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ABSTRACT 

The electronic properties of amorphous materials are greatly affected by the density 
of localized states in the mobility gap of these materials. The exact shape of the density of 
states (DOS) distribution in amorphous selenium (a-Se) is still unresolved despite decades 
of research. One of the most commonly employed methods to investigate charge transport 
properties in high resistivity materials is time-of-flight (TOF) transient photoconductivity 
experiment. The TOF transient photoconductivity technique is used to measure the induced 
photocurrent in the external circuit when the sample is photoexcited. Information 
pertaining to carrier mobility and other carrier parameters are deduced from the shape of 
the photocurrent. The investigation of the charge transport phenomenon is well known to 
be a complicated task. Monte Carlo (MC) simulation method has become a standard 
method for carrier transport studies in amorphous materials. The purpose of this research 
work is to develop a Monte Carlo simulation model for charge transport in typical TOF 
transient photoconductivity experiment to investigate the DOS distribution in a-Se. The 
MC simulations were first performed for relatively simpler models for which theoretical 
and analytical solutions were available. The MC model developed here is based on 
simulating the drift of carriers resulting from photogeneration, subject to the influence of 
an applied electric field and multiple trapping events. The free drift time of photocarriers 
and their dwell time in the traps are stochastic in nature, in accordance with the 
probabilities of these events. Electron time-of-flight transient photocurrents were calculated 
in amorphous selenium as a function of the electric field. The distribution of localized 
states (DOS) in a-Se has been investigated by comparing the experimentally measured and 
calculated transient photocurrents. The analysis of multiple-trapping transport has been 
done by the discretization of a continuous DOS. The DOS distribution has been optimized 
to produce the best agreement between the calculated and measured transient 
photocurrents. The resulting DOS has distinct features: A first peak at ~0.30 eV below Ec 
with an amplitude ~1017 eV–1 cm–3, a second small peak (or shoulder) at 0.45–0.50 eV 
below Ec with an amplitude 1014–1015 eV–1 cm–3, and deep states with an integral 
concentration 1011–1014 cm–3 lying below 0.65 eV, whose exact distribution could not be 
resolved because of the limitations of the available experimental data.  The density of states 
(DOS) distribution in the vicinity of the valence band mobility edge in vacuum coated a-Se 
films has been investigated by calculating the MC hole transient photocurrents at different 
temperatures, and also the dependence of the drift mobility on the temperature and field. 
The calculated TOF transient photocurrents were compared with experimental data 
published elsewhere. It is shown that, analogous to electron transport in a-Si:H, the DOS 
near Ev 

is a featureless, monotonically decreasing distribution in energy up to Ev 
+ 0.4 eV, 

without the 0.28 eV peak near the valence band which was thought to control the hole drift 
mobility. Such a DOS was able to account for hole TOF data reported previously by 
several authors to date.  
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1 Applications of Amorphous Semiconductors 

 

1.1 Introduction 

Solids in terms of regularities in their atomic structure are broadly categorized into 

two groups; crystalline and amorphous. Crystalline materials are solids in which atoms are 

arranged in a perfect periodic order throughout the solid. Amorphous materials, on the 

other hand are the ones in which the constituent atoms lack such periodicity. The lattice 

structure in such materials contains some deviations from the “perfect” periodic lattice 

arrangement that serves to destroy the overall periodicity of the solid.  

The physics of crystalline semiconductors has been very well understood after the 

advent of quantum mechanics. The periodic structure of the crystalline materials led to 

mathematical simplifications; such as the Bloch theorem, which made it easy to develop 

the theoretical framework to understand the properties of these materials. One of the most 

prominent inventions based on crystalline material was the invention of the transistor 

which literally revolutionized electronic devices. The vast majority of the modern 

electronic systems involve the employment of components fabricated from crystalline 

semiconductors. Amorphous materials, on the other hand did not experience such a rapid 

development. The short-range order of the amorphous semiconductors resulted in 

mathematical complexities and hence retarded the understanding process of the theory of 

such materials. For a long period of time, amorphous materials were not considered to 

behave as semiconductors, although there were experimental evidences suggesting 

otherwise, e.g. the photoconductivity of amorphous selenium and the ability of 

conventional glasses to transmit light of sufficiently high wavelength. It was not until the 

mid-1950s, when Kolomites and co-workers [1] reported semiconducting behavior in 
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various chalcogenide glasses and ushered in an era of interest in amorphous 

semiconductors [2].  

One of the main driving forces in research on amorphous and microcrystalline 

semiconductors has been, and still is, the ability of these materials to be economically 

prepared in large areas for applications such as displays, scanners, solar cells, image 

sensors, position sensors, and other similar large area applications. This phenomenon gives 

amorphous materials a significant advantage over their crystalline counterparts since the 

preparation of crystalline solids usually requires carefully controlled growth techniques.  

Amorphous selenium (a-Se) is one of the most widely studied elemental 

semiconductors due to its numerous commercial applications and its status as a prototype 

amorphous semiconductor. It was first used as a resistive material [3], but it was not long 

before its photoconductive properties were discovered. Its most important application to 

date has been in Xerography. During fifties and sixties it was used in the commercial 

Xerox photocopiers. Later in the eighties it was replaced by the organic photoconductors 

which are more cost effective. At present, its excellent photoconductive property has again 

attracted interest due to its application in two imaging devices. First is its use as an X-ray 

photoconductor in the recently developed and commercialized direct conversion X-ray 

image detectors. The second is its use as an avalanche photoconductor in ultrahigh 

sensitivity vidicon tubes called HARPICONS. Despite the long history of research and 

interest it has generated, the electronic properties of a-Se have still not been not completely 

understood. This is partially due to the strong influence of small amounts of impurities and 

preparation conditions on its electronic properties. Structural defects inherent in disordered 

solids and impurities greatly affect the charge transport process in amorphous selenium. 

Successful use of a-Se in commercial applications therefore depends on our understanding 

of the electronic properties of this material. 

 In the next section the principle of operation of some commercial applications of 

amorphous selenium is briefly described. Then the research objective of this work and the 

thesis layout is presented in this chapter. 
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1.2 Application of Amorphous Selenium in Digital Xerography 
1.2.1 Film-Based Radiography 

The purpose of this section is to illustrate the application of a-Se in X-ray image 

detector. Radiographic imaging is one of the most commonly employed diagnostic tools 

used by physicians today. This imaging technique uses X-rays as the information carriers. 

The differential attenuation of the incident X-ray radiation as it passes through the patient’s 

body is used to obtain the image of the internal structure of the body which is captured on a 

photographic film or other radiographic detector. As the X-rays pass through the patient’s 

body, the intensity of the radiation is modulated. The modulation takes place because X-ray 

attenuation is different for different parts in the body, e.g. the bones are denser than fat and 

the tissues and therefore absorb more radiation. The modulated X-ray radiation; also 

referred to as remnant radiation; is projected onto an X-ray detector. This modulated 

radiation contains information about the internal structure of the patient’s body and the X-

ray detector converts the intensity pattern of the remnant radiation into a measurable 

response. The final image typically consists of various light and dark regions representing 

the internal structure of patient's body. For example, the area of the detector falling in the 

shadow of bones appears lighter in the image because relatively few X-rays propagate 

through the bones and generate a small response in the detector. Conversely, areas falling 

under the shadow of soft tissue such as fat and muscle appear brighter in the image because 

a large number of X-rays pass through this area without being absorbed and the detector 

records a large response.  

At present, the majority of X-ray detectors in use are based on photographic films. 

The film-based detector consists of a photographic film sandwiched between two 

fluorescent screens. The cross-sectional view of a film based detector is shown in Figure 

1.1. The incident X-rays are converted into visible light upon irradiation and expose the 

film. The intensity pattern is thus registered onto the film and the film is later developed 

using standard techniques.  



  4

 

 Figure 1.1: Cross-sectional view of a film-screen cassette [4]. 

 

Film-based technology offers good image quality, but it suffers from some 

drawbacks. The film-screen cassette has to be manually inserted in the radiographic system 

before exposing the patient to X-ray radiation. After exposure, the cassette is physically 

taken to a dark room, where it is developed using chemical agents. If the radiologist is not 

satisfied with the image quality, the whole process is repeated after making necessary 

adjustments. This process from X-ray exposure to obtaining the final image is laborious 

and time consuming. The film is developed using chemical techniques and is not reusable, 

hence it produces chemical waste raising environmental concerns. The interaction between 

human body and radiation results in biological damage. Therefore the reduction of X-ray 

exposure is of prime importance for patient safety. Another serious drawback of film-based 

radiographic image is archiving and transportation of the radiographic images. Usually the 

radiographic images are archived at some central location in the health care facility and 

have to be physically delivered to the health care provider when required. A promising 

alternative to the analog film based radiographic imaging is the solid state digital 

radiography (DR) and is discussed in the following section.  

 

X-ray photon 

Cassette 

Fluorescent Screen 

Photographic Film 

Fluorescent Screen 

Foam Plastic 
Cassette 



  5

1.2.2 Digital Radiography 

Digital radiography overcomes nearly all of the disadvantages inherent in film-

based radiography. Radiographic detectors used in digital radiography are usually 

connected to a computer via some peripheral devices and the radiographic image can be 

viewed on a monitor immediately after exposure. Image quality in digital radiography can 

be improved by means of image processing software and the radiological images could be 

more easily compared with the images obtained from other imaging methods. The 

radiographic image in digital form could easily be stored and distributed electronically 

within the hospital and to other distant locations for secondary opinion, hence facilitating 

archiving and making remote access possible. Highly qualified personnel in larger centers 

could provide service and help with diagnosis to patients in remote and distant regions by 

means of “teleradiology” [5].  

In digital radiography the film-screen cassette is replaced by a photoconductor-

based X-ray image detector that converts the X-rays into an electronic signal which is then 

digitized by an analog to digital (A/D) converter and recorded by computer memory. The 

image can then be processed, displayed, transmitted or archived using a computer. 

Currently, digital radiography is in use through three approaches, two of which make use of 

phosphor screens. In the first phosphor-based technique, a video camera is optically 

coupled to an X-ray image intensifier. The signals from the video camera are then digitized 

to provide instant readout. The second phosphor-based technique is the stimulable 

phosphor system. The phosphor screen used for this purpose contains traps for electrons 

excited by incident radiation. The phosphor screen is then illuminated from point to point 

using a red laser. The latent image therefore is obtained in form of blue light from the 

trapped electrons. This type of detection is referred to as indirect conversion because the 

electronic signal is generated indirectly from the pattern of visible light given off when X-

rays strike the phosphor screen. It is necessary that the phosphor layer is thick enough to 

stop the energetic X-rays. Both these phosphor based systems have some disadvantages. 

The radiographic images obtained from these systems exhibit poor resolution which is the 

consequence of the spreading of light in the thick phosphor layer. The later mentioned 

technique has the disadvantage of not providing instant image. The phosphor screen must 



  6

be carried to the laser scanner for readout by a photomultiplier, which performs the 

digitization [5].  

Third and one of the most promising digital radiographic system is a direct 

conversion flat panel X-ray detector. This system has been widely discussed in literature by 

Kasap and co-workers [6,7,8,9,10,11,12,13], and is reviewed here along the lines of 

Reference [6]. The incident X-rays are directly converted to electrical charge that is the 

consequence of the ionization of the atoms in the detector. This function is achieved using 

a large-area, thin-film-transistor, (TFT) active-matrix array (AMA) with an electroded X-

ray photoconductor. The detector captures the X-ray image and converts it directly to a 

digital signal for processing, display and storage. An electric field is created across the 

photoconductor by applying a biasing voltage to the electrodes. The charge carriers 

released in the photoconductor by the absorption of X-rays are guided to the 

photoconductor surface under the influence of the electric field with negligible lateral 

spreading making higher resolution possible. This combination of an active matrix array 

(AMA) of thin film transistors (TFT) and an X-ray photoconductor constitutes a direct 

conversion X-ray image detector. The term "direct" implies that the X-ray photons in these 

detectors are directly converted to charge carriers that are subsequently collected and 

detected. The development of displays made up of individual flat panel thin film transistors 

(TFTs) was the important first step in the advancement of direct conversion X-ray detector 

technology. The flat panel displays are also called active matrix arrays (AMAs) due to the 

fact that active devices, i.e. thin film transistors, are arranged in arrays forming a large 

matrix. The flat panel displays are being manufactured from TFTs using the hydrogenated 

amorphous silicon (a-Si:H), microcrystalline silicon and polycrystalline cadmium selenide 

(CdSe).  

A simplified schematic of an AMA is shown in Figure 1.2. An AMA consists of 

millions of individual pixel electrodes connected by transistors (one per pixel) to electrodes 

passing over the whole array to auxiliary electronics on the periphery. The thin film 

transistors act as switches to control and coordinate the clocking out of the charge a line at 

a time. The magnitude of the charge stored in each pixel represents the image resulting 

from the ionization due to remnant radiation.  
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Figure 1.2: Thin film transistor (TFT) active matrix array (AMA) for use in X-ray image 
detectors with self-scanned electronic readout. The AMA has of M × N pixels [6]. 

 

In general, an AMA consists of M × N TFT-based pixels (i, j). Each pixel consists 

of a signal storage capacitor Cij that collects the charge through a charge collection 

electrode labeled as B. The charge stored in these capacitors can be read by properly 

addressing the TFT, acting here as switches, by the way of the gate line i and source line j. 

External electronics and software, by proper self-scanning, converts the charge stored on 

Cij to a digital image. No external means, such as scanning laser beam as in the case of 

some other digital X-ray imaging systems, are used to extract the information stored in 

these pixels, hence the term self-scanning is used for these types of detectors.  

In order to create a flat panel X-ray photodetector, the AMA panel is coated with a 

layer of amorphous selenium (a-Se), as shown in Figure 1.3. An electrode is then deposited 

on top of the a-Se layer. In order to create a uniform electric field across the a-Se, a biasing 
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potential is applied to the deposited electrodes. Upon irradiation the photoconductor 

absorbs the X-rays and the photogenerated electron hole pairs (EHPs) travel towards the 

respective electrodes under the influence of the applied bias. Electrons are collected by the 

positive electrode, labeled as here as A, and holes are accumulated in the storage capacitor 

Cij, and the resulting charge Qij is read during self-scanning. The capacitance of the 

photoconductor layer on each pixel is much smaller than the pixel capacitance Cij so that 

most of the applied voltage drops across the photoconductor. The amount of charge in each 

pixel is therefore proportional to the amount of X-rays absorbed by the photoconductive 

layer above that pixel. As shown in the Figure 1.3, the gates of all TFTs in a row are 

connected and all the TFTs in a column have their sources connected. When the gate line i 

is activated, all the TFTs in that row are turned “on” and N data lines from j = 1 to N then 

read the charges on the pixel electrodes in row i. The parallel data are then multiplexed into 

serial data, digitized and then fed into a computer for imaging. Similarly the scanning 

control then activates the next row, i + 1, and then performs the same actions until all the 

rows are scanned and eventually the complete image is acquired on the computer [5].   

The high sensitivity and high resolution render this system a good candidate 

compared to other contenders in high resolution, low dosage digital radiography as recently 

analyzed and discussed in literature [14,15,16]. The resolution in digital radiographic 

detectors is determined by the pixel size which in present experimental detectors is 

typically 150 µm but is expected to be as small as 50 µm in future detectors. This 

resolution is necessary for applications like mammography. Furthermore the flat panel 

detector also has potential for use in real-time interactive X-ray imaging called 

fluoroscopy. 
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Figure 1.3: Cross section of a single pixel (i,j) with a TFT showing the accumulation of X-
ray generated charge on the pixel electrode (exaggerated scale). Pixel size is typically 
150µm × 150µm in size [6]. 

 

1.2.3 Practical Advantages of a-Se as X-Ray Photoconductor 

Amorphous selenium is one of the leading candidates to be used as a 

photoconductive layer coating on AMA. This is because of the distinct advantage that it 

can be easily prepared as thick films or layers over large areas by straightforward thermal 

evaporation in a conventional vacuum coater. Vacuum deposition technique consists of 

loading vitreous selenium pellets into a stainless steel boat. The boat is resistively heated 

by passing a large current through it until the pellets reach the melting point and evaporate. 

The melting point for selenium is 220 °C. Selenium vapor condenses onto the AMA 

substrate to form a layer of a-Se. Typical boat temperature is between 250-280 °C and that 

of substrate is 65-70 °C. These temperatures are low enough to spare the flat panel AMA 

and its delicate peripheral electronics from damage. Compared with other photoconductor 

materials this is another significant advantage since the melting temperatures for the other 

materials are relatively higher. 
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Moreover, since typical deposition rates are 2−4 µm per minute, 200 µm 

photoconductive coating can be applied in less than an hour. In addition to being 

convenient to prepare, flat panel sensors are cost effective because the AMAs used are 

readily available for use in the market. 

 Many other semiconductors can also be vacuum-deposited, but they generally result 

in polycrystalline films and require annealing at high temperatures (hotter than 200 °C for 

lead iodide) to eliminate structural defects. Also the grain boundaries in polycrystalline 

films can trap charge carriers, limiting charge transport to the point of making the 

photoconductor practically useless [5].  

 

1.3 TV Camera Pick-Up Tubes and Avalanche Multiplication 

The purpose of this section is to discuss the application of a-Se in ultra high 

sensitivity TV pickup tubes. This section is discussed along the lines described in 

Reference [6]. One of the most interesting properties of a-Se is that at sufficiently high 

electric fields, charge carriers in a-Se exhibit avalanche multiplication. This phenomena 

has been exploited in the development of super sensitive TV pick up tubes (the 

HARPICON vidicons) with a gain as high as 800. In this section the principle of operation 

of the HARPICON and the avalanche multiplication that has enabled super sensitive 

pickup tubes for high-definition television (HDTV) is discussed. A commercially available 

TV pickup tube that employs amorphous Se-As-Te (selenium-arsenic-tellurium) alloys is 

Hitachi’s Saticon. A schematic diagram of the structure of a typical a-Se Saticon is 

illustrated in Figure 1.4. This pickup tube utilizes the high panchromatic photosensitivity of 

the Se-Te alloy and the relatively fast drift mobility of a-Se. The Se-Te alloy is sandwiched 

between layers of CeO2 and Sb2S3 which act as barriers for holes and electrons 

respectively. Electrons are injected by the scanning electron beam and they become trapped 

in the Sb2S3 layer resulting in a negative space charge in this layer. Exposing the face plate 

to light leads to photogeneration of holes in a-Se which transit across towards the Sb2S3 

layer to recombine with the electrons trapped in that layer. The photogeneration is 
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contained within the region with high Te concentration. In order to limit the crystallization 

process in a-Se, 1% As to a-Se is added.  

 

Figure 1.4: Schematic diagram of a Saticon TV image pickup tube utilizing an s-Se:Te:As 
alloy. The Te concentration is concentrated in the region shown in the figure [5]. 

 

Tanioka and coworkers at NHK labs developed a super-sensitive photoconductive 

target for use in HDTV camera pickup tubes. The target is called HARP; acronym for high-

gain avalanche rushing amorphous photoconductor; and the vidicon using the HARP target 

is called HARPICON or a-Se avalanche vidicon. The entire target is about ~2 µm or 

thicker depending on the sensitivity requirements of the target. The basic structure of the 

HARP target is illustrated in the Figure 1.5.  

The layers of CeO2 and SbS3 act as blocking contacts for hole and electron injection 

respectively. The transparent signal electrode SnO2 is biased positively with respect to the 

cathode. The incident light is absorbed in the a-Se layer and results in photogeneration of 

electron hole pairs (EHPs). These EHPs drift towards their respective electrodes under the 

influence of the electric field. As the photogenerated holes drift through the a-Se layer 

towards the back electrode under the action of high electric fields, they experience 
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avalanche multiplication and hence effective quantum gain greater than unity. Quantum 

efficiency is defined as the number of EHPs generated per absorbed photon and quantum 

gain is the number of EHPs collected per photon. The effective quantum gain resulting 

from avalanche multiplication depends on the magnitude of the applied electric field and 

photoconductor thickness. For example, a HARP target with 2 µm thickness and an applied 

field of 120 V/µm results in a quantum gain of 10, whereas a 24.8 µm thick target at an 

applied field of 100V/ µm results in a gain of ~ 1000. TV pickup tubes using such HARP 

targets have far superior sensitivity than conventional TV pickup tubes and hence 

constitute ultra-high sensitive image pickup tubes.  
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Figure 1.5: A schematic illustration of a HARPICON. Avalanche breakdown by impact 
ionization in the a-Se layer is also illustrated. One photogenerated hole results in many 
electron-hole pairs to be generated by impact ionization (avalanche breakdown) in the a-Se 
layer where the electric field is very large [5]. 

1.4 Research Objectives 

Due to the various commercial applications, some of which were briefly described in 

this chapter, thorough understanding of the electronic properties of amorphous selenium is 

crucial for its useful utilization in commercial products. Theoretical formulation of 

electronic and optoelectronic properties using mathematical tools is either extremely 

difficult or impossible for semiconductors lacking periodicity in their atomic arrangement. 

Various experimental techniques are used to deduce information regarding the charge 
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transport mechanism in amorphous semiconductors.  One of the most commonly employed 

methods to investigate the carrier transport process is the time-of-flight (TOF) transient 

photoconductivity. Important parameters like effective carrier mobility and carrier lifetimes 

are obtained from these experiments. These parameters are used to understand the science 

and technology of amorphous semiconductors and hence help to improve the devices 

employing amorphous semiconductors. This research project investigates the carrier 

transport mechanism in amorphous selenium in a typical time-of-flight transient 

photoconductivity experiment using Monte Carlo simulation techniques.  

One of the most important features of amorphous materials is the presence of 

localized states in the mobility gap. The electronic properties of amorphous materials are 

strongly associated with these localized states. The shape of the density of states (DOS) for 

amorphous selenium is still controversial despite a long history of research. There are at 

least two general models of the density of states for amorphous selenium; both having 

distinctly different features in their DOS distribution. These DOS distributions have been 

derived mostly from charge transport and trapping experiments, such as Xerographic 

discharge, time-of-flight (TOF) and post-transit photocurrent analysis. Among these 

methods of investigation, the most common and widely used method is the TOF technique.  

Monte Carlo simulation has become a standard method in studying the charge 

carrier transport mechanism in many amorphous materials. A Monte Carlo (MC) model of 

the TOF experiment is used to calculate the transient photocurrents of the TOF experiment. 

The MC model will employ a DOS distribution below the conduction band (CB) edge, 

simulating electron transport across the sample undergoing trapping and release events 

based on the DOS distribution used, and the resulting current waveforms are compared 

with current waveforms measured from experiments. The density of states distribution is 

optimized until reasonable agreement between experimental and calculated waveforms is 

obtained. This procedure is repeated for various applied bias conditions. The MC 

simulation technique provides the flexibility of incorporating practical aspects of the 

experiment without making the model overly complicated. Effect of finite absorption of 

radiation on carrier generation position in the sample will be incorporated in the MC 

simulation model.  
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The density of localized states distribution in the lower half of the mobility gap near 

the VB edge is even more controversial. A new study suggests that the distribution is 

featureless and monotonically decaying. The featureless DOS distribution near the valence 

(VB) edge will be used to study hole transport in a-Se samples. The calculated transient 

photocurrents will be compared with data published elsewhere.  

1.5 Thesis Outline 

This thesis is divided into seven chapters. This chapter briefly describes the two 

most recent applications of a-Se that have attracted interest of researchers. The principle of 

operation of direct conversion X-ray photo-detector and ultra high sensitivity TV pickup 

tubes (HARPICON) and the objective of this work are discussed. 

 In Chapter 2, the atomic and band structure of amorphous materials is described. 

The different bonding arrangements leading to possible defects and the DOS model for a-

Se are then discussed. The localized states greatly affect the charge transport properties in 

amorphous materials. Some charge transport mechanisms are also discussed in Chapter 2. 

In Chapter 3, the theoretical principles of the TOF transient photoconductivity technique is 

presented, and expressions for the TOF transient photocurrent under a variety of trapping 

conditions (i.e. set of discrete traps, a continuous trap distribution) are developed. The 

Monte Carlo simulation model developed to study charge transport in semiconductors with 

a monoenergetic trap distribution and a three trap level distribution is discussed in Chapter 

4. The DOS distribution in the upper half of the mobility gap is investigated in Chapter 5 

by comparing the TOF transient photocurrents calculated using MC techniques with those 

measured experimentally. In Chapter 6, the proposed DOS distribution model in the lower 

half of the mobility gap is investigated. In Chapter 7, the conclusions inferred from this 

research are outlined.  
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2 Properties of Amorphous Selenium 

 

2.1 Introduction 

 

After the pioneering work of Kolomites and co-workers [1] on amorphous 

chalcogenide glasses, amorphous selenium has attracted considerable attention because of 

its status as a prototype non-crystalline semiconductor [17]. Simplifying concepts such as 

the Bloch theorem are not valid for materials lacking periodicity in their atomic structure. 

A more in-depth understanding of such materials can be achieved by looking at the 

arrangement of constituent atoms and the different bonding possibilities among these 

atoms. In this chapter the atomic structure of amorphous solids especially amorphous 

selenium and possible bonding arrangements which can occur in amorphous selenium are 

studied. The effect of the bonding arrangements on the density of states (DOS) is also 

assessed. This review will provide some background to the electronic properties of a-Se.  

 

2.2 Structure of Amorphous Solids 

The key features of atomic arrangement in a perfect crystal and an amorphous 

material are shown in Figure 2.1. The solid spheres represent the equilibrium position 

about which the atoms oscillate. In the crystalline structure, there exists a translational 

periodicity; almost all the bond lengths and bond angles are identical, independent of the 

atom's position in the solid. This results in long-range order throughout the solid. In 

amorphous solids there are slight variations in the bond lengths and bond angles. These 

slight variations serve to dissolve the spatial periodicity of the structure for distances 
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greater than a few atomic radii. The amorphous structure therefore exhibits short-range 

order rather than long-range order characteristic of crystalline states. This type of disorder 

is called topological disorder. In some cases, the disorder in the amorphous semiconductors 

makes it impossible to satisfy the bonding requirement for the atom. This leads to the 

formation of dangling bonds which has significant influence on the physical and electronic 

properties of these materials. Other forms of disorder include spin disorder, compositional 

disorder (for compound materials) and vibrational disorder.  

 

Figure 2.1: Comparison of the atomic arrangements in (a) a perfect crystal and (b) an 
amorphous semiconductor. The atomic structure shown here is three-fold coordinated, with 
the atoms labeled with U are under- and atoms labeled with O are over-coordinated. 

Despite lacking long-range spatial order, the amorphous solid still has a high degree 

of short range order. Generally the valency requirements are satisfied for individual atoms, 

and each atom is normally bonded to the same number of nearest neighbors. Hence it can 

be said that no solid is strictly “amorphous” in the sense of completely lacking in any type 

of definable order [2,18]. 

 

2.3 Band Structure of Amorphous Semiconductors 

A solid consists of a large number of atoms which interact with each other resulting 

in a large number of electronic states within a small band of energy. Within these bands the 

electron energy levels are almost continuous. The electron energy falls within the possible 

states in these bands of energies. The interaction of bonding orbitals leads to the formation 
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of an energy band called the valance band (VB) by the virtue of the valence electrons it 

contains. The interaction between the anti-bonding orbitals leads to the formation of 

another band that is entirely vacant and is called the conduction band (CB). In 

semiconductors, the conduction band and valance band are separated from each other by a 

fixed energy gap or bandgap Eg. This bandgap is measured from the top of the CB to the 

bottom of VB. There is no state in the bandgap and an electron cannot have energy within 

Eg. Ev is the energy at the top of the VB and Ec is the energy at the bottom of the CB [19]. 

These bands lead to the important concept of density of states (DOS), which is defined as 

the number of possible electronic states per unit volume per unit energy. The density of 

states for a perfect crystalline structure is shown in Figure 2.2(a).  

During the development of the band theory of electronic conduction in crystalline 

semiconductors, the concept of bands of allowed electronic energy states, separated by 

forbidden ranges of energy became firmly associated with materials with long rage order. 

The band theory was thought be the consequence of interaction of electronic wave function 

with periodic lattice with long-range order. Consequently for a period of time, amorphous 

materials, lacking long rage periodicity, were not considered to behave as semiconductors.  

N. F. Mott in 1960 [20] was the first to generalize the band theory of crystalline 

semiconductors to amorphous materials. His work was based on the assumption that 

despite the differences in their atomic arrangements, crystalline and amorphous 

semiconductors will have similarities in their band structure. He noted that in all crystalline 

solids, the electronic structure has the following universal features: 

1. the individual electrons are described by extended Bloch wave functions 

possessing long range order in both amplitude and phase 

2. the allowed electronic states form bands with sharp edges separated by well 

defined energy gap 

Mott postulated that in amorphous semiconductors Bloch wave functions have 

amplitudes with long-range order but their phase will only have short-range order. 

Therefore the sharp band edges that were the result of long-range periodicity will be 

replaced by “tails” of localized states as shown in Figure 2.2(b). Mott’s hypothesis was 
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based on the work of P.W. Anderson [21], who in 1958 showed that the translational and 

compositional disorder in amorphous materials will result in “localized” states. These 

localized states, which lie in the forbidden energy gap, have an adverse effect on the carrier 

drift mobility. The carriers have finite band transport mobility in the extended states, while 

in localized states mobility is controlled by thermally activated tunneling between localized 

states. This region of abrupt change in mobility gives rise to a mobility gap in amorphous 

semiconductors, similar to the bandgap of crystalline semiconductors.  

M. H. Cohen, H. Fritzsche and S. Ovshinsky [22] advanced a model that was based 

on the assumption that Mott had underestimated the degree of disorder. Their model (also 

known as the CFO model) consisted of localized states that extend throughout the mobility 

gap. The density of states distribution based on CFO model is shown in Figure 2.2(c). 

Attempts to apply this model to amorphous semiconductors in general failed, since many 

amorphous semiconductors posses a significant degree of short range order. 

N. F. Mott and E. A. Davis [23] in 1971 proposed another idealized model with 

comparatively limited linear tails of localized states, shown in Figure 2.2(d). The Fermi 

level was assumed to be close to the center of the mobility gap pinned by another small 

group of localized states. All solids, amorphous or crystalline, contain atoms that are 

coordinated differently from their normal structure bonding (NSB). The local connectivity 

of the network is well defined on a local basis. This may lead to well defined defects in the 

amorphous structure such as dangling bonds, chain ends, vacancies, substitutional 

impurities, interstitials etc. Such defects are called deviant electron configurations (DECs) 

and may lead to localized states within the mobility gap of the material in addition to the 

disorder induced states. The carrier transport properties in crystalline semiconductors are 

well known to be controlled by these defects.    

Marshall and Owen performed studies on the charge transport properties of 

amorphous chalcogenide semiconductors. Their experiments indicated the presence of 

localized states in the mobility gap at various well-defined energies in addition to the tail 

states. These defect states are shown in Figure 2.2(e). It had been previously assumed that 

the disorder induced tail states would be sufficient to take into account the DEC defects 

mentioned above. But Marshall and Owen argued otherwise and suggested that the 
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localized mid-gap states were the consequence of these intrinsic defects. Spear and co-

workers [24] in 1976 studied amorphous silicon (a-Si) and reached similar conclusions.  

 

 

 

 

 

 

 
Figure 2.2: Various proposed models for density of states g(E) as a function of energy. (a) 
DOS model for crystalline semiconductors (b) Mott’s model (c) CFO Model (d) Mott and 
Davis model (e) Marshall and Owen model. 
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2.4  Structure of Amorphous Selenium 

Selenium is an element from the group VI column of the periodic table. The 

elements in this column are referred to as chalcogens. All elements of the chalcogen family 

have six electrons in their outermost shell and can accommodate up to eight electrons. The 

outermost shell consists of two subshells, called s-type and p-type subshells. The s-type 

states can hold two electrons, while p-states have six allowed states. Selenium has atomic 

number Z = 34, implying that it has twenty eight inner core electrons and six valance 

electrons in the outer most shell. The two s-electrons form a lone pair (LP) and do not 

participate in bonding. The remaining four electrons reside in the p-subshell. Two of the 

four p-state electrons usually form a lone pair and are sometimes referred to as non-

bonding (NB) states. The remaining two electrons are available for covalent bonding to 

other atoms. This configuration results in two-fold coordination bonding and has an 

optimal bond angle of 105° and represents the lowest energy configuration for selenium. 

Chalcogens generally exhibit divalent bonding and thus form chain-like structures. 

However, if trigonally bonded atoms, for example those from Group IV or V, are added to 

the structure, they cross-link with the divalent chains to attain three dimensional stability in 

the amorphous alloy. 

Selenium exists in both crystalline and amorphous form. In the crystalline state, 

selenium has two major allotropes; monoclinic Se (α-Se) and trigonal Se (γ-Se). The α-

monoclinic Se is composed of eight-member (Se8) rings and γ-Se consists of screw-like 

spiral chains which run parallel in hexagonal symmetry. γ-Se is more stable at room 

temperature. It was assumed that the amorphous form of Se would consist of a mixture of 

the rings and chain formations of trigonal and monoclinic allotropes. However, structural 

investigation of a-Se and its alloys indicates a “random chain model” with all the atoms in 

a two-fold coordinated chain structure. The angle between two adjacent bonding planes is 

defined as the dihedral angle, denoted byφ. The concept of dihedral angle φ is explained in 

Figure 2.3 which shows a selenium random chain model. In this example, atoms labeled 1, 

2, and 3 form one bonding plane and atoms 2, 3, and 4 from the second bonding plane. The 

angle between these two planes is the dihedral angle, which is further illustrated in Figure 

2.4(b) by looking down the bond that connects atoms 2 and 3. The magnitude of the 
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dihedral angle φ in the random chain model remains constant but its sign changes randomly 

[25,26]. 

 

Figure 2.3: Definition of dihedral angle φ in selenium random chain model. (a) The 
definition of dihedral angle formed between two planes of atoms 123 and 234. (b) Looking 
down on the bond joining atoms 2 and 3 [27]. 

 

In the crystalline form, the position of the selenium atoms are fixed by symmetry, 

the bond length r, and bond angleθ. Therefore, the magnitude of φ is a function of bond 

length r, and bond angleθ. In γ-Se, the dihedral angle rotates in a manner similar to moving 

along a chain to give a spiral pitch of three atoms, while in α-Se, the dihedral angle 

alternates its sign as we move along the ring-like structure. In the amorphous form of 

selenium, the dihedral angle changes its sign randomly, leading to ring-like and chain-like 

segments. If + or – is used to indicate the relative phase of the dihedral angleφ, then a 

sequence of + – + – represents a ring-like and a sequence of ++++ or – – – – represents a 

chain-like structure. A structure of amorphous selenium shown in Figure 2.4 can be 

characterized by +++ – + – + – – –. Only local molecular order within the selenium chain 

has been assumed in this model and it has been used successfully to explain the vibrational 
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spectra of a-Se to account for the presence of various Se8-like spectral features in the 

infrared absorption and Raman scattering spectra. Other structural studies also support this 

random chain model [28,29]. 

 

 

Figure 2.4: Random chain model of amorphous selenium depicting chain-like and ring-like 
segments [27]. 

 

The structure of amorphous solids is not completely random and there is a degree of 

order at least between the individual atoms. Each individual atom in the solid tends to 

fulfill its valency requirements, however not all the atoms can satisfy their individual 

requirements due to lack of periodicity in the amorphous structure. An important property 

of chalcogenide glasses is that these materials contain thermodynamically derived charged 

structural defects, called valence alternation pairs (VAP). These defects correspond to 

some of the chalcogen atoms being over and under coordinated [30,31,32]. Figure 2.5 

depicts the bonding configurations possible for a-Se. The first column in the figure consists 

of notations representing the bonding configurations. In this column, C stands for 

chalcogenides and the subscripts indicate coordination number and the superscripts 

represent the polarity. The energy of the non-bonding lone pair is taken to be zero. The 

energy per electron of any bonding orbital σ is taken as –Eb regardless of the nature of the 
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bond. Since anti-bonding orbitals lie at a slightly higher energy level as compared to the 

energy depth of the bonding orbitals, the per electron anti-bonding orbital energy is Eb + ∆, 

where ∆ > 0 and is called anti-bonding repulsive energy. Whenever an additional electron 

is placed on an atom, there is an increase in energy due to electronic correlation Uc. The 

first state shown in Figure 2.5(a) represents the two-fold coordinated structure, 0
2C  which 

has overall energy -2Eb. In this configuration two of the p-state electrons form a lone pair 

(LP) in the non-bonding state, and the rest of the two electrons reside in bonding states. 

The next lowest energy configuration is trigonally coordinated atom, 0
3C shown in Figure 

2.5(d). Formation of this type of defect costs the anti-bonding repulsive energy∆. Another 

electrically neutral defect is the chain end, represented as 0
1C in Figure 2.5(b). In this 

configuration, three p-shell electrons are in non-bonding state and one electron is in the 

bonding state available for bonding. Since this configuration lacks a second bond, this 

defect costs the system the energy of the second bond. 
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Figure 2.5: Bonding configurations and structure of selenium atoms. Solid straight lines 
represent boding orbitals, lobes represent lone-pair (non-bonding) orbitals, and circles 
represent antibonding orbitals (Figure taken from Adler and Yoffa [33]). 
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Unpaired non-bonding and anti-boding electrons can be detected using 

experimental techniques. The absence of electronic spin resonance (ESR) signal eliminates 

the existence of these types of defects in amorphous selenium [34,35]. Kastner, Adler, and 

Fritzsche [30] studied the absence of ESR signal and proposed that the neutral defect 0
3C is 

unstable and would transform into positively and negatively charged centers (VAPs), −
1C  

and +
3C respectively. The defect generating reaction can be written as 

  +− +⎯→⎯ 31
0
22 CCC       (2.1) 

The one-fold −
1C  and three-fold coordinated +

3C defects are shown in the Figure 

2.4(c) and (e) respectively. If a pair of these defects is in close proximity, then they are 

called intimate valence alternation pairs (IVAP). The formation of these under- and over- 

coordinated atoms is energetically more favorable, as the singly bonded defects are 

relatively unstable and the total energy of the system is lowered by the transformation 

provided the electron correlation energy Uc is less than 2∆. For example, a chain end 0
1C  

can lower its energy by approaching the lone pair on a normally coordinated 0
2C atom and 

generate an IVAP. The diffusion of the resulting IVAP pair away from each other can 

further reduce the Gibbs free energy of the solid. 

An example of the reaction given by Equation 2.1 is shown in Figure 2.6. A bond 

between trignonally coordinated defect, 0
3C  and a two-fold coordinated atom, 0

2C  is broken. 

An electron from a trigonally coordinated atom can be transferred to the singly bonded 

defect, resulting in an IVAP as shown in the adjacent Figure 2.6(b). The overall material 

remains neutral despite the presence of large number of positive and negative charged 

defects. The defect centers −
1C and +

3C are in close proximity to each other, and hence an 

approaching carrier “sees” IVAP centers as neutral defects.  
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Figure 2.6: In amorphous selenium, (a) 0
3C  defects cross-link the divalent chains and (b) 

dissolve to form and IVAP. 
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Many photoelectric properties of a-Se and its alloys can be qualitatively explained by 

using concepts based on VAP- and IVAP-type defects, and on the inter-conversions 

between the normally bonded (two-fold coordinated) Se atoms and these defects. The 

physics of such processes has been extensively discussed in the literature [36,37]. Their 

existence and the possible defect reactions that can occur in the structure have led to many 

important predictions and have provided much insight in to the behavior of chalcogenide 

semiconductors. For example, the linear dependence of the steady state photoconductivity 

on the light intensity in a-Se has been interpreted via photoinduced IVAP-type centers [38].  

 

2.5 Density of States Model for Amorphous Selenium  

 The electronic properties of amorphous materials are strongly connected with the 

DOS distribution in the mobility gap. Even though a-Se has been extensively studied, the 

exact shape of DOS for a-Se is still surrounded by various uncertainties and controversies. 

A number of DOS models have been proposed and discussed in the literature 

[39,40,41,42,43,44,45]. At present, there are at least two general models [46,47,48] which 

are distinctly different in their DOS distributions; they agree only on the fact that the DOS 

distribution is not featureless, but contains various peaks as is expected from the Marshall–

Owen model of amorphous semiconductors. Within these two DOS models, the number, 

position, and magnitude of the peaks are still unresolved and are being actively discussed.  

 A tentative schematic diagram for a-Se is sketched in Figure 2.7. The salient 

features in the DOS, described by Kasap [49], are discussed here.  This DOS distribution is 

originally based on the model proposed by Abkowitz [46] in 1988 as an extension of the 

Owen-Marshall DOS model reviewed in the section 2.3. The DOS model is developed 

through various charge transport and trapping experiments such as transient 

photoconductivity and electrographic measurements of cycled-up residual and dark 

discharge. The DOS distribution in the upper half of the mobility gap near the conduction 

band (CB) edge has been further studied in detail by Koughia et al. [45]. They have studied 

electron TOF transient photocurrents in stabilized a-Se as a function of electric field, 

annealing, aging (relaxation), and alloying with As and doping with Cl. The distribution of 



  29

localized states in stabilized a-Se has been investigated by comparing the measured and 

calculated transient photocurrents. The upper part of the DOS shown in Figure 2.7 has been 

adapted from their findings.  

 The notable features of this DOS model are a decaying density of localized states 

from the band edges, with peaks close to the CB edge, called shallow electron traps. Over 

the time scale of typical transit times involved in a-Se applications such as in X-ray 

imaging, the electron drift mobility µe is controlled primarily by these shallow traps at 

about ∆E′1 = 0.30 – 0.35 eV below Ec. There is a secondary smaller peak at about ∆E′2 = 

0.45 – 0.50 eV below Ec, and a distribution of deep electron traps at about ∆E′d ≈ 1.1-1.2 

eV below Ec. For the DOS shown here, the mobility gap Ec – Ev is about 2.1 eV wide.  

 New evidence [50] points to a drift mobility µh that is controlled by a 

monotonically decreasing distribution of tail states near Ev, which explains the field 

dependence of the activation energy. There is a peak in the DOS at about ∆E2 ≈ 0.45 - 0.50 

eV above Ev, and a distribution of deep hole traps at ∆Ed = 0.85 − 0.90 eV above Ev. The 

Fermi level is about 0.95 − 1 eV above Ev, slightly below midgap (a-Se is p-type). ∆E′2 and 

∆E2 have been proposed to represent the positions of valence alternation pair (VAP) type 

defects (Se3
+ and and Se1

−) in the structure. The concentration of deep traps in a-Se 

depends on alloying, doping, and aging. The deep states are of particular interest for the X-

ray imaging applications. The deep states control the carrier lifetimes, or trapping times, 

and thus determine the carrier shubweg controlling X-ray photoconductor sensitivity. The 

nature and the exact origin of the shallow traps at ∆E′1 and the deep traps at ∆E′d from Ec 

and ∆Ed from Ev have not yet been fully resolved. Two different peaks have been shown in 

Figure 2.7 for electron and hole traps above and below EF based on the discharge of the 

saturated cycled-up Xerographic potential [51] and cycled time-of-flight experiments [52].  
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Figure 2.7: A tentative schematic density of states for a-Se [49] 

 

The effects of impurities and alloying elements on the transport properties of a-Se 

have been extensively studied in the literature. Selenium in its pure amorphous form is 

unstable and crystallizes over time. The rate of crystallization depends on the ambient 

conditions [53]. In order to control the crystallization process, small amounts of As (0.2%-

0.5%) is alloyed with a-Se. Trivalent As atoms are triply bonded and link with Se chains 

which increases the viscosity of the amorphous structure and prevents crystallization. One 

drawback of adding As is that it increases the number of VAP defects that act as hole traps, 

resulting in the decrease of hole lifetime. This can be compensated by adding a halogen 

(e.g. Cl) in the parts per million (ppm) range. 

A thermally stable film with good hole and electron transport is therefore achieved 

by adjusting the amount of As and Cl in order to balance the number of VAP defects that 

lead to carrier traps. The resulting material is called stabilized a-Se, and the nominal 

composition is indicated, for example, as a-Se:0.3%As +20ppm Cl. The compensation 
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effects of As and Cl on the charge transport properties of a-Se photoconductors are 

currently being studied as there are fundamental issues that have yet to be fully resolved 

[35, 43]. Koughia et. al. [45] have investigated the influence of doping, aging, annealing, 

and substrate temperature on the density of localized states distribution near CB edge. They 

have concluded that doping with Cl does not affect the amplitudes of the first and second 

peaks at ∆E′1 and ∆E′2 respectively while the concentration of deep states increases 

dramatically. Alloying with As reduces the density of deep states and seems to increase the 

amplitude of first and second peaks. For the effects of aging on the DOS, they concluded 

that it substantially reduces the deep states density and the amplitude of the second peak 

while the amplitude of the first peak remains practically unchanged. They interpreted the 

results in terms of thermodynamic and intrinsic structural defects in the chalcogenide glass 

structure. 

The other generalized model for the DOS is based on the results from experiments 

based on post-transit transient photoconductivity techniques [40,42,43,44]. The results 

from these experiments suggest that the peaks in the densities of the shallow traps occur at 

0.55 eV below the CB edge and 0.40 eV above the VB edge. The carrier mobility in this 

case is thus determined by a distribution of shallow localized states that extends over an 

energy range ∆E from the band edges. The distributions of the deep states are not 

accessible within the limits of the post transient photocurrent experiment, and are, 

therefore, not defined by this model.  

 

2.6 Carrier Transport Processes in Amorphous Semiconductors 

Carrier transport in crystalline semiconductors always involves motion in extended 

states, except for the cases with extremely high doping levels or at very low temperatures. 

Electrons travel in the CB and holes can travel in the VB. Free electrons and holes travel in 

the extended states under the influence of an electric field. In the absence of some external 

source of excitation such as X-rays or light, random thermal vibrations of the crystalline 

lattice create electrons and holes. If these vibrations acquire sufficient energy, they can 
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excite electrons from the VB into the CB. Alternatively, photons with energy hυ > Eg can 

also excite the electrons across the bandgap.  

Localized states in the mobility gap of amorphous materials have a profound effect 

on the carrier transport process and thus on electronic properties of these materials. 

Considering the band structure of the form shown in Figure 2.2(c), a number of carrier 

transport processes are possible. First we consider the states above Ec, which in the 

corresponding crystalline materials lie well within the conduction band. Only electron 

mobility is discussed in this section but the arguments are equally valid for holes after 

proper modification in terminology and carrier parameters. The effect of random potentials 

and varying interatomic distances is comparatively low in these states. The mean free path 

is considerably longer than average interatomic distances and carrier transport is 

interrupted by occasional scattering. Applying considerations of conventional band theory, 

the predicted minimum value of mobility for electrons in these states is 100 cm2V-1s-1[2]. 

For mobilities less than 100 cm2V-1s-1 the mean free path between two scattering 

events becomes less than de Broglie wavelength of the electron and for mobilities smaller 

than 10 cm2V-1s-1, the mean free path is less than the interatomic spacing. In the extended 

states just above the mobility gap of the material, effects of the disorder dominate the 

charge transport process to the extent that it can no longer be considered band motion with 

occasional scattering. Cohen described the motion in these states as a diffusive motion 

similar to the Brownian motion of dust particles in a gas. He estimated the mobility in these 

states to be of the order of 1 cm2V-1s-1 [54]. 

In amorphous semiconductors, a high density of defect states results in localization 

at energies below Ec. Conduction in these localized states can still occur by direct tunneling 

between localized states as if the carriers “hop” from one localized state to another. The 

mobility of such phonon assisted “hoping” transport has been estimated by Mott and Davis 

[55] as  
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where νph is the attempt to hop frequency of the order 1012 – 1013 Hz, ⎯R is the mean 

separation between neighboring sites, R0 is the localization radius of the centers.. The term 

νph exp (-W/kT) represents the probability per second that the localized electron hops up to 

a new site, at energy difference W. Equation 2.3 predicts drift mobility in the range of ~10-2 

cm2V-1s-1 or less at room temperature. This sharp decrease in mobilities near Ec and Ev 

defines the mobility edge of the non-crystalline solids. 

 

Figure 2.8: Variation in charge carrier mobility with energy for disordered semiconductors 
[2] 

 

 In materials like a-Se with a large number of disorder induced localized states, the 

microscopic mobility µ0 is modulated by the traps that lie at lower energy levels below the 

conduction levels. The localized states that are located near the band edges act as trapping 

centers that remove the carriers from the transport bands. Carrier transport process across 

these materials is interrupted at regular intervals by trapping and release events due to these 

shallow traps. The effective drift mobility of the carriers thus decreases due to the time 

spent immobilized by the carrier in the traps. These traps are characterized by their capture 

and release time. If τc is the mean time the carriers is free and τr is the mean time spent by 

the carrier in the trap then the microscopic drift mobility of the carriers reduced by a 
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factor )/( rcc τττ + . This type of conduction mechanism is called trap-controlled or trap-

limited transport. The theory of trap-limited transport is further discussed in Chapter 3. The 

probability that a carrier will be captured is given by 

 tt
c

CN
τ

=
1         (2.4) 

where Nt is the density of traps and Ct is the capture coefficient which depends on the 

species of the traps. Equation 2.4 implies that the capture lifetime is inversely proportional 

to the trap density. Charge carriers after getting captured in a trap can be re-emitted by a 

number of mechanisms. Re-emission from a Coulombic trap is a thermally activated 

process and the probability of the re-emission is given by the Boltzmann statistics as  
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where νph is the attempt-to-escape frequency and Et is the depth of the trap below the CB 

edge on the energy scale. Release from the shallow traps is much faster than from deeper 

traps.  

 The probability of re-emission from the trap increases by application of an electric 

field. The electric field applied reduces the potential barrier in a Coulomb-attractive trap 

through the Poole-Frenkel effect. The Poole-Frenkel effect decreases the potential barrier 

Et by an amount δE, which is given by the expression 

 FE βδ =         (2.6) 

where β is the Poole-Frenkel constant and F is the magnitude of the applied electric field. 

Since the potential energy barrier is lowered, the equation for the probability must be 

modified to take into account this effect, and hence Equation 2.2 becomes 
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The shallow trap release time is very short. For the time scale of experiments like 

TOF photoconductivity, carriers may experience capture and release numerous times while 

traversing a solid. The release time from deep traps is very large and the carriers may be 

permanently removed from the transport band for the timescale of a typical TOF 

experiment. 

 For a-Se the peaks close to the CB edge at ∆E′1 = 0.30 – 0.35 eV below Ec (shown in 

Figure 2.7) primarily controls the electron drift mobility µe. Electron drift mobility µe is 

thermally activated with an activation energy ∆E′1, and the measured activation energy is 

relatively field independent as borne out by experiments. The hole drift mobility µh is also 

thermally activated but with an activation energy that depends on the field [49]. 

 

2.7 Summary 

In this chapter, the structure and electronic properties of amorphous selenium were 

discussed. The atomic arrangement in amorphous semiconductors is not completely 

random and has short-range order. The variations in the periodic lattice structure tend to 

dissolve the sharp band edges in the DOS diagrams and are replaced by tail states 

extending in the mobility gap. Various band models proposed for amorphous materials over 

time by different researchers were also discussed briefly.  

The disorder in amorphous solids is believed to give rise to certain states that are 

localized in space in the mobility gap of the DOS model. In amorphous selenium, these 

states are recognized to be the consequence of thermodynamically derived charged 

structural defects, called valence alternation pairs (VAP). Research has shown that atoms in 

amorphous selenium exist in a two-fold coordinated random chain structure. The VAPs 

correspond to some of the chalcogen atoms being over and under coordinated. These 

defects result in the localized states in the mobility gap and hence control the electronic 

properties of amorphous selenium. 

Charge transport in amorphous selenium is possible through a number of processes. 

Charge transport studies have suggested that the dominant transport process in a-Se is 
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diffusive type transport in the extended states near the mobility edge. The carrier transport 

is further modulated by the shallow traps near the mobility edge. The trapping and release 

events in these shallow traps reduce the drift mobility of charge carriers. 
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3 Time-of-Flight and Transient Trap Limited 
Transport 

 

3.1 Introduction 

One of the main driving forces in research of amorphous and microcrystalline 

semiconductors is that these materials can be economically fabricated into large-area 

devices required in applications such as displays, scanners, solar cells, image sensors, 

position sensors, and similar applications. Understanding the electronic conduction in these 

materials is therefore important for the successful use of these materials in commercial 

applications. Because of the mathematical complexities inherent in dealing with non-

periodic atomic structures of amorphous materials, experimental measurements are 

required for characterization of these materials. The results of these experiments can be 

used to investigate the nature of electronic transport in such materials. Some of the charge 

transport and trapping experiments are Xerographic discharge, time-of-flight (TOF) and 

post-transit photocurrent analysis. Among these techniques, time-of-flight (TOF) 

photoconductivity technique is the most widely used method of investigation of charge 

transport in low mobility solids. It involves time resolving the motion of charge carriers 

that are generated by step excitation. The transient current waveforms thus obtained display 

features which are characteristic of the transport mechanism of the carriers in the material.  

In the previous chapter the atomic and bonding structure of amorphous selenium, was 

discussed. In this chapter the principles and theories involved in investigating and 

interpreting transient conduction in solids will be reviewed.  
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3.2 General Principles of the TOF Technique 

The term “time-of-flight” is now widely used to describe what is essentially a drift 

mobility experiment. Other terms used in the literature for the TOF technique are Transient 

Charge Technique (TCT) and Transient Photoconductivity (TP) technique. A simplified 

schematic of a TOF experimental setup is illustrated in Figure 3.1. A thin film of highly 

resistive material of thickness L is sandwiched between two electrodes A and B. The 

electrodes A and B are blocking electrodes, used in order to prevent charge carrier injection 

from the electrodes into the sample. The top electrode, A, is connected to a voltage source 

V0 that creates a uniform electric field across the sample. The bottom electrode B is earthed 

through a sampling resistor R. A short pulse of strongly absorbed radiation through 

electrode A is used to generate a thin sheet of electron hole pairs (EHPs) near the surface of 

the sample. The wavelength of radiation is selected so that the absorption depth,δ, of 

excitation is small compared to the sample thickness L. For the biasing connection shown 

in the Figure 3.1, the photogenerated electrons will be collected by the electrode A, 

immediately after irradiation. The holes will drift across the sample under the influence of 

electric field towards the bottom electrode inducing a transient photocurrent through the 

sampling resistor R. From the shape of the induced current pulse, information pertaining to 

carrier transport, trapping and release kinetics can be determined. Electron transport can 

also be examined simply by reversing the polarity of the applied bias voltage.  

The preconditions required for a TOF experiment that must be sustained throughout 

the experiment are as follows: 

1. Absorption depth of the incident radiation must be significantly less than the 

sample thickness i.e.δ << L. 

2. Duration of excitation (tex) should be small compared to the transit time of the 

carriers i.e. tex << tT. 

3. Transit time of the carriers through the sample should be small compared to the 

dielectric relaxation time τrelax of the specimen i.e. tT << τrelax. 

4. Small signal conditions should be maintained in the sample for the duration of 

experiment. 
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Figure 3.1: (a) Simplified illustration of TOF transient photoconductivity technique 
experimental setup (b) Small signal AC equivalent circuit 

   

As mentioned in the preconditions, the incident photons must be absorbed close to 

the surface of the electrode so that the EHPs are generated near top electrode. Furthermore, 
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the duration of excitation, tex, should be kept small as compared to the transit time of the 

carriers through the sample. These conditions are ensured in order to avoid the bulk 

generation of the charge carriers in the sample. The duration of excitation tex and absorption 

depth δ determines the width of the sheet of carriers photogenerated. The sheet of carriers 

is used here as a probe in order to examine the charge transport through trapping and 

release events as the carriers drift across the sample, therefore the width of this sheet will 

determine the spatial resolution of the measurement. On the other hand, if the absorption 

depth of the excitation is too small, the generated carriers will be trapped by the surface 

defects and carriers will not contribute to the transient current. The time required for excess 

charge carriers in the material to reach thermal equilibrium through relaxation and 

recombination processes is known as the dielectric relaxation time denoted by τrelax. 

Semiconductors with lifetimes greater than τrelax are generally referred to as lifetime 

semiconductors, and the ones with lifetimes shorter than τrelax are called relaxation 

semiconductors. One of the requirements of the TOF experiment stated above was that 

transit time tT of the carriers should be considerably smaller than τrelax. In order to 

effectively study the nature of traps within the material, the photoinjected carriers must not 

recombine with carriers of opposite charge before they traverse the sample. The number of 

carriers should decrease through trapping process only. Materials with very high resistivity, 

such as amorphous chalcogenide semiconductors, contain very few intrinsic mobile charge 

carriers at room temperature and hence fall into the category of this relaxation regime. 

Consequently, the probability that recombination will reduce the excess photoinjected 

carrier concentration is practically negligible for chalcogenides.  

The electric field due to the sheet of mobile charge carriers in the sample perturbs 

the applied uniform electric field.  Using Gauss’s Law and simple electrostatic reasoning 

the electric fields F1 and F2 in front and behind the charge sheet can be determined. For any 

given position x′ in the material, the expressions for fields F1 and F2 (shown in Figure 3.1) 

developed by Spear [56] are given by 
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where p0 is the concentration of holes in the charge sheet, w is the width of the carrier 

sheet, and ε is the dielectric constant of the specimen. The electric field behind the charge 

sheet F1 is reduced and the electric field in front the charge sheet F2 is enhanced. From the 

Equations 3.1 and 3.2, it is evident that the internal field is the sum of the applied field term 

and self-field term from injected charge. If the amount of charge p0wA, where A is the 

irradiated area, is kept sufficiently small so that ep0w/ε << V0/L, then the electric field can 

be approximated as F1= F2 = F0 = V0/L. Hence the number of charge carriers generated in a 

TOF experiment is restricted by this condition. If a large number of carriers are generated, 

then the electric field perturbation will become comparable to the applied field. The 

analysis in this case must take into account the effects of charge carrier on the applied field.  

Such photocurrent signals are called space charge perturbed (SCP) signals. 

The photocurrent induced in the external circuit due to the drift of the charge packet 

in the sample can be estimated using Shockley-Ramo theorem [19]. Consider a sample of 

highly resistive medium of thickness L sandwiched between two electrodes. A positive 

charge carrier q photogenerated at position l in the sample will experience force due to the 

applied electric field F0 = V0/L. The carrier will drift towards the negative electrode with a 

constant drift velocity vd = µF0, where µ is the mobility of the carrier in the medium. The 

force acting on the charge q due to the applied electric field F0 is qF0. The time it takes for 

the carrier to travel the distance from generation point to the collection electrode is called 

transit time tT. For the duration of the transit time, current will be induced in the external 

circuit. As soon as the carrier reaches the other electrode, it is collected and the current 

drops down to zero.  
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Figure 3.2: The drift of a charge carrier q through dx induces charge to flow in the 
external circuit. 

 

The amount of work required to move the charge q a distance dx is qF0 dx, since 

qF0 is the force experienced by charge carrier. This work is provided by the connected 

battery. Therefore the work done dW in moving charge q, a distance dx in time dt is given 

by  

dW = q F0 dx = V iph(t) dt       (3.3) 

The magnitude of the current in the external circuit induced due to drifting charge 

carriers is therefore 
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The equation 3.4 is valid for the case depicted in Figure 3.2 provided small signal 

conditions are met throughout the TOF experiment. Equation 3.4 can also be expressed in 

terms of carrier concentration. The total charge due to the injected holes in the TOF 

experiment is 

 Q0 = ep0wA         (3.5) 
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where p0 is the injected hole concentration, w is the width of the charge sheet, and A is the 

area of this sheet, i.e. exposure area. The drift velocity vd = µV0/L is constant under small 

signal conditions, so the transit time of the charge sheet is  
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where µ is the drift mobility of the injected holes in the sample. Hence, the photocurrent in 

terms of carrier concentration is therefore expressed by 
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There are two possible methods to detect the photocurrent signal, iph. Small signal 

ac equivalent of the TOF experimental setup of Figure 3.1(a) is shown in Figure 3.1(b). 

The combined sample, and stray capacitances due to cables and subsequent signal 

conditioning electronics are jointly represented by Cs in the equivalent circuit. The 

photocurrent signal produces a voltage signal that appears across the impedance 

determined by the parallel combination of R and Cs. If V(s) and Iph(s) are the Laplace 

transforms of the voltage signal and photocurrent respectively, it can be shown that these 

two are related through 
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This equation has two asymptotic solutions depending on the relative magnitude of 

the sampling resistor R and the joint capacitance Cs. If the bandwidth of the signal is 

arbitrarily defined to be the reciprocal of the carrier transit time, and if RCs<<tT, then the 

inverse Laplace transform of Equation (3.8) yields 

 v(t) ≈ R iph(t)  RCs << tT.      (3.9) 
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Equation 3.9 is called the I-mode signal because the magnitude of the observed signal is 

directly proportional to the photocurrent signal. An ideal I-mode signal rises abruptly upon 

charge carrier generation, and remains constant until the charge carriers reach the 

collecting electrode and then abruptly falls down to zero. Alternatively, the other solution 

of the equation occurs if RCs>> tT. The inverse Laplace transform of Equation 3.8 becomes 
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Simplifying further we have 
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Equation 3.11 is called the V-mode signal and is obtained by integrating the 

expression for I-mode signal. After photogeneration the signal increases linearly with time 

for the duration the carriers are drifting across the sample. After the carriers reach the 

collecting electrode, the signal maintains a constant value that is proportional to the total 

injected charge. Another term used for V-mode signal is charge transient signal since it is 

typically used to measure the total quantity of charge injected into the solid.  

Both I-mode and V-mode techniques have distinct advantages. As mentioned 

above, the V-mode signal is typically used to evaluate the total quantity of charge injected 

into the specimen from the signal value at saturation. Similarly the I-mode signal abruptly 

drops down to zero when the carriers reach collecting electrode. From this sharp transition, 

the transit time of the carriers and hence the carrier mobility in the sample is calculated.  

The time dependence of the number of carriers in the material has not been taken 

into account in the preceding discussion. Amorphous semiconductors have high degree of 

disorder that results in carrier trapping. This implies that the assumption of constant 

number of carriers throughout the experiment is not valid for these types of materials. As 

the charge sheet drifts across the sample the charge carriers get trapped in the localized 
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states and are immobilized for a certain period of time. The photocurrent signal therefore 

decays because of the trapping of charge carriers, since the photocurrent is proportional to 

the number of mobile charge carriers in the sample. 

Consider a set of traps located at a discrete energy level in the mobility gap of the 

semiconductor characterized by a mean trapping time τc and release time τr. Trapping time 

is defined as the mean duration a carrier is free before getting trapped and release time is 

the mean time a carrier resides immobilized in a trap. It is assumed that charge trapping 

significantly reduces the concentration of free carriers and that charge carrier release time 

from the traps is considerably larger than the transit time of carrier, i.e. the carrier release is 

negligible within the time range of the experiment. In this scenario the number of free 

carriers decays exponentially as the carriers traverse the sample thickness. Equation 3.7 can 

be modified to take into account the time dependence of the number of carriers 
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Using equation 3.6, the I-mode signal now is given by 
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By integrating the above expression, we obtain the expression for V-mode transient signal 
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The above equation is called the Hecht [57] relationship which is widely used to estimate 

the trapping time of the charge carriers. The I-mode and V-mode signal for a trap free 

material and the one with traps at a discrete energy level are shown in Figure 3.3. 
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Figure 3.3: Waveforms of (a)I-mode and (b)V-mode signals. The solid lines represent the 
idealized signal shapes for a sample with no traps and the gray lines represent signals for a 
sample with a single discrete trapping level. 

 

3.3 Transient Trap-Limited Transport Theory 

As discussed in Chapter 2, a large concentration of localized states exists within the 

mobility gap of amorphous semiconductors which have profound effect on the charge 

carrier kinematics depending on the relative distribution of these localized states. The 

localized states act as capture centers for free carriers in the transport band. In this section, 

the transient trap-limited theory is developed for three cases commonly encountered, a 

monoenergetic trap distribution, binary trap distribution, and extended trap distribution.  

 

3.3.1 Monoenergetic Trap Distribution 

Consider a semiconductor film with a slice of infinitesimal thickness dx as shown in 

Figure 3.4. The current is flowing though the circuit due to hole transport across the sample 

alone.  
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Figure 3.4: Current flow and trapping and release processes in a semiconductor with a 
single trapping level. The number of holes within a semiconductor slice of thickness dx 
increases due to the flow of holes into the slice and due to the release of trapped holes 
within the slice. 

 

The number of holes in the slice may increase either due to the net flow of holes 

into the slice, or a net thermal release of the trapped charge carriers within the slice. The 

effect of recombination can be ignored since only one type of carrier is present in the 

sample. The rate of change in the number of free holes in the slice, is therefore expressed 

as  
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where e is the charge of electron, p(x,t) is the concentration of the free holes in the sample, 

J(x,t) is the net current density in the slice and pt(x,t) is the trapped hole concentration. The 

current density J(x,t) comprises of two components, one that takes into account the drift of 

the charge carriers under the influence of applied bias voltage, and the other that is the 

result of charge carrier diffusion. The conduction current density for holes is expressed as  

 Jc(x,t)=e µ0 p(x,t) F(x,t)       (3.16) 
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where µ0 is the conductivity mobility, and F(x,t) is the electric field. The spatial variation 

in the charge carrier concentration results in the diffusion of charge carriers, which results 

in diffusion current described by the equation 
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where D is the diffusion coefficient. The total current density is equal to the sum of 

conduction and diffusion currents, therefore the Equation 3.15 can be expressed as 
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Equation 3.18 is the one dimensional continuity equation for holes. Similarly, using the 

same arguments, the one dimensional equation for electron transport can also be derived 

and is given by 
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where n(x,t) is the instantaneous electron density, and nt(x,t) is the density of electrons 

occupying the traps.  

Expressions for ttxpt ∂∂ /),( and ttxnt ∂∂ /),( are called the rate equations for the 

respective charge carriers and are determined by the difference in the instantaneous 

trapping and release rates. Given that τc and τr are the capture and release times for the 

charge carriers, expressions for the rate equations for holes and electrons respectively can 

be written as  
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and 
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In order to simplify our solution of the continuity equations, some simplifying 

assumptions can be made. For example, if small signal conditions are considered for TOF 

investigations, then the electric field can be assumed to be uniform throughout the sample. 

This implies that for a carrier at position x at time t, the xtxF ∂∂ /),( term in the continuity 

equation can neglected. Also the magnitude of diffusion current is considerably less than 

the conduction current, therefore the diffusion terms are also neglected. 

Equations 3.18 and 3.20 are solved utilizing some boundary conditions. First 

consider that a short excitation pulse generated P0 carriers at time t = 0 and at position x = 

0. The distribution of the carriers generated at t = 0 is approximated to be a delta function, 

i.e. 

 )0,()0,( 0 xPxp δ=         (3.22) 

Since holes are generated at t = 0, the concentration of trapped carriers is zero, i.e. 

 0)0,( =xpt  for x > 0.        (3.23) 

After generation the carriers traverse the sample thickness, until they reach the opposite 

electrode where they are collected. Therefore  

 0),( =txp  for x > L.        (3.24) 

Since there are no carriers trapped beyond the sample thickness, hence 

 0),( =txpt  for x > L.        (3.25) 

Equations 3.18 and 3.20 have been solved simultaneously by Zanio and Akutagawa [58] 

using the boundary equations stated above and Laplace transform techniques. The 

expression obtained for the free hole charge density is given by 
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           (3.26) 

Here z = x / µ0F, I1(ξ) is the first order hyperbolic Bessel function, U(x) is the unit 

step function, and crc ztz τττξ /)/)(2( −= . The solution obtained is the sum of two 

components. The first part of the expression represents the charge remaining in the injected 

carrier packet as it is drifting across the sample. These charge carriers have not suffered 

any delay through trapping. The number of charge carriers in the charge packet decreases 

exponentially as exp(-t / τc) until the un-trapped carriers reach the opposite electrode. The 

second term represents the carriers which have been removed from the charge sheet and at 

time t are released back into the transport band. These carriers have suffered at least one 

trapping event; therefore they lag behind the original charge sheet. These carriers will 

contribute to the photocurrent signal for times greater than the transit time tT = L/µ0F, 

where µ0 is the microscopic mobility. A specific solution of Equation 3.26 is depicted in 

Figure 3.5. This figure shows the time sequence plots for the free carrier density as it 

travels across the length of the sample. For this case the capture time and release time are 

taken as τc = 10 ns and τr = t0 = L/µ0F = 1 µs. The spreading of the charge carrier 

distribution as it travels through the sample is due to the random nature of the trapping and 

release events.  
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Figure 3.5: Profile of a carrier sheet at various time intervals as it travels through a sample 
of a semiconductor with one discrete level of traps. The plot is obtained by plotting Zanio's 
expression for the parameters shown in the inset of the figure. 

 

The time dependence of the total number of free carriers can be obtained by 

integrating Equation 3.26 over the sample length. The resulting expression can be used to 

obtain an expression for the I-mode transient current response in a medium with a single 

discrete level of traps. Explicit expressions for the time dependence of mobile charge 

carriers and I-mode current response are cumbersome to handle. Therefore particular cases 

are treated to evaluate trapping parameters. This fact does not in practice limit the use of 

these expressions for predicting the transient response of the charge carriers since 

appropriate choice of sample thickness, operating voltage and temperature will help us 

meet these requirements. In the following section low and high field conditions are studied 

to determine expressions for I-mode current response for these limiting cases. 
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3.3.1.1 Low Fields  

For the low applied field case, it is assumed that the capture time; the average time 

a carrier is free before getting trapped, is considerably shorter than the carrier transit time. 

It is also assumed that the release time; the average time the carrier is immobilized in the 

trap before being released, is comparable to the transit time i.e.τc << L/µ0F ≈ τr. These 

conditions imply that the carriers will undergo many capture and release events through its 

travel across the sample to the collecting electrode. Since the carrier release time is 

comparable to the transit time, the time derivative of the free carrier density in Equation 

3.18 and Equation 3.20 will vanish over the time interval. In other words the number of 

free carriers in the transport band will eventually reach a steady state value. Using the 

principle of conservation of charge, the number of free charge carriers is related to the total 

number of injected charge carriers by the relation 
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Substituting this expression in Equation 3.7, the following expression for the I-

mode transient signal is obtained. 
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This equation is similar to that of trap-free I-mode signal except the transit time has 

increased by a factor (τc+τr)/ τr and that the microscopic drift mobility has been reduced 

from µ0 to µ and now is given by 

 00 θµ
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The carrier motion across the sample is constantly interrupted by the trapping 

mechanism which reduces the effective mobility of the carrier in the medium. This type of 
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transport mechanism is referred to as shallow trap-controlled transport. In the above 

equation the factorθ, by which the mobility is reduced is called the shallow trap-controlled 

transport factor. The equation we obtained is by neglecting the time derivative of the free 

and trapped charge carrier. The drawback for using this technique is that an analytical 

expression cannot be obtained to depict the spreading of the charge sheet as evident by the 

long photocurrent tails in TOF experiments. The spreading of the charge packet is due to 

the stochastic nature of trapping and release events, which have a much stronger spreading 

effect than from a simple diffusion mechanism. 

 

3.3.1.2 High Fields  

The transit time of the carrier through the sample is related to the applied electric 

field via the relation tT = L/(µ0 F). If the magnitude of the electric field is sufficiently high, 

the transit time of the carrier can be considerably smaller than the mean capture time of the 

carrier in the sample, i.e. L/(µ0 F) << τc. In this case the carrier may travel the sample 

thickness without getting trapped. Martini and co-workers [59] derived the expressions for 

photocurrent signal by splitting their analysis for two time intervals i.e. for time below and 

above transit time L/(µ0 F). According to Martini for time t < L/(µ0 F) the photocurrent 

signal is given by 
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If de-trapping is neglected, i.e. τr → ∞, then the above Equation reduces to the expression 

for the simple case of deep trapping. 

For time above the transit time t > L/(µ0 F), the trapped carriers will be released 

from the traps and the photocurrent beyond tT is the result of these carriers. Once de-

trapped, most of these carriers leave the sample without being trapped since L/(µ0 F) << τc. 

The expression for this condition is give by [59] 
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From Equations 3.30 and 3.31, it is observed that for the high biasing field, the 

photocurrent waveform decays slowly until transit time tT = L/(µ0 F), where a step change 

in the current magnitude is observed. Beyond the transit time, the photocurrent signal 

decays relatively slowly. 

 

3.3.2 Binary Trap Distribution 

In this section, carrier transport theory for a semiconductor model with two discrete 

trapping levels is analyzed. The two trapping levels are characterized by their capture 

times, τ1 and τ2, and the release times, τr1 and τr2. Assuming that the injected charge carrier 

concentration is considerably less than the concentration of the traps at each energy level, 

the trap-filling effect can be neglected. In order to further simplify the analysis it is 

assumed that the concentration of trapped carriers increases due to carriers trapped from 

transport band only. The carrier rate equation (from Equation 3.20) is therefore expressed 

as  
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The overall trapped carrier concentration is the sum of the trapped carrier 

concentrations at both trapping levels, i.e. pt(x,t) = pt1(x,t) + pt2(x,t). The continuity 

equation, Equation 3.15 and Equations 3.32 and 3.33 can be solved to obtain the expression 

for time evolution of charge carrier packet. Blakney and Grunwald [60] developed a 

solution to this problem, given by 
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 j(t) = A exp(- αt) + B exp(- βt) + j∞      (3.34) 

where j∞ represents the steady state current which flows after the charges have come into 

equilibrium with the trap distributions. The coefficients are related to each other through 

the following set of equations 
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 A + B + j∞ = j0         (3.38) 

and 
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where θ1 = τ1/τr1 and θ2 = τ2/τr2. It is worth mentioning that if one of the trap distribution is 

so deep such that the thermal release of captured carriers is improbable in time interval 

equal to the transit time, i.e. τr2 → ∞, then θ2 = 0. This condition is the shallow trap-

controlled deep trapping process commonly used to describe charge transport in 

amorphous selenium. In this condition the Equation 3.34 reduces to  
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The first part of the equation suggests that the current should exhibit an initial 

exponentially decaying spike until the charge carriers are in equilibrium with the shallow 

traps followed by a slower decaying exponential curve with a characteristic decay rate 

given by τ2/θ1. 
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3.3.3 Extended Trap Distribution 

Charge transport in semiconductors with monoenergetic and binary trap 

distributions has been discussed in the preceding sections. A more realistic model, and 

considerably more complex than the previous models, will be the one with continuous 

distribution of traps in the mobility gap. The multiple-trapping problem was analyzed by 

Rudenko and Arkhipov [61] and is reviewed here. Rudenko and Arkhipov addressed this 

problem by considering a continuous distribution of traps, represented by N(E), distributed 

in energy E. The total density of traps will be given by 

 ∫
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The overall density of carriers in the sample is the sum of the density of free and 

trapped carriers written as 

 p(x,t) = pf(x,t) + pt(x,t)        (3.42) 

where p(x,t) is the total carrier density, pf(x,t) is the free carrier density, and pt(x,t) is the 

density of trapped carriers. The mean free time between two trapping events,τ depends on a 

number of material properties. These properties such as capture cross-section σ(E) at 

energy E, the thermal velocity of the carriers vth, and the density of the traps Nt. These 

parameters are related to the carrier lifetime by the relation 

tNvE th)(
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σ
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The product of the capture cross-section σ(E) and thermal velocity vth is defined as 

the capture coefficient C(E) = σ(E) vth. The probability per unit time that a free carrier will 

be captured by a trap of energy from E to E + dE is given by 
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Carrier release from traps is a thermally activated process. Considering steady-state 

conditions, the probability of release per unit time for a carrier trapped at energy ∆E below 

Ec is can be written as 
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where Nc is the density states at the conduction band edge, and ∆E represents the energy 

depth below Ec, i.e. ∆E = Ec – E. The density of trapped carriers pt(x,t) is defined by the 

expression  
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where ρ(x,t,E) is the density of trapped carriers in the range from E to E + dE. The rate 

equation for trapped carriers in the energy range from E to E + dE maybe written as  
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or, 
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The expression for the rate of change of carrier trapped density can be obtained by 

rearranging the above expression as follows  
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If thermal equilibrium of charge carriers between the conduction and localized states exists, 

the time derivatives of Equation 3.48 can be neglected, i.e.  
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Therefore the trapped charge carrier density at energy E may be related to the concentration 

of free carriers by the expression 

 ⎟
⎠
⎞

⎜
⎝
⎛=

kT
∆E

N
ENx,tpEtx
c

f exp)()(),,(ρ       (3.50) 

Substituting Equation 3.50 in Equation 3.45 will provide the total trapped charge 

concentration. The total charge concentration is the sum of free and trapped charge carrier 

concentration therefore  
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If the trapped controlled transport factor θ is defined as 
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then Equation 3.47 simply reduces to pf (x,t) = θ (x,t) since θ << 1.  

The one dimensional continuity equation is required to complete the analysis. If the 

mutual Coulombic repulsion of the carriers is neglected, then the applied electric field F 

can be considered constant throughout the material. Assuming thermal equilibrium, the 

continuity equation may be stated as 
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Using the approximation pf(x,t) ≈ θ p(x,t) in Equation 3.49, the following expression is 

obtained 
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where µ ≈ θµ0 and D ≈ θ  D0. It is interesting to note that the reduction in the carrier 

mobility from µ0 to µ is similar to the low field condition for the mono-energetic trap 

distribution. Hence the equations that govern the charge transport process (Equations 3.42, 

3.45, 3.48, 3.54) in a semiconductor with continuous distribution have been derived.  

 It is worth mentioning that one major assumption in the development of Equation 

3.54 was that the thermal equilibrium of charge carriers was instantaneously established by 

eliminating the time dependence in Equation 3.48. However there is a finite time where the 

concentration of trapped charges varies with time. For this case the continuity Equation 

3.54 developed above will be modified as 
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where Deff = D + Df. Df is known as the field diffusion coefficient which takes into account 

the field dependence of the diffusion process [18]. 

3.4 Summary 

   In this chapter the theory of charge transport a typical TOF photoconductivity 

experiment is discussed. A TOF photoconductivity experiment is a commonly employed 

technique used to study charge transport kinematics in low mobility solids. Carriers 

generated by photoexcitation drift under the influence of an applied electric field to induce 

current in the external circuit. The photocurrent waveform is used to measure carrier drift 

mobility in the material and carrier lifetimes. There are two possible methods to detect the 

photocurrent signal. One is called the I-mode signal because the magnitude of the observed 

signal is directly proportional to the photocurrent signal and the other is called V-mode 

signal or charge transient signal since it is typically used to measure the total quantity of 

charge injected into the solid. Transient trap-limited theory is developed in this chapter for 

three cases commonly encountered, a monoenergetic trap distribution, binary trap 

distribution, and extended trap distribution. Traps that are located near the mobility edges 
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are called shallow traps. Carriers are trapped and released from these traps numerous times 

before they traverse the sample thickness; therefore the transit time of the carrier is 

prolonged by trapping in these states. The equations governing the charge transport process 

in these three models are derived. 
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4 Monte Carlo Model of Transient Trap-limited 
Transport 

 

4.1 Introduction 

Monte Carlo (MC) Simulation has become one of the most widely used techniques 

for investigating charge transport in amorphous semiconductors. It is a statistical numerical 

technique that relies on random numbers to simulate the stochastic behavior of elements of 

the model to calculate the required information. The greatest advantage of this method is 

the surprising simplicity of the calculations and the fact that it is more directly interpretable 

from a physical point of view. This method provides us with the possibility to manage very 

complicated models in which an analytical solution is either nearly impossible or extremely 

cumbersome. Conversely, the main disadvantage of the MC method is that it is relatively 

time consuming in terms of computation time, but as the computing price is decreasing, it 

is becoming more time effective. 

The present work is aimed at developing a MC simulation model for carrier 

transport in a TOF transient photoconductivity experiment to investigate the distribution of 

localized states in the mobility gap of amorphous selenium. The MC technique, as applied 

here, consists of simulating the motion of a carrier sheet resulting from photoexcitation 

inside a sample, subject to the force from the applied electric field and undergoing multiple 

trapping and release events. The duration of free flight of carriers and their dwell time in 

the trapping centers are stochastically calculated with the given probabilities of these 

events. For this research work the MC simulation models were first developed for simpler 

semiconductor models; with monoenergetic trap distribution and models with traps at three 

discrete energy levels. The theoretical and analytical solutions proposed by previous 



  62

researchers were used to verify our MC modeling approach. After this, the continuous 

distribution of localized states in the mobility gap of a-Se was then investigated by using it 

in our calculations of transient photocurrents which are then compared with measured 

experimental results and with data published elsewhere.  In this chapter the MC model 

developed for the trap distributions at a single energy level and at three discrete energy 

levels is discussed.   

 

4.2 Random Numbers 

 Random numbers in Monte Carlo simulation techniques have special significance, 

since the method itself relies on chance or randomness. Random numbers produced by 

computers cannot be strictly classified as random because the manner in which they are 

produced is completely deterministic and the element of chance is not actually present. 

Hence the random numbers generated by computers are in fact pseudorandom numbers. In 

1951, Lehmer eloquently described the computer generated random sequence as a vague 

notion, in which each term is unpredictable to the uninitiated and whose digits pass a 

certain number of statistical tests. Mathematical software packages such as Matlab, 

Mathcad etc. available today contain random number generators that when called upon in a 

program, produce either a single random number or an entire array of random numbers. 

The random numbers in Matlab are called by using the rand function and the computer 

returns random numbers distributed uniformly in the interval (0, 1).  The random number 

generator in Matlab 5.0 and above uses a lagged Fibonacci generator, with a cache of 32 

floating numbers, combined with a shift register random integer generator. Two important 

features of the rand function in Matlab [62] are: 

1. The random number generator will generate 21492 (~10449.1368) numbers before the 

sequence will begin to repeat itself.  

2. Floating point numbers between the range 2-52 and 1 - 2-52 are generated. 

If the purpose of analysis involves transient conditions then it is necessary to simulate the 

behavior of a large number of carriers and follow their dynamic history of multiple 

trapping in order to obtain the desired information. The MC model of this research involves 
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simulating the transport of carriers in a-Se undergoing multiple trapping to calculate 

transient photocurrents. The period and range of the Matlab generator are quite sufficient 

for the scope of this research.  

 

4.3 Monoenergetic Trap Distribution Model 

The development of the MC simulation model started with the simplest case: 

semiconductor model of monoenergetic trap distribution. Zanio and Akutagawa [58] solved 

the problem of carrier transport in a semiconductor with a trap distribution at a single 

discrete energy and obtained an expression for free carrier density as a function of distance 

and time. Their solution was used to validate the MC modeling approach for modeling 

carrier transport undergoing trapping and release events.  

In a TOF photoconductivity experiment the carriers are generated by an extremely 

short but highly absorbed pulse. The incident pulse results in photogeneration of electrons 

near the surface of the sample. It is assumed that the short excitation pulse is strongly 

absorbed by the sample resulting in a very thin sheet of charge carriers. Since the number 

of drifting carriers is assumed to be sufficiently small, the effect of the internal electric 

field due to the drifting carriers can be neglected and the electric field is assumed to be 

uniform throughout the sample thickness. As the carriers drift toward the opposite 

electrode under the influence of the applied electric field, they experience trapping and 

release. The time of free flight between two successive trapping events and the dwell time 

in the trap are stochastic events in accordance with the relative probabilities of these 

events. The mean time of free flight between two trapping events is called the capture time, 

represented by τc. The mean dwelling time of a carrier in a trap is called the release time, 

denoted by τr. The expression obtained by Zanio and Akutagawa for free carriers is given 

by Equation 3.26.  

For our MC model of a TOF experiment, a semiconductor sample of thickness L is 

considered. Capture and release times are in the order of ~10ns and ~1µs respectively. The 

carriers drift under the influence of the applied electric field F towards their respective 
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electrodes. The sheet of carriers spreads out as the carriers experience trapping and release 

events. The MC model developed here calculates the spatial profile of drifting carrier sheet 

inside the sample at various time intervals. The different points in time when a snapshot of 

the drifting charge sheet profile is taken are multiples of the free carrier propagation time 

t0, i.e. the time it takes for a free carrier to go across the sample thickness without getting 

trapped ( )FL 0/ µ . The flow chart of the MC model is shown in Figure 4.1. The blocks of 

the flowchart for electron transport are briefly explained below. 
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Figure 4.1: Monte Carlo simulation algorithm for semiconductor with monoenergetic trap 
distribution. 

 

• Definition of global parameters 

The program starts by defining the physical system of the experimental setup. This 

includes defining the material parameters such as sample length L, absorption 

coefficient (α) of the material etc. The relevant experimental parameters such as 

temperature T and applied electric field F are also defined within this block. Some 

adjustable parameters that control the simulation process are outlined here as well. For 

the monoenergetic semiconductor model, these parameters include the number of 

carriers Ne and the bin size of the histogram. The number of carriers Ne generally used 

in these simulations is 104 carriers. This number of carriers gives the best compromise 

for this model between statistical noise and computation time. The monoenergetic trap 

distribution model is a relatively simple model and therefore does not take large 

computational time, but for more complex models increasing the number of carriers 

greatly increases the simulation time.  

• Initializing carrier position, x  

After defining the global parameters, the starting position of the photogenerated carrier 

in the sample is initialized. If infinite absorption is considered, then the incident 

photons generate EHPs near the surface of the sample. The starting position of the 

entire sheet of carriers can be taken as 0 implying that all carriers are generated in the 

form of a thin sheet close to the surface of the sample.  

• Stochastic calculation of capture time (tc) and release time (tr)  

After photogeneration, holes are assumed to be collected promptly by the irradiated 

electrode. Electrons are the only mobile carriers assumed in this model. The electrons 

while drifting experience trapping a number of times. The time of "free" flight and the 

idle time in a trap are both random but are in accordance with the probability of 
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trapping and release. The capture and release times can be calculated using uniform 

random numbers from the following expressions 

 tc = -τc ln(1 – r) and         (4.1) 

tr = -τr ln(1 – r)        (4.2) 

where τc and τr are the mean capture and release times respectively and r is a uniform 

random number between 0 to 1. Since both r and (1 – r) are uniformly distributed 

between 0 and 1, in order to save computation time the expression (4.1) and (4.2) are 

modified to 

tc = -τc ln(r) and         (4.3) 

tr = -τr ln(r)        (4.4) 

• Total time elapsed  tT = tc + tr 

The time elapsed for the duration of events in one loop of the algorithm consists of time 

of free flight tc and dwell time tr in the trap by the carriers. The total time elapsed is 

calculated by adding the two times and recording it in memory in an array.  

• Calculate position of the carrier using tc 

The distance the carrier has been displaced during the free flight before getting trapped 

can be calculated from the expression 

 Move = µ0 · F · tc          

where µ0 is the drift mobility of the carrier at the mobility edge and F is the applied 

electric field. The total distance, x, the carrier has traveled in the sample is the sum of 

all the displacements from the previous iterations. Hence for the i-th iteration the 

displacement is given by 

 ∑
=

=
n

i
ix

1
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• Check the position of the  carrier within the sample 

The loop is terminated when the carrier reaches the collecting electrode. This block 

checks if the carrier's position x is still within the sample thickness. This is done by 

comparing the total displacement since generation with the sample thickness L. If the 

condition x ≥ L, is satisfied then the program comes out of the loop otherwise it goes 

back to the capture time block for further iterations until this condition is satisfied.  

• Is this the last carrier 

After the carrier is out of the sample, it is checked if the carrier under consideration was 

the last carrier. If the condition is true, the loop is terminated and program proceed to 

calculations, otherwise the carrier transport from x = 0 to x = L is simulated for the 

remaining carriers. 

• Plot position of the carrier at the time of interest 

At this stage the information required to plot the carrier packet position in the sample at 

a given time is calculated from the arrays of carrier displacement and time history. The 

data has been recorded for each trapping event. The position of each carrier at the 

required time is recorded in an array and then sorted in bins to plot the histogram of the 

carrier concentration versus position in the sample.   

MC calculations for a semiconductor sample of thickness L = 100 µm in a TOF 

experiment are performed. The capture and release times of the monoenergetic trap 

distribution are taken to be τc = 10 ns and τr = 1 µs respectively. The applied electric field 

strength is F = 3 V/µm.  An important assumption is that the electric field is not perturbed 

by the drifting charge sheet and hence remains uniform throughout the sample. The 

theoretical solution of this particular case is plotted with the MC simulation and is shown 

in Figure 4.2. The results are in excellent agreement.  
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Figure 4.2: Time evolution of the spatial profile of photogenerated carrier sheet in a 
semiconductor model with mono energetic trap distribution during a TOF experiment. 

 

4.4 Three Levels of Trap Distribution 

In this section the Monte Carlo model for a slightly more complex system with 

three trapping levels is developed. The distribution of localized states in the mobility gap of 

a semiconductor is represented by three effective trapping levels. Similar models consisting 

of three trapping levels have been proposed by Noolandi [66] and Blakney [60]. The three 

trapping levels are characterized by their capture and release times as shown in the Figure 

4.3. These trapping levels are sometimes referred to as mobility, shallow and deep in 

literature. The carrier transport generally occurs in the mobility and the shallow level. The 

carriers trapped in the mobility level are released almost immediately after capture since 

the release time is very short. The capture and release times for the shallow levels are 

comparable to the transit time tT of the carriers and hence almost all the carriers trapped in 

these levels are released within the time frame of a TOF experiment. Carriers trapped in the 

E
Lt
0

0 µ
=  
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deep states are permanently lost, since the release time is very large and hence they do not 

contribute further to the transient photocurrent.  

The electron transport across the sample is simulated to calculate the TOF 

photocurrent and compare with waveforms calculated from the inverse Laplace transform 

technique. The flow chart of the MC model is shown in Figure 4.4, and the blocks are 

explained below. Some of the blocks function in a similar manner as in the monoenergetic 

trap model and hence are not elaborated here.  

 

 

Figure 4.3: Semiconductor model with localized states at three discrete energy levels. 
Carriers in the mobility level are captured and released almost immediately. The release 
time for the shallow level is comparable to the transit time. Carriers trapped in deep traps 
are considered to be permanently lost. 
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Figure 4.4: Flow chart of Monte Carlo simulation used to estimate TOF transient 
photocurrent in semiconductor model with traps at three discrete energy levels. 
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• Definition of global parameters 

The global parameters are defined in the same manner as in the case of monoenergetic 

trap distribution. For this model there are three levels of traps and their capture and 

release times are defined at this stage. The TOF transient photocurrent is calculated by 

simulating the electron transport. The free drifting electrons contribute to the induced 

photocurrent in the external circuit. The parameters for calculating current are 

adjustable and are defined at this stage. Further explanation of the current calculation 

procedure is described below. 

• Initializing the position, x of carrier 

The position of the photogenerated carriers is initialized at this stage.  

•  Stochastic calculation of  capture time (tc) 

The electric field throughout the sample is assumed to be uniform. The electrons drift 

towards the opposite electrode under the influence of the applied electric field. The 

carriers are then randomly captured in any of the three levels. The probability that a 

carrier will get capture in any of the three levels 1)( −tot
cτ  is given by 

 
321

1111

ccc
tot
c ττττ

++=         (4.12) 

where τci are the capture times for the three trapping levels. The stochastic capture time 

for a carrier is calculated using the overall probability of trapping using the expression 

tc = - tot
cτ  ln(r)        (4.13) 

where r is a computer generated random number with uniform distribution within the 

range [0, 1]. 

• Stochastic determination of the carrier capture level 
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After the free flight the carrier is randomly trapped in one of the three trapping levels in 

accordance with the trapping probabilities for these levels. The trapping level is 

determined by defining an array of probabilities of trapping. The array consists of three 

elements represented here by p1, p2 and p3, where  

1
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In order to determine the trapping level, a uniform random number r is generated and 

compared with the array, if 0 < r <p1, then the carrier is assumed to be trapped in level 

1 (mobility level), similarly if p1 < r < p2, then the trapping level is 2 and if p2 > r > 1, 

the carrier is assumed to be trapped in the deep trapping level. A simplified schematic 

of this block is shown in Figure 4.5. The concept of this method is similar to a roulette 

wheel, where the thickness of the three sectors of the roulette wheel represents the 

probability of capture of the carrier in that level. 
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Figure 4.5: Stochastic determination of trapping level. Computer generated random 
number r is compared with an array of trapping probabilities to find the trapping level. 

• Stochastic calculation of carrier release time (tc) 

The time for which a carrier dwells in the trap is also stochastic in nature and depends 

on the characteristic release time of that trapping level. The trapping level was 

determined in the previous block. In this block it is used here to calculate the release 

time for the carriers for that level by using the expression 

 tr = - riτ  ln( r) 

where riτ  is the release time of the ith level. 

• Calculation of carrier displacement and position x of the carrier 

The distance the carrier has been displaced after the free flight can be calculated by 

from the expression 

 Move = µ0 ⋅ F ⋅ tc  

where µ0 is the drift mobility of the carrier at the mobility edge and F is the applied 

electric field. The total distance the carrier has traveled in the sample is the sum of all 

the displacements from the previous iterations. The total time elapsed in one iteration is 

the time the carrier was drifting free and the time it was immobile within a trap, hence 

both are added and recorded in memory. 

• Check the position of carriers within the sample 

This block checks if the carriers position x is still within the sample thickness.  

• Is this the last carrier 

After the carrier is out of the sample, all the required information is recorded in form of 

arrays and this process is repeated for the Ne carriers. 
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• Calculation of the contribution to the TOF transient current 

The free drifting carriers contribute to the transient photocurrent. To calculate the TOF 

transient current, the time scale is divided into time bins of breadth ∆t. The TOF 

transient current due to a single carrier at a given time t is proportional to the sum of the 

carrier displacements falling into the interval (t−∆t/2, t+∆t/2). The parameter ∆t is 

adjustable. It should be large enough to include many events and to suppress statistical 

noise at the same time, it should be sufficiently short, to avoid smoothing of the TOF 

pulse shape. It was selected depending on the experimental conditions, after several 

trials which ensure that it is small enough and that the results of the simulations do not 

depend on it. 

The photocurrents thus obtained from the Monte Carlo simulation were compared 

with inverse Laplace transform technique for a three trap level model in order to check the 

validity of these methods. A semiconductor sample of thickness L = 142 µm with traps at 

three different energy levels is considered. The capture times for the three levels are taken 

to be τc1 = 43.14 ns, τc2 = 9.135 µs, and τc3 = 43.1 µs. The release times are τr1 = 842.5 ns, 

τr2 = 56.12 µs, and τr3 ≈ ∞. Free carrier transit time (tT = L2/µ0V) is 5.04 µs and the applied 

electric field F is 2.82 V/µm.  The results of the MC simulation and inverse Laplace 

transform calculations are shown in the Figure 4.6. Figure 4.6(a) is the transient 

photocurrent on a linear scale and Figure 4.6(b) is the same transient curve but on a log-log 

scale to highlight the pre- and post- transit regions. The inverse Laplace transform 

calculations are shown as solid lines agree brilliantly with the circles representing the MC 

simulation.  
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(b)

Figure 4.6: TOF transient current waveforms for a semiconductor model with three levels 
of trap obtained using a Monte Carlo simulation and compared with the inverse Laplace 
technique. Plot in Figure 4.5(a) is the current waveform on a linear-linear scale and Figure 
4.5(b) is the same data plotted on a log-log scale. 
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4.5 Summary 

In this chapter the MC models for charge transport in semiconductor with trap 

distribution at one and three discrete energy levels is discussed. The MC models presented 

in this chapter are based on simulating the motion of photogenerated carrier sheet inside a 

sample, subject to the force from applied electric field experiencing multiple trapping and 

release events in a TOF photoconductivity experiment. The duration of free flights and 

dwell times in trapping centers are stochastically calculated with the given probabilities of 

these events. 

The monoenergetic trap distribution model is used to calculate free carrier spatial 

profile at various time intervals. The results were compared with the theoretical solution 

developed by pervious researchers and both agree brilliantly. The MC simulation model for 

a semiconductor with three trapping levels is used to calculate the transient photocurrents. 

The stochastic nature of trapping into the three levels and release events are simulated 

using random numbers with a uniform distribution. The results are compared with inverse 

Laplace transformation results and also are in excellent agreement.  
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5 Density of States of a-Se near the Conduction 
Band  

 

5.1 Introduction 

The Monte Carlo simulation models for charge transport in TOF photoconductivity 

experiments for semiconductors with a single level and three discrete levels of traps have 

been discussed and verified in the previous chapter. The calculation of charge transport in 

amorphous materials with a spectrum of DOS in the mobility gap is well known to be a 

complicated task. In this chapter the distribution of localized states (DOS) in amorphous 

selenium is investigated by comparing the experimentally measured transient photocurrents 

with those calculated by using the inverse Laplace transformation technique and the MC 

simulation method. The experiments and inverse Laplace transform calculation were 

performed by Koughia et al. and the results are published in their paper [45]. The samples 

were prepared by conventional vacuum deposition techniques. The experimental details are 

discussed in detail in the reference [45] and are not elaborated here.  

 

5.2 DOS Distribution Calculations  

The DOS distribution investigated here was obtained by the comparison of 

measured and calculated TOF shapes over a large range of electric fields (F). The final 

accepted DOS distribution was the one that generates the best calculated photocurrents, 
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closely matching the experimental photocurrent waveforms. The inverse Laplace 

transformation technique was used for the optimization process.  

The DOS calculations started with a simple monotonous distribution with 

adjustable nodes that were adjusted to get a reasonable agreement between experimental 

and calculated photocurrents. The adjustable nodes and spline function (used for 

interpolation) were then replaced by predefined functions when it was apparent that the 

derived DOS distribution can be approximated as the sum of exponential and Gaussian 

distributions. The vertical positions of all the nodes and the total concentration of deep 

states Ndeep were used as adjustable parameters, to minimize the discrepancy between the 

measured and calculated TOF photocurrent shapes. The DOS optimization was achieved by 

minimizing the mean-square deviation (MSD) between the experimental and calculated 

TOF photocurrent waveforms. The distribution of states lying deeper than Ec − 0.60 eV 

could not be resolved due to the lack of substantial thermal release from such deep states 

over the observation time of the experiment. The final optimized DOS distribution near the 

CB edge is shown in Figure 5.1. 

This distribution achieved after the optimization process is a modified version of 

Abkowitz's [46] DOS model. There is an additional shoulder-like Gaussian bump at 0.45-

0.50 eV below Ec. Mathematically, the DOS model is approximated as the sum of the 

exponential tail of the conduction band and two Gaussian distributions and can be written 

as 
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where Nc=2×1021 cm-3 is density of states at the CB edge, N1 = 2.4×1016 cm-3,  N2 = 

5.6×1013 cm-3, ∆E = 20 meV, ∆E1 = 30 meV, ∆E2 = 20 meV, E1 − EC = 0.33 eV, and E2 − 

EC = 0.448 eV for a given sample. The first term in the expression represents the extended 

tail distribution of localized states and the last two terms represent the larger Gaussian peak 

and the shoulder peak respectively. 
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Figure 5.1: Density of localized states model in the mobility gap of a-Se near CB used in 
the Monte Carlo calculations of TOF transient photocurrent. 

 

5.3 Inverse Laplace Transform Technique 

The DOS distribution was optimized by the inverse Laplace transformation 

technique which is reviewed in this section. For inverse Laplace transformation and Monte 

Carlo simulation calculations, some reasonable approximations and assumptions were 

made. It was assumed that the small signal conditions are valid throughout the experiment. 

This condition implies that the injected charge concentration is so small that the distortion 

caused by this charge and the Coulombic interaction within the drifting packet on the 

applied electric field is negligible. It is also assumed that no space charge is accumulated 

during the photo-injection and transit of carriers. In a typical TOF photoconductivity 

experiment, following the application of the bias, a small amount charge is injected into the 

layer at the electrodes using photoexcitation and the carriers get trapped in the bulk of the 

sample. Eventually the concentration of this bulk space charge is sufficient to alter the 



  80

profile of the internal field. The time at which this occurs is known as the transition time 

tsc. Prior to this stage it may be assumed that the internal field is uniform [63]. For a-Se 

films, it has been shown that tsc is on the order of 100 ms [18]. 

The continuous distribution of localized states has been substituted by a set of 

discrete levels. This discretization technique of a continuous distribution of localized DOS 

is quite common and has been effectively used previously [64,65]. The energy scale is 

divided into slices of thickness dE, such that each slice has trap density Nti. In our 

calculations, the number of discretization levels was chosen to be sufficiently high 

(normally > 100) so that the final solution was independent of the discretization.  

Using the approximations and assumptions mentioned above, the carrier sheet 

transport mechanism can be described by a set of differential equations. These are the 

continuity, the charge conservation, and the trap occupation equations, and are written as 

follows 
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where x is the spatial coordinate, t is the time, ρ(x,t) is the total concentration of 

carriers, g(x,t) is the photogeneration rate, f(x,t) is the flux of mobile charge carriers, n(x,t) 

is the concentration of free carriers, ni(x,t) is the density of carriers trapped at the ith level, 

and ci and ri are the capture and release rates, respectively, to and from the ith level. The 

capture rates ci (τci
-1) were calculated from  

ci=CtNi,  

where Ni is the concentration of the ith level and Ci is the capture coefficient. Capture 

coefficient Ci is equal to the product of thermal velocity vth and capture cross-section σ. For 
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simplicity, the value of Ci was taken as 10−8 cm3 s−1 for all the levels. The release rates 

were calculated as 

 ⎟
⎠
⎞

⎜
⎝
⎛ −
−⋅=

kT
EEvr ic

i
)(exp  

where v = 1012 s−1 is a typical phonon frequency and Ec−Ei the depth of the ith level below 

Ec. Equations 5.2-5.4 can be solved using two practically realizable approximations. 

1. δ-excitation, i.e., the excitation light pulse is assumed to be infinitesimally short 

and the light is absorbed in a very thin layer of material. This can be expressed 

in terms of a generation function g(x,t)= ηδ(x) δ(t), where η is the quantum 

efficiency. 

2. The diffusion of carriers is negligible with respect to their drift, i.e., the carrier 

flux is f(x,t)= µ0Fn, where µ0 is the mobility of carriers in the conduction band 

and F is the electric field. 

The final solution found using the Laplace transform technique [66] is, 
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where )(~ sI is the photocurrent Laplace transform and  
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Here, t0=L/ µ0F is the free carrier transit time and L is the thickness of the sample. To 

obtain the photocurrent time dependence from Equations 5.5 and 5.6, the inverse Laplace 

transform was numerically calculated, using the method of Padé coefficients [67]. 
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5.4 Initial Position of EHP Calculations 

In a TOF photoconductivity experiment, an extremely short pulse of strongly 

absorbed radiation through a semitransparent electrode is used to generate a thin sheet of 

electron hole pairs (EHPs) near the surface of the sample. The wavelength of radiation is 

carefully selected so that the absorption depth (δ) is considerably smaller than the sample 

thickness L i.e. δ << L. In the analytical models discussed in the previous chapters it was 

considered that electron hole pairs were generated near the surface of the electrode. In 

other words the sample is considered to have infinite absorption so that the photons are 

absorbed by the a-Se sample to generate the EHPs at x = 0.  

When a medium is irradiated, some of the incident photons are absorbed by the 

medium. Consider a sample of thickness dx that is irradiated. The number of photons 

interacting with the medium in the slice is proportional to the sample thickness dx and the 

number of incident photons N. If the change in the number of photons during traveling a 

thickness dx is represented by dN, then  

 dN ∝ Ndx      

or dN = −αNdx         (5.7)  

where α is the constant of proportionality and is called linear attenuation coefficient of that 

medium. The negative sign in the equation indicates reduction in the number of photons. 

Rearranging the above equation we have 

dx
N

dN α−= .  

Integrating above expression we have 
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where N0 is the number of incident photons and N represents the transmitted photons at a 

distance x from the irradiated surface. From Equation 5.8, it is clear that the radiation will 

be absorbed exponentially in the medium as a function of the attenuation coefficient of the 

medium [68].  

The incident excitation pulse creates EHPs along the irradiated surface through a 

number of steps. The incident photons ionize the medium and result in the generation of an 

energetic primary electron and as this electron travels in the medium, it causes ionization 

along its track and hence results in the creation of many EHPs. The radiation absorbed 

exponentially (Equation 5.8) will create EHPs along its path. The spatial position of these 

EHP is completely random but the overall density distribution is exponential. This 

phenomenon is illustrated in Figure 5.2. Considering a uniform electric field throughout the 

sample, the carrier generation profile can be written as  

C(x) = C0 e−αx         (5.9) 

where C0 is constant. 

 

Figure 5.2: Process of EHP generation by a short excitation pulse is shown here.  
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In order to randomly compute the positions of the carriers so that the overall carrier 

distribution corresponds to the carriers generated by excitation pulse (that is exponentially 

distributed), a probability density function (PDF) is defined. The PDF for the generated 

carriers at position x inside the sample is defined as the ratio of the total generated carriers 

within the thickness from 0 to x to the total number of carriers in the sample. The PDF is 

then equated to random numbers, i.e. 
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where r is a random number with uniform distribution in the interval [0, 1]. Rearranging 

the equation for x, we have 

 [ ])1(1ln1 Lerx α

α
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Equation 5.11 is used to calculate the initial position of the photogenerated carriers in 

the TOF experiment modeling [69].  

 

5.5 Monte Carlo Simulation Model 

The DOS distribution achieved by the inverse Laplace transformation technique was 

further investigated by performing the MC simulations of electron TOF photocurrents. The 

MC simulation model used for this purpose is based on the MC models for the simpler 

cases described in the previous chapters. The MC model simulates the transport of 

electrons in a sample of a-Se in the TOF experiment employing the proposed DOS 

distribution. The program simulates the behavior of Ne electrons. For the simulation 

performed for this work, values of Ne>104 provide good reproducible results with small 
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statistical noise. It is assumed for the MC simulation models that the small signal condition 

is valid. The algorithm of the MC simulation model is shown in Figure 5.3, and the blocks 

of the algorithm are explained below. 
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Figure 5.3: Flow chart of MC simulation model for semiconductor with continuous 
distribution of traps. 
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• Definition of global parameters 

The first step of the simulation process is the definition of global parameters governing 

the simulation in the same manner as for the monoenergetic and three trap level 

simulations. 

• Discretization of the density of states 

In this block, the DOS distribution is defined mathematically as sum of exponential and 

Gaussian distributions as a function of energy. The energy scale is divided into n slices 

of thickness ∆E and the continuous localized state distribution is replaced by a set of 

discrete levels with concentrations Ni, where i = 0 . . . n, and i = 0 corresponds to the 

mobility edge of the conduction band. The simulation results are found to be 

independent of the choice of n, as long as it was greater than 50. Therefore, for all the 

photocurrent calculations n = 100 is used, which gives excellent reproducibility. 

• Calculation of the capture and release times and the equivalent capture lifetime 

The capture time constants (τc
i) are calculated for all n levels (slices) from the 

expression 

ti

i
c CN

1
=τ  

where Ct is the capture coefficient which, for simplicity, was kept equal to 10−8 cm3 s−1 

for all levels.  The release (τr
i) time constant for the i-th level is calculated using the 

expression 

⎟
⎠
⎞

⎜
⎝
⎛ ∆−

= −

kT
EiE

v c
ph

i
r exp1τ  

where ν =1012 s-1 is a phonon frequency and (Ec – i∆E) is the depth of the ith level. 

After calculatingτc
i , these values are used to calculate the equivalent capture lifetime 
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(τc
total). This time constant represents the capture time for the carrier into any of the 

levels and is calculated using  

.1
1

1

−
=

=
⎟
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⎠

⎞
⎜
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⎝

⎛
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ni

i
i
c

tot
c τ

τ  

It is observed that the characteristics of very shallow states (i.e., those with i
c

i
r ττ << ) do 

not affect the shape of the transient current. The release time from very shallow states is 

so short compared to the capture time that, within this time resolution, the carrier is 

captured and then released almost instantly such that it spends more time in the free 

extended states above the mobility edge than below it in the shallow tail states. 

Consequently, the behavior of these electrons is indistinguishable from that of free 

carriers and hence does not contribute to the current shape. Therefore, after 

investigation, the influence of these states has been neglected in the calculations, 

resulting in a hefty reduction in the computation time. 

• Carrier position initialization 

At this stage, the position of the carriers is initialized. The procedure for calculating the 

initial position of photogenerated carriers is discussed in section 5.4. The expression 

that can be used for the calculating the initial position is 

[ ])1(1ln1 Lerx α

α
−−⋅−⋅−=  

where r is a random number uniformly distributed between [0,1],  and α is the 

absorption coefficient of the sample. In our calculations, the value used for absorption 

coefficient is α = 107 m-1. Including finite absorption by using the above expression had 

no visible effect on the calculated photocurrents. 

• Stochastic determination of the free travel time 

In this block, the random time which the carrier spends free before getting captured (tc) 

is calculated. It is computed as 
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 ),ln(rt tot
cc τ−=  

where r is a computer generated random number with a uniform distribution within the 

range [0,1]. The value of tc is used later for the calculations of the current carrier 

position. This stage is the beginning of an iterative process of carrier drift simulation, 

which is repeated every time the carrier is trapped and subsequently re-released to the 

conduction band. 

• Stochastic determination of the carrier capture level 

After the free flight, the carrier gets captured randomly in any of the n levels. In order 

to find the level of trap with an appropriate random component, an array consisting of 

the inverse mean capture times (τc
i)-1 for all i =1 . . . n levels is generated. This array 

acts as a “roulette wheel”, whose “sectors” are proportional to the probabilities of 

electron capture. A uniformly distributed random number is generated and compared 

with this array. The sector within which the random number falls defines the capture 

level. 

• Stochastic determination of the carrier release time 

The time which the electron spends trapped in the localized level before release (tr) is 

calculated as  

),ln(rt i
rr τ−=  

where τr
i is the mean release time for the level i, as calculated earlier. 

• Calculation of the carrier displacement and current position 

At this stage, we calculate the current carrier displacement as 

Move = µ0 · F · tc,  
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where µ0 is the mobility at the edge of the conduction band and F is the electric field. 

The latest position of carrier is calculated as the sum of the present and all previous 

displacements. 

• Calculation of the contribution to the TOF transient current 

For the calculation of the TOF transient current, we divide the time scale into time bins 

of breadth ∆t. The TOF transient current due to a single carrier at a given time t is 

proportional to the sum of the carrier displacements falling into the interval (t−∆t/2, 

t+∆t/2). The parameter ∆t is adjustable. It should be large enough to include many 

events and to suppress statistical noise. On the other hand, it should be quite short, to 

avoid smoothing of the TOF pulse shape. Therefore, it has been selected depending on 

the experimental conditions, after several trials which allow us to ensure that it is small 

enough and that the results of the simulations do not depend on it. 

• Is the carrier still inside the sample?  

This block checks if the carrier is still inside the sample, by comparing its current 

position with the sample thickness. If the current position exceeds the sample thickness, 

then the calculation proceeds by examining the next carrier. 

• Is it the last carrier?  

The last block checks if we are dealing with the last carrier of the specified number. If 

so, it terminates the program.  

The TOF photocurrent waveforms obtained using MC simulations for different 

values of electric field are compared with experimental results. Samples of a-Se and 

stabilized a-Se for experimental data were prepared by thermal evaporation of Se pellets on 

either aluminum plates or Corning 7059 glass substrates. The top electrodes on the sample 

were of semitransparent of sputtered platinum or gold. Sample thickness ranged from 50 to 

200 µm. The details of sample preparation and experimental procedure are explained in the 

reference [45]. Comparison of the results is shown in the Figure 5.4. The waveforms in the 

left column are on a linear scale and the same data is plotted on a log-log scale. The pre- 
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and post- transit regions are clearly distinguishable on the log-log scale and it is evident 

that the calculated waveform and the experimental results are in excellent agreement. 
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Figure 5.4: Comparison of the TOF transient photocurrent calculated using MC (circles) 
techniques and experimentally measured data (solid line). The left column presents the 
TOF data on a linear–linear scale and the right column presents the same data on a log–log 
scale.  

 

5.6 Results Discussion 

In the previous section the calculated and experimentally measured photocurrents 

were shown to compare satisfactorily by using the proposed DOS for a wide range of 

electric fields. It is worth mentioning that the optimized DOS investigated in this work may 

not necessarily be unique, rather, it is an effective DOS that is able to explain the observed 

TOF photocurrent shapes, while not excluding other possibilities. However there are some 

important points that support the DOS model proposed in this work. First is that the 

proposed DOS distribution is very stable with respect to sample to sample variations. This 

means that only small variations in the DOS distribution, such as a shift and/or correction 

in the amplitudes of the Gaussians, are needed to explain TOF experiments on different 

samples. Second, for any sample, the proposed DOS distribution is able to explain the 

experimental data for a large range of applied electric fields, as shown in Figure 5.4. It 

should be noted that the coincidence of the calculated and measured curves is unlikely to be 

accidental over a time interval covering more than two orders of magnitude. The fact that 

the DOS remains consistent for electric field variations exceeding one order of magnitude is 

a convincing factor. The effect of aging, annealing and alloying with As and doping with 

Cl on the DOS distribution have been also investigated by Koughia [45]. The salient 
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features of the proposed DOS distribution and their origin as discussed by Kougiha et al. 

are as follows: 

A random chain model has been widely accepted as a structural model for a-Se. All 

of the atoms in this model are in two-fold coordinated chain structures and the dihedral 

angle is constant in magnitude but changes in sign randomly. The random chain model for 

a-Se has been discussed in detail in chapter 2. The random chains in the amorphous 

structure have chainlike and ringlike regions which are essentially fragments of perfect 

chains in trigonal γ-Se and Se8 rings in α-Se. Only holes are considered to be mobile in γ-

Se [70], whereas only electrons drift in monoclinic α-Se [71]. Theoretical calculations have 

shown that the random alternation of dihedral angles may itself produce localized (defect) 

states within the mobility gap, which would obviously affect the electronic properties [72].  

The dominant feature of the DOS distribution in the upper half of the mobility gap 

is the primary peak at ~0.30 eV below the CB band edge Ec, which was introduced by 

Koughia et al. to explain the temperature dependence of the drift mobility. From the 

persistence of this peak for all of their samples, and the relative stability of its value, they 

have concluded that it may be connected with intrinsic defects in a-Se, such as distortions 

of the normal dihedral angle. The electron drift mobility in α-monoclinic Se is also 

thermally activated at low temperatures, which is regarded as evidence for the existence of 

a defect level at ~0.25  eV below Ec. It has been also proposed that the defect level in α-Se 

and the DOS peak in a-Se may have a common origin. The small difference of ~0.05 eV in 

their positions with respect to Ec can be accounted for by the formation of localized tail 

states below Ec in the amorphous phase. This interpretation is further supported by the 

observation in their paper that the mobility-controlling peak at Ec–0.30  eV persists even 

with alloying with As and doping with Cl. 

The exact shape of the DOS distribution for deep states can not be conclusively 

decided. For the MC simulation calculation these states were assumed to have a Gaussian 

distribution. From the MC simulation results it can only be concluded that these states lie 

mostly below ~0.6 eV from Ec. At 0.65 eV below Ec and beyond, the position of these deep 

states had no visible effect on the transient photocurrent shape. These may be the states at 

Ec–1.1  eV identified by Abkowitz and Enck using Xerographic measurements [51]. The 
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exact nature of these states is still unknown, but their sensitivity to technological 

parameters, such as doping, alloying, and deposition temperature, is confirmed by 

numerous experiments. Koughia et al. have observed that the concentration of these deep 

states is very sensitive to alloying and doping. It also varies with aging and annealing. The 

exact nature of these states is unknown but, obviously, they behave as thermodynamic 

defects.  

It is also noticed that the small peak (or shoulder) at 0.43–0.50 eV below Ec seems 

to behave in a similar way to the deep traps to aging (relaxation) and annealing. 

Consequently, it is concluded that the states forming the secondary peak (or shoulder) at 

0.45–0.50 eV below Ec are also thermodynamic defects. These states may be connected 

with the existence of VAPs that is Se3
+ and Se Se1

- defects. Song [73], using a post transit 

photocurrent analysis, found a peak in the DOS of a-Se at about 0.55 eV, which is 

relatively close to the shoulder we observe at 0.45–0.50 eV. A similar electron trap peak 

has been observed at about the same energy from a cycled up residual voltage decay 

analysis [74].  

 

5.7 Summary 

In this chapter the MC simulation model for investigating the DOS distribution in 

the mobility gap of a-Se has been discussed. The MC model is used for calculating 

transient photocurrents that are compared with the experimentally measured and calculated 

transient photocurrents. The transient photocurrents were first calculated by the inverse 

Laplace technique and were verified by the MC simulation technique presented in this 

chapter. The resulting DOS has distinct features: A first peak at ~0.30  eV below Ec with a 

relatively stable amplitude ~1017  eV–1  cm–3, which may be associated with such intrinsic 

defects as distortions of the normal dihedral angle, and a second small peak (or shoulder) at 

0.45–0.50 eV below Ec with an amplitude 1014-1015 eV–1 cm–3, which may be related to the 

existence of VAPs consisting of Se defects.  

The DOS distribution contains deep states with an integral concentration of 1014–

1015 cm–3 lying below 0.65 eV, whose exact distribution could not be resolved. The second 
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shoulder-like peak and the deep states are believed to correspond to thermodynamic defects, 

i.e., defects whose concentration is relaxing in a reproducible way to some equilibrium 

value after thermal treatments and/or cycling. 
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6 Density of States of a-Se near the Valence Band 
 

6.1 Introduction 

In the previous chapter the distribution of density of localized states near the CB 

mobility edge has been discussed. In this chapter, the DOS distribution in the lower half of 

the mobility gap of amorphous selenium near the VB has been analyzed. This is achieved 

by comparing TOF transient photocurrents at various temperatures calculated by the MC 

simulation technique using the proposed DOS distribution with data published elsewhere 

[66]. The shape of the density of states distribution is further investigated by comparing the 

hole drift mobility-temperature characteristics for different DOS distributions.  

 

6.2 Model for DOS Distribution Near Ev  

As mentioned in the previous chapter, the DOS distribution in the mobility gap of 

amorphous selenium is a still a subject of controversy. It is generally agreed upon that the 

DOS distribution in the upper half of the mobility gap near the CB mobility edge is not 

monotonous but contains peaks at certain energy levels. The exact position of these peaks 

are still being actively discussed. The DOS distribution in the lower half of the mobility 

gap near the VB edge has proven to be even more controversial. The generally accepted 

model proposed by Abkowitz in 1988 [75] contains a sharp peak at around 0.28 eV above 

Ev. On the other hand, Natio and co-workers [76] have suggested a DOS distribution that 

decays into the mobility gap with a very small Gaussian bump around 0.24 eV above the 

VB edge. They deduced their DOS model after re-examining the hole drift mobility-

temperature data reported by Kasap and Juhasz [77]. A research group [73,78] after 

performing post-transit current measurements have reported another peak at 0.4 eV above 
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the VB edge. Recently Koughia [50] has proposed another model that is a monotonically 

decaying featureless distribution without the prominent 0.28 eV peak present in Abkowitz's 

model.  

In this research work the DOS model proposed by Koughia has been investigated 

by calculating TOF transient photocurrents at various temperatures to compare with data 

reported previously by Pfister and Noolandi. The monotonic feature of the proposed DOS 

distribution is further investigated by comparing hole drift mobility-temperature (µh vs. 

1000/T) characteristics from purely a exponential distribution and Gaussian distribution as 

a function of electric field and temperature. The DOS distribution used for calculating the 

transient photocurrents to compare with the published data is shown in Figure 6.1.  
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Figure 6.1: DOS distribution near the VB mobility edge in a-Se. The DOS distribution was 
used to compare the TOF transient currents with previous researchers is shown here.  There 
is a slight shift in the position of the distribution with a change in temperature. 
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 The inset of the Figure represents the source and the temperature of the TOF 

photocurrent data for which the respective DOS distributions were used to calculate the 

MC photocurrent. 

 

6.3 MC Simulation Results 

The MC simulation model for hole transient photocurrent calculations is similar to 

the one discussed in the previous chapter for electron transport with appropriate 

modifications in the carrier parameters. First, the MC simulation technique was used to 

calculate transient photocurrents using the DOS distribution shown in Figure 6.2 to 

compare with photocurrents measured by Noolandi.  
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Figure 6.2: DOS distributions in the mobility gap of a-Se near VB edge at three different 
temperatures. As the temperature increases from low (143K) to high (250K), the DOS 
shifts slightly. 
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The photocurrents at low (T = 143K), medium (T = 188K), and high (T = 250K) 

temperatures with electric field strength of F = 10V/µm and sample thickness of 79µm are 

reported in that paper. The DOS distribution was adjusted until the photocurrents from the 

Monte Carlo simulation and experimental results were in reasonable agreement. The 

mobility edge was shifted by a small amount (∆) with varying temperature to obtain a 

better fit of current waveforms. The shift in the mobility edge with temperature is 

approximately ~3×10-4 eV K-1. The final DOS distribution seems to be monotonic and 

featureless, almost like an "exponential tail", at least in the range from Ev 
up to Ev 

+ 0.4 eV 

where Ev 
is the mobility edge of valence band. The calculated and experimentally measured 

photocurrents are compared in Figure 6.4. Both results are in excellent agreement for the 

different values of temperature. 

The MC transient photocurrents were then calculated to compare with the measured 

photocurrents reported by Pfister. The amorphous selenium samples used in Pfister's TOF 

were prepared by open-boat evaporation onto an Al or Au substrate at 55 °C. It was 

observed that some shallow states 0−0.15 eV and some relatively deeper states 0.35−0.43 

eV can be neglected during the MC calculation without any noticeable effect on the 

transient current shape. Neglecting the states significantly reduces the computational time. 

The calculations were verified by using the inverse Laplace transformation technique and 

similar results were observed. The DOS distribution used in the MC calculations of 

photocurrents to compare with Pfister's data is shown in Figure 6.3. The calculated 

photocurrents and experimentally measured photocurrents are shown in Figure 6.5. Both 

the results are in excellent agreement over the range of temperature. 
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Figure 6.3: DOS distribution near VB edge used to calculate TOF transient photocurrents 
to compare with previously published results by Pfister. 
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Figure 6.4: Comparison of TOF transient photocurrents at different temperatures reported 
by Noolandi (solid line) and obtained by Monte Carlo simulation (hollow circles). Curves 
on the right hand side are the same transient current plotted on log-log scale to emphasize 
the "knee" representing pre- and post-transit regions. An electric field of 10V/µm was used.  
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Figure 6.5: Comparison of TOF transient photocurrents at different temperatures reported 
by Pfister (solid line) and obtained by Monte Carlo simulation (hollow circles). Curves on 
the right hand side are the same transient current plotted on log-log scale. Electric field of 
10V/µm was used.  

 

6.4 Drift Mobility-Temperature characteristics 

The DOS distribution model proposed by Koughia [50] (investigated in the 

previous section) is a monotonic featureless distribution contrary to the DOS models 

proposed by previous researchers, since almost all of them contain peaks or small bumps at 

various energies. In this section the drift mobility-temperature characteristics for a 

simplified monotonous distribution and a Gaussian shaped distribution are investigated. 

First a simple exponential distribution was used to calculate TOF transient photocurrents 

for different electric fields and temperatures. From the TOF photocurrents the drift 

mobility is calculated using FL/tµ Td = . The transit time tT was taken to be at the "knee" of 

the log-log current waveform, which separates so-called, pre- and post transit regions. The 

expression for the DOS distribution used is  

 ⎟
⎠
⎞

⎜
⎝
⎛−=

E
ENEN v δ

exp)(  

where Nv is the effective density of states at the VB mobility edge Nv= 1×1021 cm-3, δE = 

300K ⋅ kB = 2.59×10-2 eV. Hence using the purely exponential DOS distribution, 
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photocurrents as a function of electric field and temperature were calculated. The 

photocurrents are calculated for electric field values of F = 1 V/µm, 5 V/µm, and 20 V/µm. 

The drift mobility-temperature characteristics at these electric fields for a purely 

exponential distribution are shown in Figure 6.6.  The calculated drift mobility versus 

reciprocal temperature characteristics are similar to the those reported previously by a 

number of researchers [17,79,80,81]. The log(µh) vs. 1000/T curves has a saturation region 

at high temperatures and a linearly decreasing region at low temperatures. Field 

dependence of hole drift mobility is clearly visible from the calculated characteristics.     

Next hole transient photocurrents using a purely Gaussian DOS distribution in the 

mobility gap of a-Se were calculated. and the µh vs. 1000/T characteristics were determined 

in the same manner as for the exponential distribution. The activation energy is estimated 

from the slope of the linear region of µd versus 1000/T curve (∆E = slope. k. 1000). The 

activation energy for fields of 1 V/µm and 5 V/µm is calculated to be ~0.2 eV and 0.15 eV 

for 20 V/µm field. 

The position of the Gaussian distribution is taken to be at 0.2 eV. The Gaussian 

DOS distribution mathematically can be written as  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆−

−=
2

exp)(
σ

EENEN t ,  

where E − ∆E represents the position of the Gaussian distribution above Ev and σ is the 

standard deviation of the distribution and is taken as 30 meV. The mobility-temperature 

characteristics are calculated from the transient photocurrents and are shown on the same 

Figure 6.6. From the mobility-temperature characteristics it is clear the drift mobility from 

a monotonic and featureless DOS distribution at lower temperatures is field dependent. 

While the characteristics from a Gaussian "bump" are independent of the electric field. The 

exponential and Gaussian distributions were selected as simplified DOS distributions to 

study the monotonous character of the proposed DOS.  
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Figure 6.6: Mobility-temperature characteristics (a) for purely exponential and purely 
Gaussian distribution calculated using MC technique for three different electric fields. The 
dotted lines represent the characteristics for exponential distribution, and the symbols 
represent the characteristics for Gaussian distribution (b) the characteristics reported by 
previous researchers.  
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It is clear that only a featureless distribution can account for the electric field dependence 

of hole drift mobility as observed from the µh vs. 1000/T reported by Kasap [81] and 

Marshall [17], as shown in Figure 6.6(b). 

6.5 Summary 

In this chapter the DOS distribution near the VB mobility edge proposed by 

Koughia [50] was investigated. It is proposed that the DOS distribution near valence band 

edge Ev is a featureless, monotonically decreasing distribution almost like an "exponential 

tail" in energy up to Ev + 0.4 eV, without the 0.28 eV peak near the valence band which 

was thought to control the hole drift mobility. The DOS distributions are shown in the 

Figure 6.1. It is clear that the DOS distributions have a monotonic character and a clear 

absence of prominent features. Above Ev + 0.2 eV, DOS may be approximated roughly by 

a single exponential with characteristic energy δE ≈ 19 meV which corresponds to a 

characteristic temperature Tc ≈ 220 K. The monotonic change in the DOS distribution 

(without any features) was the main factor for the reasonable agreement between the MC 

calculations and experimental data. The DOS distribution was further optimized by 

allowing the mobility edge to shift with temperature, which is characterized by (∆) the shift 

per unit temperature and is approximately ~3×10-4 eV K-1.  

The DOS distribution discussed here may not be unique; rather it is an effective 

density of states that was able to result in TOF photocurrents that satisfy the electric field 

and temperature variations. The interesting aspect of the proposed DOS model is that it 

satisfies experimental results for varying temperature from different sources. As mentioned 

previously amorphous selenium has two allotropes in the crystalline phase: trigonal Se (γ-

Se) that is comprised of aligned Se chains in which only holes can drift, and α-monoclinic 

(α-Se) which consists of Se8 
rings, in which only electrons can drift. In the amorphous 

form and in the trigonal phase, the valence band is formed by lone pair (LP) interactions. 

Fluctuations in LP interactions are related to changes in the dihedral angle (φ) along the 

chain. The fluctuations in the amorphous form result in the formation of tail states that 

control the hole drift mobility. In γ-Se, the hole mobility is controlled by lattice scattering 

[82], whereas in a-Se, it is controlled by multiple trapping in the tail states. Koughia et al. 

have proposed that the hole transport mechanism undergoing multiple trapping interactions 
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with tail states in amorphous selenium is analogous to electron transport in a-Si:H. Further 

work that is based on combining an exponential tail and a Gaussian peak could be useful. 
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7 Summary and Conclusions  
 

Amorphous selenium is one of the most widely studied amorphous materials not only 

because of its commercial applications but also due to its status as a prototype amorphous 

semiconductor. Its most important application has been in Xerography. For almost four 

decades it has been the material of choice in Xerographic applications until it was replaced 

by organic photoconductors. Recently it has again attracted attention due to its properties as 

an X-ray photoconductor in direct conversion X-ray image detectors and as an avalanche 

photoconductor in ultrahigh sensitivity video tubes called HARPICONs.  

The energy distribution of localized states in the mobility gap is one of the most 

general characteristics of amorphous semiconductors. Despite a long history of research the 

exact shape of the DOS distribution in the mobility gap of amorphous selenium is still a 

subject of controversy. This research project is aimed at developing a MC simulation 

model for carrier transport in amorphous selenium in a TOF photoconductivity experiment 

to investigate the DOS distribution. 

The MC simulation method consists of simulating the motion of a carrier sheet 

resulting from photoexcitation inside a sample, subject to the force from an applied electric 

field and of multiple trapping and release events. The duration of the free flight of carriers 

and their dwell time in the trapping centers have been stochastically calculated with the 

given probabilities of these events. The MC simulation model for TOF experiment was first 

developed for semiconductors with monoenergetic and three trap level distributions. The 

carrier sheet profile at various time intervals was compared with the theoretical solution by 

Zanio and Akutagawa [58]. The TOF photocurrent results were found to be in excellent 

agreement and verified our MC approach. The TOF transient photocurrent for the three trap 
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level model calculated using the MC technique was compared with inverse Laplace 

transform calculations. These calculations agreed perfectly as well.  

 The DOS distribution in the upper half of the mobility gap near the CB edge was 

then investigated. The MC simulation model was used to calculate TOF transient 

photocurrents at different electric fields and the results were compared with experimentally 

measured photocurrents. The DOS distribution that provides the best agreement with the 

photocurrents is the final accepted model. The resulting DOS distribution is a modified 

version of Abkowitz's model and has following distinct features: 

1. The first peak is at ~0.30 eV below the CB mobility edge with a relatively 

stable amplitude of ~ 1017 eV-1 cm-3. 

2. A second smaller peak at 0.45-0.50 eV below Ec with amplitude of 1014-1015 

cm-3 eV-1.  

The exact distribution of deep states with an integral concentration of 1014-1015 cm-3 

eV-1 lying at 0.65 eV below Ec could not be resolved. In the MC simulations, these deep 

states were considered in the form of a Gaussian distribution below 0.65 eV. The exact 

position of these states below 0.65 eV did not affect the shape of calculated transient 

photocurrents. The first peak at 0.3 eV is believed to be associated with intrinsic defects 

like the distortion of the normal dihedral angel in the random chain model of amorphous 

selenium. The shoulder peak at 0.45-0.50 eV below Ec and the deep traps are believed to be 

thermodynamic defects.  

 The density of states (DOS) distribution in the vicinity of the valence band mobility 

edge in amorphous selenium has been investigated by studying the dependence of the 

shape of TOF transient photocurrent on temperature, and also the dependence of the drift 

mobility on the temperature and field. It is observed that analogous to electron transport in 

a-Si:H, the DOS near Ev is a featureless, monotonically decreasing distribution in energy 

up to Ev + 0.4 eV, without the 0.28 eV peak near the valence band which was thought to 

control the hole drift mobility. However further work is needed to confirm the latter 

conclusion. 

 The simulation results point to a DOS distribution that is shown in the Figure 7.1. 
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Figure 7.1: Salient features of the DOS model investigated in this research work [49]. 
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