is compact, and hence regular, there is

an open set V such that xi ∈ V and V ∩ U(b0) = ∅. But xi is a cluster point of {xT12...B

i :

T12...B ∈ Σ12...B}, and hence of {xTi : T ∈ 2S, T is finite}, so there exists an element xTi such

that xTi ≥ x
{b0}
i and xTi ∈ V . Then xTi ∈ YT ⊂ ⋂

b∈T U(b) ⊂ U(b0) – a contradiction.

Finally, we shall show that P (a) fails in Z. Suppose, a contrario, that P (a) holds true in

Z. Let t be such that pj(a, t) ∈ D(1, qj(a, t)) in Z, j ∈ {1, . . . , m}. Then Z ⊂ U , where

U =
m⋂

j=1

[U(pj(a, t)) ∪ U(−qj(a, t))],

and x1, . . . , xB ∈ U . Since xi is a limit of the net {xT12...B

i : T12...B ∈ Σ12...B}, there exists a

Ti ∈ Σ12...B such that xT12...B

i ∈ U for all xT12...B

i ≥ xTi

i , where i ∈ {1, . . . , B}. Let T0 ∈ Σ12...B

be such that T0 ⊇ Ti, i ∈ {1, . . . , B}. Then xT0

1 , x
T0

2 , . . . , x
T0

B ∈ U , so P (a) holds in YT0
. �
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We can now describe behavior of pp formulae under direct sums and group extensions:

2.2.5. Lemma. Let (X,G) be a space of orderings. If (X,G) = (X1, G1)⊕ . . .⊕ (Xn, Gn),

then the pp conjecture holds true in (X,G) for every pp formula if and only if it holds true

in each of the spaces (X1, G1), . . . , (Xn, Gn) for every pp formula.

2.2.6. Lemma. Let (X,G) be a space of orderings. If (X,G) is a group extension of

(X,G), then the pp conjecture holds true in (X,G) for every pp formula if and only if it

holds true in (X,G) for every pp formula.

The proof of the sufficient condition in Lemma 2.2.5 follows immediately from the defi-

nition of a direct sum and is given in [Mar02, Proposition 2.3]; the necessary condition is a

consequence of Theorem 2.2.1 – clearly every direct summand of a given space of orderings

is also a subspace of this space. Similarly, the sufficient condition in Lemma 2.2.6 is proven

in [Mar02, Proposition 2.3], and the necessary one follows from Theorem 2.2.1: if (X,G) is

a group extension of (X,G), we can choose a subgroup H of G such that G = G × H , and

define the subspace Y =
⋂

a∈H U(a) – the space (X,G) can be identified with (Y,G|Y ), the

mapping from Y to X being just the restriction.

These two lemmas combined with the Structure Theorem give:

2.2.7. Theorem. Let (X,G) be a space of orderings. If (X,G) has finite chain length,

then the pp conjecture holds true in (X,G) for every pp formula.

We shall also state the following theorem, of a similar nature ([Mar02, Proposition 2.3]):

2.2.8. Theorem. Let (X,G) be a space of orderings. If (X,G) has stability index no

greater than 1, then the pp conjecture holds true in (X,G) for every pp formula.

In view of this and of Lemma 1.7.3, the pp conjecture holds true for the space of orderings

of the field R(x) or, more generally, R(x), where R is a real closed field.

It was natural to search for counterexamples to the pp conjecture among spaces of order-

ings of stability index 2. Recall (Lemma 1.7.3) that the space of orderings of the field Q(x),

and spaces of orderings of function fields of rational conics, and the space of orderings of the

field R(x, y) have stability index 2. The following theorem was proven in [DicMarMir05]:
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2.2.9. Theorem. For every pp formula the pp conjecture holds true for the space of

orderings (XQ(x), GQ(x)).

2.3. Product free and one-related pp formulae

In what follows we shall concentrate on the two remaining examples of spaces of orderings

with stability index 2 mentioned at the end of the previous section, and construct pp formulae

for which the pp conjecture fails. But first, before we get to this, we shall introduce a wide

class of pp formulae, called product free and one-related, for which the pp conjecture holds

true – the examples that will follow are the simplest cases of formulae which are not product

free and one-related. Instead of investigating a pp formula in a fixed space of orderings, we

shall rather consider it as an expression in the language LSG of special groups. Let

P (y) = ∃t
m∧

j=1

pj(t, y) ∈ D(1, qj(t, y)),

where t = (t1, . . . , tn), y = (y1, . . . , yk) are tuples of individual variables in the language LSG,

and pj(t, y), qj(t, y) are ± products of some of the ti’s and yl’s, i ∈ {1, . . . , n}, l ∈ {1, . . . , k}.

We shall define two conditions, (A) and (B), as follows:

(A): The atomic formulae appearing in P (y) which involve free variables t1, . . . , tn are

expressible either as

ti ∈ D(y, z),

or as

1 ∈ D(yti, ztj), for i 6= j,

or as

ti ∈ D(ytj, ztk), for i, j, k distinct,

where y, z are ± products of some parameters y1, . . . , yk. Moreover, for each i ∈
{1, . . . , n}, we allow any finite number of occurrences of atoms of the form ti ∈

D(y, z), but for each i, j ∈ {1, . . . , n}, i 6= j, we allow at most one atom involving

both ti and tj .
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For the formula P (y) satisfying (A) we build the graph of P (y) as follows: there are n

vertices 1, . . . , n, corresponding to the free variables t1, . . . , tn, and two vertices are joined by

an edge if and only if there is an atom (at most one) of P (y) involving both ti and tj . We

now introduce the second requirement:

(B): The graph of P (y) contains no cycles other than the 3-cycles arising from atoms

of the form ti ∈ D(ytj, ztk).

A pp formula satisfying (A) and (B) will be called product free and one-related.

For example, consider the formula “z ∈ D(y1, . . . , yk)”. It is expressible in the form:

∃t1, . . . , tk−2[z ∈ D(y1, t1) ∧ t1 ∈ D(y2, t2) ∧ . . . ∧ tk−2 ∈ D(yk−1, yk)],

so we can readily see that it satisfies (A) and (B), and its graph is:

1• 2• · · · k−2•

Similarly, the formula “(y1, . . . , yk) is isotropic”, equivalent to “−y1 ∈ D(y2, . . . , yk)”, or:

∃t1, . . . , tk−3[−y1 ∈ D(y2, t1) ∧ t1 ∈ D(y3, t2) ∧ . . . ∧ tk−3 ∈ D(yk−1, yk)],

satisfies both (A) and (B), and its graph is the following one:

1• 2• · · · k−3•

As another example, consider the formula “∃t∧m
j=1 t ∈ D(φj)”. If φj = (y1j, . . . , ykjj),

j ∈ {1, . . . , m}, it can be written as:

∃t0, t11, . . . , tk1−2,1, t12, . . . , tk2−2,2, . . . , t1m, . . . , tkm−2,m

[t0 ∈ D(y11, t11) ∧ t0 ∈ D(y12, t12) ∧ . . . ∧ t0 ∈ D(y1m, t1m)

∧ t11 ∈ D(y21, t21) ∧ . . . ∧ tk1−2,1 ∈ D(yk1−1,1, yk1,1)

· · ·

∧ t1m ∈ D(y2m, t2m) ∧ . . . ∧ tkm−2,m ∈ D(ykm−1,m, ykm,m)]
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Again, it satisfies (A) and (B), and its graph is:

km−2,m• · · · 1m• 11• · · · k1−2,1•

...
0•

;;;;;;;;

��
��

��
��

��������

::
::

::
::

12• · · · k2−2,2•

k4−2,4• · · · 14• 13• · · · k3−2,3•

Clearly, every formula with just one quantified variable satisfies (A) and (B), and its

graph is simply a single vertex. In general, numerous properties of quadratic forms can be

expressed in terms of product free and one-related pp formulae, although it is not always

evident why a given formula is logically equivalent to some pp formula satisfying (A) and

(B). For example, the formula “two forms are isometric” can be expressed as a product

free and one-related pp formula, however the argument showing how this can be done is

rather nontrivial and will not be presented here. Because of the fact that formulae logically

equivalent to product free and one-related formulae seem to amount for a large percentage of

pp formulae, the following result is, in fact, a very powerful theorem:

2.3.1. Theorem. ([Mar06, Theorem 2.1]) Let (X,G) be a space of orderings of finite

stability index. Then, for any product free and one-related formula with parameters in G, the

pp conjecture holds true.

2.4. Products of value sets of binary forms

In this section we shall investigate some simple examples of pp formulae, which do not

appear to be product free and one-related, and, in fact, are not, which will become evident

in the next chapter. Let (X,G) be a space of orderings. Consider the statement

d ∈
n∏

i=1

D(1, ai),

where a1, . . . , an, d ∈ G. Clearly, it is expressible as the following pp formula:

∃t1, . . . , tn−1[t1 ∈ D(1, a1) ∧ . . . ∧ tn−1 ∈ D(1, an−1) ∧ dt1 . . . tn−1 ∈ D(1, an)].
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We would like to learn if the pp conjecture holds for this particular type of formula. We

can readily see that, unless n = 1 or n = 2, it is not clear at all if this formula is logically

equivalent to a product free and one-related formula, and thus, in general, Theorem 2.3.1

cannot be used here. This obstacle can be circumvented if stab(X,G) = 1, as in this case

the pp conjecture is valid for every pp formula, however we can also use another method; for

every space (X,G), the set
∏n

i=1D(1, ai) is clearly a subgroup of the value set of the Pfister

form ((a1, . . . , an)), and if stab(X,G) ≤ 1 then these two sets are, in fact, equal:

2.4.1. Lemma. ([Mar06, Proposition 3.2]) Let (X,G) be a space of orderings of stability

index at most 1, let a1, . . . , an ∈ G. Then:

n∏

i=1

D(1, ai) = D[((a1, . . . , an))].

Proof. Fix d ∈ D[((a1, . . . , an))]. By Lemma 2.2.3,
⋂n
i=1 U(ai) ⊂ U(d). Thus we can

define continuous functions t1, . . . , tn : X → {−1, 1} as follows:

t1(x) =







d(x), if x ∈ U(−a1)

1, if x ∈ U(a1)
,

t2(x) =







d(x), if x ∈ U(a1) ∩ U(−a2)

1, if x ∈ U(−a1) ∪ U(a2)
,

...

tn(x) =







d(x), if x ∈ U(a1) ∩ . . . ∩ U(an−1) ∩ U(−an)

1, if x ∈ U(−a1) ∪ . . . ∪ U(−an−1) ∪ U(an),

Since stab(X,G) ≤ 1, the strong approximation property is satisfied, and hence t1, . . . , tn ∈ G.

Clearly t1 ∈ D(1, a1) ∧ t2 ∈ D(1, a2) ∧ . . . ∧ tn ∈ D(1, an), and d = t1 . . . tn. �

Now, if
∏n

i=1D(1, ai) = D[((a1, . . . , an))], then the statement d ∈ ∏n

i=1D(1, ai) is equiva-

lent to the statement d ∈ D[((a1, . . . , an))], and we can use the Isotropy Theorem to decide

whether the pp conjecture is valid or not.

Unfortunately, we cannot use this method when stab(X,G) ≥ 2 – in this case the equality
∏n

i=1D(1, ai) = D[((a1, . . . , an))] is no longer true. For example, suppose that (X,G) is a
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nontrivial fan. Let a ∈ G, a 6= ±1. Then, by Lemma 1.6.1, D(1, a)D(1−a) = {1, a}{1,−a} =

{1, a,−a,−1}. But (1, a) ⊗ (1,−a) ∼= (1,−1) ⊗ (1, a), so D(1, a) ⊗ (1,−a) = G.

Since
∏n

i=1D(1, ai) = D[((a1, . . . , an))] can fail so easily, we shall replace the product
∏n

i=1D(1, ai) with
∏

δ∈{0,1}n D(1, aδ), where aδ = aδ11 . . . aδnn , δ = (δ1, . . . , δn). The equality
∏

δ∈{0,1}n D(1, aδ) = D[((a1, . . . , an))] holds for fans:

2.4.2. Lemma. ([Mar06, Proposition 3.4]) Let (X,G) be a fan, let a1, . . . , an ∈ G. Then
∏

δ∈{0,1}n D(1, aδ) = D[((a1, . . . , an))].

Proof. If, for some δ ∈ {0, 1}n, aδ = −1, then there is nothing to prove. Otherwise, by

Lemma 1.6.1 (2), for every δ ∈ {0, 1}n, D(1, aδ) = {1, aδ}, so
∏

δ∈{0,1}n D(1, aδ) = {aδ : δ ∈

{0, 1}n}. Moreover, by Lemma 1.6.1 (3), D[((a1, . . . , an))] = {aδ : δ ∈ {0, 1}}. �

The conclusion of the above lemma can fail for spaces which are not fans, which are group

extensions of fans, and whose stability index is 2, for n ≥ 2. To be more specific, we have:

2.4.3. Lemma. ([Mar06, Proposition 3.5]) Let (X,G) be a space of orderings which is

not a fan, and let stab(X,G) = 2. Let (X,G) be a proper group extension of (X,G). If

a1, . . . , an ∈ G, and if aδ 6= −1 for every δ ∈ {0, 1}n, and if ((a1, . . . , an)) is isotropic, then

∏

δ∈{0,1}n

D(1, aδ) = G and D[((a1, . . . , an))] = G.

Otherwise,
∏

δ∈{0,1}n D(1, aδ) = D[((a1, . . . , an))].

This follows from the description of value sets in group extensions, the fact that

stab(X,G) ≤ 1, and Lemma 2.4.1. If (X,G) is a finite space, it is, by the Structure Theorem,

a direct sum of its connected components, and the above lemma can be rephrased as follows:

2.4.4. Lemma. ([Mar06, Proposition 3.6]) Let (X,G) be a finite space of orderings, and

let stab(X,G) = 2. Then d ∈ ∏

δ∈{0,1}n D(1, aδ) if and only if, for each connected component

(Y,H) of (X,G) which is not a fan, which is a proper group extension of some space, and

whose residue space is (Y ,H), if images of a1, . . . , an in H are in H, and if images of aδ in

H are not −1 for all δ ∈ {0, 1}n, and if ((a1, . . . , an)) is isotropic in (Y,H), then the image

of d in H belongs to H.
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CHAPTER 3

Spaces of orderings of rational conics

This chapter is an expanded version of our work [G laMar-1]: we classify spaces of or-

derings of function fields of rational conic sections with respect to the pp conjecture. In what

follows the only “nontrivial” cases are the ones of an ellipse without rational points, and

two parallel lines without rational points. Preliminary results stated in Section 1 are taken

from [DicMarMir05]; we make an extensive use of the Tarski Transfer Principle – the reader

might wish to consult, for example, the monograph [BCR]. The part of Section 1 which deals

with prime cones and orderings of rings is also drawn from [BCR]. Sections 2, 3 and 4 is the

main part of [G laMar-1]; Theorem 3.2.6 is an old result proven, for example, in [Sam61],

however here an elementary proof is given. In Section 5 we use the fact that subspaces of the

space (XQ(x1,...,xn), GQ(x1,...,xn)) compatible to certain valuations are group extensions of spaces

of orderings of rational conics to disprove the pp conjecture in (XQ(x1,...,xn), GQ(x1,...,xn)).

3.1. Spaces of orderings of function fields

Let K be a uniquely ordered field. Let p be a prime ideal of the ring K[x1, . . . , xn], and

consider the field F = (K[x1, . . . , xn]/p). We assume that F is formally real. With a slight

abuse of notation we shall use the same symbols to denote elements of K[x1, . . . , xn] and

elements of K[x1, . . . , xn]/p.

Let R be the real closure of K, that is an algebraic extension of K extending the ordering

of K, and maximal with respect to that property. Let V denote the zero set of p in Rn:

V = {(a1, . . . , an) ∈ Rn : ∀f ∈ p[f(a1, . . . , an) = 0]}.

In general, we shall denote by Z(I) the zero set of an ideal I.

We need to give a geometric meaning to the formula f ∈ D(g, h) in a subspace XT of

(XF , GF ), where T is a finitely generated preordering. In order to do that, we will need a
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generalization of the notion of orderings to the ring case (see Chapter 7 of [BCR]). Let A

be a commutative ring with identity. A subset α ( A is called a prime cone if α + α ⊂ α,

α · α ⊂ α, A2 ⊂ α, and, for ab ∈ α, either a ∈ α or −b ∈ α. For a fixed prime cone α the

set α∩−α shall be denoted by suppα and called the support of α. It can be easily checked

that the support of a prime cone is a prime ideal.

We start with the following lemma ([BCR, Proposition 4.3.4]):

3.1.1. Lemma. Let A be a commutative ring. A subset α ⊂ A is a prime cone of A if

and only if there exist a formally real field (L,≤) and a homomorphism φ : A→ L such that

α = {a ∈ A : φ(a) ≥ 0}.

Proof. Given a formally real field (L,≤) and a homomorphism φ : A → L, one easily

checks that {a ∈ A : φ(a) ≥ 0} is a prime cone. Conversely, if α is a prime cone of A, then,

since suppα is a prime ideal, A/suppα is a domain, which can be endowed with a prime cone

P defined as follows:

a + suppα ∈ P ⇔ a ∈ α.

Denote by κ the canonical epimorphism A→ A/suppα. We define an ordering P of the field

of fractions (A/suppα) of the domain A/suppα in the following manner:

a+ suppα

b+ suppα
∈ P ⇔ (a+ suppα)(b+ suppα) ∈ P,

and we denote by q the canonical embedding A/suppα →֒ (A/suppα). Finally, let φ = q ◦ κ.

It is easy to check that P is closed under addition and multiplication, and that P ∪ −P =

(A/suppα). We shall show that α = φ−1(P ), which will also imply that P ∩−P = {0}.

Let a + suppα ∈ Imφ and suppose that a + suppα ∈ P . Then a + suppα = b+suppα
c+suppα

for

some b, c ∈ A, with c /∈ suppα and bc ∈ α. We may assume that c ∈ α. Then, since −c /∈ α,

we have that b ∈ α. Moreover, ac = b+ d for some d ∈ suppα, and thus ac ∈ α. Again, since

−c /∈ α, it follows that a ∈ α. �

We see that the support of a prime cone is always a real prime ideal, that is a prime

ideal I such that if a2
1 + . . .+ a2

p ∈ I, where a1, . . . , ap ∈ A, then a1, . . . , ap ∈ I.
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In the next lemma we shall describe how a prime cone of K[x1, . . . , xn] can be extended

to a prime cone of R[x1, . . . , xn]. We will write x for (x1, . . . , xn).

3.1.2. Lemma. Let K and R be defined as above. Every prime cone α of K[x] extends

uniquely to a prime cone β of R[x] such that α = K[x] ∩ β.

Proof. Let α be a prime cone of K[x]. By the previous lemma, there is a formally real

field (L,≤) and a homomorphism φ : K[x] → L such that α = {f ∈ K[x] : φ(f) ≥ 0}.

We may assume that L is real closed. By [BCR, Proposition 1.3.4], there is a unique order

preserving homomorphism ψ : R → L such that ψ|K = φ|K. This homomorphism extends in

an obvious way to a unique homomorphism ψ̃ : R[x] → L such that ψ̃|K[x] = φ which, by the

previous lemma, corresponds to a prime cone β of R[x]. Obviously K[x] ∩ β = α. �

We now proceed to the main lemma:

3.1.3. Lemma. ([DicMarMir05, Theorem 3.1]) Let K, F and V be defined as before.

For f, g1, . . . , gs non-zero elements of K[x]/p, the condition

∀P∈XF
(g1, . . . , gs ∈ P ⇒ f ∈ P )

holds true if and only if, for every irreducible component W of V of maximal dimension, and

for every regular point a ∈W :

g1(a) > 0, . . . , gs(a) > 0 ⇒ f(a) ≥ 0.

Proof. (⇐). Let P ∈ XF and define a prime cone α in K[x] by

f ∈ α⇔ f + p ∈ P.

Then p = suppα. Let β be the unique prime cone in R[x] such that α = K[x]∩β, and denote

by q the support of β. Consider the zero set W = Z(q) of q in Rn; clearly, W is irreducible

and W ⊂ V . Observe that W is also a component of V of maximal dimension, that is

dimW = dim V . Indeed, R[x] is integral over K[x], and thus R[x]/q is integral over K[x]/p.

Moreover, q is a real prime ideal, so dimW = dimR[x]/q, and, in turn, dimW = dimK[x]/p
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(see [AM69, Corollary 5.9 and Theorem 5.11]). On the other hand, p ⊂ K[x] ∩ I(V ) ⊂
K[x] ∩ q, which implies p = K[x] ∩ I(V ). Henceforth dimV = dimK[x]/p = dimW .

Let q = (f1, . . . , fr) for f1, . . . , fr ∈ R[x]. The statement

“a is a regular point of W such that if g1(a) > 0, . . . , gs(a) > 0 then f(a) ≥ 0”

is expressible as the following formula in the field R:

fi(a) = 0, i ∈ {1, . . . , r} ∧ r
[
∂fi
∂xj

(a)

]

i∈{1,...,r},
j∈{1,...,n}

= n− dimW ∧ gk(a) > 0, k ∈ {1, . . . , s}

⇒ f(a) ≥ 0,

where r(M) denotes the rank of a matrix M . By the Tarski Transfer Principle, this implies

that the following formula holds in the real closure of the field (R[x]/q):

fi(β) = 0, i ∈ {1, . . . , r} ∧ r
[
∂fi
∂xj

(β)

]

i∈{1,...,r},
j∈{1,...,n}

= n− dimW ∧ gk(β) > 0, k ∈ {1, . . . , s}

⇒ f(β) ≥ 0,

where h(β) denotes the image of h + q under the natural embedding of R[x]/q into the real

closure of (R[x]/q). The first part of the formula, that is fi(β) = 0, for i ∈ {1, . . . , r}, and

r
[
∂fi

∂xj
(β)

]

i∈{1,...,r},j∈{1,...,n}
= n − dimW , is trivially satisfied; gk(β) > 0 obviously implies

gk(α) > 0, which, in turn, translates as gk ∈ P , k ∈ {1, . . . , s} – similarly for f(β) ≥ 0.

(⇒) Each irreducible component W of V corresponds to a real prime ideal q of R[x] such

that q ∩ K[x] ⊃ p. We have already seen that dimV = dimK[x]/p. If q ∩ K[x] = p, then

dimW = dimK[x]/p = dimV . Conversely, if q ∩K[x] ) p, then a chain of prime ideals of

K[x]/q∩K[x] of maximal length would give a rise to a longer chain of prime ideals in K[x]/p,

and thus dimW = dimK[x]/q ∩ K[x] < dimK[x]/p = dimV . Therefore W has maximal

dimension if and only if q ∩K[x] = p.

Let W be an irreducible component of V of maximal dimension, let q = I(W ) be the

ideal associated to W in R[x], and let a ∈ W be a regular point of W . Consider the prime

cone βa = {h + q : h(a) ≥ 0} of R[x]/q. By [BCR, Proposition 7.6.2], there is a prime cone
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β of R[x] which induces a prime cone of R[x]/q contained in βa, and such that suppβ = q.

β restricts to a prime cone α of K[x], and since W is of maximal dimension, suppα = p. If

g1(a) > 0, . . . , gs(a) > 0, then g1(α) > 0, . . . , gs(α) > 0, so that f(α) > 0 and, consequently,

f(a) ≥ 0. �

This lemma combined with Lemma 2.2.3 gives:

3.1.4. Theorem. ([DicMarMir05, Corollary 3.2])Let K and F be defined as before,

let f, g, h, g1, . . . , gs be non-zero elements of the ring K[x]/p. Let T be a preordering of F

generated by g1, . . . , gs. Then f |XT
∈ DXT

(g|XT
, h|XT

) if and only if, for every irreducible

component W of V of maximal dimension, and for every regular point a ∈ W , if g1(a) >

0, . . . , gs(a) > 0 then f(a)g(a) ≥ 0 or f(a)h(a) ≥ 0.

3.2. Coordinate rings and function fields of conics

We shall classify function fields of rational conics with respect to the pp conjecture.

Everything we do to begin with works equally well with Q replaced by any field K, charK 6= 2,

however we will not pursue this more general setting any further here because it is somewhat

tangential to our discussion. If a function field of a rational conic is purely transcendental

over Q, then Theorem 2.2.9 shows that the pp conjecture holds for every pp formula, so we

focus our attention here on the remaining cases. We start clasifying function fields of conics

with the following well known fact:

3.2.1. Lemma. Let f ∈ Q[x, y] be a polynomial of degree 2. The curve

(1) C : f(x, y) = 0,

is affine isomorphic either to a curve of parabolic type:

(2) ax2 + y = 0, a ∈ Q∗,

or to a curve of parallel type:

(3) ax2 + c = 0, a ∈ Q∗, c ∈ Q,
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or to a curve of elliptic (hyperbolic) type:

(4) ax2 + by2 + c = 0, a, b ∈ Q∗, c ∈ Q.

3.2.2. Lemma. If the irreducible curve (1) is affine isomorphic to the parabolic curve (2),

then its function field Q(C) is a purely transcendental extension of Q of degree 1.

Proof. If Q(C) ∼= Q(x, y), where x, y are elements transcendental over Q such that

ax2 + y = 0, a 6= 0, then Q(C) ∼= Q(x, y) = Q(x,−ax2) = Q(x). �

Thus, the pp conjecture holds for every pp formula in a space of orderings of a function

field of a curve of type (2). Next, among all non-parabolic conics we shall distinguish between

curves having rational points, and curves without such points.

3.2.3. Lemma. If the irreducible curve (1) has a rational point, then it is affine isomorphic

to a curve of type either (2) or (4).

Proof. Suppose that C is affine isomorphic to a curve ax2 + c = 0 and has a rational

point (q, r). Then

ax2 + c = ax2 − aq2 = a(x− q)(x+ q),

so that C is reducible – a contradiction. �

Therefore, we shall concentrate on curves of type (3) without rational points, and curves

of type (4) with or without rational points. The case of the curve (4) breaks into two subcases:

consider an irreducible curve

(5) ax2 + by2 = 0, a, b ∈ Q∗.

This curve is birationally isomorphic to the curve (3) without rational points. Indeed, the

mapping (x, y) 7→ (x
y
, 1) maps (5) onto C′ : a(x

y
)2 + b = 0. Clearly, if (p, q) is a rational point

on C′, then b = −ap2 and ax2 + by2 = a(x− py)(x+ py), so that (5) is reducible.

Thus we are down to the case of curves (3) without rational points and curves (4) with

c 6= 0, with or without rational points. The next lemma eliminates one more case:
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3.2.4. Lemma. If the irreducible curve (1) is affine isomorphic to

(6) ax2 + by2 + c = 0, a, b, c ∈ Q∗.

and has a rational point, then Q(C) ∼= Q(z) for a z transcendental over Q.

Proof. By assumption, Q(C) ∼= Q(x, y), where ax2+by2+c = 0 and x, y are transcenden-

tal over Q. Moreover, aq2+br2+c = 0 for some rational point (q, r). Thus ax2−aq2 = br2−by2.

Let z = x−q
y−r

. Hence Q(z) ⊂ Q(x, y). Conversely, we have:

az(x + q) = a
x− q

y − r
(x+ q) =

ax2 − aq2

y − r
= −by

2 − br2

y − r
= −b(y + r),

and after rearranging:

(7) azx + by = −azq − br.

On the other hand, the equation z = x−q
y−r

gives:

(8) x− zy = q − zr.

The determinant −az2 − b of the system of equations (7) and (8) is nonzero; if it was zero,

then a(x − q)2 + b(y − r)2 = 0. This implies that the irreducible polynomial ax2 + by2 + c

divides the polynomial a(x− q)2 + b(y− r)2 so, comparing coefficients, they are equal. Then,

comparing coefficients some more, q = r = 0 and c = 0, which contradicts c 6= 0. �

In particular, the pp conjecture holds for every pp formula in a space of orderings of a

function field of a curve of type (6) with a rational point.

The remaining two cases – curves of type (3) or (6) without rational points – are more

complicated. We shall show that in each of these two cases the pp conjecture fails for some pp

formula. In order to do that, we need a better understanding of orderings of function fields of

such curves. Fortunately enough, coordinate rings of considered curves are PID, which allows

us to give a complete description of valuations of their function fields. We shall discuss this

now in some more detail. For a curve C affine isomorphic to (3) we have Q[C] ∼= Q[x, y], where

x and y are transcendental over Q and ax2 + c = 0, so that Q[C] ∼= Q[
√

− c
a
][y] = Q(

√
− c
a
)[y]
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is a PID. The case of a curve of the type (6) requires more work; we start with the following

well known result:

3.2.5. Lemma. Let R be a PID, let ∆ ∈ R be a square-free element, and let 2 ∈ R∗. Then

R[
√

∆] is a Dedekind domain.

Proof. Since the integral closure of a Dedekind domain in a finite extension of its quo-

tient field is a Dedekind domain, it suffices to show that R[
√

∆] is the integral closure of R.

An element α + β
√

∆ ∈ R[
√

∆] is a root of the polynomial T 2 − 2αT + α2 − ∆β2 in R[T ],

and hence is integral over R. Conversely, fix an element g = α + β
√

∆ ∈ (R[
√

∆]) integral

over R, α, β ∈ (R). Since the mapping:

(R[
√

∆]) ∋ ϕ+ ψ
√

∆ = h 7→ h = ϕ− ψ
√

∆ ∈ (R[
√

∆])

is an R-automorphism, g is integral and so is g + g = 2α. Since 2 is invertible in R, also α is

integral, which means that α ∈ R.

Now β
√

∆ = g−α is integral and, consequently, β2∆ is integral. But β2∆ ∈ (R), implying

that β2∆ ∈ R. Let ϕ, ψ ∈ R be two elements with no common factors and such that β = ϕ

ψ
.

Then (ϕ
ψ

)2∆ = η for some η ∈ R, which gives ϕ2∆ = ψ2η. But ∆ is square-free and ϕ, ψ have

no common divisor except for a unit, so, since R is a UFD, ψ2 has to be a unit in R and,

consequently, ψ is also a unit. Therefore β = ϕ

ψ
∈ R proving that g ∈ R[

√
∆]. �

This lemma applies to the coordinate ring of the irreducible curve C of type (6) with no

rational points: since c 6= 0, Q[C] ∼= R[
√

∆], where R = Q[x] and ∆ = − c
b
− a

b
x2. Observe

that ∆ is irreducible in R, and hence square-free (if ∆ was reducible, then C would have

rational points).

3.2.6. Theorem. ([G laMar-1, Lemma 1]) The coordinate ring Q[C] of the irreducible

curve (3) or (6) with no rational points is a PID.

Proof. We have already discussed type (3) curves. Let Q[C] ∼= R[
√

∆], with R = Q[x]

and ∆ = − c
b
− a

b
x2 square free. It suffices to show that every prime ideal P in R[

√
∆] is

principal. Indeed, P ∩ R = (π) for some prime π ∈ R. The extended ideal (π)e in R[
√

∆] is
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just the principal ideal generated in R[
√

∆] by π. There are two possible decompositions of

(π)e into a product of prime ideals ([ZarSam58, Theorem V.13, Theorem V.22]):

(9) (π)e is prime and [R[
√

∆]/(π)e : R/(π)] = 2,

(10) (π)e = PP and [R[
√

∆]/P : R/(π)] = [R[
√

∆]/P : R/(π)] = 1,

where P denotes the image of P under the conjugate automorphism (note that P and P

may be equal). If (9) holds then, since R[
√

∆] is a Dedekind domain, (π)e = P and there

is nothing left to prove. If (10) holds then there are two cases to consider. Firstly, suppose

that
√

∆ ∈ P. Then ∆ = (
√

∆)2 ∈ P ∩ R = (π). Since ∆ and π are both irreducible, this

implies (π) = (∆), so (π)e = (∆)e = (
√

∆)(
√

∆). Now uniqueness of factorization yields

P = P = (
√

∆).

Secondly, assume that
√

∆ /∈ P. Then, since [R[
√

∆]/P : R/(π)] = 1, we have that

α +
√

∆ ∈ P for some α ∈ R \ (π). Thus α2 − ∆ ∈ (π)e ∩ R = (π), that is π|(α2 − ∆). We

claim that in this case uπ = hh for some u ∈ Q∗ and h ∈ R[
√

∆] – this will imply that P is

principal, generated either by h or by h.

Replacing α by the remainder of the division of α by π, we may assume that degα <

deg π. Observe that deg π > 1: if deg π = 1, then, for some q ∈ Q, π(q) = 0, and hence

0 = α2(q) − ∆(q) = α2(q) + c
b

+ a
b
q2, contradicting the fact that C has no rational points.

We proceed by induction on deg π. If deg π = 2, then degα ≤ 1, and, since deg ∆ = 2,

deg(α2 − ∆) ≤ 2. By our assumption, πγ = α2 − ∆ for some γ ∈ R; since ∆ is square-free,

γ 6= 0. But deg γ = 0, and thus γ = u ∈ Q∗. Now simply take h = α+
√

∆.

Assume that deg π > 2 and γπ = α2 − ∆ for some γ ∈ R. If γ is constant then, since ∆

is square free, γ 6= 0, and we take h = α+
√

∆. Otherwise let γ = π1 · . . . · πs, π1, . . . , πs ∈ R,

be the factorization of γ into primes. Fix an arbitrary i ∈ {1, . . . , s}. Since degα < deg π,

and, consequently, deg γ < deg π, it follows that deg πi < deg π. Clearly, πi|(α2 − ∆), and,

replacing α with the remainder of the division of α by πi, if necessary, we may assume that
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degα < deg πi. By hypothesis, uiπi = hihi for some ui ∈ Q∗, hi ∈ R[
√

∆], and hence

uπ

s∏

i=1

hihi = h0h0,

where h0 = α−
√

∆ and u = u1 · . . . · us.

We know that (hi) and (hi) are prime ideals in R[
√

∆] and that (πi)
e = (hi)(hi), i ∈

{1, . . . , s}. R[
√

∆] is a Dedekind domain, so for each i ∈ {1, . . . , s} either (hi) or (hi) appears

in the prime factorization of (h0) – we may assume the former is always the case. Thus

(h1 . . . hs) is a factor of (h0) and, for some h ∈ R[
√

∆], h0 = h1 . . . hsh, so that uπ = hh. �

3.3. The pp conjecture for function fields of elliptic conics over Q

We continue our discussion with curves of type (6) without rational points. To avoid

trivial cases, we shall assume existence of some real points on such curves. Since now we need

to look at these curves more “geometrically”, we note that, after scaling and/or interchanging

x and y (if necessary), the curve (6) clearly satisfies either:

(11) a > 0, b > 0, c < 0, (elliptic type), or

(12) a > 0, b < 0, c < 0, (hyperbolic type).

3.3.1. Lemma. The curve (6) of type (12) without rational points is birationally isomorphic

to the curve (6) satisfying (11) with no rational points.

Proof. The birational isomorphism between the curves satisfying (12) and (11) is given

by (x, y) 7→ ( y
x
, 1
x
) and maps C : ax2 + by2 + c = 0 onto C′ : b( y

x
)2 + c( 1

x
)2 + a = 0. Suppose

that the resulting curve has a rational point (q, r). If r 6= 0 then (1
r
, q
r
) is a rational point

on C – a contradiction. If r = 0, then we can parameterize rational points (q′, r′) on C′, for

which r′ 6= 0, by lines with rational slopes passing through (q, 0); the set of such points is

clearly nonempty, which again yields a contradiction. �

Therefore, we can restrict ourselves to the curves in a shape of an ellipse, that is satisfying

(11). We record the following result which we need later ([G laMar-1, Lemma 2]):
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3.3.2. Lemma. Let C be the irreducible curve (6) without rational points satisfying (11).

(1) The units of the coordinate ring Q[C] are precisely the elements of Q∗.

(2) Linear functions p = rx+ sy + t, for r, t ∈ Q, s ∈ Q∗, are irreducible in Q[C].

Proof. Let Q[C] ∼= Q[x, y] = R[
√

∆], with R = Q[x], ∆ = y2 = − c
b
− a

b
x2 square free.

(1). Let α + β
√

∆ be a unit in R[
√

∆]. Then α2 − β2∆ = α2 + β2 c
b

+ β2 a
b
x2 is a unit

in R, that is a polynomial of degree zero. If β = 0 then we are done. Suppose that β 6= 0.

Comparing the leading coefficients of α2 and β2∆, we see that −a
b

is a square in Q, which,

since a > 0 and b > 0, is impossible.

(2). The product of p and its conjugate p is equal to (rx+t)2−s2∆ = s2

b
[ax2+b( rx+t

s
)2+c],

and is an irreducible polynomial in Q[x]; if it was reducible, then it had a rational root and,

consequently, C would have a rational point. It follows that p is irreducible in Q[C]. �

Observe that, for two real points ξ1, ξ2 on the irreducible curve C without rational points

satisfying (6) and (11), we may pick rational points q1, q2 lying arbitrarily close to ξ1, ξ2, and

the element p ∈ Q[C] describing the line passing through q1 and q2 is irreducible.

We shall describe orderings of the field F of rational functions of the ellipse C without

rational points defined by (6) and (11). Let p ∈ Q[C] be an irreducible element. Then p gives

a rise to a valuation vp : F → Z ∪ {∞}, which acts on regular functions as follows:

(13) vp(f) =







∞ if f = 0,

k if f = pk · g and p ∤ g, g ∈ Q[C].

The residue field Fvp
is isomorphic to Q[C]/(p), and the number of orderings of Fvp

is equal

to the number of real points ξ on C satisfying p(ξ) = 0. Say ξ is one of those points; it gives

a rise to an Archimedean ordering of Fvp
and, by the Baer-Krull correspondence, to a pair of

non-Archimedean orderings Q+
ξ and Q−

ξ on F which, in terms of regular functions on C, can

be described as follows: if f = pk · g, p ∤ g, f, g ∈ Q[C], then:

f ∈ Q+
ξ ⇔ g(ξ) > 0.

f ∈ Q−
ξ ⇔ (g(ξ) > 0 ∧ k even) ∨ (g(ξ) < 0 ∧ k odd),
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Let P be an ordering of F . The valuation ring

B = {f ∈ F : n+ f, n− f ∈ P for some integer n ≥ 1}

is either equal to F , in which case P is Archimedean, or is associated with some nontrivial

valuation v. Then, since ax2 + by2 + c = 0 and a > 0, b > 0, c < 0, we have that

0 = v(−c) = v(ax2 + by2) = 2 min{v(x), v(y)},

proving that x, y ∈ B, so Q[C] ⊂ B. Because Q[C] is a PID, v = vp is one of the valuations

(13) induced by some irreducible element p ∈ Q[C], and P is one of the orderings compatible

with vp of the form described above.

3.3.3. Lemma. ([G laMar-1, Lemma 3]) Let p be a prime element in the coordinate ring

Q[C] of the irreducible curve (6) without rational points satisfying (11), let ξ be a real point of

intersection of p(x, y) = 0 with C. Then p changes sign on C at ξ and, counting the number

of sign changes, p intersects with C in an even number of points.

Proof. Let ξ be a real point on C such that p(ξ) = 0. Suppose that p does not change

sign on C at ξ; there are two possibilities:

(1) p(ζ) ≥ 0 for all points ζ on C close to ξ,

(2) p(ζ) ≤ 0 for all points ζ on C close to ξ.

Suppose the former is the case. Observe that there is an element u ∈ Q[C] such that:

u(ξ) > 0 and, for all points ζ ∈ C, u(ζ) > 0 ⇒ p(ζ) ≥ 0.

Indeed, just take as u a polynomial with rational coefficients describing the circle centered

at some rational point close to ξ, containing ξ in its interior, with rational radius sufficiently

small, and signs of coefficients arranged so that u(ζ) > 0 describes the inside of the circle.

By Lemma 3.1.3, if P is an ordering of the function field F of C such that u ∈ P , then

p ∈ P . Consider the ordering Q−
ξ induced by p. Clearly p /∈ Q−

ξ . Because p(ξ) = 0 but

u(ξ) 6= 0, we know that p ∤ u. Moreover, u(ξ) > 0, implying that u ∈ Q−
ξ – a contradiction.

In (2) we proceed in a similar manner, using −p instead of p and Q+
ξ instead of Q−

ξ . �
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We believe that it is possible to prove the above lemma without use of the Tarski Transfer

Principle, however we have not found a proof so far.

Next we shall state a general theorem concerning pp formulae, which is a slight modifica-

tion of the respective theorem already proven for orderings of Q(x) stated in [DicMarMir05].

3.3.4. Theorem. ([G laMar-1, Theorem 5]) Let C be the irreducible curve (6) without

rational points satisfying (11), let F denote its function field. For a given pp-formula with n

quantifiers P (a), where a = (a1, . . . , ak) are square-free parameters in Q[C], let Σ denote the

set of all irreducible factors of a1, . . . , ak. The following conditions are equivalent:

(1) P (a) holds true in (Xvp
, Gvp

), for every p ∈ Σ,

(2) P (a) holds true in every proper subspace of (XF , GF ),

(3) P (a) holds true in every finite subspace of (XF , GF ).

Proof. In the sequence (1) ⇒ (2) ⇒ (3) ⇒ (1) the only nontrivial part is (1) ⇒ (2). Let

XΣF 2[S] be a proper subspace for some S ⊂ F , let 0 6= d ∈ ΣF 2[S] \ ΣF 2 – we may assume

that d ∈ Q[C]. XΣF 2[S] ⊂ XΣF 2[d], so it suffices to show that P (a) holds in (XΣF 2[d], GΣF 2[d]).

By Lemma 1.1.1, there exists Q ∈ XF such that d /∈ Q. Thus, by the Tarski Transfer

Principle, the set of real points ζ on C for which d(ζ) < 0 is nonempty. By the continuity of

d, this set is also open. Thus there exists an open arc J 6= ∅ on C such that d(ζ) < 0 for all

ζ ∈ J . Replacing J by a possibly smaller arc, we may assume that J does not contain any of

the finitely many real points of intersection of the irreducibles p ∈ Σ with C.

By Theorem 3.1.4, it suffices to show that, for any nonempty open arc J disjoint from the

real points of intersection of the irreducibles p ∈ Σ with C, there exist t1, . . . , tn ∈ Q[x, y]\{0}
such that, for each atom 1 ∈ D(a

∏n
i=1 t

ǫi
i , b

∏n
i=1 t

δi
i ) of the formula P (a), where ǫi, δi ∈ {0, 1},

and a, b are products of ± some of ai, and for each point ζ ∈ C \ J , we have:

a
n∏

i=1

ti
ǫi(ζ) ≥ 0 or b

n∏

i=1

ti
δi(ζ) ≥ 0.

Fix such an arc J . The points of intersection of p ∈ Σ with C divide C into disjoint arcs,

exactly one of them containing J . Let A = {I1, . . . , Im} be the set of remaining arcs. For
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Ij ∈ A let pIj ∈ Q[C] be a linear irreducible intersecting C in two points: one lying in Ij, and

the other in J .

Let (Y,H) be the direct sum of the (Xvp
, Gvp

), p ∈ Σ. By our assumptions, P (a) holds

true in (Y,H). Thus there exist square-free t1, . . . , tn ∈ Q[C] such that, for each atom 1 ∈
D(a

∏n
i=1 t

ǫi
i , b

∏n
i=1 t

δi
i ) of the formula P (a), 1 ∈ D(a

∏n
i=1 t

ǫi
i , b

∏n
i=1 t

δi
i ) holds true in (Y,H)

and, consequently, in (Xvp
, Gvp

) for all p ∈ Σ.

Factor each ti as ti = ti0 · ti1, where ti0 is the product of those p ∈ Σ which divide

ti, i ∈ {1, . . . , n}. Fix i ∈ {1, . . . , n}, j ∈ {1, . . . , m} and denote by (ζj; ζj ′) the arc Ij

with endpoints ζj and ζj
′

arranged in the clockwise order. Define µ−
ij = sgnti1(ζ

j) and

µ+
ij = sgnti1(ζj

′
). Since no p ∈ Σ divides ti1, ti1 does not vanish at ζj, ζj

′
, and therefore

µ−
ij, µ

+
ij ∈ {±1}. Define t′i1 = ±∏m

j=1 p
θij

Ij
and t′i = ti0 · t′i1, where the sign ± is chosen so that

t′i1 has the same sign as ti1 at the ends of each of the arcs Ij ∈ A, and

θij =







0 if µ−
ij = µ+

ij

1 if µ−
ij 6= µ+

ij.

Then, for each ζ ∈ C \ J , a
∏n

i=1 t
′
i
ǫi(ζ) ≥ 0 or b

∏n

i=1 t
′
i
ǫi(ζ) ≥ 0. �

Now we are in a position to state and prove the main theorem.

3.3.5. Theorem. ([G laMar-1, Theorem 6]) Let (XF , GF ) be a space of orderings of a

function field F of an irreducible curve C without rational points satisfying (4) and (11). There

exists a pp formula that holds in every proper subspace of (XF , GF ) and fails in (XF , GF ).

Proof. Let p1, . . . , p6 ∈ Q[C] be linear irreducibles which intersect with C as in Fig. 1.

Here ξ1i, ξ2i denote the two real points of intersection of pi with C, i ∈ {1, . . . , 6}, and are

arranged in the above order. Replacing pi by −pi we may assume that every pi is positive at

the origin. Let a1 = p1p6, a2 = p1p4, d = −p1p2p3p5. Consider the formula

P (a) = ∃t1∃t2 (t1 ∈ D(1, a1) ∧ t2 ∈ D(1, a2) ∧ dt1t2 ∈ D(1, a1a2)) .

Firstly, we shall show that P (a) fails to hold in (XF , GF ). Suppose the contrary,and let
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p

ξ 

ξ 
p

ξ 

ξ 

p

ξ 

ξ 

p

ξ 

ξ p

ξ 

ξ 

p

ξ 

ξ 

Fig. 1

t1, t2 ∈ Q[C] be two square-free elements verifying P (a). The signs of a1, a2 and d on the arcs

between ξki, k ∈ {1, 2}, i ∈ {1, . . . , 6}, are as follows:

(ξ
1
1
;ξ

2
2
)

(ξ
2
2
;ξ

1
3
)

(ξ
1
3
;ξ

2
1
)

(ξ
2
1
;ξ

1
4
)

(ξ
1
4
;ξ

2
3
)

(ξ
2
3
;ξ

1
5
)

(ξ
1
5
;ξ

2
4
)

(ξ
2
4
;ξ

1
6
)

(ξ
1
6
;ξ

2
5
)

(ξ
2
5
;ξ

1
2
)

(ξ
1
2
;ξ

2
6
)

(ξ
2
6
;ξ

1
1
)

a1 - - - + + + + + - - - +

a2 - - - + - - - + + + + +

d - + - + + - + + + - + +

Observe that, for every real point ξ of C, there is only one irreducible element of Q[C]

intersecting C at ξ: indeed, the kernel of the evaluation homomorphism Q[C] ∋ g 7→ g(ξ) ∈ R

is a prime ideal generated by some irreducible element p ∈ Q[C].

On the arcs (ξ21; ξ14), (ξ24; ξ16) and (ξ26; ξ11) a1 and a2 are positive, t1 and t2 are nonneg-

ative. Near ξ23 a1 is positive and so is t1. Since the only irreducible element that intersects

C at ξ23 is p3, vp3(t1) is even and t1 does not change sign at ξ13. Near ξ13 a1a2 is positive, so
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dt1t2 is positive and d changes sign, so that t2 changes sign. Thus vp3(t2) is odd and hence t2

changes sign at ξ23. To sum up: t2 changes sign at ξ23 and ξ13, but t1 does not.

Near ξ12 a1 is positive and so is t2. Thus t2 does not change sign at ξ22. Near ξ22 a1a2

is positive and so is dt1t2, and d changes sign, so t1 must change sign. Thus t1 changes sign

at ξ12 and ξ22, but t2 does not. Near ξ11 a1a2 is positive and so is dt1t2. d changes sign and

so does t1t2. Thus one of t1 and t2 changes sign, but not both. Thus at ξ11 and ξ21 either t1

changes sign (at both points), or t2 changes sign, but not both.

On the arc (ξ11; ξ22) a1a2 is positive and d is negative, so t1t2 is negative or zero. Hence

at any point of this arc if t1 changes sign, then so does t2 (and vice versa) - say there are m1

such simultaneous sign changes. Similarly, there are m3 simultaneous sign changes of t1 and

t2 on the arc (ξ13; ξ21). On (ξ22; ξ13) both a1a2 and d are positive, so t1t2 is positive or zero.

Thus if t1 changes sign, then so does t2 – say there are m2 such sign changes.

On (ξ11; ξ21) t1 and t2 each change sign m1 + m2 + m3 + 1 times. The signs of t1 and t2

at ξ11 are the same as at ξ21, so m1 + m2 + m3 is odd. On all the other arcs at least one of

a1 and a2 is positive, so at least one of t1 and t2 is nonnegative - thus the simultaneous sign

changes of t1 and t2 occur only at the indicated m1 +m2 +m3 points.

Now let

t1 = u1q1 . . . qkr1 . . . rl and t2 = u2q1 . . . qkr
′
1 . . . r

′
m

be factorizations of t1 and t2 into irreducibles, where u1, u2 ∈ Q∗ and q1, . . . , qk are the

only prime factors of both t1 and t2. The simultaneous sign changes occur at the points of

intersection of qi with C. Since, for each qi, there is an even number of such points, and, for

i 6= j, qi and qj intersect C in different points, m1 +m2 +m3 is even – a contradiction.

It remains to show that P (a) is valid for (Xvpi
, Gvpi

), i ∈ {1, . . . , 6}. Take the substitutions

p1 p2 p3 p4 p5 p6

t1 1 d 1 1 1 1

t2 d 1 d 1 1 1

Consider, for example, the case of the subspace Xvp1
= {Q+

ξ11
, Q−

ξ11
, Q+

ξ21
, Q−

ξ21
}. If t1 = 1

and t2 = d then obviously t1 ∈ D(1, a1) and dt1t2 ∈ D(1, a1a2), and it suffices to show that
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d = t2 ∈ D(1, a2) in the subspace Xvp1
, that is, for j ∈ {1, 2}, and for µ = + or µ = −

d ∈ Qµ

ξj1 or da2 ∈ Qµ

ξj1 .

Since da2 = −p2p3p4p5, and since da2 is nonnegative at points ζ of C sufficiently close to ξj1,

it follows that da2 is an element of both Q+
ξj1 and Q−

ξj1 , for j ∈ {1, 2}.

We proceed in a similar manner with the remaining substitutions. Note that, by Theorem

3.3.4, P (a) holds true for every proper subspace of (XF , GF ). �

3.4. The pp conjecture for function fields of two parallel lines over Q

In this section we complete our analysis by considering the case of a real irreducible two

parallel lines, that is ax2 + c = 0, a > 0, c < 0. We might as well assume a = 1. This case

is similar to the elliptic case, and the main arguments and results from the previous section

carry over, with a bit of modification here and there.

The coordinate ring Q[C] can be identified with Q(
√−c)[y], the polynomial ring in one

variable y with coefficients in the field Q(
√−c). The valuations that are of interest to us are

also easy to describe. Units are identified with non-zero elements of Q(
√−c). Unlike what

happens in the elliptic case, units no longer necessarily have constant sign on C.

We still have the linear irreducibles p = rx+ sy+ t, r, s, t ∈ Q, s 6= 0, but these no longer

suffice. To copy certain of the constructions used in the proofs of Theorems 3.3.4 and 3.3.5,

we also use the fact that there are enough quadratic irreducibles in Q[C] of the form

p = x± (r(y + s)2 + t), r, s, t ∈ Q, r > 0, |t| <
√
−c.

3.4.1. Lemma. ([G laMar-1, Lemma 7]) For given real r, s, t satisfying r > 0, |t| <
√−c, there exist rationals r′, s′ and t′ arbitrarily close to r, s and t respectively, such that

x + (r′(y + s′)2 + t′) and x− (r′(y + s′)2 + t′) are irreducible in Q[C].

Proof. The discriminant of
√−c± (r′(y+ s′)2 + t′) ∈ Q(

√−c)[y] is −4r′(t′ ±√−c). We

want this to be not a square in Q(
√−c). Proceed as follows: choose r′ to be any rational

square close to r, choose s′ close to s, choose t′ close to t and such that t′2 +c is not a rational

square (so then −t′−√−c and −t′ +√−c are not squares in Q(
√−c)). We can, for example,
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choose t′ of the form t′ = qkt1 where q is a prime such that the value of −c at q is odd,

2k > vq(−c) and vq(t1) ≥ 0. Then vq(t
′2 + c) = vq(−c) is odd, so t′2 + c is not a square. �

The correspondence between points on C and orderings on Q(C) is the same as before, but

now there are additional orderings corresponding to the four half-branches of C at ∞, namely

the orderings compatible with the real valuation v∞ on Q(C) defined by v∞(f) = − degy(f).

Lemma 3.3.3 carries over with the same proof. Using this, we see that an irreducible p

has an even (odd, respectively) number of roots on the line x = −√−c, and also on the line

x =
√−c, if degy(p) is even (if degy(p) is odd, respectively).

When applying Theorem 3.1.4, we shall note the following: suppose f, g, h are non-zero

elements of Q[C]. Then f ∈ D(g, h) holds in (Xv∞ , Gv∞) if and only if fg ≥ 0 at ζ or fh ≥ 0

at ζ holds for all real points ζ = (±√−c, ζ2) of C with |ζ2| sufficiently large.

With these preliminary remarks out of the way, we now state the main results:

3.4.2. Theorem. ([G laMar-1, Theorem 8]) Let C be the irreducible rational curve x2+c =

0 without rational points and with c < 0, let F denote its function field. For a given pp-formula

P (a), where a = (a1, . . . , ak), let Σ denote the set of all irreducible factors of a1, . . . , ak. The

following conditions are equivalent:

(1) P (a) holds true in (Xvp
, Gvp

), for every p ∈ Σ ∪ {∞},

(2) P (a) holds true in every proper subspace of (XF , GF ),

(3) P (a) holds true in every finite subspace of (XF , GF ).

The proof of Theorem 3.4.2 is the same as the proof of Theorem 3.3.4, with minor mod-

ifications to allow for the fact that we are now dealing with two parallel lines. In defining

the pIj we allow not only linear irreducibles, but also quadratic irreducibles (to take care of

the case where the intervals Ij and J are both on the same component of C). In the defi-

nition of the t′i1, we define t′i1 = µi
∏m

j=1 pIj
θij , where θij = 0 or 1 depending on whether ti

has the same sign or opposite sign at the opposite ends of the open interval Ij , and where

µi ∈ {1,−1, x,−x} is chosen so that t′i1 has the same sign as ti at the ends of each of the

intervals Ij.
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3.4.3. Theorem. ([G laMar-1, Theorem 9]) Let C be the irreducible rational curve x2+c =

0 without rational points and with c < 0, let F be its function field. There exists a pp formula

P (a) which holds for every proper subspace of (XF , GF ), but fails in (XF , GF ).

Again, the proof of Theorem 3.4.3 is analogous to the proof of Theorem 3.3.5, but instead

of using just linear irreducibles we also allow suitably chosen quadratic irreducibles. We

arrange the zeros ξ1i, ξ2i, i ∈ {1, . . . , 6} of these six irreducibles as in Fig. 2.

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

ξ 

p

p

p

p

p

p

Fig. 2

3.5. The pp conjecture for the field Q(x1, . . . , xn)

As an application of the results obtained above, we shall prove the following result:

3.5.1. Theorem. The pp conjecture fails for some pp formula in the space of orderings

of Q(x1, . . . , xn), n ≥ 2.

Proof. We proceed by induction. If n = 2, then let f(x1, x2) = 0 be an equation of an

irreducible conic section without rational points, for example let f(x1, x2) = x2
1 +x2

2−3. Then

the space (Xvf
, Gvf

) of orderings compatible with the valuation v induced by f is a subspace
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of the space (XQ(x1,x2), GQ(x1,x2)). Moreover, this space is also a group extension of the space of

orderings of the residue field Q(x1, x2)vf
, that is the function field of the curve f(x1, x2) = 0.

If the pp conjecture was true for every pp formula in the space (XQ(x1,x2), GQ(x1,x2)), then it

would also the case in the space (Xvf
, Gvf

) (Theorem 2.2.1) and, consequently, in the space

(XQ(x1,x2)v
, GQ(x1,x2)v

) (Lemma 2.2.6), which is a contradiction.

For n ≥ 3 consider the valuation v : Q(x1, . . . , xn) → Z ∪ {∞} given by v(f) = p for

0 6= f ∈ Q(x1, . . . , xn) such that f = xpn · g and xn ∤ g, or v(f) = ∞ for f = 0. Then the

residue field of v is equal to Q(x1, . . . , xn−1), the pp conjecture fails in its space of orderings

for some pp formula, and hence fails in the subspace of the space (XQ(x1,...,xn), GQ(x1,...,xn))

containing orderings compatible to v, and, in turn, fails in (XQ(x1,...,xn), GQ(x1,...,xn)). �
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CHAPTER 4

The space of orderings of the field R(x, y)

The content of this chapter is essentially the same as the material presented in our work

[G laMar-2]: we show that there exists a pp formula for which the pp conjecture is not valid

in the space of orderings of the field R(x, y). Contrary to Chapter 3, we do not use valuation

theory here, but we refer to results stated in Chapter 2. We conclude this chapter with some

general remarks and point out possible further directions of the research.

4.1. The pp conjecture for the field R(x, y)

We shall prove the following result:

4.1.1. Theorem. ([G laMar-2, Theorem 1]) The pp conjecture fails for some pp formula

in the space of orderings (XR(x,y), GR(x,y)).

Proof. For ǫ > 0 consider the subspaces

Xǫ = U(x2 + y2 − 1) ∩ U(1 + ǫ− x2 − y2)

and let Gǫ = GR(x,y)|Xǫ
. Define the subspace

X =
⋂

ǫ>0

Xǫ

and let G = GR(x,y)|X . By Theorem 2.2.1, it is sufficient to show that the conjecture fails in

the space (X,G). For ǫ > 0 denote

Aǫ = {(a, b) ∈ R2 : 1 < a2 + b2 < 1 + ǫ}

and let π1, . . . , π6 ∈ R(x, y) be linear irreducibles which, for ǫ small enough, intersect with

rings Aǫ as in the following diagram:
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π

p
ǫ

p
ǫ

π

p
ǫ

p
ǫ

π

p
ǫ

p
ǫ

π

p
ǫ

p
ǫπ

p
ǫ

p
ǫ

π

p
ǫ

p
ǫ

Aǫ

Fig. 3

Here pǫ1i, p
ǫ
2i denote the two connected components of Z(πi) ∩ Aǫ, i ∈ {1, . . . , 6}, ǫ > 0, and

are arranged in the above order, where Z(πi) is the set of real zeros of πi. Replacing πi by −πi
we may assume that every πi is positive at the origin. For two adjacent line segments pǫi1j1

and pǫi2j2, i1, i2 ∈ {1, 2}, j1, j2 ∈ {1, . . . , 6}, denote also by Ai1j1,i2j2n the ring sector starting at

pǫi1j1 and, when moving clockwise along Aǫ, ending at pǫi2j2.

Let a1 = π1π6, a2 = π1π4 and d = −π1π2π3π5. Consider the following pp formula:

P (a1, a2, d) = ∃t1∃t2(t1 ∈ D(1, a1) ∧ t2 ∈ D(1, a2) ∧ dt1t2 ∈ D(1, a1a2)).

We shall show that P (a1, a2, d) fails to hold in the space (X,G).

Suppose, a contrario, that the formula holds true in (X,G) with certain t1, t2 ∈ G verifying

it. Without loss of generality we may assume that t1, t2 are square-free polynomials. Let

S = {σ : σ is irreducible and σ|t1 or t2, or σ = πi for some i ∈ {1, . . . , 6}}.
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Observe, that there exists ǫ1 > 0 such that for ǫ1 > ǫ > 0:

for each σ ∈ S the set Z(σ) ∩ Aǫ is a finite disjoint union of smooth arcs

γ : (0, 1) → R2 homeomorphic to an open line segment and such that limt→0 γ(t)

is a point on the circle x2+y2 = 1, whilst limt→1 γ(t) is a point on x2+y2 = 1+ǫ,

and

for σ, τ ∈ S, σ 6= τ :1

Z(σ) ∩ Z(τ) ∩ Aǫ = ∅.

This is intuitively clear, however if one wants to prove it formally, one should use the “half-

branches” theorem [BCR, Proposition 9.5.1], the fact that we may restrict ourselves to those

σ ∈ S for which ideals (σ) are real (see [BCR, Theorem 4.5.1]), and the fact that the distance

from a semialgebraic set, as a continuous and semialgebraic function, is bounded on a closed

and bounded set, and reaches its bounds ([BCR, Theorem 2.5.8]).

Observe also that, for ǫ > 0 sufficiently small (say, ǫ2 > ǫ > 0 for some ǫ2 > 0), P (a1, a2, d)

already holds in the subspace (Xǫ, Gǫ). Indeed, consider the open set

U = (U(−a1) ∪ U(t1)) ∩ (U(−a2) ∪ U(t2)) ∩ (U(−a1a2) ∪ U(dt1t2)) ,

viewed as a subset in XR(x,y). Since

t1 ∈ D(1, a1) ∧ t2 ∈ D(1, a2) ∧ dt1t2 ∈ D(1, a1a2)

holds true in (X,G), X ⊂ U . But X =
⋂

ǫ>0Xǫ is a nested intersection of closed sets Xǫ, and

XR(x,y) is compact, so for ǫ > 0 small enough Xǫ ⊂ U . That means that P (a1, a2, d) holds

true in (Xǫ, Gǫ).

Fix ǫ > 0 satisfying all of the above conditions (that is ǫ ≤ min{ǫ1, ǫ2}) and consider the

space (Xǫ, Gǫ). By looking at number of sign changes of each irreducible factor σ of t1 or t2

when we travel around the annulus region Aǫ, we see that each such Z(σ) intersects with Aǫ

in an even number of connected components [BCR, Theorem 4.5.1].

1Note that some of π1, . . . , π6 might be also divisors of t1 or t2
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Furthermore, the signs of a1, a2 and d on the ring sectors between the successive pǫij ,

i ∈ {1, 2}, j ∈ {1, . . . , 6}, are the following:

A
1
1
,2

2
ǫ

A
2
2
,1

3
ǫ

A
1
3
,2

1
ǫ

A
2
1
,1

4
ǫ

A
1
4
,2

3
ǫ

A
2
3
,1

5
ǫ

A
1
5
,2

4
ǫ

A
2
4
,1

6
ǫ

A
1
6
,2

5
ǫ

A
2
5
,1

2
ǫ

A
1
2
,2

6
ǫ

A
2
6
,1

1
ǫ

a1 − − − + + + + + − − − +
a2 − − − + − − − + + + + +
d − + − + + − + + + − + +

We obtain a contradiction by investigating the behavior of t1 and t2 on Aǫ. Note that Theorem

3.1.4 in this setup reads as follows:

f ∈ DXǫ
(1, g) ⇔ ∀(a, b) ∈ Aǫ[f(a, b) ≥ 0 or f(a, b) · g(a, b) ≥ 0].

On A21,14
ǫ , A24,16

ǫ and A26,11
ǫ both a1 and a2 are positive, so t1 and t2 are nonnegative.

Moreover, since t1 and t2 are square-free and since there are no singular points of irreducible

factors of t1, t2 inside of Aǫ, by the Sign Changing Criterion [BCR, Theorem 4.5.1], t1 and

t2 are, in fact, positive.

Near pǫ23 a1 is positive, so t1 is positive. It follows that Z(t1) (from now on we shall simply

write t1) does not intersect with Aǫ along pǫ13: if it did, then π3 would divide t1 (since they

would have infinitely many points in common), so t1 = 0 on pǫ23.

Furthermore, a1a2 > 0 near pǫ13, so dt1t2 is nonnegative. Since d changes sign between

A22,13
ǫ and A13,21

ǫ , and t1 does not intersect with Aǫ along pǫ13, t2 has to pass Aǫ at pǫ13. Thus

π3|t2 and t2 also cuts across Aǫ at pǫ23.

Similarly, a2 > 0 near pǫ12, so t2 > 0 and, as before, t2 does not intersect with Aǫ along

pǫ22. Close to pǫ22, a1a2 > 0, so dt1t2 ≥ 0 and thus t1 passes Aǫ at pǫ22 and also at pǫ12.

Next, near pǫ11 a1a2 > 0, so dt1t2 ≥ 0, whilst d changes sign between A26,11
ǫ and A11,22

ǫ .

Thus t1t2 changes sign, so either t1 intersects with Aǫ along pǫ11 and t2 does not, or t2 does

and t1 does not.

Similarly, near pǫ21 a1a2 > 0, so dt1t2 ≥ 0. d changes sign at pǫ21 and so does t1t2, which

implies that either t1 crosses Aǫ at pǫ21 and t2 does not, or t1 does not cross and t2 does.

Of course if t1 passes Aǫ at pǫ11, then π1|t1, so t1 also passes Aǫ at pǫ21. Therefore t1 cuts
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across Aǫ at pǫ11 if and only if it cuts across Aǫ at pǫ21 and, similarly, t2 traverses Aǫ at pǫ11 if

and only if it traverses Aǫ at pǫ21.

On A11,22
ǫ a1a2 > 0, so dt1t2 ≥ 0. Since d < 0, t1t2 ≤ 0, so t1 intersects with Aǫ if and

only if t2 does – say, there are m1 such intersections within A11,22
ǫ .

Similarly, on A13,21
ǫ a1a2 > 0, so dt1t2 ≥ 0. At the same time d < 0, so t1t2 ≤ 0. Thus t1

intersects with Aǫ if and only if t2 does; there are m2 such intersections within A13,21
ǫ .

Finally, on A22,13
ǫ a1a2 > 0 and d > 0, so dt1t2 ≥ 0 and t1t2 ≥ 0. Therefore t1 intersects

with Aǫ if and only if t2 does and we have m3 such simultaneous intersections within A22,13
ǫ .

To sum up, there are m1 + m2 + m3 simultaneous intersections of t1 and t2 with Aǫ in

A11,21
ǫ . Furthermore, t1 crosses through pǫ22 and t2 through pǫ13. And finally, exactly one

of t1, t2 crosses through both pǫ11 and pǫ21: say ti does and tj does not. Then tj changes

sign m1 + m2 + m3 + 1 times from A26,11
ǫ to A21,14

ǫ , to go from positive to positive, hence

m1 +m2 +m3 + 1 is even and m1 +m2 +m3 is odd.

Note now that the only simultaneous intersections of t1 and t2 with Aǫ are the m1+m2+m3

listed above; on all other sectors of Aǫ at least one of a1, a2 is positive, forcing either t1 or t2

to be positive as well.

Simultaneous intersections may occur only at the common irreducible factors of t1, t2, and

two distinct irreducibles cannot intersect in the same place. According to our assumptions,

each such factor has an even number of crossings with An – so m1 +m2 +m3 is even, which

is a contradiction. This finishes the first half of the proof.

It remains to show that P (a1, a2, d) holds true on every finite subspace of (X,G). Suppose

then that there is a finite subspace Y of (X,G) on which P (a1, a2, d) fails to hold, and denote

for simplicity H = G|Y . Without loss of generality we may assume that (Y,H) is minimal

with such property. We need to consider two cases.

Firstly, suppose that d /∈ D((1, a1)⊗ (1, a2)) holds on (Y,H). We shall use the description

of value sets of Pfister forms stated in Lemma 2.2.3. Thus, for some σ ∈ Y , a1σ = 1, a2σ = 1

and dσ = −1. Clearly σ ∈ Xǫ for any fixed ǫ > 0, so, by the Tarski Transfer Principle

[BCR, Corollary 5.2.4], there is a point (a, b) ∈ Aǫ such that a1(a, b) > 0, a2(a, b) > 0 and

d(a, b) < 0. But there is no such point in Aǫ (see the table) – a contradiction.
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Now assume that d ∈ D((1, a1) ⊗ (1, a2)) holds in (Y,H). By Lemma 2.4.4 there exists a

connected component (Y0, H0) of (Y,H), which is not a fan, such that, if (Y ,H) denotes the

residue space of (Y0, H0), a1, a2 ∈ H , neither a1, a2 nor a1a2 is equal to −1, (1, a1) ⊗ (1, a2)

is isotropic over (Y0, H0) and d /∈ H . Clearly P (a1, a2, d) already fails to hold in (Y0, H0), so,

due to minimality of (Y,H), (Y,H) = (Y0, H0).

Since a1, a2, a1a2 6= −1, there are elements of Y making a1, a2 and a1a2 positive. At the

same time, since (1, a1)⊗ (1, a2) is isotropic, there is no element of Y making both a1 and a2

positive. There exist σ1, σ2, σ3 ∈ Y such that a1, a2 and a1a2 have the following signs:

σ1 σ2 σ3

a1 + - -
a2 - + -
a1a2 - - +

Consider the subspace (Ỹ , H̃) for which {σ1, σ2, σ3} is a minimal generating set. (Ỹ , H̃) is

not a fan, since Y has no orderings making a1 and a2 both positive. Thus elements of Ỹ ,

viewed as characters, are products
∏3

i=1 σ
ei

i such that
∑3

i=1 ei ≡ 1 mod 2 and do not contain

the element σ1σ2σ3 and, consequently, Ỹ = {σ1, σ2, σ3}. Let (Y1, H1) be the group extension

of (Ỹ , H̃) where H1 = H̃[d]. It consists of 6 orderings σ+
1 , σ+

2 , σ+
3 , σ−

1 , σ−
2 , σ−

3 , with respect

to which the signs of a1, a2, a1a2, d are as follows:

σ+
1 σ+

2 σ+
3 σ−

1 σ−
2 σ−

3

a1 + - - + - -
a2 - + - - + -
a1a2 - - + - - +
d + + + - - -

P (a1, a2, d) fails to hold on (Y1, H1), so (Y,H) = (Y1, H1).

Define the following subspaces of (X,G):

V 11,22 = U(−π1) ∩ U(−π2) ∩ U(π3) ∩ U(π4) ∩ U(π5) ∩ U(π6)

V 22,13 = U(−π1) ∩ U(π2) ∩ U(π3) ∩ U(π4) ∩ U(π5) ∩ U(π6)

V 13,21 = U(−π1) ∩ U(π2) ∩ U(−π3) ∩ U(π4) ∩ U(π5) ∩ U(π6)

V 21,14 = U(π1) ∩ U(π2) ∩ U(−π3) ∩ U(π4) ∩ U(π5) ∩ U(π6)

57



V 14,23 = U(π1) ∩ U(π2) ∩ U(−π3) ∩ U(−π4) ∩ U(π5) ∩ U(π6)

V 23,15 = U(π1) ∩ U(π2) ∩ U(π3) ∩ U(−π4) ∩ U(π5) ∩ U(π6)

V 15,24 = U(π1) ∩ U(π2) ∩ U(π3) ∩ U(−π4) ∩ U(−π5) ∩ U(π6)

V 24,16 = U(π1) ∩ U(π2) ∩ U(π3) ∩ U(π4) ∩ U(−π5) ∩ U(π6)

V 16,25 = U(π1) ∩ U(π2) ∩ U(π3) ∩ U(π4) ∩ U(−π5) ∩ U(−π6)

V 25,12 = U(π1) ∩ U(π2) ∩ U(π3) ∩ U(π4) ∩ U(π5) ∩ U(−π6)

V 12,26 = U(π1) ∩ U(−π2) ∩ U(π3) ∩ U(π4) ∩ U(π5) ∩ U(−π6)

V 26,11 = U(π1) ∩ U(−π2) ∩ U(π3) ∩ U(π4) ∩ U(π5) ∩ U(π6).

By the Tarski Transfer Principle subspaces V i1j1,i2j2 form a partition of (X,G) and, clearly,

signs of a1, a2 and d on the V i1j1,i2j2 are exactly the same as on the sector Ai1j1,i2j2ǫ , for

respective i1, i2, j1, j2. Comparing those signs we see that σ−
1 ∈ V 23,15, and (σ+

1 ∈ V 14,23 ∨

σ+
1 ∈ V 15,24), and σ−

2 ∈ V 25,12, and (σ+
2 ∈ V 16,25 ∨ σ+

2 ∈ V 12,26), and σ+
3 ∈ V 22,13, and, finally,

(σ−
3 ∈ V 11,22 ∨ σ−

3 ∈ V 13,21).

Consider the following two 4-element fans:

{σ+
1 , σ

−
1 , σ

+
2 , σ

−
2 } and {σ+

1 , σ
−
1 , σ

+
3 , σ

−
3 }.

If σ+
1 ∈ V 14,23 and σ+

2 ∈ V 12,26, then, in particular, π3(σ+
1 σ

−
1 σ

+
2 σ

−
2 ) = −1, which is a contra-

diction, since for every 4-element fan {ρ1, . . . , ρ4}
∏4

i=1 ρi = 1 (note that we can also use π2

instead of π3). On the other hand, if σ+
1 ∈ V 14,23 and σ+

2 ∈ V 16,25, then π5(σ+
1 σ

−
1 σ

+
2 σ

−
2 ) = −1,

which is again a contradiction. Thus σ+
1 ∈ V 15,24.

If σ+
1 ∈ V 15,24 and σ−

3 ∈ V 13,21, then π3(σ+
1 σ

−
1 σ

+
3 σ

−
3 ) = −1: a contradiction. But if

σ+
1 ∈ V 15,24 and σ−

3 ∈ V 11,22, then π2(σ
+
1 σ

−
1 σ

+
3 σ

−
3 ) = −1, which eliminates the last case. �

4.2. Further remarks

Obviously spaces of orderings of function fields of rational conic sections and the space of

orderings of the field R(x, y) do not exhaust all examples of spaces of orderings of stability

index 2. By Lemma 1.7.3, spaces of orderings of formally real finitely generated algebraic

58



extensions of R(x, y) are also of stability index 2 – we can think geometrically of those fields as

of formally real function fields of algebraic surfaces in R3. One would expect the pp conjecture

to fail for such spaces.

We can also ask a more general question: if F is a formally real finitely generated extension

of R of transcendence degree at least two, is it true that that the pp conjecture fails in the

space of orderings (XF , GF )? One would conjecture that it does, however so far we can only

prove this in a special case. Namely, we have the following result:

4.2.1. Theorem. The pp conjecture fails for some pp formula in the space of orderings

of R(x1, . . . , xn) for n ≥ 2.

Proof. We proceed by induction on n. For n = 2 this is precisely the main result

presented in this chapter. For n ≥ 3 we use the same method as in the proof of Theorem

3.5.1: consider the valuation v : R(x1, . . . , xn) → Z ∪ {∞} given by v(f) = p for 0 6=

f ∈ R(x1, . . . , xn) such that f = xpn · g and xn ∤ g, or v(f) = ∞ for f = 0. Then the

residue field of v is equal to R(x1, . . . , xn−1), by the inductive hypothesis the pp conjecture

already fails for the space of orderings of R(x1, . . . , xn−1), and hence fails for the subspace

of the space (XR(x1,...,xn), GR(x1,...,xn)) containing orderings compatible to v, which is a group

extension of (XR(x1,...,xn−1), GR(x1,...,xn−1)). As a result, the pp conjecture fails for the space

(XR(x1,...,xn), GR(x1,...,xn)) by Theorem 2.2.1. �

We remark that both Theorem 4.1.1 and Theorem 4.2.1 are still valid with the field R

replaced by an arbitrary real closed field R; all results used to prove these theorems work

equally well for any real closed field and for R.

The question whether the pp conjecture holds for the space of orderings of the field of

power series in two variables R((x, y)) is also of considerable interest. If the conjecture failed

for this space, one would be able to disprove it for spaces of orderings of power series in n

variables over the reals, n ≥ 2. This, in turn, might be a way of disproving the pp conjecture

for spaces of orderings of formally real finitely generated extensions of R of transcendence

degree n mentioned above, since the completion of the coordinate ring at a nonsingular point

of a real algebraic variety in Rn is just the power series ring in n variables.
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CHAPTER 5

Testing pp formulae on finite subspaces

In this chapter we prove Theorem 5.1.1, which was first stated in [AstTre05] – our proof

uses the same methods, however it differs slightly in some details. For a pp formula P (y) a

special family of formulae FP is defined and it is shown how this family can be used to test

whether the pp formula fails on a finite subspace of every space of orderings. We then refine

this result and give an explicit description of formulae in the family FP that need to be tested

in order to achieve the same result. In Section 2 we apply these results to the pp conjecture

and, in particular, present a proof of Theorem 2.2.1 due to Astier and Tressl [AstTre05].

5.1. Families of testing formulae

Instead of investigating a pp formula in a fixed space of orderings, we shall rather consider

it as an expression in the language LSG of special groups. We work with a fixed pp formula

P (y) = ∃t
m∧

j=1

θj(t, y),

where θj are atomic formulae and y = (y1, . . . , yk), t = (t1, . . . , tn) are tuples of individual

variables in the language LSG. Define the family of spaces of orderings and constants:

KP = {(Y,H, b) :(Y,H) is a finite space of orderings, b ∈ Hk, P (b) fails in (Y,H),

P (b) holds in every proper subspace of (Y,H)}

and the corresponding family of formulae in the language LSG:

FP = {Q(y) = ∀s¬
m′

∧

j=1

θ′j(s, y) : θ′j are atomic formulae in the language LSG

s = (s1, . . . , sn′) is a tuple of individual variables, n′ ∈ N,

∀(Y,H, b) ∈ KP [Q(b) holds in (Y,H)]}.
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The family FP consists of all formulae Q(y) in the language LSG having the form Q(y) =

¬R(y), where R(y) is a pp formula such that R(b) fails in (Y,H) for all (Y,H, b) ∈ KP .

The following theorem is proven in [AstTre05]; we give a slightly different proof (in

particular, the definition of KP differs), although we essentially use the same methods.

5.1.1. Theorem. Let (X,G) be a space of orderings, let a ∈ Gk. The following two

conditions are equivalent:

(1) P (a) fails in some finite subspace of (X,G);

(2) for every Q(y) ∈ FP the formula Q(a) holds in (X,G).

Proof. (1) ⇒ (2). By Zorn’s Lemma there is a finite subspace (Y,H) of (X,G) such that

P (a|Y ) fails in (Y,H) and holds on every proper subspace of (Y,H). Then (Y,H, a|Y ) ∈ KP .

Fix an Q(y) ∈ FP – we thus have that Q(a|Y ) holds in (Y,H). It follows that Q(a) holds

in (X,G), for if for some s ∈ Gn′

all θ′j(s, a) would hold in (X,G), j ∈ {1, . . . , m′}, then all

θ′j(s|Y , a|Y ) would hold in (Y,H), j ∈ {1, . . . , m′}, that is Q(a|Y ) would fail in (Y,H).

(2) ⇒ (1). Let

T (KP ) = {A(y) :A(y) is a formula in the free variables y,

∀(Y,H, b) ∈ KP [A(b) holds in (Y,H)]}.

In other words, T (KP ) is the theory of KP in the language LSG extended by the constants y.

We want to construct an SG-morphism π from the group G to a reduced special group

H such that, for every A(y) ∈ T (KP ), A(b), holds in (Y,H), (Y,H) denoting the space of

orderings induced by H , and b = π(a). It suffices to construct a model H of {A(a) : A(y) ∈

T (KP )} (which includes axioms of the theory reduced special groups) in the language L of

reduced special groups extended by the constants from G, in which all sentences

(14) g1 = g2 · g3, for g1, g2, g3 ∈ G, and

(15) g1 ∈ D(g2, g3), for g1, g2, g3 ∈ G,

which hold in (X,G), are also true.We will denote a model H of T (KP ) by (Y,H, b) to
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indicate the associated space of orderings (Y,H) and distinguished parameters b. Note that

every model of T (KP ) is an element of KP (by Lemma 2.2.2, there is a uniform bound on |H|

for (Y,H, b) ∈ KP , and the conditions “H has at most B elements”, “P (b) fails in (Y,H)”

and “P (b) holds in proper subspaces of (Y,H)” are expressible as formulae in T (KP )).

Take any finite collection S1(g1
), . . . , Ss(gs) of atomic formulae (14) or (15). Some of

the entries of the g
i

may coincide with each other, or may be ±1, or may coincide with

entries of a. Relabelling suitably, we can write each Si(gi) as Si(g, a), where g = (g1, . . . , gt),

g1, . . . , gt ∈ G are distinct from each other, and from ±1, and from the entries of a. We also

have the problem that some of the entries of a may be equal to each other or to ±1. For each

k, l such that ak = al we add the atomic formula “ak = al” to our collection. Similarly, add

“ak = 1” (resp., “ak = −1”) if ak = 1 (resp., ak = −1). Define Q(y) to be the pp formula

∃u∧s

i=1 Si(u, y). The formula
∧s

i=1 Si(g, a) holds in (X,G), which clearly implies that Q(a)

holds in (X,G). If Q(b) fails for each (Y,H, b) in the class KP , then ¬Q(y) belongs to the class

FP , so ¬Q(a) holds in (X,G), by our assumptions. This is a contradiction. Thus Q(b) holds

for some (Y,H, b) ∈ KP with some h = (h1, . . . , ht) verifying it. Fix such a (Y,H, b). View

(Y,H) as having constants from G by interpreting g ∈ G to be the respective entry of h, if g

is an entry of g, or to be bk if g = ak, or to be ±1 if g = ±1, or to be some arbitrary element

of H otherwise. By the compactness theorem, we have constructed the desired model.

Now the set {y ◦ π : y ∈ Y } is a generating set for a finite subspace of (X,G) and, since

P (b) fails in (Y,H), P (a) fails in this subspace of (X,G). �

We continue to work with the formula

P (y) = ∃t
m∧

j=1

θj(t, y)

defined before. Let x = (x1, . . . , xl) be a tuple of free variables in the language LSG. We

build a new formula Pl(y, x) by induction on l. If l = 1, we define P1(y, x1) by replacing each

atomic formula z1 ∈ D(z2, z3) in P (y) with

∃s1∃s2[(s1 ∈ D(1, x1)) ∧ (s2 ∈ D(1, x1)) ∧ (z1 ∈ D(s1z2, s2z3))].
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If l ≥ 2, we define Pl(y, (x1, . . . , xl)) by performing the above action on Pl−1(y, (x1, . . . , xl−1)).

One sees that for each space of orderings (X,G) and for each subspace of the form

U(b1, . . . , bl), b1, . . . , bl ∈ G, if a ∈ Gk then Pl(a, b) holds in (X,G) if and only if P (a)

holds in the subspace U(b1, . . . , bl).

Let λ ≥ 1 be an integer. We shall construct a sequence of formulae P
(i)
λ (y), i ≥ 0, by

induction. For i = 0 we define P
(0)
λ (y) = P (y). For i = 1, we define

P
(1)
λ = ∃z0 . . .∃zλ

λ∧

j=1

[(zj−1 ∈ D(1, zj)) ∧ P1(y, zj−1zj)],

and for i ≥ 2 we define P
(i)
λ (y) by performing the above action on P

(i−1)
λ (y) instead of P (y).

Note that this construction depends on λ.

Trivially, for every space of orderings (X,G) and every a ∈ Gk, P (a) ⇒ P
(1)
λ (a) (by taking

z0 = z1 = . . . = zλ = 1) and, consequently, P (a) ⇒ P
(1)
λ (a) ⇒ . . .⇒ P

(i)
λ (a).

Define the number

cP = max{cl(X,G) : (X,G, a) ∈ KP};

by Lemma 2.2.2, this number is well defined. Moreover, the number cP is uniformly bounded

from the above by B(n, k), although we do not claim that this bound is best possible. We

shall prove the following result:

5.1.2. Theorem. Let λ > cP , let (X,G) be a space of orderings, let a ∈ Gk. The following

two conditions are equivalent:

(1) P (a) fails in some finite subspace of (X,G);

(2) for every i ≥ 0 the formula ¬P (i)
λ (a) holds in (X,G).

Proof. (1) ⇒ (2). By the “easy part” of the previous theorem, that is the implication

(1) ⇒ (2), it suffices to show that for every i ≥ 0 ¬P (i)
λ (y) ∈ FP . Obviously ¬P (y) ∈ FP ,

so ¬P (0)
λ (y) ∈ FP . Let (Y,H, b) ∈ KP . Then cl(Y,H) ≤ cP < λ, and hence, for every

c0, . . . , cλ ∈ KP satisfying cj−1 ∈ D(1, cj), j ∈ {1, . . . , λ}, there exists j0 ∈ {1, . . . , λ} such

that cj0−1cj0 = 1. This forces P1(b, cj0−1cj0) to be logically equivalent to P (b), which implies
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that the formula ¬P (1)
λ (b) holds in (Y,H) and, consequently, ¬P (1)

λ (a) holds in (X,G). From

the construction of P
(i)
λ (y), the argument follows for i ≥ 2 by repeating the same reasoning.

(2) ⇒ (1). Using Zorn’s Lemma, choose a subspace (Y,H) of (X,G) minimal subject

to the condition that for every i ≥ 0 the formula ¬P (i)
λ (a) holds in (X,G). We shall show

that cl(Y,H) < λ. Suppose that, for some c0, . . . , cλ ∈ G, cj−1 ∈ D(1, cj) in (Y,H), and

cj−1cj 6= 1 in (Y,H) for j ∈ {1, . . . , λ}. Define Zj = U(cj−1cj)
⋂
Y ; clearly (Zj , H|Zj

) are

proper subspaces of (Y,H), so ¬P (i)
λ (a) fails in (Zj, H|Zj

) for i ≥ 0, j ∈ {1, . . . , λ}, that

is for every j ∈ {1, . . . , λ} there is some i ≥ 0 such that P
(i)
λ (a) holds in (Zj, H|Zj

). Since

P
(i)
λ (a) ⇒ P

(i+1)
λ (a) we may assume that for i ≥ 0 big enough P

(i)
λ (a) holds in (Zj, H|Zj

) for

j ∈ {1, . . . , λ}. From the construction of P
(i+1)
λ (y) it follows, that P

(i+1)
λ (a) holds in (Y,H) –

a contradiction. The result now follows, by Lemma 2.2.2. �

5.2. Families of testing formulae and the pp conjecture

We continue to work with the formula P (y) and families FP and KP , as well as integers

λ and cP , defined as before. We shall investigate how the theorems proven in the previous

section can be applied to the pp conjecture.

Firstly, Theorem 5.1.2 gives a concrete list of formulae that need to be verified in order to

check if the pp conjecture holds true or not: for a space of orderings (X,G) and a ∈ Gk the

formula P (a) holds on each finite subspace of (X,G) if and only if the formula P
(i)
λ (a) holds

in (X,G) for some i ≥ 0. One would like to have a better understanding of the formulae

P
(i)
λ (a) (or, in general, of the family FP ) in the case when P (y) is one of the examples of pp

formulae discussed in previous chapters for which the pp conjecture fails. We note here that

there is no claim that the subcollection {¬P (i)
λ (y) : i ≥ 0} of FP is all of FP .

In view of Theorem 5.1.2, for a space of orderings (X,G) and a ∈ Gk, the assertion that

if P (a) holds in all finite subspaces of (X,G) then it also holds in (X,G), is equivalent to the

statement that the formulae “P
(i)
λ (a) ⇒ P (a)” hold in (X,G) for all i ≥ 0. Namely, we have:

5.2.1. Theorem. Let λ > cP , let (X,G) be a space of orderings, let a ∈ Gk. The following

two conditions are equivalent:

(1) for each subspace (Y,H) of (X,G) the pp conjecture for P (a) holds in (Y,H);
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(2) for each subspace (Y,H) of (X,G) the formula “P
(1)
λ (a) ⇒ P (a)” holds in (Y,H).

Proof. The implication (1) ⇒ (2) follows immediately from Theorem 5.1.2, so it remains

to show that (2) ⇒ (1). Suppose that the formula P (a) fails on some subspace (Y,H) of

(X,G), yet it holds true in every finite subspace of (Y,H), and assume that (Y,H) is minimal

with this property. It follows that (Y,H) has infinite chain length, and thus there exist

c0, . . . , cλ ∈ G such that cj−1 ∈ D(1, cj) on Y and cj−1cj 6= 1 on Y , j ∈ {1, . . . , λ}. By the

minimality of (Y,H), P (a) holds true on U(cj−1cj)∩Y , and, consequently, P1(a, cj−1cj) holds

on Y , j ∈ {1, . . . , λ}. This implies that P
(1)
λ (a) holds on Y , which contradicts (1). �

Finally, we give the original Astier-Tressl proof of Theorem 2.2.1 – that is, we apply

Theorem 5.1.1 to prove that the pp conjecture is preserved with respect to subspaces. Both

here and in the previous proof of Theorem 2.2.1 Lemma 2.2.2 is used. It suffices to prove:

5.2.2. Lemma. Let (X,G) be a space of orderings, let a ∈ Gk, let Y =
⋂

b∈S U(b) be a

subspace of (X,G), S ⊂ G. If P (a) holds true on every finite subspace of Y , then there exists

a finite subset T ⊂ S such that P (a) holds true on every finite subspace of
⋂

b∈T U(b).

Proof. By Theorem 5.1.1, there is a formula Q(y) ∈ FP such that Q(a) fails on Y . Let

¬Q(a) = ∃s ∧m′

j=1 p
′
j(s, a) ∈ D(1, q′j(s, a))

where p′j(s, a), q′j(s, a) are ± products of some of the entries of s and a, with s ∈ Gn′

verifying

¬Q(a). Consider the open set U =
⋂m′

j=1(U(−q′j(s, a)) ∪ U(p′j(s, a))). Since
∧m′

j=1 p
′
j(s, a) ∈

D(1, q′j(s, a)) holds true in Y , Y ⊂ U . But Y =
⋂

b∈S U(b), so, by compactness, for some

finite T ⊂ S,
⋂

b∈T U(b) ⊂ U , which means that Q(a) already fails in
⋂

b∈T U(b), and the

conclusion follows from Theorem 5.1.1. �

Observe that in view of the definition of the formulae Pl(x, y), the above lemma can be

also stated in the following form:

5.2.3. Lemma. Let (X,G) be a space of orderings, let a ∈ Gk, let Y =
⋂

b∈S U(b) be a

subspace of Y , S ⊂ G. If P (a) fails in Y but holds in every finite subspace of Y , then, for

some {b1, . . . , bl} ⊂ S, Pl(b, a) fails in (X,G) but holds in every finite subspace of (X,G).
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[Art27] E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg 5

(1927), 100-115.

[ArtSch27-1] E. Artin, O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Ham-

burg 5 (1927), 85-99.

[ArtSch27-2] E. Artin, O. Schreier, Eine Kennzeichung der reell abgeschlossenen Körper, Abh. Math. Sem.

Univ. Hamburg 5 (1927), 225-231.

[AstTre05] V. Astier, M. Tressl, Axiomatization of local-global principles for pp formulas in spaces of order-

ings, Arch. Math. Logic 44, No. 1 (2005), 77-95.

[AM69] M. Atiyah, I. MacDonald, Introduction to commutative algebra, Addison-Wesley, London, 1969.
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[Mar94] M. Marshall, On Bröcker’s t-invariant and separating families for constructible sets, Aequationes

Math. 48 (1994), 306-316.

[Mar96] M. Marshall, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics 1636,

Springer-Verlag, Berlin, 1996.

[Mar00] M. Marshall, Positive polynomials and sums of squares, Dottorato do Ricerca in Matematica, Dipar-

timento di Matematica Dell’Universitá di Pisa, Pisa, 2000.

[Mar02] M. Marshall, Open questions in the theory of spaces of orderings, J. Symbolic Logic 67 (2002),

341-352.

[Mar06] M. Marshall, Local-global properties of positive primitive formulas in the theory of spaces of order-

ings, J. Symbolic Logic 71 (2006), 1097-1107.

[Pfi66] A. Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.
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