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ABSTRACT 

Hydrologic modelling and prediction in the Canadian Rookies are hampered by the sparsity of 

hydro-climatic data, limited accessibility, and the complexity of the cold regions hydrologic 

processes. Previous studies in this region have mainly focused on very few heavily instrumented 

catchments, typically with limited generalizability to other catchments in the region. In this thesis, 

I adopt a “large-sample hydrology” approach to address some of the outstanding issues pertaining 

to data uncertainty, model parameter identifiability, and predictive power of hydrologic modelling 

in this region. My analyses cover 25 catchments with a range of physiographic and hydrologic 

properties located across the Canadian Rockies. To address forcing data uncertainty, which is 

commonly considered as the most dominant source of uncertainty in the hydrology of this region, 

I processed and utilized three different gridded-data products, namely ANUSPLIN, CaPA, and 

WFDEI. To make the problem tractable, I applied an efficient-to-run conceptual hydrologic model 

to simulate the hydrologic processes in this region under a variety of parameter and input data 

configurations.  

My analyses showed significant discrepancies in precipitation amounts between the different 

climate data products with varying degrees across the different catchments. Runoff ratios were 

quite variable under the different products and across the catchments, ranging from 0.25 to 2, 

highlighting the significant uncertainty in precipitation amounts. To handle precipitation 

uncertainty in hydrologic modelling, I developed and tested two strategies: (1) implementing a 

correction parameter for each data product separately, and (2) developing and parameterizing a 

linear combination of the different data products to have a unified, presumably more accurate data 

product. These new precipitation-correcting parameters along with a selected set of the hydrologic 

model parameters were analyzed and identified via Monte-Carlo simulation, considering three 

model performance criteria on streamflow simulation, namely Nash-Sutcliffe Efficiency (NSE), 

NSE on log-transformed streamflow (NSE-Log), and Percent Bias (PBias). Overall, the hydrologic 

model showed adequate performance in reproducing observed streamflows in most of the 

catchments, with NSE, NSE-Log, and PBIAS ranging in 0.36-0.87, 0.43-88, and 0.001%-34%, 

respectively. However, most of the model parameters showed limited identifiability, limiting the 

power of the model for the assessment of climate and land cover changes. Overall, WFDEI climate 

data provided the best performance in parameter identification, while demonstrating a superior 

performance in reproducing observed streamflows. 
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 Introduction 

1.1 Motivation 

Water is a critical natural resource that plays a vital role in public health, the economy, 

food production and the environment. Concurrent with a growing world population, the demand 

for water is increasing and the pressure on limited freshwater resources is escalating. It has been 

reported that global water use has more than doubled in the last 50 years (Wada et al., 2013).  

The management of freshwater resources is becoming more challenging in the presence of 

climate change and increasing development. Effective freshwater management is of vital 

importance for Canada; reduced river flows, decreasing groundwater and lake levels and 

increasing water temperature in southern Canada have been associated with climate change and 

increasing water demand (National Water Research Institute, Environment Canada, 2004). Despite 

the demonstrated effects of climate change and development on water in Canada,  water 

availability in the country remains the second-highest globally; yet, some communities are 

experiencing water supply shortages caused by decreasing water quantity and/or quality (Sullivan, 

2002). Additionally, researchers have shown that as a result of climate change impacts, the 

frequency of extreme events, such as  heavy precipitation events and droughts for example, is 

increasing (Karl, Knight, and Plummer, 1995; Tsonis, 1996). The increased frequency of extreme 

events translates to lower confidence in system prediction (Tsonis, 2004). Since extreme events 

can have devastating and long-lasting effects on communities and infrastructure, it is important 

that models for their prediction are improved.  

By predicting future streamflow using hydrological models, hydrologists can provide 

estimates of future water supply.  These estimates are important to manage and maintain existing 

water resources and to mitigate the impact of natural disasters (Razavi, 2014). However, there 

remains scope to reduce the uncertainty associated with hydrological models, thereby increasing 

the value of model predictions in water resources management. In particular, the reduction of 

uncertainty within hydrological simulations for mountainous headwater catchments that act as 

‘water towers’, contributing the vast majority of flow in a river basin, would contribute greatly in 
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improving hydrological simulations. By characterizing the uncertainty within hydrological model 

parameter and precipitation data for mountainous headwater catchments, this study will hopefully 

contribute to reliable predictions of water availability in the future.  
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1.2 Problem Statement and Objectives 

The Rockies act as ‘water towers’, and are therefore hydrologically very important for 

rivers that rise from this mountain range. For example, on an average year, the Rockies contribute 

90% of the flow in the Saskatchewan River, which extends eastwards, supplying water to the 

Prairie Provinces. In recent decades, water demand has increased due to population and economic 

growth, thereby placing increasing pressure on this area (Wheater and Gober, 2013). Moreover, 

according to climate and land use change data, streamflow within the river is changing, thereby 

increasing concerns regarding the future capacity of the river to supply water and support economic 

productivity. Within the aforementioned context, the main objectives of this study are: 

 Analyzing of the hydro-climatic data of the catchments falling within the Canadian 

Rockies using different database products. In addition, improving streamflow estimation using the 

semi-distributed HBV-EC model (Moore, 1993). The findings can allow us to quantify runoff 

components and to identify the dominant hydrological processes. Finally, the comprehensive 

information collected in basins can be used to provide a more accurate prediction of streamflow 

time series for both gauged and ungauged basins  

 Investigating the parameter uncertainty and identifiability of HBV-EC model 

parameters using Monte Carlo simulation.  

 Identifying and understanding the uncertainty related to the forcing data: (i) How 

accurate are the different precipitation datasets for streamflow simulations? (ii) What is the effect 

of uncertain input data (precipitation) on the streamflow estimation? (iii) How will the model 

components compensate for precipitation inaccuracy?  
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1.3 Thesis Layout 

The thesis layout is as follows: 

Chapter 2: Hydrology and Hydrological Modelling in a Changing World 

Chapter 2 is a literature review, and provides a summary of hydrological modelling, 

different models and the distinction between conceptually- and physically-based, lumped and 

distributed models, with a focus on basins of the Canadian Rockies. A further literature review is 

provided regarding uncertainties of parameters and input precipitation data. 

Chapter 3: Materials and Methods 

This chapter presents the hydro-climatic information of the region along with physical 

characteristics, locations and land cover of the basins. The chapter also provides a detailed 

description of forcing data (precipitation, temperature and evapotranspiration) used to run the 

model and also a conceptual description of the semi-distributed HBV-EC model. 

Chapter 4: Results and Discussion 

Chapter 4 provides general results and discussion of hydrometric and climatic data analysis 

for 25 basins, with specific results discussed for five basins. The performance of model using 

different forcing data and results of parameter uncertainty and identifiability are also elaborated. 

Chapter 5: Conclusions 

Chapter 5 provides a summary of the main conclusions alongside with recommendations 

for future research.  
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 Hydrology and Hydrological Modelling in a Changing 

World 

Hydrology tries to answer the need for understanding water movement in the atmosphere 

and on the earth to help in solving water problems. Hydrological cycle is portrayed by a simplified 

diagram in figure 2.1; this process includes: evapotranspiration (water going into the atmosphere), 

condensation (forming of clouds); precipitation (in various form, such as rain, snow, sleet and 

hail), runoff (flow of rainwater on the earth’s surface and in surface water bodies), and infiltration 

and percolation (water infiltrating into the earth and recharge groundwater bodies). The water 

movement from the earth’s surface to the atmosphere is mainly driven by solar energy, while the 

water movement at and below the surface of the earth is mainly driven by gravity. Hydrological 

cycle maintaining the heat balance of the earth, trough moving and redistributing water masses 

(Blasone, 2007).  

Understanding hydrological process (i.e. evaporation, infiltration, snowmelt, baseflow and 

peakflow) and climatic variability including streamflow, precipitation, and the temperature is an 

essential part of water resource and environmental sciences.  For achieving sustainable land 

development and managing and maintaining the existing water resources, scientific research on 

the hydrological processes in space and time is crucial.  Ever increasing anthropogenic changes 

across watersheds, together with the presence of climate change, results in non-stationarity of 

hydrologic processes. Significant research still lies ahead to properly address both the issue of 

“non-stationarity” and “uncertainty estimate” in the context of hydrology and eventually 

streamflow estimation.  

Good progress has been made in the understanding of hydrological processes particularly 

after the development of the science initiative of predictions in the ungauged basins (PUB) that 

was proceeded by the International Association of Hydrological Science (IAHS) in 2003 

(Hrachowitz et al., 2013; Sivapalan, 2003). The PUB initiative was created with the main purpose 

of reducing uncertainty in hydrological predictions. It addresses the streamflow prediction using 

new approaches which are based firstly on improved understandings and representations of 

physical processes within and around the hydrological cycle and improve their capacity to make 
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predictions in the ungauged basins (Sivapalan, 2003). Consequently, a decade of predictions in the 

ungauged basins has led to considerable advancement in scientific understanding of hydrological 

processes, new methods for data collection and model development, uncertainty analysis, 

classification of basins and progress of hydrological theories (Hrachowitz et al., 2013). And 

numerous researchers tried to find out the importance of additional data, new measurements, and 

modeling the hydrological processes at ungauged catchments (Fenicia, McDonnell, and Savenije, 

2008; Hrachowitz et al., 2013; Lehmann et al., 2007; Son and Sivapalan, 2007; Uhlenbrook and 

Wenninger, 2006; Winsemius, 2009). 

 

Figure 2.1: Schematic of hydrologic cycle (Ontario Stormwater Management Planning & 

Design Manual, 2003) 

2.1 Hydrological Modelling  

A model is a simplified representation of the real-world system and the ideal model is the 

one that generates results very close to reality using of least parameters and also model complexity. 

And hydrological modelling is the discipline that tries to quantitatively describe the terrestrial 

processes of the hydrological cycle (Singh and Woolhiser, 2002). Rainfall-runoff (or hydrologic) 

models simulate the hydrologic cycle using watersheds physical and climatological characteristics 

over a broad range of space, time and (potential) climate (Devia, Ganasri, and Dwarakish, 2015) 
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Hydrologic models are effective tools both for operational and research purposes. They 

have been applied extensively to investigate the impact of various water resource management 

scenarios. In addition, the need for accurate hydrological models has been increasing due to the 

growing complexity of operational hydrologic and hydraulic problems associated with population 

growth, quick urbanization and expansion of agricultural activities (El Hassan et al., 2013). In the 

recent decades, there have been significant developments in hydrological models, linking the 

process understanding to the structure and complexity of models. The modelling task is 

complicated as the development of hydrological models requires several steps which involve 

uncertainties. This uncertainty together with data errors and natural randomness can lead to 

increased uncertainty in model predictions (Butts et al., 2004). Hence, developing precise and 

reliable models remains one of the most challenging topics in hydrology. 

2.1.1 Classification of hydrological models 

Various hydrological models have been developed for different purposes. The data needed 

for hydrological models varies. A model, depending on its design, may need rainfall, air 

temperature, soil characteristics, topography, vegetation, hydrogeology and other physical 

parameters.  

In the recent years different kinds of hydrological models have been introduced which all 

are useful but in the somewhat different circumstances; the choice of a model is determined by its 

purpose and data availability. Each model has its own effectiveness depending upon the objective 

of the study, the degree of complexity of the problem and the degree of accuracy desired. Models 

are not conflicting, they are rather a different level of approximation of reality (Xu, 2002).  

Hydrologic models can be conceptual or physically based, lumped or distributed, which 

differ in data requirements, mathematical simulation of hydrologic processes and spatial 

representation of the simulated catchment. 

In lumped models, the whole catchment is adopted as one unit and so spatial variability is 

ignored. In these models, the input data which is mainly precipitation and temperature and system 

output are related without considering the spatial processes, patterns, and organization of the 

characteristics governing the processes (Moradkhani and Sorooshian, 2008). A distributed model 
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is one in which parameters, inputs, and outputs vary spatially hence a model can make predictions 

that are distributed in space by dividing the entire catchment into small units, usually square cells 

or triangulated irregular network (Moradkhani & Sorooshian, 2008). A semi-distributed model 

takes a lumped representation for each sub-catchments. The advantage of the semi-distributed 

models are to have more detailed structures in contrast with the lumped ones, while, they need 

lesser amount of input data compared with the fully distributed ones.  

All hydrological models are more or less lumped estimation of a heterogeneous world, 

therefore their equations illustrate the real world processes as being combined in space and time 

(Wagener and Gupta, 2005). 

2.1.1.1 Empirical Models 

Empirical models or data-driven models are observation oriented which take the 

information from the field measurement data without considering the hydrological processes. This 

kind of models make connections between input and output data through some statistical 

techniques (Devia, Ganasri, and Dwarakish, 2015).  Hence the empirical models are inferred from 

data instead of representing detailed physical processes. Empirical models are generally less 

complicated than their physical and conceptual peers and acceptable results can be rapidly 

achieved by applying methods like regression and neural network (Aghakouchak and Habib, 

2010). The SCS method (National engineering handbook, 1972) is a well-known example of a 

widely used empirical model for runoff prediction. 

2.1.1.2 Physics-based modelling 

Physically-based model is based on the best understanding of the physics of hydrological 

processes. The hydrological processes of water movement are represented by equations. The 

models are characterized by parameters that are in principle measurable and have a direct physical 

significance so they do not require extensive hydrological and meteorological data for their 

calibration. The evaluation of a large number of parameters describing the physical characteristics 

of a catchment requires data include boundary conditions, initial conditions, topography, topology, 

dimensions of river network etc. The physical model can overcome many defects of the other two 

types of models, empirical and conceptual, due to use of physical parameters. They can provide 
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large amount of information for a wide range of situations and an important advantage of these 

models is that if the physical parameters can be determined a priori, therefore they can be applied 

to ungauged catchments and the effects of catchment change can be represented (Devia, Ganasri, 

and Dwarakish, 2015). Nevertheless, most of the physically-based model are complex because of 

the spatial variability in the processes, and as a result they are generally described by a plenty of 

parameters. Spatial diversity between observed parameters and model parameters and differences 

between hydrological process scales and modelling scales is another problem with using physically 

based models (Shi et al., 2014). 

2.1.1.3 Conceptual Models 

Conceptual models are intermediate between physically-based models and empirical 

models while they generally consider physical laws but in a simplified fashion. In conceptual 

models, processes are estimated with simple equations rather than solving the governing equations 

differentially. In conceptual models, various kinds of parameters with no or little physically 

meaning are introduced to the model (Aghakouchak and Habib, 2010).  

For applying conceptual models to a particular basin, the model must be calibrated, i.e. 

fitted to an observed data set to obtain an appropriate set of parameter values. Indeed the reliability 

of hydrological models is closely related to the calibration method. Model calibration is generally 

done either manually or automatically, using computer-based methodologies (Madsen, 2000).  

Manual calibration is very time-consuming. Moreover, it is hard to identify explicitly the 

confidence of the model simulations as it is based on hydrologists’ judgment. On the contrary, for 

automatic calibration, parameters are adjusted automatically according to numerical measures of 

the goodness-of-fit in computer-based methods.  

Using the conceptual models brings up different kinds of uncertainty that the main one may 

be conceptualization of reality, which reflects the modeler’s, incomplete and/or biased 

understanding of significant processes in the natural system. The most challenging downside of 

using conceptual models is known to be "equifinality" (Beven, 1993). Equifinality refers to a case 

when a range of parameter sets can all lead to acceptable model results rather than a single 

“optimal” model result. These parameters cannot be linked to the basin if they are not uniquely 
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identified, hence it is difficult to apply the model for ungauged basins and also to track the basins 

changes.   

In addition to parameter identifiability, other uncertainties can arise in (i) model context, 

(ii) model structure, and (iii) forcing data (Walker et al., 2003). The combination of these 

uncertainties in the modelling process produces its prediction error or predictive uncertainty 

(Todini, 2009). For instance observed flow (Hydrometric measurements) have an error range of 

±5% in good conditions (i.e., well calibrated stage-discharge relationship, well maintained 

equipment, good river conditions for flow measurement, etc.) to as much as ±20% when the gauge 

is in a remote location and is not as well maintained on a regular schedule (Bohrn, 2012).  

2.1.2 Monte-Carlo Simulation/ Model Parameter Uncertainty and Sensitivity 

Analysis 

Monte-Carlo simulation is a robust stochastic technique for characterizing the response surface of 

a model (Kewlani & Iagnemma, 2008) in order to investigate model parameter uncertainty. Using 

Monte Carlo simulation, parameter values are randomly sampled from the feasible parameter space 

(conditioned on prior information, as available). And then parameter samples are applied into the 

model to generate simulated data. Based on this technique, Beven and Binley (1992) proposed the 

Generalised Likelihood Uncertainty Estimation (GLUE) procedure. GLUE groups the parameter 

sets into behavioral and non-behavioral ones given a threshold criterion for the objective function. 

The non-behavioral parameters describe parameter sets which return unacceptable model outputs 

and are eventually discarded (Beven, 2006). A further distinction is made between constrained and 

unconstrained parameters (Christiaens and Feyen 2002). Applying the uncertainty analysis in 

model parameters, rather than using point estimates, more information is provided to the catchment 

manager with respect to prediction error (Benke, Lowell, & Hamilton, 2008); in this case 

uncertainty related to model output can be represented as a probability distribution which can bring 

more helpful information about the degree of risk associated with particular actions (Benke, 

Lowell, & Hamilton, 2008). The level of improvement of the model by the GLUE approach 

depends on the used likelihood function threshold criterion and the number of sampled parameters. 

A number of likelihood functions have been applied: for example, the inverse error variance with 

a shaping factor (Beven and Binley, 1992), the Nash Sutcliffe model efficiency (Freer et al., 1996), 
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scaled maximum absolute residuals (Keesman & van Straten, 1989) and the index of agreement 

(Wilmott, 1981), model bias and coefficient of determination. The choice of the likelihood 

function itself has a strong influence on the results (He, et al. 2010). In general, the identifiability 

of parameters and uncertainties in conceptual hydrological modeling (i.e. HBV models) prove to 

be a challenging task (Ouyang et al., 2014).  

In recent decades, Monte-Carlo-based approaches for uncertainty analysis has become an 

active area of research in hydrological modelling and various methods have been introduced. 

These techniques all have strengths and weaknesses and differ in their underlying assumptions and 

how the various sources of error are being treated and made explicit (Kuczeraa & Parent, 1998). 

Although it has been shown that Monte-Carlo-based methods have many privileges over 

conventional methods, the main downside of these methods is that they require a large number of 

model runs to make an accurate and reliable estimation of model uncertainty (Khu & Wernrr, 2003; 

Papadopoulos & Yeung, 2001).  

In addition, reducing the number of parameters to a number which can be calibrated 

acceptably with limited data is a way to lessen the issue of parameter non-identifiability. One 

advisable strategy therefore is to use sensitivity analysis (SA) to identify the dominant parameters 

which define model behavior and have the most influence over model performance. Using SA, the 

structure of the model, major sources of model uncertainty and also the identification problem can 

be better figured out (Ratto et al., 2001; Razavi & Gupta, 2015). When the appropriate SA 

approach is applied, non-influential parameters can be recognized and fixed reasonably at given 

values over their ranges leading to simplification of the mathematical structure of the model 

without decreasing model performance. The more sensitive a model parameter for predicting a 

given target value is, the more constrained it becomes in the remaining behavioral parameter sets. 

Various SA procedures have been introduced which can be classified into two groups: Local SA 

and Global SA. A local analysis addresses sensitivity relative to point estimates of parameter 

values and in this category one the most common method is differential SA (DSA); this method is 

relatively simple, has limitations as it does not account for any interaction between model 

parameters and it measures only local sensitivity whose value is obviously location dependent 

(Gan, 2014).  
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Global SA (GSA) overcomes these limitations of local SA approaches.  GSA characterizes 

the sensitivity of one or multiple model responses to model parameters across the entire feasible 

space of parameters, thereby providing a much more comprehensive assessment of sensitivity 

(Saltelli, 1999; Razavi & Gupta, 2015). There are a range of GSA methods in the literature based 

on different definitions and characterizations of “global sensitivity”. Traditionally, most of these 

methods can be categorized under the families of derivative-based (e.g., the method of Morris, 

1991) and variance-based (e.g., the method of Sobol, 1990) approaches. Recently, Razavi and 

Gupta (2016a) proposed a new, variogram-based approach that attempts to unify the theories of 

derivative- and variance-based approaches. Under this approach, Razavi and Gupta (2016b) 

developed an algorithm to implement a method called “Variogram Analsysis of Response 

Surfaces” (VARS) that generates a comprehensive set of global sensitivity metrics, including the 

Elementary Effects of Morris (1991) and Total-Order Effects of Sobol (1990), while being 1-2 

orders of magnitude more efficient than the alternative methods. 

Sensitivity analysis and estimation of uncertainty have become one of the main research 

topics in the hydrological modeling community and have been applied on many of both physically-

based and conceptual models including HBVs. For this purpose, Spiegelhalter (2009) applied 

sensitivity analysis to the HBV-EC parameters in order to investigate the influence of climate 

change on the discharge of several watersheds in British Columbia. He concluded that most of the 

parameters were insensitive; meaning that reasonable simulation values were generated by using 

a parameter value out of the whole parameter range (e.g. Uhlenbrook, Seibert, Leibundgut, & 

Rodhe, 1999). However, they found that the climate and runoff parameters were rather sensitive, 

while the parameters associated with forest, soil and glacier routines were rather insensitive. 

Moreover, by comparing the catchments it was found that the sensitive parameters varied by 

catchment characteristics; for instance the number of sensitive parameters decreased with an 

increase in catchment size. However, the work of Seibert et al. (2000) resulted that catchment size 

does not control the number of sensitive parameters, and such an observation may be because of 

the differences in the characteristics of the catchment studied.   

Other studies on the HBV model have also shown that most of the model parameters are not 

sensitive (Uhlenbrook, Seibert, Leibundgut, & Rodhe, 1999; Seibert, 1997; Harlin & Kung, 1992), 
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but the identification of the sensitive ones requires running GSA for each case and cannot be 

known a priori.  

2.1.3 Effect of the forcing error/Precipitation uncertainty 

An element of data uncertainty is introduced when a model is required to interpret the 

actual measurement such as precipitation data. Rainfall and snowfall are mostly the major driving 

force in hydrological models in runoff estimation. Therefore an accurate representation of the 

temporal and spatial variability of precipitation is of importance to achieve an accurate river basin 

model (Cho et al., 2009; Masih et al., 2011; Price et al., 2014). However in general input data 

applied to run the model may only be an approximation of the real-world forcing due to 

measurement errors and areal representativeness (e.g. precipitation uncertainty resulting from 

inadequate spatiotemporal network densities) (Wagener & Gupta, 2005). For example, one may 

have to deal with uncertainty in using radar measurements. They are measurements of reflectivity 

which are converted to precipitation estimates by applying empirical equations with calibrated 

parameters. This procedure is extremely uncertain (Wagener & Gupta, 2005).  

Precipitation input uncertainty arises from various reasons: inadequate areal coverage of 

point-scale gauges, inaccurate spatial interpolation, mechanical problems of the gauges, wind 

speed and etc. (Guidice et al., 2016).  Few methods have been developed to explicitly account for 

precipitation uncertainty and to propagate it through a hydrological rainfall-runoff model (Blasone 

et al., 2007). Uncertainty in precipitation data can substantially hamper the model’s ability to 

present runoff where the assumption of spatially uniform precipitation is invalid (e.g. in 

mountainous regions, Cho et al., 2009; Giudice et al., 2016).  

The impact of precipitation input on model performance is well documented (Fu, 

Sonnenborg, Jensen, & He, 2011; Kavetski, Kuczera, & Franks, 2006; Tuo, Duan, Disse, & 

Chiogna, 2016), as a function of catchment size (Moulin, Gaume, & Obled, 2008), rain gauge 

density (Bárdossy & Das, 2008) or using various geostatistical methods (Sun, Mein, Keenan, & 

Elliott, 2000). However, model robustness problems due to incorrect estimations of precipitation 

amounts are rarely reported in hydrological modelling, while it is well known that such errors 
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might have a significant effect on the final values of model parameters and resulting streamflows 

(Oudin, Perrin, Mathevet, Andréassian, & Michel, 2006). 

However, the majority of the applications of uncertainty analysis techniques in hydrology 

assume error-free data and assess the uncertainty of the model output by considering only 

parameter variation (i.e., uncertainty in model parameters). This may be in part due to the 

computational complexity of including it in a likelihood function (Honti, Stamm, & Reichert, 

2013; Kuczera & Williams, 1992; Sikorska, Scheidegger, Banasik, & Rieckermann, 2012). 

Kuczera and Williams (1992) have developed a method which accounts for the parameters and 

forcing data uncertainty separately for calibrated models. In this approach, the Monte-Carlo 

samples of spatially distributed rainfall fields and of parameter samples are generated and then the 

combined effect of precipitation and parameter uncertainty in the model output is assessed.  

For this study, we have limited the investigation of forcing data to precipitation. Therefore, 

finding a robust method that can produce a reliable assessment of total output uncertainty and also 

the contributions of the parameter and input uncertainty has still room for research.  

2.2 Investigating of hydrological process and runoff generation in the 

Canadian Rockies 

Western parts of Canada is heavily dependent on water coming from the Canadian Rockies. 

A better understanding of hydrological processes and resilience of the Canadian Rockies 

headwater basins is curial due to increasing the change of the region including climate and forest 

cover change (Harder, Pomeroy, & Westbrook, 2015) that can lead to the extreme weather and 

extreme flooding; for instance flooding of 2013 in Marmot Creek.  

Mountainous basins are mostly covered by seasonal snow and glacier and the main 

differences of the hydrological processes of these area with lower-elevation regions are sharp wet-

dry seasonal changes, complex topographic and mixed landscape patterns, and steep changes of 

temperature and precipitation by elevation (Bales et al, 2006). One of the main purposes of 

understanding hydrological processes in such mountainous basins is to assess accumulation and 

ablation of snow as a main source of streamflow generation. The assessment and calculation of 
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snow melting can be challenging since it is significantly affected by many factors including, 

temperature, elevation, slope and aspect. For instance south facing slopes become snow free 

several weeks before north faces (DeBeer & Pomeroy, 2009). In addition, Needleleaf forest is the 

main vegetation cover of the mountainous area which disrupts the timing and melt of snow by 

dampening turbulent energy fluxes (Ellis, Pomeroy, Brown, & MacDonald, 2010; Harding & 

Pomeroy, 1996). Needleleaf forest also affects the interception process and as a result the snow 

accumulation. Intercepted snow is exposed to a higher rate of radiation which results in increased 

sublimation (Pomeroy, Parviainen, Hedstrom, & Gray, 1998) and a smaller snowpack on the 

ground for snowmelt (Pomeroy & Gray, 1995). The elevation is a major factor that influences 

temperature, the phase change of precipitation and precipitation amounts in mountain basins (Storr 

1967).  

Moreover, all these processes either in timing or in frequency, are changing because of 

climate change. The available documentation of Canadian Rockies shows the rising of air 

temperature and increasing precipitation (Harder, Pomeroy, & Westbrook 2015;  Pomeroy, Fang, 

& Rasouli, 2015). Although in the Rockies basins melting water from snow pack and the glacier 

of mountains along with downstream processes such as groundwater recharge and interactions 

with ecosystems are the main water supplies of the residents, hydrological studies of some basins 

shows that streamflow is declining with time (Stewart, Cayan, & Dettinger, 2005; Valeo et al., 

2007). For example Bow River at Banff has lost 11.5% of its mean annual flow over the period of 

1910 to 2014 and the decline in summer flows is even more severe than the annual trend, with a 

24.8% decline in August since the early 20th century (Pomeroy, 2009). In another example, 

consequences of hydrological changes of Marmot Creek, air temperature at low elevations, spring 

precipitation, inter-annual variability of precipitation, and groundwater levels of higher elevation 

are increasing. On the other hand, peak seasonal snow accumulation and groundwater levels at 

lower elevations are decreasing. However, other variables, i.e., streamflow volume, the timing of 

peak, and magnitude of the peak, are remained unchanged (Harder et al., 2015).  In the other 

research on Canadian Rockies area, Larson et al. (2013) showed the other changes of streamflow 

including the date of peak snowmelt is occurring approximately 1 - 4 weeks earlier compared with 

the last half century. It is also documented that when the climate of basins in this area become 

wetter and warmer, the basin streamflow can be shifted to a more rainfall-dominated regime 
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(Whitfield, Cannon, & Reynolds, 2002), especially in areas west of the continental divide (Loukas, 

Vasiliades, & Dalezios, 2002). 

However, the research of other basins of Canadian Rockies revealed other information 

about the hydrology changes of this region. For instance, Merrit et al. (2006) found that runoff at 

Okanagan watershed will increase in near future, however, it is likely that temperature increases 

will suppress the effect of precipitation increases, resulting in runoff decline in long term.  

Besides the snow melting, glacier meltwater is another source of basins’ discharge. Rockies 

glaciers flow into four major watersheds, those of the Mackenzie, Nelson, Fraser, and Columbia 

River basins and drain into the Arctic, Atlantic, and Pacific oceans, respectively (Tennant & 

Menounos, 2013). The contribution of glacier meltwater to total streamflow may be low, but 

glacier flows supplement summer flow and regulate stream temperature (Barry, 2006; Moore et 

al., 2009). Moore and Demuth (2001) showed that the presence of even a small amount of glacier 

cover in a basin can influence streamflow variability on a range of time scales. Many studies have 

focused on understanding of the processes governing glacier meltwater generation and drainage 

(e.g. Brazel, Chambers, & Kalkstein, 1992; Fountain, 1996; Gordon et al., 1998; Hock, 2005) 

while other studies have examined the variability of total annual or seasonal runoff in glaciated 

catchments (e.g. Fountain & Tangborn, 1985; Moore, 1992). However, relatively little research 

has focused on the effect of changes in glacier conditions on glacier discharge.  

As glaciers retreat, the total volume of meltwater generation will be limited, even if high 

specific melt rates were sustained (Marshall et al., 2011; Moore & Demuth, 2001). Changes in 

glacier extent are inextricably linked with climate and a glacier’s response to climate is 

complicated by local topography and by individual glacier attributes, such as elevation, slope, and 

aspect. Due to this complex system many other studies on large numbers of glaciers with different 

sizes and attributes are required to be monitored over periods of many decades to enhance our 

understanding of the effect of different parameters on glacier area, changes in the total glacier mass 

during the time and eventually streamflow rate in the future (Moore et al., 2009). 

Another purpose of the investigation of hydrological processes in Canadian basins has been 

an attempt to predict flooding in the area. Flood events are the most visible expression of extreme 

weather in this region with recent catastrophic floods occurring in 1995, 2005, and 2013 (Harder 
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et al., 2015). Although, in many basins of this area constant or even declining annual peak flow 

has been observed, it needs to be distinguished from extreme flood events (Cunderlik & Ouarda, 

2010).  Flooding has attracted a great attention as it is a highly costly disaster and causes the most 

damages to inhabitants (Sandink, Kovacs, Oulahen, & McGillivray, 2010; Harder et al., 2015). 

However, it is one of the most difficult matter to investigate because of their infrequent occurrence 

and typically poor quality data (Whitfield, 2012). Due to mentioned reasons, useful data to 

determine frequency and magnitude of the flood is restricted (Harder et al., 2015). In addition, 

climate change has increased the uncertainty of prediction of this event. Whitfield (2012) and 

Pennelly, Reuter, and Flesch (2014) mentioned that climate change may increase the probability 

of extreme weather events that drive these floods. They also believe that extreme flood occurs 

because of various reasons and snowmelt alone is typically unable to generate sufficient runoff 

rates to cause large floods in this region.   

Beyond all existing research, there is still a lack of understanding of hydrological 

processes, which along with limited observation networks restrict the ability to simulate and 

predict streamflow accurately. Therefore more investigation in hydrological processes and climatic 

data in the Rockies basins is required.  

2.3 Hydrological models used to simulate Canadian Rockies basins 

As mentioned before, snow and glacier melt, related energetics of phase change, along with 

other cryospheric processes and their contribution to streamflow volume are of the main processes 

of mountainous basins, which can be estimated through appropriate hydrological models if they 

are calibrated and validated properly. However, hydrological models especially conceptual ones 

such as HBV-EC face the basic challenge of model uncertainty due to the simplification of natural 

processes expressed in model structure and parameters (Finger, Vis, Huss, & Seibert, 2015). 

Therefore, selecting an appropriate model is one of the main step in studying the hydrological 

processes and stormflow generation in mountain area (Barnes, 1995). It is crucial to know the 

limitations and the requirements of the model to assess if the model is useful for the research and 

the study area at hand. A complex and physically-based model may not always be the best option 

and may not generate the better results rather than a simple model in all cases (Hirshfield, 2008). 

Finding an appropriate model is challenging and a number of previous studies in literature 
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summarize different models with their strengths and weaknesses (Barnes, 1995; El-Kadi, 1989; 

Sing & Woolhiser, 2002). Various kinds of hydrological models suitable for cold region climate 

(either conceptual or physical) have been used to simulate different hydrological variables of 

Canadian Rockies basins. Examples include MESH, RAVEN, CRHM and HBV-EC models that 

are described in the following paragraphs.  

Environment Canada developed a coupled land surface and hydrological model known as 

the Modelisation Environmental Communitaire (MEC) – Surface and Hydrology (MESH). The 

MESH model is expanded from the MEC which created an environment to facilitate coupling 

between models focusing on different components of the earth system and eventually to produce 

operational forecasts (Pietroniro et al., 2007). MESH is capable of simulating runoff at any point 

within a watershed through the implementation of full hydrologic and hydraulic routing (Mengistu 

& Spence, 2016). However, it has been used for different hydrological aims in recent years such 

as promoting the transferability of vegetation parameters (Dornes et al., 2008) and simulating a 

number of hydrodynamic properties including lake level variation, ice concentration, and lake 

surface temperature (Dupont, Chittibabu, Fortin, Rao, & Lu, 2012).  

Raven (Craig et al. 2008) is a flexible hydrological framework that can be used as an either 

lumped or semi-distributed model.  Raven has been used to realize the hydrological behavior of a 

watershed and also to determine the potential impacts of environmental changes such as land use 

and climate upon watershed properties. Raven uses empirical relationships to simulate cold-

regions processes, such as using temperature index model to calculate snowmelt (Rabiti et al., 

2015).  

Cold Regions Hydrological Model (CRHM), is a physically based model with a limited 

need for calibration (Pomeroy et al., 2007) developed at the Centre for Hydrology, University of 

Saskatchewan. This model aims to improve the understanding of hydrological processes in cold 

environments which are mainly controlled by snow, ice accumulation, interception, transport and 

melt, infiltration through frozen soils, and cold water bodies (Pomeroy et al., 2007). CRHM has 

been used in various hydrological studies such as understanding the dynamical processes of 

Canadian basins (Fang & Pomeroy, 2007), assessing the snowmelt and snow accumulation in 
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forest and clearing sites (Ellis et al., 2010), and simulating the impacts of forest disturbance in the 

basin hydrology (Pomeroy, Fang, & Ellis, 2012).  

HBV-EC (Hydrologiska Byråns Vattenbalansavdelning-Environment Canada) have been 

applied frequently to investigate the snow and glacier related processes in different mountainous 

areas including Rockies basins (Mahat & Anderson, 2013; Chernos et al., 2016). Stahl et al. (2008) 

used HBV-EC in order to study the sensitivity of streamflow to climate and glacier changes over 

time for the Bridge River catchment in British Columbia. Uncertainty related to parameters 

controlling glacier melt generated uncertainty in future glacier retreat and streamflow response. 

They showed that although model fit to both streamflow and glacier mass balance was good and 

the model could reproduce the inter-annual variations in snowmelt and the glacial hydrograph, the 

model systematically underestimated of the (low) winter streamflows. However, winter 

streamflow values are usually affected by ice cover and the measurements are prone to significant 

uncertainty.  

In order to quantify the contribution of glacier runoff to streamflow, Jost et al. (2012) 

applied HBV-EC in upper Columbia River Basin. Modelled results compared with observed data 

showed that Nash-Sutcliffe efficiency could reach to 0.95 and all the behavioral parameter sets 

produced the seasonal peak flows and low flows, but had a problem with modelling the intense 

precipitation events, especially during fall. However, they believed that since this problem was 

limited to rainfall-generated daily peak flows, molding result in estimation of glacier melt 

contributions to streamflow over the larger time scales (i.e. monthly) could be reasonable. In 

addition, a reasonable agreement was shown between the result of SWE (snow water equivalent) 

estimated by HBV-EC and observed values with linear regressions having average R2 of 0.82 for 

three basins. Their result proved that the model also estimated the timing of the onset of snowmelt 

and the rate of reduction of SWE during the ablation stage precisely. 

Other studies have focused on the comparison of HBV-EC with other hydrological models 

to assess whether the model is capable of producing reliable result and suitable for their study area. 

Bohrn (2012) compared the performance of HBV-EC and WATFLOOD hydrological models for 

Churchill River Basin with each other and also with observed streamflow data. WATFLOOD is a 

semi-physically based, distributed model developed by Nicolas Kouwen in 2011 (Kouwen, 2011). 
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Hydrograph generated by models showed that HBV-EC predicts an earlier spring freshet than the 

WATFLOOD. And latter predicted the freshet slightly earlier than the measured event. According 

to hydrographs, the annual peak value of measured data is lower than that estimated by HBV-EC 

and higher than the value of WATFLOOD.  HBV-EC estimated slightly higher amounts of flow 

levels for the low-flow period of the year (late summer, fall and winter) and also higher average 

yearly flow in comparison with WATFLOOD. However both models compared well to the 

observed average flow. Overall, they concluded that HBV-EC is able to generate a reasonable 

results and also similar trends with WATFLOOD and observed data. And the discrepancy in the 

results is related to the fact that HBV-EC model was developed to model the hydrology of small 

mountainous basins that have high levels of relief.  

In another research, Hirshfield (2008) compared several hydrological models including 

SWAT, HEC-HMS, GeoSFM, HBV-EC, and CRHM to identify the ones that are suitable to 

investigate the impact of climate change on streamflow in snow dominated mountain basins in 

British Columbia. They looked for the model which is able to run on limited input data and contains 

sufficient and appropriate snow routines to capture snowmelt hydrology. They used various 

evaluation criteria including: spatial scale, snow accumulation and melt, interception and 

infiltration, cost, the user-friendly quality, and technical support. Their comparison result showed 

that overall, HBV-EC and CRHM were the best selections for their study. However, the main 

advantage of HBV-EC is that the model is well-adopted for modeling streamflow especially in 

mountain region; it is fairly easy to use, and the set up time was less than 1 week for their 

watershed. Based on their research, CRHM is a supportive model for application in the diverse 

cold regions; it is able to simulate various snow processes including blowing snow transport, 

glacial melt, and permafrost. However, it may be overly complicated and time consuming and may 

not be a best selection for basins where data available are limited. On the contrary, HBV-EC is 

common because it is simple, easy to use and requires only daily/hourly precipitation and 

temperature data, and monthly/daily estimates of evapotranspiration as input to simulate 

daily/hourly streamflow (Mahat & Anderson 2013).  

Accordingly, HBV-EC is used in our study since we aim to run the model for 25 basins 

using three different climate products, first, and then for 5 selected ones (4 times using three 

climate products and one combined precipitation data) for more rigorous investigation. The model 
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is needed to run 10,000 times for each basin, resulting in 950,000 total model runs. For such a 

large-sample hydrology approach, such a model appear to be the only option. Moreover, the 

amount of data for those 25 basins (which are mostly small basins with limited prior studies) are 

limited to temperature and precipitation, however in order to apply CRHM to its full extent, much 

more data is required (i.e. relative humidity, wind speed, and radiation). Therefore, the lack of data 

available for all basins and the running time are the main reasons that prohibit the use of a more 

complicated and physically-based model (i.e. CRHM) for this thesis. In addition, HBV-EC has 

shown to be capable of modelling glacial and snow processes and generating reasonable 

streamflow data.   
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 Materials and Methods 

3.1 Study area 

The twenty-five Canadian Rockies basins (all in Montane eco-zone) were selected on the 

basis of having continuous and natural observed hydrometric data for more than 20 years.  

Basins are located in Alberta and British Columbia provinces (figure 3.1) with areas 

ranging from 92.8 km2 to 1150 km2. Selected basins represent a wide variety of meteorological 

conditions with various precipitation values. Table 3.1 shows the percentages of four types of land 

use according to HBV-EC model land use classification, total area, and average elevation of basins.  
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Table 3.1: Basins information (ID, area, land use, and elevation) 

Basin ID 
Area 

(km2) 
Lake% Glacier% Forest% Open% 

Average 

Elevation 

(m.s.l) 

08NP004 92.8 0 0 62.59 37.41 1792 

08NK002 3090 0.3 0.65 67.9 31.16 1860 

08NG065 11500 0.42 0.88 63.95 34.76 1790 

08ND012 934 0.24 8.34 65.88 25.55 1713 

08NB019 1150 0.34 11.68 52.85 35.13 1907 

08NA002 6660 1.61 3.39 61.33 33.67 1784 

08KB003 4780 0.89 5.74 65.5 27.87 1372 

08KA005 6890 0.7 10.16 50.66 38.47 1849 

08NB014 429 0.19 26.06 35.01 38.74 2119 

08NB012 587 0.09 14.78 40.96 44.17 2018 

08LB038 272 0.47 3.32 62.64 33.57 1560 

07FB006 2370 0.6 1.83 76.63 20.94 1304 

07FB003 2590 0.25 0.01 84.1 15.64 1199 

07AA001 1940 0.2 0.7 57.88 41.22 1958 

07EC002 5560 1.11 0.17 82.61 16.11 1281 

07EC004 1950 0.42 0.3 72.63 26.65 1389 

07ED003 6790 3.72 0 89.33 6.96 1089 

07EE007 4930 0.74 0.28 86.33 12.65 1105 

05AA008 402.7 0.67 0 71.08 28.25 1650 

05AA022 820.7 0 0 59.41 40.59 1640 

05AA023 1446.1 0.16 0 77.53 22.3 1848 

05BB001 2209.6 0.85 5.71 44.7 48.74 2168 

05BG006 332.5 0.24 0 68.51 31.24 1609 

05BL022 165.5 0 0 78.11 21.89 2011 

05DA007 248 3.6 19.6 25.6 51.2 2294 

Land use classes are based on HBV-EC classification (will be described in 3.3.1 section) 

and include: 1) lake which is any kind of water body, 2) glacier, 3) forest and 4) open land that is 

any kind of land use that does not fall within other three groups and  includes agricultural land, 

bare land, etc.  

Referring the Table 3.1, these catchments show a variation of land cover. Forest is the most 

common one (except for four basins), varying from 25.6% for 05DA007 to 89.33% for 07ED003. 

Open land is the second most common type of land cover from 12.65% for 07EE007 to 51.20% 

for 05DA007.Glacier can be found in 22 basins with a coverage of 0.01% for 07FB003 to 26.06% 

for 08NB014. The lake area in the basins is relatively low, varying from 0.16% for 05AA023 to 
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3.72% for 07ED003, there are three basins without any water body (08NP004, 05AA022, and 

05BL022). 

3.2 Forcings and data  

3.2.1 Meteorological Forcing data 

Meteorological data consist of daily precipitation, temperature, potential evaporation, land 

use, and elevation. For precipitation and temperature three kinds of gridded data, ANUSPLIN, 

WFDEI, and CaPA, were used. Potential evaporation for different climate zone was calculated 

using Hamon’s (1961) method. FAO, MODIS, and SRTM databases have been utilized for soil, 

land cover and digital elevation, respectively.  

3.2.1.1 Precipitation and Temperature 

The scarcity of gauge coverage in the Canadian basins has always been an issue for 

hydrological modeling purposes. The well-known Thiessen Polygon Method and inverse distance 

weighting are two of the few early attempts to interpolate precipitation from ground-based points 

to fill spatial gaps (Zhao, 2013). However, by the developments in computer technology, more 

advanced precipitation products and distribution methodologies such as gridded climate data have 

been introduced. Three different climate data products have been utilized in this study; each is 

described in the following sections. 

3.2.1.1.1 CaPA  

According to Bivand, Pebesma, and Gómez-Rubio (2013) and Boluwade et al. (2017), 

interpolation accuracy is only as good as the number of spatial points used in producing the 

resulting interpolated surface. In areas with a limited number of climate stations, there is a need 

for better methods of precipitation representation using more advanced datasets from weather 

prediction models at appropriate scales for hydrologic modeling applications. Therefore, 

Numerical Weather Prediction (NWP) models (Boluwade et al., 2017) provide a platform to 

predict precipitation for short time step. They use weather observation along with some 3-D 
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differential atmospheric equations to predict future events. NWP models can outperform gridded 

precipitation products constructed from satellite data (Kidd, 2012)  

The Canadian Precipitation Analysis (CaPA) is a national project organized by the 

Meteorological Research Division (MRD) and the Meteorological Service of Canada (MSC) with 

the goal of producing near-real-time precipitation analyses over North America at fine temporal 

(6-h) and spatial (10 km) resolutions. CaPA combines precipitation observations with a 

background field obtained from a short-term NWP forecast in order to compensate the inadequate 

climate station network in Canada (Lespinas, Fortin, Roy, Rasmussen, & Stadnyk, 2015). These 

NWP data were generated by Environment and Climate Change Canada’s Regional Deterministic 

Prediction System (RDPS), which in turn relies on the Global Environmental Multiscale (GEM) 

model (Côté, 1998). And GEM is an integrated forecasting system and data assimilation platform 

which is based on the hydrostatic primitive equations and two-time-level semi-Lagrangian 

procedure (Fortin, Roy, Donaldson, & Mahidjiba, 2015).  

CaPA assimilates the GEM’s short-term forecasts, radar precipitation estimates, satellite 

observation and point estimates from weather stations using an internal quality control procedure 

(Boluwade et al., 2017; Lespinas et al., 2015). Moreover, GEM takes into account topographic 

information for the mountainous area where weather stations are located in valleys and do not 

account for the orographic effects on precipitation (Mailhot et al., 2010). Performance evaluation 

of CaPA and GEM data is provided in Lespinas and Fortin (2015) and Boluwade et al. (2017).  

3.2.1.1.2 WFDEI (WATCH) 

The European Union Water and Global Change (WATCH) project sought to assess the 

terrestrial water cycle and hydrologically variables using land surface and hydrological models in 

the context of global change (Harding et al., 2011). Since such models require meteorological 

forcing data, WATCH Forcing Data (WFD) was created. WFD is based on the European Centre 

for Medium-range Weather Forecasts (ECMWF) ERA-40 reanalysis (Uppala et al., 2005) 

interpolated to 0.5 × 0.5 resolution with elevation correction of surface meteorological variables 

as well as monthly bias correction from gridded observation data. The WFD precipitation dataset 

has shown a good performance compared to TRMM satellite products and precipitation gauge data 
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(Li, Ngongondo, Xu, & Gong, 2013; Li, Xu, Zhang, & Jain, 2014). The WFDEI which stands for 

WATCH forcing data methodology applied to ERA-Interim data, uses the same methodology as 

the WFD, however with some differences including: (1) WFDEI data are derived from a different 

reanalysis with higher spatial resolution, (2) adjusted to updated monthly observational data, and 

(3) more appropriately adjusted in terms of shortwave fluxes in relation to the effects of aerosol 

loading and compared with satellite products (Iizumi, Okada, & Yokozawza, 2014; Weedon et al., 

2014). This dataset contains the air temperature, precipitation (rainfall and snowfall separately) 

wind speed, surface pressure, specific humidity (2m), long and shortwave radiation (while the 

daily mean temperature is directly available). In this study, we extracted the daily minimum and 

maximum temperature (Tmin and Tmax) and took the average for running the model. The 

temperature data have been bias-corrected against CRU (Climatic Research Unit) mean monthly 

temperature and diurnal temperature range.  

Rain and snowfall have been bias-corrected against observations by first correcting the 

number of dry days and then scaling the precipitation in each time step to make the monthly means 

match the observations. Finally, to consider the anticipated underestimation of precipitation in the 

observed data (Adam & Lettenmaier, 2003), the under-catch correction factor has been applied 

(Schneider et al., 2011).  

Reanalysis datasets have been used recently for hydrological models in many research with 

various degree of success and they concluded that WFDEI improved streamflow simulation 

compared to WFD data (Nkiaka, Nawaz, & Lovett, 2017).  

3.2.1.1.3 ANUSPLIN 

Natural Resources Canada (NRCan) used the tri-variate thin-plate smoothing spline 

method along with some modifications to create gridded data of daily maximum and minimum air 

temperature (◦C), and total daily precipitation (mm) for the Canadian landmass south of 60◦ N at 

∼ 10 km resolution (NRCan, 2014). This product is called Australian National University Spline 

or ANUSPLIN. Tri-variate thin plate splines allow for spatial dependence on the elevation, making 

the method suitable for applications across large heterogeneous areas (Hutchinson & Gessler, 

1994; Stillman, 1996). Specifically, in this dataset, estimated local lapse rate is used to adjust 
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temperature data for elevation. In order to illustrate the changing temperature lapse rate in time 

and space, surfaces of temperature (minimum and maximum) along with precipitation data were 

fitted for each month separately. When the linear effect of elevation cannot be measured, the 

precipitation surface is fitted as an ordinary thin-plate spline. Therefore, the fitted surfaces can 

estimate the climatic variables for the places with available latitude, longitude, and elevation (Yan, 

Nix, Hutchinson, & Booth, 2005).  

More detail of this approach can be found in several studies, including Hutchinson (1995) 

and Hutchinson and Bischof (1983). The ANUSPLIN software (Hutchinson & Xu, 2013) uses all 

available NCDA (National Climate Data Archive of Environment and Climate Change Canada) 

station daily data (ranged from 2000 to 3000 for any given year) as an input to the gridding 

procedure (Wong, Razavi, Bonsal, Wheater, & Asong, 2017). Hopkinson et al. (2011) 

subsequently extended this dataset to the period 1950 to 2011 and then has been updated by 

Canadian ANUSPLIN to 2013. It has recently been used as the basis of “observed” data for 

evaluating different climate datasets (e.g. Eum et al., 2012) and for assessing the effects of different 

climate products in hydro-climatological applications (e.g. Bonsal et al., 2013; Eum et al., 2014).  

3.2.1.1.4 Potential and Actual Evaporation (PET and AET) 

Potential Evaporation: Hamon’s Equation 

Hamon (1961) developed a simplified equation based on the mean air temperature to 

estimate potential evapotranspiration. It is widely used in different areas as well as Canadian 

Rockies as it is a simple method and has provided good results in several impact studies (Benninga, 

2015; Singh, Rudra, & Gharabaghi, 2012; Spiegelhalter, 2010). Oudin et al (2005) recommended 

using a temperature-based potential evapotranspiration model in a daily rainfall-runoff model, 

among which Hamon is mentioned. According to Lu et al (2005) different evapotranspiration 

methods produce inconsistent results for some catchments and years therefore care have to be paid 

in selecting the method for study area. Hence he recommended using the Priestly-Taylor method 

if radiation data are available, otherwise Hamon method can be used. In using this method values 

of mean monthly temperature and the latitude of the site are required and then potential 

evapotranspiration (PET, mm day-1) is calculated as: 
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𝑃𝐸𝑇 = 𝐶 × 𝐻𝑃𝐷2 × 𝑆𝑉𝑃                                                                                          [3.1] 

HPD (-) takes into account the possible hours of sunshine per day as a percentage of 12 

hours, SVP (g m-3) is the saturated water vapor density at the daily mean temperature and C is an 

empirical correlation coefficient, which has the value of 0.55 from comparisons with the results of 

the complex Thornthwaite (Thornthwaite, 1948) method and the Lowry-Johnson study (Lowry & 

Johnson 1942; Cruff & Thompson, 1967) 

Hamon method is established based on the relationship between potential 

evapotranspiration, maximum possible incoming radiant energy, and the moisture-holding 

capacity of the air at the dominant air temperature (Cruff & Thompson, 1967). It also regards the 

influence of wind as insignificant and uses a constant value for this estimation. As a main heat 

source for the evaporation process, it considers the net radiation. Daily averages of the net radiation 

can be estimated by using the daily mean temperature and the average duration of day-time hours 

as a percentage of 12 hours (Spiegelhater, 2010). 

Actual Evapotranspiration: MODIS Equation 

The MODerate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra 

and Aqua satellites (EOS), provides unexampled information regarding vegetation and surface 

energy (Justice et al., 2002), which can be used for regional and global scale actual ET estimation 

in near real-time. MODIS is playing a vital role in the development of Earth system models in 

order to predict global change and protect our environment (Muhammed, 2012).  

The main privilege of MODIS data is their resolution. They can be applied to estimate 

energy fluxes at any scales from regional to global and also at daily time intervals (Vinukollu, 

Wood, Ferguson, & Fisher, 2011), which is not possible with sensors such as Landsat TM and 

ETM (Lauer, Morain, and Salomonson, 1997). ET estimates of MODIS method have been shown 

to be accurate in numerous studies  (Cleugh et al., 2007; Mu et al., 2007; Venturini, Islam, and 

Rodriguez, 2008; Mu, Zhao, and Running, 2011) 

In this study, monthly average of MODIS actual evapotranspiration (MOD16A2) data with 

the resolution of 0.05 degree is utilized (data are available at 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMA

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/GEOTIFF_0.05degree/
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O_1kmALB/GEOTIFF_0.05degree/). It contains 1-km2 land surface evapotranspiration data and 

covers 109.03 Million km2 areas in 8-day, monthly and annual intervals (Mu et al., 2011). ET data 

of this dataset are generated using Mu et al.’s improved ET algorithm (2011) over previous Mu et 

al.’s paper (2007). This algorithm has used Penman-Monteith equation (Monteith, 1965) and has 

shown to be capable of generating accurate global ET data. It has also provided important 

information about global terrestrial water and energy cycles (Mu et al., 2009). The MOD16 

evapotranspiration dataset calculates evapotranspiration as the sum of evaporation from wet and 

moist soil, interception, and transpiration. Transpiration stomatal conductance is specified by 

biome specific vapor pressure deficit and daily minimum temperature thresholds. However, the 

leaf area index is used to scale stomatal conductance to canopy conductance (Vanderhoof & 

Williams, 2015). Figure 3.2 illustrates the process of MODIS approach to estimate actual ET. 

 

Figure 3.2: MODIS process in ET estimation (MODIS Global Evapotranspiration Project, 

available at http://www.ntsg.umt.edu/project/modis/mod16.php) 

http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A2_MONTHLY.MERRA_GMAO_1kmALB/GEOTIFF_0.05degree/
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3.2.2 Hydrometric data 

Hydrometric data for each basin consist of daily mean flows originating from the 

Environment Canada/Hydat database. Basins have a continuous daily time series data, however, 

there is missing data for some stations especially when the model was run for ANUSPLIN forcing 

data; since the period of this database is longer compared to other two forcings (1950 to 2013). In 

these cases, the missing days were ignored in calculating objective functions.  

3.2.3 Land Cover 

A number of national scale land cover database with the spatial resolution of 1-km has been 

produced by Canada Center for Remote Sensing. In this study, the most recent land cover database 

of Canada is used to determine the land cover classification of the catchments. This database is 

produced from 0.25-km spatial resolution MODIS (Moderate Resolution Imaging 

Spectroradiometer ) data and contains two thematic layers based on the Federal Geographic Data 

Committee/Vegetation Classification Standard (FGDC/NVCS) modified for use in Canada and the 

International Geosphere Biosphere Program (IGBP) land cover classes. It has showed very good 

agreement with independent reference data (NRCan, 2008). This database has been used in 

previous research for different purposes including streamflow estimation (Mahaxay et al., 2016), 

estimation of nutrient concentration (Alarcon et al., 2010), and land cover characterization (Song 

et al., 2009). 

3.2.4 Field Capacity  

Field capacity (FC, mm) is the amount of water content kept in the soil after excess water 

drain by gravity. FC is one the soil module parameter of the HBV-EC model. To determine the 

range of this parameter in Monte-Carlo simulation, the Digital FAO-UNESCO Soil Map of the 

World (Fao, 1998) was used. Soil Map of the World (SMW) at 1:5,000,000 scale is known as the 

most comprehensive soil map with global coverage (Sombroek, 1989; Nachtergaele, 1996).  
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Development of the SMW was initiated in 1961, with the first hard copy map published in 1971 

and the last map of the 10-volume series completed in 1981 (FAO-UNESCO, 1971-1981).  

SMW units are divided into three textural classes of coarse, medium, and fine, which are 

defined by their relative proportions of clay (less than 2 micrometers), silt (2-50 micrometers), and 

sand (50-2000 micrometers) content. In this study, using the Digital SMW, the dominant topsoil 

class of each basin was found and then the FC range of each class was used in the model simulation. 

Regarding FAO classification, FC range of sand, silt, and clay are 25-100, 100-17, and 175-250 

mm/m, respectively (http://www.fao.org/docrep/r4082e/r4082e03.htm#2.3.3 field capacity). The 

dominant soil of 25 basins of this research were placed into the two soil classes of silt and clay.  

However, the study of Hamilton, Hutchinson, and Moore (2000) showed that the optimum field 

capacity of HBV for their study area reached to 400 mm, as a result the range of this parameter 

was increased to 350 (instead of 250) for clay class in our study.  

3.2.5 Digital Elevation Model (DEM) 

Digital elevation model (DEM) is very important in hydrological modeling and in water 

resources management, as it can provide many hydrologically relevant parameters, such as 

drainage networks and catchment boundaries. In the HBV-EC model, DEM file provides the 

information of river network, aspect, slope, and outlet of basins. In practice, DEMs are often 

derived from stereo-photos or satellite imagery such as stereoscopic SPOT image and from the 

digitalized topographic contour. The resolution, quality, and availability of these derived DEMs 

are highly variable, leading to tremendous problems for research over large basins.  

The SRTM (Shuttle Radar Topographic Mission) was launched (in February 2000) to catch 

the radar data of elevation on a near-global scale. Using these data, it produced a full high-

resolution digital elevation database of the Earth. A survey of the land masses was made between 

60◦ North and 58◦ South latitude and generated consistent, comprehensive, topographic data and 

radar images to model the terrain and map of the land of the most of the inhabited surface of the 

earth. The instrument used is the “Synthetic Aperture Radar” (SAR) applying interferometry 

techniques to make three-dimensional images of the surface with high resolution, no matter of 

sun’s position weather and surface contrast (De Ruyver, 2004). The single pass SAR 
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interferometry of SRTM made a coherent DEM measured by the single system within 11-day 

mission which is based on one geodetical reference system. Further information about this mission 

is available at https://www2.jpl.nasa.gov/srtm/.  A DEM file generated by SRTM database was 

applied to HBV-EC model to generate the elevation and other related data of the basins.  

3.3 Method 

3.3.1 HBV-EC model 

HBV model (Bergstrôm, 1976) is a conceptual model of catchment hydrology, originally 

developed for Scandinavian basins. During the last two decades it has been applied in more than 

30 countries worldwide (Bergstrôm, 1992; Jia & Sun, 2008) and for different hydrological tasks, 

for instance, to compute spillway design floods or flood forecasting (Bergstrôm, 1992), to study 

the effects of changes in climate (Saelthun, 1996) and land use (Brandt,  Bergstrom, Gardelin 

1988); and different attempts have been made to relate the parameters of the HBV model to 

catchment characteristics for regionalization purposes (Braun & Renner, 1992; Seibert, 1999). 

Lindstrom et al. (1997) describe the HBV model as "a model of high performance" and 

characterize its structure as "very robust and surprisingly general, in spite of its relative simplicity". 

The code of the HBV model has been rewritten in several versions. Its different versions 

provide examples of different decisions during the model development. Bergström (1995) 

completely described the application of the model and details on the basic internal routines.  

HBV-EC was initially developed by Dan Moore in mid-1980s (Moore, 1993), and now has 

become one of the main models applied in British Columbia besides the UBC Watershed Model 

and the Distributed Hydrology Soil Vegetation Model (Rodenhuis, Bennett, Werner, Murdock, & 

Bronaugh, 2007). HBV-EC is semi-distributed allowing the basin to be divided into various HRUs 

based on land cover, elevation, slope, and aspect (Hydrological Response Unit).  Moore (1993) 

added a glacier routine for the HBV-EC model and combined it with the EnSim Hydrologic 

modeling environment also known as Green Kenue (Canadian Hydraulics Centre, 2010). 

Cunderlik and Ouarda (2010) and Fleming et al. (2010) showed the capability of HBV-EC model 

to provide a precise streamflow prediction in British Columbia's mountain watersheds in an inter-

https://www2.jpl.nasa.gov/srtm/
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comparison study of watershed models for operational river forecasting. The algorithm and detail 

of the model are explained by Hamilton, Hutchinson, and Moore (2000) and Canadian Hydraulics 

Centre (2010). 

HBV-EC is capable of modeling four land cover types: open, forest, glacier, and lake. The 

model allows a watershed to have different climate zones, thereby providing a better representation 

of lateral climatic gradients. Each climate zone is associated with one climate station and a unique 

parameter set; however in this study, no matter how many climate zones a basin has, a unique 

(universal) parameter set was used for different climate zones within the basin. HRUs created by 

the model is illustrated in figure 3.3.  

 

Figure 3.3: Schematic view of semi-distributed nature of the HBV-EC hydrological model 

(HBV-EC manual) 

Within each of the climate zones (which are the grids of different products in this study) 

the user can identify a series of elevation bands based on the elevation values of DEM file. 

Consequently, each of the elevation bands are divided into one of the four land cover classes and 

then into the slope and aspect bands. As a result of this approach, the total number of areas is the 

product of the number of climate zones, the number of elevation bands, the number of land use 

types, the number of slope bands, and the number of aspect bands. Note that lake terrain is always 

considered to have a slope and aspect of 0. In this study, four elevation, two slope, and two aspect 

(0 and 180) bands were defined for each climate zone. The parameters of the outflow module apply 

to the entire watershed, regardless of the number of land classes or climate zones. On the other 

hand, the climate zone parameters including climate, forest, snow, soil, and glacier modules 

(provided in table 3.2) are specific to a single climate zone. Median value of each elevation band 
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is calculated and the differences of this value with elevation of stations is used to take into account 

the temperature lapse rate and orographic effects on precipitation.  

Inputs to the HBV-EC model are the daily data of mean temperature (oC), total rainfall 

(mm) and total snowfall (mm) (or total precipitation), and the mean monthly potential evaporation 

(mm). Daily evapotranspiration data can be applied instead of monthly average values, if available. 

The rainfall and snowfall correction factors (SFCF and RFCF) adjust recorded precipitation data 

in the presence of measurement errors. These include systematic errors due to missing evaporation 

from snow pack, gauge under-catch, and sublimation of deposited or drifting snow (Seibert, 1997). 

Climate data are adjusted for elevation, by applying a temperature lapse rate factor (TLAPSE) and 

separate gradients for precipitation below (PGRADL) and above (PGRADH) a threshold elevation 

(EMID). To calculate actual rainfall and snowfall from precipitation data the interval phase (TT ± 

TTI) is considered. Mixed-phase precipitation can occur within the interval, while above the 

interval there is only rain and below the interval there is only snow. In forested areas, interception 

loss is taken into consideration by a constant fraction of precipitation with separate fractions 

applied to rain (TFRAIN [-]) and snowfall (TFSNOW [-]).Table 3.2 shows the names, description, 

and units of the model parameters.  

The HBV model has four main modules: (1) Snowmelt and snow accumulation; (2) Soil 

moisture and effective precipitation; (3) Evapotranspiration; and (4) Runoff response. The 

structure of the model is shown in figure 3.4. 

3.3.1.1 Snow and ice melt Module 

When the temperature is above the threshold temperature (T0, 
oC) precipitation is treated 

as rain, and snowmelt, M (mm), is calculated as equation 3.2. 

𝑀 = 𝐶𝑚 × (𝑇(𝑡) − 𝑇0)                                                                                               [3.2]               

where Cm (mm oC-1) is melt factor and T(t) is the temperature at day t. 

Refreezing of liquid water can occur when air temperature is below the melt threshold, at 

a rate governed by the parameter Cf (mm oC-1), 
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𝐹 = 𝐶𝑓 × (𝑇0 − 𝑇(𝑡))                                                                                                [3.3] 

If the calculated amount of refrozen water, F, exceeds the actual liquid storage, then F is 

set equal to the actual storage. The refrozen water, F, is added to the snowpack storage (Moore, 

1993). 

The melt factor varies from a minimum during the winter solstice, Cmin, (mm oC-1) to a 

maximum during the summer solstice in a sinusoidal way. The difference between the minimum 

and maximum values is the calibration parameter DC (mm oC-1). Snow melt factor (Cm) is only 

valid for open, flat areas. Therefore Cm changes as a function of aspect and slope of the basin.  

Equation 3.4 shows how Cm is calculated in HBV-EC: 

𝐶𝑚 = 𝑀𝐹𝐹𝐿𝐴𝑇 × [1 − 𝐴𝑀 × sin(𝑠) × cos(𝑏)]                                                         [3.4] 

where s is a slope, b is an aspect, MFFLAT  is the melt factor computed for flat terrain (mm 

d-1), and AM  is a model parameter representing the aspect-slope reduction factor (dimensionless) 

varies between 0-1.  

Moreover, in forested areas, the melt factor is further multiplied by MRF (ranging 

between 0 and 1) to account for the shading and sheltering effects of forest cover on melt rates 

(Stahl, Moore, Shea, Hutchinson, & Cannon, 2008). 

3.3.1.2 Soil Module 

Rain and snowmelt are added to the liquid water storage in the snowpack, and the excess 

in comparison to the water retention capacity is released to the soil moisture storage. This release 

is denoted WR (mm).  

Soil moisture is modeled separately for forested and open areas within each elevation zone 

but the same parameter values are used for all zones (Stahl, 2008). The amount of water release 

that percolates through the soil moisture storage to become runoff RO (mm) is calculated by 

(Hamilton, Hutchinson, & Moore 2000): 

𝑅𝑂 = {WR (SM/FC)𝛽     if  SM <  FC
WR                         if  SM ≥  FC

                                                                       [3.5] 
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SM equals to soil moisture storage (mm) for a particular land use class and elevation zone. 

FC is field capacity of the soil (mm), β is a parameter determined through calibration and controls 

the relationship between soil infiltration and soil water release. The difference between water 

release and runoff is added to the soil moisture storage. If the soil moisture exceeds the field 

capacity, all the water release becomes runoff. 

3.3.1.3 Evaporation Module 

Soil moisture and actual evapotranspiration calculations are connected by applying the Lp 

parameter. Lp is a soil moisture storage below which evaporation is limited. Equation 3.6 shows 

the relation between soil moisture and actual evapotranspiration (ETa). 

𝐸𝑇𝑎 = {
PET (SM/𝐿𝑝)         if  SM <  𝐿𝑝

 PET                         if  SM ≥  𝐿𝑝
                                                                    [3.6] 

where PET is potential evapotranspiration.  

Equation 3.6 shows that if the soil moisture is more than Lp value, the actual ET happens 

at the same rate as potential ET.  

The HBV model is usually run with monthly data of long-term mean potential 

evapotranspiration and based on Penman equation (Penamn, 1948), however Paturel et al. (1995) 

and Nandakumar and Mein (1997) showed that compared to errors in precipitation data, PE errors 

made much smaller output errors, moreover a number of comparison studies have tested several 

methods of ET calculation such as a simplification of the Thornthwaite (1948) temperature index 

method or the Priestley-Taylor method (Priestley & Taylor, 1972), and none of these gave 

significantly better results than the other (Anderson, 1992; Gardelin & Lindstrrm, 1997).  

Obviously, HBV (or HBV-EC) is not sensitive to its ET computation routine and very simple 

temperature-based models are as efficient as more complex models such as the Penman model 

(Oudin et al., 2005). 



38 

 

3.3.1.4 Outflow Module 

In the model, outflow from glacierized and non-glacierized HRUs is calculated separately. 

The runoff from all non-glacierized HRUs of all elevation bands is summed and afterward split by 

a factor FRAC (-) into two lumped reservoirs: a fast reservoir Qf (mm) and a slow reservoir Qs 

(mm). Outflow from the fast reservoir FR (mm d-1) is computed as (Hamilton et al., 2000): 

𝑄𝑓 = 𝐾𝑓 × 𝑆𝑓
(1+𝛼)

                                                                                                       [3.7] 

where Kf is outflow coefficient (mm-α d-1), Sf is fast reservoir storage (mm), and α (alpha) is a 

parameter representing the amount of nonlinearity of the reservoir determined through calibration.  

Outflow from the slow reservoir Qs (mm d-1) is calculated as: 

𝑄𝑠 = 𝐾𝑠 × 𝑆𝑠                                                                                                            [3.8] 

where KS is outflow coefficient (d-1) and SS is slow reservoir storage (mm).  

The first reservoir represents the processes governing the near surface flow, whereas the 

second reservoir represents the processes governing the base flow (groundwater contribution). 

Two reservoir configurations (parallel vs. serial) are available in HBV-EC version, controlled by 

a variable. If the value of this variable is set to Parallel, the Runoff FRAC becomes a parameter 

and works as explained above; otherwise, the configuration of Runoff Perc will be used. FRAC 

defines the fraction of runoff directed to the fast reservoir. Basins that respond quickly to 

precipitation will tend to have higher values, while basins that show a delayed response will have 

lower values. On the other hand, Runoff Perc is the rate of percolation from the fast reservoir to 

the slow reservoir, per day. This simulates the effects of groundwater recharge on the slow 

reservoir. 

To take into account the outflow from glacierized HRUs, the sum of water release from 

glaciers at all elevation bands is calculated and added to the glacial storage reservoir. Then the 

outflow QG (mm/d) of this reservoir is calculated by equation 3.9.  

𝑄𝑔 = 𝐾𝑔,𝑡 × 𝑆𝑔                                                                                                          [3.9] 
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where Sg (mm) is the liquid water storage in the glacial reservoir for a certain HRU and Kg,t (d
−1) 

is an outflow parameter that is time-dependent and changes in glacier development (equation 3.10) 

as  

𝐾𝑔,𝑡 = 𝐾𝐺𝑚𝑖𝑛 + 𝑑𝐾𝐺. exp [−𝐴𝐺. 𝑆𝑊𝐸(𝑡, 𝑔)]                                                       [3.10] 

where Kg,t is the outflow coefficient for time t, KGmin (d
-1) is the undeveloped glacier situation 

where the drainage system is limited by deep snow lying on the top. dKG (d−1) is the difference 

between KGmin and KGmax, and KGmax shows late summer situation with bare ice on the surface of 

the glacier and also drainage system is well-developed. AG (mm−1) is a calibration parameter and 

SWE (mm) is the snow water equivalent for a certain glacier g at a certain time t. 

The streamflow at the basin outlet is the sum of the outflow from the fast reservoir (Qf), 

the slow reservoir (Qs) and the glacier reservoirs (Qg). The time dependency of the glacier drainage 

system is one of the main differences between the HBV-EC model and other versions. 
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Figure 3.4: The structure of the HBV-EC model (Adopted from Hamilton et al., 2000) 

 

 

 

 

 

 



41 

 

Table 3.2: Model parameters (name, description, and unit) 

Model 

routine 

Name of 

Parameter 
Description Unit 

Climate TLAPSE Temperature lapse rate ◦C m-1 

 ETF Correction factor for potential evapotranspiration - 

 RFCF Rainfall correction factor - 

 SFCF Snowfall correction factor - 

 
PGRADH 

Fractional increase in precipitation with elevation, for elevations 

above EMID  

 
PGRADL 

Fractional increase in precipitation with elevation, for elevations 

below EMID 
m-1 

 EMID Mid-point elevation separating precipitation gradients m-1 

 TT Threshold air temperature for distinguishing rain from snow ◦C 

 TTI Temperature interval for mixed rain and snow ◦C 

 EPGRAD Fractional rate of decrease of potential evaporation with elevation m-1 

Forest TFRAIN Fraction of rainfall reaching ground surface below the forest - 

 TFSNOW Fraction of snowfall reaching ground surface below the forest - 

Snow AM Controlling the influence of the aspect on the melt factor - 

 TM Threshold temperature for snowmelt ◦C 

 CMIN Value of the melt factor on the winter solstice for open areas mm ◦C −1 d−1 

 DC Increase in melt factor between winter and summer solstices mm ◦C −1 d−1 

 
MRF 

Ratio between the melt factor in forest to the melt factor in open 

areas 
- 

 Cf Controlling the rate at which liquid water refreezes in snowpack mm ◦C −1 d−1 

 WHC Liquid water holding capacity of snowpack - 

 
LWR 

Maximum amount of liquid water that can be retained by a 

snowpack 
mm 

Soil FC Field capacity of the soil mm 

 
BETA 

controlling the relationship between soil infiltration and soil water 

release 
- 

 
LP 

Soil moisture content below which evaporation becomes supply-

limited 
- 

Glacier MRG 
Ratio of melt of glacier ice to seasonal snow at the same air 

temperature 
- 

 
AG 

Controlling the relation between glacial snowpack water 

equivalent and runoff coefficient 
mm-1 

 
DKG 

Difference between the minimum and maximum outflow 

coefficients for glacier water storage 
d−1 

 KGmin Minimum outflow coefficient for glacier water d-1 

 
Kg 

Recession coefficient that is applied to the computation of the 

glacier outflow coefficient 
d−1 

Runoff KF Fast reservoir coefficient mm-α d-1 

 AlPHA Fast reservoir exponent - 

 KS Slow reservoir coefficient d−1 

 FRAC Fraction of runoff directed to the fast reservoir - 
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3.3.2 Objective function 

Assessing the performance of a hydrological model requires estimates of the goodness-of-

fit of the simulated behavior of the model to the observations. Traditionally, the development of 

computer-based method has focused mostly on using a single overall objective function to measure 

the goodness-of-fit of the model (Madsen, 2000),  Gupta, Sorooshian, and Yapo (1998) contended 

that considerable loss of information will appear if the differences between the measured and 

model output are captured using only a single objective.  The multi-objective method makes it 

possible to find optimal parameter sets for different objective functions. Hence, multi-objective 

paradigm has been applied extensively in the literature to calibrate hydrological models for 

different flow segments of the hydrograph (for a review see Efstratiadis & Koutsoyiannis, 2010) 

There is a large number of efficiency criteria used in hydrologic modeling studies and 

reported in the literature (Krause & Boyle, 2005; Nash & Sutcliffe, 1970). The selection and use 

of specific efficiency criteria and the interpretation of the results can be a challenge for even the 

most experienced hydrologists since each criterion may place different emphasis on the different 

types of simulation and observed behaviors (Krause & Boyle, 2005).  

We used Nash-Sutcliffe efficiency (NSE), Nash-Sutcliffe efficiency on logarithm-

transformed values (NSE-Log) and volume bias (BIAS) to describe the model fit with respect to 

the entire hydrograph. The combination of these three criteria is used in previous studies such as 

Tesemma et al. (2015) and Muleta (2012). 

3.3.2.1 BIAS 

Bias (BIAS) calculates the average tendency of the estimated data to be larger or smaller 

than the observed ones (Gupta, Sorooshian, & Yapo, 1999). The ideal value of bias is zero, with 

lower values indicating more accurate model simulations. Positive values indicate model 

underestimation bias, and negative values indicate model overestimation bias (Gupta, Sorooshian, 

& Yapo, 1999). Bias can show the model performance (Gupta, Sorooshian, & Yapo, 1999). Thus, 

it is a useful measure for assessing whether structural changes of the model equations are necessary 

for reducing the overall bias of prediction (Wallach et al., 2006). While this metric has been used 

in many previous research to provide information on model performance (Moriasi et al., 2007; 
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Houska, Multsch, Kraft, Frede, & Breuer, 2014; Moriasi & Gitau, 2015), it is not sufficient to 

evaluate model errors on its own, as a bias of zero could also be due to cancellation of large errors 

with different signs (Hiutska et al. 2014). The absolute bias which shows the magnitude of volume 

bias was calculated in this research (equation 3.11) as 

𝐵𝐼𝐴𝑆 = 𝑎𝑏𝑠(
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)×100𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

)                                                                            [3.11] 

where 𝑌𝑖
𝑜𝑏𝑠 and 𝑌𝑖

𝑠𝑖𝑚 are observed and simulated values at day i.  

3.3.2.2 NSE 

Nash-Sutcliff efficiency (NSE) proposed by Nash and Sutcliff (1970) is defined as one 

minus the sum of the absolute squared differences between the predicted and observed values 

normalized by the variance of the observed values during the period under investigation (equation 

3-12). 

This metric is sensitive to extreme values as the normalization of the variance of the 

observation series results in relatively higher values of NSE in the catchment with higher dynamics 

and vice versa. To obtain comparable values of NSE in a catchment with lower dynamics, the 

prediction has to be better than in a basin with higher dynamics. NSE ranges between −∞ and 1.0, 

with NSE of 1 being the optimal value. Minus values demonstrates that the mean observed value 

is a better predictor than the simulated one that indicates unacceptable model performance (Moriasi 

et al., 2007). NSE is recommended for use by ASCE (1993) and Legates and McCabe (1999). 

Sevat and Dezetter (1991) concluded that NSE is the best objective function for reflecting the fit 

of a hydrograph. NSE is calculated as 

𝑁𝑆𝐸 = 1 −
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

                                                                   [3.12] 

where 𝑌𝑚𝑒𝑎𝑛 is average of observed values in the period of study. 



44 

 

3.3.2.3 NSE-Log 

The main disadvantage of the NSE is that high values are heavily weighted. Therefore, to 

reduce the problem of the squared differences and the resulting sensitivity to extreme values, the 

NSE is often calculated with log-transformed values of observation and simulation values (NSE-

Log). In the process of logarithmic data transformation, the peak values of runoff data become 

flattened while the low flows are kept almost at the same values. Therefore, the effect of the low 

flow values is increased compared to the the peaks (Krause & Boyle, 2005). NSE-Log is calculated 

as: 

𝑁𝑆𝐸 − 𝐿𝑜𝑔 = 1 −
∑ (𝑙𝑛𝑌𝑖

𝑜𝑏𝑠−𝑙𝑛𝑌𝑖
𝑠𝑖𝑚)

2
𝑛
𝑖=1

∑ (𝑙𝑛𝑌𝑖
𝑜𝑏𝑠−𝑙𝑛𝑌𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

                                                  [3.13] 

3.3.3 Monte-Carlo simulation 

The hypothesis that very different parameter sets can produce almost equally good fits 

between simulated and observed runoff was tested by using the following Monte Carlo procedure. 

Monte-Carlo algorithm is used to screen the high-dimensional parameter space for behavioral 

model runs and apply parameter identifiability method, to investigate model performance and 

parameter uncertainty. A number of studies applied the identifiability method to achieve a better 

understanding of rainfall-runoff models and their parameters (Lindstrôm, 1997). For the Monte 

Carlo simulations, 10,000 parameter sets were generated using random sampling from a uniform 

distribution within the given ranges for each parameter (table 3.3). For each parameter set, the 

model was run and the objective functions were computed. It should be mentioned that for running 

the model, the mean elevation within an elevation zone was used and also parameter values were 

not allowed to vary for the different climate zones. So the number of parameters and their values 

were equal for all zones within each basin. Models contain 32 parameters overall (table 3.2) for all 

modules. However, 11 parameters were analyzed in Monte Carlo simulation and the other 21 ones 

were kept constant at their default values. Table 3.3 summarizes values of parameters achieved by 

calibration or ranges used for either calibration or Monte-Carlo simulation, in previous studies. 

And the value used for fixed parameters are the default amounts of the model (table 3.4).  
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Reducing the number of parameters to be perturbed in the Monte-Carlo simulation was 

intended to reduce the dimensionality of the problem space and make the problem more tractable. 

The 11 parameters chosen were from different model routines and have been used frequently in 

model calibration in previous studies (Jost et al, 2012; Dakhlaoui, Bargaoui, & Bárdossy, 2012; 

Stahl et al 2008; Spiegelhalter, 2009 Bohrn, 2012; Mahat & Anderson, 2013). Most of these 

parameters are hardly identifiable without calibration, including: AM, DC (snow melting 

parameter), KF, ALPHA, Ks, FRAC, AG (outflow parameters), BETA, LP (soil parameters) and 

ETF (ET parameter) (Spiegelhalter, 2009; Stahl et al. 2008; Mahat & Anderson, 2013). FC is a 

parameter which can be either measured or calibrated (Rusli, Yudianto, & Liu, 2015). However, 

because of the unknown spatial heterogeneity of the basins and the expenses involved, field 

capacity is mostly defined by model calibration (Raat, Vrugt, Bouten, & Tietema, 2004). 

Therefore, we included it in Monte-Carlo simulation and applied FAO soil properties data to define 

a reasonable range for each basin.  

Some other parameters were kept constant with values given from previous studies 

(parameters such as TFRAIN and TFSNOW which are mostly fixed in the range of 0.8-0.9). For 

instance, it is recommended by Aghakouchak and Habib (2010) that 0 °C is a reasonable 

assumption for TT. Moreover TTI has been defined or calculated (in the calibration process) as 2 

in some previous studies (Spiegelhalter, 2010; Heerema, 2013). Rainfall and snowfall correction 

factors (RFCF and SFCF) were fixed in the model in the first experiment. Later, however, I defined 

an external correction factor that as a multiplier for the precipitation data.   

3.3.3.1 Progressive Latin Hypercube Sampling (PLHS) 

The performance of a sampling strategy directly controls the efficiency and robustness of 

the associated sampling-based analysis. Different kinds of sampling strategies have been 

introduced over the past decades such as pseudo-random sampling, stratified sampling, fractional 

and full factorial design (Box & Hunter, 1961), regular grid sampling, orthogonal design (Owen, 

1992), Latin hypercube sampling (McKay et al., 1979), and Sobol’ sequences (Sobol, 1967). The 

proper choice of sample size which leads to a suitable distribution of the sample points in the input 

space can maximize the amount of information extracted from the model and also ensure sufficient 
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coverage of the output space which is required to characterize the complexity/nonlinearity of the 

response surface (Sheikholesalmi & Razavi, 2017).  

In this study, a novel sampling strategy called Progressive Latin Hypercube Sampling 

(PLHS) method introduced by Sheikholesalmi and Razavi (2017) was used to generate sample 

points. PLHS is an extension of LHS (Latin Hypercube Sampling), developed by McKay et al. 

(1979) and Iman and Conover (1980) known as one of the most commonly used sampling 

approaches in environmental and water resources area. Because it is easy to apply (comparable 

with random sampling) and it ensures one-dimensional projection properties (“Latin Hypercube” 

properties). Sheikholeslami and Razavi (2017) showed some advantages of PLHS over LHS in 

terms of space-filling and one-dimensional projection properties (Sheikholeslami et al., 2017). The 

main differences of these two methods is that the original LHS generates the entire sample set in 

one stage while PLHS produces a series of smaller sub-sets (slices) such that (1) each sub-set is 

Latin hypercube and achieves maximum stratification in any one dimensional projection; (2) the 

progressive addition of sub-sets remains Latin hypercube; and thus (3) the entire sample set is 

Latin hypercube (Sheikholeslami & Razavi, 2017).  

The performance of PLHS across several case studies and multiple applications including 

Monte-Carlo simulation, sensitivity and uncertainty analysis has shown superior efficiency, 

convergence, and robustness over alternative strategies. In this method unlike LHS, the new 

sample points can be added sequentially to the sample set. And in comparison with other sequential 

sampling approaches, it preserves projection properties along with other desired sample properties 

(Sheikholeslami & Razavi, 2017).  

3.3.4 Forcing data combination 

Previous studies have shown that precipitation products usually tend to underestimate or 

overestimate the real data. Negative or positive bias of a rainfall product in rainfall-runoff 

modeling can result in declining of modeling performance. Calibration based on such data leads 

to parameter values that are not realistic, as the model tries to compensate for the errors in 

precipitation data. Therefore, Artan et al. (2007), Behrangi et al. (2011), and Zeweldi, 

Gebremichael, and Downer (2011) recommended that precipitation products be corrected before 
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applying to the model. Some researchers have attempted to adjust the precipitation data for more 

accurate streamflow prediction (Habib, Haile, Sazib, Zhang, & Rientjes, 2014; Krogh, Pomeroy, 

& McPhee, 2015; X. Liu et al., 2017).  

To adjust the precipitation data used in this study, two precipitation data sets which result 

in better objective function values (Product1 and Product2) were chosen to be combined in a linear 

fashion using two correction factors: 

𝑃 = 𝑃1 × [(1 − 𝑃2) × 𝑃𝑟𝑜𝑑𝑢𝑐𝑡1 + (𝑃2) × 𝑝𝑟𝑜𝑑𝑢𝑐𝑡2]                                [3-14] 

where P is combined precipitation, and P1 and P2 are precipitation correction factors.  
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Table 3.3: Range of parameters used in Monte-Carlo simulation or calibrated values 

  

Table 3.4: Values of fixed parameters 

 

 

 

 

 

 

 

 

 

 

Name of 

Parameter 

Ranges used in 

this study 

Jost et 

al. 

(2012) 

Hamilton, 

Hutchinson, 

and Moore 

(2000) 

Stahl 

et al. 

(2008) 

Przeczek 

et al. 

2009 

Hamilton 

(2001) 

HBV-

EC 

manual  

ETF 0-1 - 0 - - 0.5 0-1 

AM 0-0.9 0-0.6 - 0.25 0.58 - - 

DC 0-3 0-1.2 2.55 2.08 0 2 - 

FC 
100-180, 180-

350 
- 400 - - 100 

- 

BETA 0.8-2 - 1.81 - - 1.3 - 

LP 0.5-1 - 0.599 - - 0.7 - 

AG 0-0.2 - - - - - 0-0.2 

Kf 0-1 0.05-0.3 0.013 - - 0.26 - 

AlPHA 0-0.5 0.05-0.2 0.49 - - - - 

Ks 0.003-0.1 
0.0005-

0.015 
0.00148 - - 0.008 

- 

FRAC 0.4-0.9 0.7-0.9 - - - 0.57 - 

Name of Parameter Value 

TLAPSE 0.0065 

RFCF 1 

SFCF 1 

PGRADH 0 

PGRADL 0.0001 

EMID 5000 

TT 0 

TTI 2 

EPGRAD 0.0005 

TFRAIN 0.9 

TFSNOW 0.8 

TM 0 

Cmin 2 

MRF 0.7 

CRFR 2 

WHC 0.05 

LWR 2500 

MRG 2 

DKG 0.05 

KGmin 0.05 

Kg 0.7 
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3.3.5 Pareto Optimality 

In many hydrological modeling applications, more than one optimization criteria (or 

objective functions) are used that measure various isaspects of the system behavior. These 

objectives are potentially conflicting, therefore, there is no feasible point that optimizes all of them 

simultaneously. A multi-objective calibration problem can be formulated as (Madsen, 2000): 

min {F1 (θ ), F2(θ ), ..., Fm (θ ) ] with θ € П                                                            [3.15]                                                              

where Fi (θ) (i=1, 2 . . . , m) are the objective functions and parameter set θ is restricted to the 

feasible parameter space П. 

Generally, the solution to the above optimization/calibration problem can consist of many 

(possibly unlimited many number of) parameter sets that all together will form Pareto optimal 

solutions (Gupta, Sorooshian, Hogue, & Boyle, 2003; Deb, 2001; Vrugt, Gupta, Bastidas, Bouten, 

& Sorooshian, 2003). Solutions laying on a Pareto front (also called trade-off curve) cannot be 

improved in one objective without worsening at least one other objective. This concept was 

proposed for the first time by Italian economist Vilfredo Pareto (1848-1923) in the Nineteenth 

Century in the context of optimal resource allocation (Pareto, 1896).  

A schematic Pareto front is shown in figure 3.5, where two objective functions ‘a’ and ‘b’ 

are the axes, and the goal of the modeler is to minimize both. Dots show the values of objective 

functions related to different parameter sets. The black dots represent the Pareto-optimal set, and 

the curve connecting them is the Pareto front (Langenbrunner & Neelin 2017).  
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Figure 3.5: Schematic of Pareto front (adopted from Langenbrunner & Neelin, 2017) 

All parameter sets that are non-dominated with respect to objective functions are 

equivalently optimal (in the Pareto sense) solutions to equation 3.15; however, all these solutions 

are not necessarily behavioral in the rainfall-runoff modelling context (Efstratiadis & 

Koutsoyiannis, 2010). And also the non-behavioral solutions might not always exclusively 

correspond to the extreme tails of the Pareto front. Thus, the principle of dominance needs 

acceptability thresholds to generate the behavioral solutions. This means that we need to identify 

a sub-set of Pareto-optimal solutions that are behavioral, by imposing cut-off thresholds to the 

Pareto front.  

Figure 3.6 is a graphical example showing Pareto-optimal and behavioral solutions in the 

objective space, for two objective functions f1 and f2. Vector e = [e1, e2] indicates cut-off thresholds 

for distinguishing behavioral and non-behavioral solutions (Efstratiadis & Koutsoyiannis, 2010; 

Gharari, Hrachowitz, Fenicia, & Savenije, 2013).  
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Figure 3.6:  Pareto front and behavioral solutions (adopted from Gharari et al., 2013) 

 

3.3.5.1 Cut-off thresholds 

The challenge of how to keep the model parameters that have a consistent model behavior 

(or how to establish the cut-off threshold between behavioral and non-behavioral parameters) in a 

meaningful way requires further investigations (Gharari et al., 2013). To address this challenge, 

Gharari et al (2013) uses three approaches for the selection of behavioral parameter sets (figure 

3.7): (I) Pareto optimal parameter sets, (II) Parameter sets within a pre-defined distance to the 

origin (which is the parameter sets with a distance smaller than 1.05 times of the closest Pareto 

member to the origin), and (III) Parameter sets that are contained within the quadrant determined 

by individual optimal solutions for each objective function.  
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Figure 3.7: Different methods to select behavioral solutions; (a) Pareto optimal parameter 

sets, (b) parameter sets which perform closer than 1.05 of minimum distance of Pareto 

front to origin (radial), and (c) parameter sets which perform simultaneously better than 

the lowest performance of any dimension of Pareto front (quadrant) (adopted from 

Gharari et al., 2013) 

 

In this study, two methods are applied to select 50 behavioral parameter sets (0.5 percent 

of all parameter sets generated), namely “Radial” and “Cut” methods: 

 1) Radial is the “b” procedure in figure 3.7. In this study, the pre-defined distance is set 

such that 0.5 percent of all parameter sets (50 numbers) are selected.  

2) Cut is the “c” approach in figure 3.7. In this approach, 50 parameter sets are chosen by 

three criteria which are as follow; NSE and NSE-Log are higher than 0.5 and BIAS is the smallest 

value which leads to the selection of 50 parameters. BIAS changes for each case since this criterion 

is highly variable and cannot be fixed at a constant value, in order to select 50 parameter sets. 
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3.3.6 Flow Duration Curve for catchment selection 

Flow Duration Curve (FDC) incorporates the relationship between the frequency and 

magnitude of streamflow (Vogel & Fennessey 1995). It integrates the combined impacts of 

climate, geology, geomorphology, soils and vegetation. Therefore, it is useful in comparing runoff 

characteristics of different catchments (Sugiyama, Vudhivanich, and Whitaker 2003; Pearce 1990; 

Searcy 1959). In general, FDC sorts out streamflow data by shifting high flows with high 

precipitation signals to one end of the curve, medium flows to the middle, and low flows 

(presumably with low precipitation signals) to the other end of the curve (Mahmoud, 2008). 

Normalized FDC (normalize the discharge by dividing to the drainage area) is more helpful in 

order to visualize the variation in hydrologic response of different drainage basins (Mahmoud, 

2008) and therefore was utilized to select the basins (will be described in section 3.3.7). 

A normalized FDC was constructed from normalized daily streamflow (m3 s-1 km-2) for each 

study catchment, following the Weibull plotting formula (Sugiyama, Vudhivanich, and Whitaker 

2003): 

𝑃 =
𝑟

(𝑁+1)
× 100                                                                                                      [3.16] 

where P is the percentage of time that a given flow is equaled or exceeded, N is the total number 

of data points in the period of record, and r is the rank assigned to each streamflow value in the 

period of record.  

3.3.7 Selection of Catchments under Investigation 

In the first attempt, Monte-Carlo simulation experiments were carried out for the 25 basins 

with consistent parameter ranges. The Monte-Carlo simulation was applied three times for the 

three climate data sets, ANUSLIN, CaPA, and WFDEI (75 experiments overall).  

In order to pick the five basins out of the 25 basins for more detailed investigation on 

hydrological processes and model parameters, the following criteria were considered: (1) the 

basins with no missing data in period 2002-2012 (which is the overlap period of the three 

databases), (2) the basins with maximum NSE and NSE-Log higher than 0.6, (3) the basins with 
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similarly-sized areas (to minimize the size effect on streamflow process), and (4) the basins with 

different shapes of flow duration curves (FDCs). An FDC integrates landscape–climate and 

hydrological influences and is applied as a hydrological descriptor to classify the basins into the 

different classes and then one basin of each class is selected (5 basins overall).  

3.4 Boxplot 

To display parameter identifiability of the model in different catchments, we generated 

boxplots using MATLAB for each model of the five basins, and three objective functions. The 

boxplot is a useful and standardized way of displaying the distribution of data (from min to max) 

based on the following summary statistics: minimum, first quartile (25th percentiles), median, 

third quartile (75th percentiles), and maximum. The ends of the whiskers show the position of the 

minimum and maximum of the data, whereas the edges and line in the center of the box show the 

upper and lower quartiles and the median.  

The whiskers extend to the most extreme points are not taken into account as outliers. The 

outliers are illustrated individually by the '+' symbol (MATLAB manual). For symmetrically 

distributed data the mid-line (median) is half way between the upper and lower edges of the box 

(the upper and lower quartiles). A larger dispersion of the boxplot represents a lower identifiability 

of the associated parameter.   
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 Results and Discussion 

4.1 Data analyses of 25 basins 

The average annual precipitation and temperature of the 25 basins for different climate 

products is illustrated in figures 4.1 and 4.2. Various products estimate different values for annual 

precipitation and temperature for each basin. The highest discrepancy for precipitation is 600 mm 

between CaPA and ANUSPLIN for basin 08KB003, which has an area of 4780 km2 and an average 

elevation of 1372m. Some of the basins (08NP004, 08NB012, 07AA001, 05DA007, and 

05AA022) which show agreement among the three precipitation products, at less than 77mm of 

precipitation in a year.   

For temperature, ANUSPLIN and WFDEI show the maximum disagreement for basin 

05BG006, which can be as high as 2.0◦C (figure 4.3). CaPA and WFDEI show lower temperatures 

compared to ANUSPLIN in 22 out of 25 basins. Although the difference between CaPA and 

WFDEI may not be significant, a small change in temperature can cause snowmelt to start earlier 

or later. Thus, these slight shifts in temperature might have a significant impact on early spring 

flow.  

Despite the differences of temperature values, some basins, including 08NP004, 07FB006, 

07FB003, 07EC002, 07EC004, and 07EE007, show good agreement among the three products, 

with differences being less than 0.28 ◦C. 

Results show that both precipitation and temperature data for the three products have good 

agreement for basin 08NP004 with an area of 92.8 km2 and an average elevation of 1792m, which 

is amongst the smallest ones of the 25 basins.  
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Figure 4.1: Average annual precipitation of all the basins for ANUSPLIN, CaPA, and 

WFDEI, for the years 2002-2012 

 

Figure 4.2: Average annual temperature of all the basins for ANUSPLIN, CaPA, and 

WFDEI, for the years 2002-2012 

 

0

200

400

600

800

1000

1200

1400

1600

0
8

N
P

0
0

4

0
8

N
K

0
0

2

0
8

N
G

06
5

0
8

N
D

01
2

0
8

N
B

0
19

0
8

N
A

0
0

2

0
8

K
B

0
0

3

0
8

K
A

0
05

0
8

N
B

0
14

0
8

N
B

0
12

0
8

LB
0

38

0
7

FB
0

0
6

0
7

FB
0

0
3

0
7

A
A

0
01

0
7

EC
00

2

0
7

EC
00

4

0
7

ED
0

0
3

0
7

EE
00

7

0
5

A
A

0
08

0
5

A
A

0
22

0
5

A
A

0
23

0
5

B
B

0
0

1

0
5

B
G

0
06

0
5

B
L0

22

0
5

D
A

0
0

7

A
ve

ra
ge

 A
n

n
u

al
 P

re
ci

p
it

at
io

n
 

(m
m

/y
ea

r)

ANUSPLIN

CaPA

WFDEI

-3

-2

-1

0

1

2

3

4

0
8

N
P

0
0

4

0
8

N
K

0
0

2

0
8

N
G

06
5

0
8

N
D

01
2

0
8

N
B

0
19

0
8

N
A

0
0

2

0
8

K
B

0
0

3

0
8

K
A

0
05

0
8

N
B

0
14

0
8

N
B

0
12

0
8

LB
0

38

0
7

FB
0

0
6

0
7

FB
0

0
3

0
7

A
A

0
01

0
7

EC
00

2

0
7

EC
00

4

0
7

ED
0

0
3

0
7

EE
00

7

0
5

A
A

0
08

0
5

A
A

0
22

0
5

A
A

0
23

0
5

B
B

0
0

1

0
5

B
G

0
06

0
5

B
L0

22

0
5

D
A

0
0

7

A
ve

ra
ge

 A
n

n
u

al
 T

em
p

er
at

u
re

 (
C
◦)

ANUSPLIN
CaPA
WFDEI



57 

 

 

Figure 4.3: Average weekly temperature of 05BG006 for ANUSPLIN and WFDEI, for the 

years 2002-2012 

4.1.1 Runoff ratio 

The average values of the runoff ratio for the basins based on precipitation data are 

shown in figure 4.4. Percentage of glacier land cover for each basin is also illustrated in this 

figure. The runoff ratio is observed streamflow over average precipitation of the three products 

(ANUSPLIN, CaPA, and WFDEI).  
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Figure 4.4: Average runoff ratio of basins for ANUSPLIN, CaPA and, WFDEI, for the 

years 2002-2012 

Figure 4.4 shows that for several basins, for example, 08NB014, 05DA007, and 08NB012, 

runoff ratios are higher than one (by using any of three precipitation products). These results 

suggest two possible hypotheses: 1) the precipitation data is underestimated, or 2) significant 

glacier melt is contributing to the runoff ratio. Figure 4.5 shows the relationship of glacier 

percentage of watershed area and runoff ratio. 

 

Figure 4.5: Scatter plot between glacier percentage and runoff ratio 
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Figure 4.5 shows that basins with a higher percentage of glacier are more likely to have a 

higher runoff ratio. Eleven of 25 basins have a runoff ratio of higher than one, and five of those 11 

basins, have a glacier coverage of 10% or more. For instance, basins 05DA007, 08NB014, and 

08NB012 with the highest amounts of glacier at 26%, 20% and 15%, respectively, show runoff 

ratios of 1.08, 1.24, and 1.08, respectively. These unexpectedly high runoff ratios could be related 

to the declining glacier mass in the Canadian Rocky Mountains. As mentioned, the Canadian 

Rockies have changed significantly during the last few decades. For example, icefield areas in the 

Athabasca, Saskatchewan and Columbia River basins have sharply declined (Reid & 

Charbonneau, 1979). Another change can be seen in the length, area, elevation, and volume of 

glaciers in the Rocky Mountains, which from 1919 to 2009 experienced substantial recession and 

mass loss (Tennant & Menousos, 2013). A third example of change in the Rockies is the Columbia 

Icefield, which, in the same period, decreased by 59.6 Km2 (22%) (Tennant & Menousos, 2013). 

As a result of this evidence of declining glacier mass, it can be hypothesized that glacier melting 

contributes to streamflow generation and, consequently, a high runoff ratio. However, a high 

runoff ratio cannot be explained only by melting glaciers. For example, basin 07EE007 generates 

an average runoff ratio of 1.22, with the amount of glacier at just 0.28%.  In this case, the 

underestimation of precipitation data seems to be a more plausible explanation for the high runoff 

ratio.  

4.2 Data Analysis of 5 selected basins 

In this section, the data is rigorously scrutinized for the five selected basins (refer to Section 

3.3.7). Table 4.1 and figure 4.6 illustrate the name, ID and the coordinates of the hydrometric 

station for the basins and also the location of the basins in the Rocky Mountains. As can be seen, 

basin 05BB001 is in Alberta, while the others are in British Columbia. Table 4.2 shows the average 

elevation and slope of each basin. The average elevation of the basins ranges from 1713m for 

08ND012 to 2168m for 05BB001. As for the slope, the maximum (24%) is seen in basin 08NB019 

and the minimum (9.71%) in basin 08NK002. 
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Table 4.1: Hydrometric gauge information (Water Survey of Canada) 

 

Table 4.2: The average elevation and slope of basins 

Station ID Average Elevation (m) Average Slope (%) 

08NB019 1907 24 

05BB001 2168 10.9 

08NB012 2018 14.9 

08NK002 1860 9.71 

08ND012 1713 15.8 

 

  

Station ID Name Latitude Longitude 

08NB019 BEAVER RIVER NEAR THE MOUTH 51°30'32.7¨ N 117°27'55.1¨ W 

05BB001 BOW RIVER AT BANFF 51°10'20.0¨ N 115°34'18.4¨ W 

08NB012 

BLAEBERRY RIVER ABOVE 

WILLOWBANK CREEK 51°28'57.0¨ N 116°58'09.7¨ W 

08NK002 ELK RIVER AT FERNIE 49°30'12.5¨ N 115°04'12.5¨ W 

08ND012 

GOLDSTREAM RIVER BELOW OLD 

CAMP CREEK 51°40'07.6¨ N 118°35'46.3¨ W 
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Figure 4.6: The location of selected basins on SRTM digital elevation model 

4.2.1 Climate Zone 

Figure 4.7 shows the gridded climate zone defined for model simulation. As mentioned in 

Section 3.3.1, the HBV-EC model requires the delineation of climate zones; each zone has its own 

time series of temperature, precipitation, potential evapotranspiration, and average elevation, all 

of which are used to drive the hydrological processes within the model. Grids of climate products 

were used as a climate zone (Figure 4.7), resulting in 20 climate zones for all 5 basins. Basin 

08NB012 covers only two climate zones, while basin 08NK002 covers eight zones. 
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Figure 4.7: Gridded climate zones used in HBV-EC model 

4.2.2 Land cover contrasts 

The distribution of land-cover types using the HBV-EC classification for the basins are 

provided in figure 4.8 and figure 4.9. The basins are classified as mostly forested or open lands. 

Most of the areas classified as water are lakes with an almost negligible portion of 0-3.6%. For 

some basins, including 08NB012 and 08NB019, a substantial area is covered by glaciers, 15% and 

12%, respectively. Since land cover directly impacts key aspects of hydrological processes such 

as ET, infiltration, and runoff, different combinations of land-cover types create different 

hydrological regimes for the river basins.  

It has been found that under the same climate conditions (i.e., precipitation and 

temperature), higher ratios of open land (e.g., 05BB001 compared to 08ND012 in this study) lead 

to increased flow volume (Kundu & Olang, 2011). In contrast, more forested land cover (e.g., 

08NK002 compared to 08NB012) reduces peak discharge (Kundu & Olang, 2011). Despite these 

findings, since the climate inputs of the above-mentioned sets of basins vary significantly, the 

differences of magnitude and timing of flow cannot be related only to the discrepancy in land 

cover.  
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Figure 4.8: Land classification map for the basins used in the HBV-EC model 

 

 

Figure 4.9: Land use percentage of basins 
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4.2.3 Hydrometric and Climate Data Analysis  

Figures 4.10, 4.11, and 4.12 illustrate the average weekly precipitation, temperature and 

evapotranspiration of the basins. As can be seen in figure 4.10, basins 08ND012 and 08NB019 

have the highest average weekly precipitation values for the entire period, with similar trends 

except for weeks 17 to 25 (May to the end of June), when basin 08NK002 reaches the maximum 

precipitation (for example 36.48 mm/week for week 24). 08NK002 with the elevation of 1860 

has the lowest latitude compared to other basins.  

The five basins receive the highest amounts of precipitation in different months. The 

highest amount of precipitation for basins 08ND012 and 08NB019 occurs in weeks 2 to 11 and 

42 to 52, which correspond to January to March and the middle of October to the middle of 

December. For these two basins, snowfall is the dominant precipitation. For the other three 

basins, precipitation peaks occur from the end of May to the end of June. In these three basins, 

spring rainfall plays the primary role in precipitation peaks.  

 

Figure 4.10: Average weekly precipitation of basins (observed data) 

As shown in Figure 4.11, compared to precipitations trends, temperature trends and values 

are more uniform across the five basins. However, basin 08NK002 shows slightly higher 

temperatures, especially in warm seasons. Temperature peaks generally occur in week 30 (the end 

of July), and the lowest values are seen at the end of December. The noticeable differences among 

weekly temperature curves are the starting point of warm period and the length of this period. The 

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

A
ve

ra
ge

 p
re

ci
p

it
at

io
n

 (
m

m
/w

ee
k)

Week Number

08NB019

05BB001

08NB012

08NK002

08ND012



65 

 

longest warm period is for basin 08NK002 that is 28 weeks (starts in week 16 and end in week 

43), which may accelerate the initiation of snow melting. As a result, the peak of the hydrograph 

(figure 4.14) occurs earlier for basin 08NK002 (at week 23) than for the other basins (usually week 

26).  

The basins’ average temperature and rain/snow ratio are positively related. Basin 08NK002 

has the highest temperature, which results in a high rain/snow ratio (1.29). In contrast, basins 

08NB012 and 05BB001 have lower rain/snow ratios (0.96 and 0.77, respectively), and their 

temperature is also lower compared to basin 08NK002 (figure 4.10).  

The length of warming and the temperature values in this period can change the shape and 

peaks of the hydrograph by changing the duration of snow melting. Hence, the combined effect of 

both precipitation and temperature on the hydrograph should be taken into account.  

 

Figure 4.11: Average weekly temperature of basins 

The actual evapotranspiration is another important process for these basins (figure 4.12). 

Based on the MODIS data a large portion of yearly evapotranspiration happens during the summer 

months (May to August). Basin 08NK002 has the highest temperature and also the largest 

percentage of forest, but it has the lowest portion of glacier, which generates more 

evapotranspiration during the cold season (January to April and October to December). However, 

for the warmer period from June to August 08ND012 as a second basin regarding to average 

temperature and also forest percentage, shows the highest amount of evapotranspiration.  
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Figure 4.12: Average weekly ET of basins 

Further, streamflow across the fine basins have been characterized via flow duration curves 

(a criterion used in selecting the five basins) in figure 4.13. 

 

Figure 4.13: Flow duration curves of basins 

All basins with a similar slope in the lower end of the flow duration curve show the same 

condition for their perennial storage; their gradual change is an indication of enduring storage over 

the year (Searcy, 1959). This gradual change in FDC (read as a flatter slope) may be the result of 

surface- or ground-water storage (basins 08NK002 and 05BB001). On the other hand, the steep 
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slope throughout the FDC is more likely to denote a highly variable stream, whose flow comes 

largely from direct runoff (basin 08ND012). Basins 08NB012 and 08NB019 show the property 

between these two conditions.  

Previous research shows that streams with high flows produced by quick runoff from larger 

rainfall events have a steep slope at the upper end, while streams whose high flows come largely 

from snowmelt tend to have a flat slope at the upper (high flow) end (Searcy, 1959). Therefore, 

based on figure (4.13), basins 08NK002 and 05BB001 with a slightly steeper slope at the upper 

end show that heavy rainfalls are the main cause of quick flow in these basins.  

A chronological sequence of long-term average daily flows is shown by a stream 

hydrograph (figure 4.14), which is a graph of the flow rate of a stream plotted against time.  

 

Figure 4.14: Average weekly observed streamflow of basins 

A comparison of the average normalized streamflow shows that basin 08ND012 generates 

more streamflow except for the weeks 29 to 40. This greater flow in weeks 29-40 for 08NB019 

might be due to the fact that the amount of precipitation for basin 08NB019 surpasses that of 

08ND012 during this period.  

In addition to climatic data, land use/land cover can be responsible for altering the 

hydrologic response of watersheds leading to impacting river flows and its hydrograph (Haile & 

Assefa, 2012). Agricultural or open areas are mainly covered by small plants, crops, and 
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herbaceous vegetation that have a shallow root zone. They intercept less precipitation than forested 

areas (Chow, 1964), resulting in increased flow volume and more flooding. In contrast, a more 

forested area can reduce peak discharges and direct runoff volume in the basin but increases the 

time of rise of hydrograph by affecting interception, snowmelt, soil moisture and the infiltration 

rate (Gray, 1964; Haile & Assefa, 2012; Sangvaree & Yevjevich, 1977). The percentage of glacier 

and its contribution to surface runoff, especially in warm seasons, is another important factor 

affecting the shape and timing of the hydrograph and should be taken into account when 

interpreting a hydrograph’s characteristics. However, although 08NB019 contains a smaller 

portion of forest and a larger percentage of glacier compared to basin 08ND012, it shows a lower 

peakflow. This unexpected result may be related to an errors in precipitations and underestimation 

of data for 08ND012.  

Regarding precipitation and its relationship to streamflow, the results from basins 

05BB001and 8NK002 are inconsistent with those from basins 08ND012 and 08NB019.  The 

hydrographs from basins 05BB001 and 08NK002 cross each other first in week 25 and second in 

week 45. They then continue with the same values to the end of year, a trend which is not in 

agreement with their precipitation curves. It can be attributed to their difference in the land use 

and/or temperature trend that changes the snowmelt timing.    

When interpreting the shape of a hydrograph, the dominant soil texture and, therefore, 

infiltration rate should also be considered. Basin 08NK002 is mainly covered with clay, while for 

the other basins the dominant soil is silt. Regarding FAO (1998), silt has a higher infiltration rate 

than clay, leading to less surface runoff. Differences in soil properties and ratios of infiltration 

could be the main reason for the earlier peak flow (Hayes & Young, 2005) in basin 08NK002 

compared to that of basin 05BB001, even though they have similar climate data and average slope. 
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4.3 Modeling result 

4.3.1 Results of 25 basins 

Table 4.3 shows the average of maximum NSE for each basin and using three products of 

ANUSPLIN, CaPA, and WFDEI. Maximum value of this objective function is higher than 0.7 for 

14 out of 25 basins and it can reach to 0.81 for 05DA007. Model was not able to generate 

reasonable streamflow data for several basins including 07EE007, 08KB003, and 05BG006 

therfore the NSE values are less than 0.5. Poor NSE values for these basins might be because of 

errors in the input data (i.e. precipitation data) and/or process representation in the model. It is not 

always an easy task to find the main reason of low objective function values or to make a 

connection between basin characteristics (i.e. elevation, vegetation cover, and size) and model 

performance. Nevertheless we used a hypsometric curve to find a possible relation between the 

NSE values of basins and their elevation (figure 4.15). A hypsometric curve is a histogram or 

cumulative distribution function of elevations within a catchment. This curve characterizes in part 

the catchment form and contains information on dominant runoff mechanisms (Vivoni et al., 

2008). In figure 4.15 hypsometric curves of basins with maximum NSE values of higher than 0.7, 

between 0.5 and 0.7, and lower than 0.5 are illustrated in dark blue, green, and orange, respectively. 

Aforementioned figure shows that there is no obvious relationship between catchment elevation 

characteristics (hypsometric curves) and their NSE values. However, it is likely that most of the 

basins with high NSE (higher than 0.7) are more inclined to make a shift to the right side of the 

graph meaning higher elevation and most of the basins with low NSE (lower than 0.5) tend to stay 

on the left side meaning lower elevation. 
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Table 4.3: Best NSE of basins (the average result of three climate products) 

Basin ID Average of best NSEs 

08NP004 0.41 

08NK002 0.78 

08NG065 0.75 

08ND012 0.7 

08NB019 0.77 

08NA002 0.75 

08KB003 0.4 

08KA005 0.79 

08NB014 0.79 

08NB012 0.75 

08LB038 0.73 

07FB006 0.63 

07FB003 0.48 

07AA001 0.49 

07EC002 0.71 

07EC004 0.62 

07ED003 0.68 

07EE007 0.36 

05AA008 0.57 

05AA022 0.67 

05AA023 0.75 

05BB001 0.72 

05BG006 0.4 

05BL022 0.76 

05DA007 0.81 
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Figure 4.15: Hypsometric curves of 25 basins. Basins with maximum NSE values of higher 

than 0.7, between 0.5 and 0.7, and lower than 0.5 are illustrated in dark blue, green, and 

orange, respectively. 

4.3.2 Results of 5 selected basins 

4.3.2.1 Observed and simulated streamflow 

Figures 4.16 to 4.20 show the observed and simulated streamflows for each basin. Only the 

simulated streamflows with the parameter values that resulted in in the highest NSE values are 

shown. 

0

10

20

30

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500

P
er

ca
n

ta
ge

 o
f 

ar
ea

Elevation (m)

05DA007 08KA005

08NB014 08NK002

08NB019 05BL022

05AA023 08NB012

08NA002 05NG065

05LB038 05BB001

07EC002 08ND012

07ED003 05AA022

07FB006 07EC004

05AA008 07AA001

07FB003 05BG006

08NP004 08KB003

07EE007



72 

 

 

Figure 4.16: Observed and simulated daily hydrographs for 08NB019 

 

Figure 4.17: Observed and simulated daily hydrographs for 05BB001 
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Figure 4.18: Observed and simulated daily hydrographs for 08NB012 

 

Figure 4.19: Observed and simulated daily hydrographs for 08NK002 
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Figure 4.20: Observed and simulated daily hydrographs for 08ND012 

The comparison of the observed and simulated daily streamflows shows that the model 

results using WFDEI data are more capable of capturing peak flows for basins 08NB019, 

08NK002, and 08ND012. For 05BB001, the results of WFDEI capture the observed discharge 

variations and peakflows reasonably well. And for 08NB012, ANUSPLIN shows the best 

performance in simulating the high flows. Moreover, the timing of the flow events is better 

captured by WFDEI in almost all cases. However, the model tends to under-predict the very high 

flows of all five basins, especially when ANUSPLIN and CaPA are used. Model performance for 

each basin is investigated using different objective functions and results are provided in the 

following section. 

4.3.2.2 The comparison of model performance  

The performance of each climate product was assessed based on 10,000 Monte Carlo 

simulations using three objective functions, NSE, NSE-Log, and PBIAS (figure 4.21). PBIAS 

shows a superior performance for WFDEI compared to CaPA and ANUSPLIN for all five basins. 

CaPA and ANUSPLIN yielded the highest NSE and NSE-Log values for 05BB001 and 08NB012, 

respectively. However, for the other basins, WFDEI resulted in a higher performance. Overall, 

based on this hydrologic modelling results, WFDEI seemed capable of estimating climate data 
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more accurately than the other two products. Wong et al. (2017) drew similar conclusions, 

reporting that WFDEI, in general, provides the most consistent and reliable estimates for different 

metrics compared with other climate products, including ANUSPLIN. In Wong et al.’s research, 

WFDEI had over 65% of reliability over 15 terrestrial ecozones in Canada.  

Figure 4.1 (p. 54) illustrates that for basins 08NB012, 05BB01, ANUSPLIN and CaPA and 

for other three basins WFDEI generated higher values for average precipitation respectively. This 

clearly demonstrates that higher precipitation estimation resulted in higher values for NSE and 

NSE-Log. The findings, therefore, suggest that all three products tended to underestimate total 

precipitation across the basins compared to real data. Wong et al. (2017) reported that these 

products overestimate precipitation in the west and underestimate it in the north and east compared 

to gauge stations. Wong et al.’s findings about precipitation are not consistent with the results of 

this study, which, as reported above, shows that precipitation was underestimated although our 

studied basins are located in the west area. However, the station data used in Wong et al.’s study 

are typically found to be at low elevations, which makes it almost impossible to produce a good 

representation of precipitation data. To support this claim, Gharari, Safaie, Razavi, & Wheater 

(2017) conducted a study that showed that rain gauge stations (used in Wong et al.’s research) are 

mostly located in lowlands and valley bottoms, which are almost 1000 m lower than the average 

catchment elevations. The cumulative distribution functions (CDFs) associated with gauge 

elevation and catchment elevation produced by Gharari et al. are shown in figure 4.22.  

Other reports, however, indicate that the limitations and internal inconsistencies of the 

gridded datasets often lead to the underestimation of climate data, especially for areas with 

significant snowfall (Andermann, Bonnet, & Gloaguen, 2011). Models often compensate for 

underestimated precipitation with underestimated evapotranspiration and/or overestimated 

snow/glacier melt rates (Pellicciotti et al., 2012), reflecting a bias in estimating other components 

by models, which are more highlighted for small basins. In small catchments, precipitation is 

mainly influenced by topography, wind direction, hill aspects, and other factors. The development 

or reanalysis of precipitation data in small basin mostly needs more precise and comprehensive 

information in comparison with the data applied for large catchment (Ouyang et al., 2014). This 

error demonstrates the important role of orographic precipitation and topographic influence on 

precipitation quantity and distribution (Biemans et al. 2009), especially in mountainous and 
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relatively small areas; hence, the applicability of various gridded data to such basins requires 

further investigation (Yang, Wang, Wang, Yu, & Xu, 2014). 
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Figure 4.22: Elevation of catchments vs. rain gauges (adopted from Gharari et al., 2017) 

4.3.2.3 Forcing data correction 

The model evaluation of different data products in section 4.3.2.2, showed that WFDEI 

and CaPA are more reliable than ANUSPLIN in simulating streamflows for the basins of interest. 

Therefore, these two products are combined using equation 3.14 (p. 45). 

A Monte Carlo approach based on PLHS was used to generate 10,000 random parameter 

sets. Each parameter set has 13 parameters (11 model parameters and two for precipitation 

correction). The model parameter ranges were the same as provided in table 3.3 (p. 46). The ranges 

of precipitation correction factors P1 and P2 were (0.5-2) and (0-1), respectively.  

To keep the analysis of results less complex, we focused only on a combination of 

precipitation data, and for temperature and evapotranspiration inputs, we simply used WFDEI 

product. 

4.3.2.3.1 Precipitation correction factors relationship 

The meaningful relationship can be seen between precipitation correction factors (P1 and 

P2) for the best 50 parameter sets. Scatter plots of P1 and P2 for basins 08NB019 and 05BB001, 

for example, are provided in figures 4.23 and 4.24, respectively. The plot for basin 08NB019 shows 

that these two parameters are negatively correlated, which means that by increasing the P1 
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parameter, P2 decreases to gain higher objective functions. Increasing P2 implies decreasing the 

ratio of CaPA to WFDEI in combined precipitation, indicating that WFDEI is overestimating 

precipitation compared to CaPA. The reverse is true for the plot of basin 05BB001, where a 

positive correlation demonstrates that increasing P1 leads to a reduction of P2, meaning that for this 

basin, CaPA estimated higher precipitation than WFDEI. This result is supported by average 

annual precipitation (figure 4.1 on p. 54), showing that the CaPA/WFDEI ratio is 0.61 and 1.04 

for basins 08NB019 and 05BB001, respectively. Moreover, the correlation of P1 and P2 for basin 

05BB001 (with a coefficient of determination or R2 of 0.06) is not as strong as that for basin 

08NB019 (with R2 of 0.66) since the estimation of precipitation generated from two products 

(CaPA and WFDEI) were much closer for this basin rather than for 08NB019 (CaPA/WFDEI ratio 

of 05BB001 is closer to 1 compared to 08NB019 which are 1.04 and 0.61 respectively). 

 

Figure 4.23: Relationship of precipitation correction factors for 08NB019 
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Figure 4.24: Relationship of precipitation correction factors for 05BB001 
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the hydrological budget (Minville et al., 2014). To investigate this compensation, monthly actual 

evapotranspiration estimated by the model was compared with the monthly MODIS actual ET 

estimates. The results of two basins, 05BB001 and 08ND012, for example, modeled using WFDEI 

data are illustrated in figures 4.25 and 4.26.  
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Figure 4.25: Evapotranspiration values simulated by model and MODIS for 05BB001 

 

Figure 4.26: Evapotranspiration values simulated by model and MODIS for 08ND012 

In figures 4.25 and 4.26, the blue band shows the range of evapotranspiration (maximum 

and minimum data) simulated by the model for each month, and the orange line refers to MODIS 

monthly data. The figures show that ET estimations by the model and MODIS are not in agreement 

with the rising limbs. However, for the falling limbs during the months of June to October, there 

is a better agreement between MODIS and the modelled evapotranspiration. Moreover, ET data 
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08ND012) in the very cold period. However, the minimum ET generated by MODIS is greater 

than 7mm for basin 05BB001 and basin 08ND012. The reasons for this mismatch between the 

model evaporation and MODIS could be as follows:  

1- The actual evapotranspiration of HBV-EC is based on either long-term monthly or 

daily potential evapotranspiration (in this study, daily potential evaporation was estimated 

using Hamon’s equation), adjusted just for temperature. However, accurately estimating 

ET from complex landscapes can be data intensive since many other factors besides 

temperature are involved (Miranda, 2017). Evapotranspiration (ET) is a combined process 

of evaporation of liquid water from various surfaces, transpiration from the leaves of plants 

and trees, and sublimation from ice and snow surfaces (Rabiti et al., 2015). Nevertheless, 

actual ET estimated by Hamon’s method (a temperature-based method) and HBV-EC 

equations can fail to include all the processes. For example HBV-EC model doesn’t 

consider any sublimation and evaporation of snow across the basin is just taking into 

account by snowfall correction factor (SFCF). The MODIS model also does not bring in 

the sublimation process and makes no adjustments to account for the presence of snow 

cover since it assumes that bare soil evaporation is sufficient to calculate winter snow melt 

and subsequent evaporation as well as snow sublimation (Vanderhoof & Williams, 2015). 

However, the MODIS model relies on the energy flux approach and takes into account 

various parameters such as actual vapor pressure, relative humidity, and incoming solar 

radiation (figure 3.2, p. 28) for calculating evapotranspiration, which creates differences in 

ET values compared to the modeled ET, especially in cold periods.  

2- These different ET values probably occurred because the model is trying 

underestimate evaporation to get water balance right. As mentioned, precipitation products 

are underestimated for our study area, and, consequently, evapotranspiration must 

necessarily be underestimated as well to compensate for the missing water input (Oliver & 

Oliver, 1995). Compared to the MODIS equation, the model gives lower 

evapotranspiration estimations not only in cold conditions but also over the summer 

months.  

The ET data of parameter set which resulted the highest correlation coefficient (R) with 

MODIS data was selected and their relationships with MODIS values ae illustrated in scatter plots 
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of (4.27) and (4.28). The linear fits have R2 value of 0.79 and 0.87 for 05BB001 and 08ND012 

respectively.  

Although WFDEI underestimated precipitation probably for all basins, basin 08ND012’s 

estimations might be closer to real data since WFDEI shows significantly higher precipitation 

values compared with ANUSPLIN and CaPA. The WFDEI precipitation product also results in 

better and higher NSE and NSE-Log values compared to other products. However, for basin 

05BB001, higher values for precipitation and, therefore, NSE and NSE-Log values were estimated 

by CaPA, meaning that CaPA is more capable of estimating accurate precipitation in this basin. 

The better estimation of precipitation resulted in higher consistency, higher R2, between the 

modeled evaporation and MODIS evaporation. In other words, when precipitation estimations 

were closer to real values, the model provided a better estimation of evaporation. This, to some 

extent, supports the hypothesis that the modeled ET might be underestimated to compensate for 

precipitation underestimation. 

With all these interpretations, the results of the relationship between these two products 

may change if the monthly comparison of evaporation is replaced with daily comparisons. Miranda 

et al. (2017) showed that when two different evapotranspiration products are compared, greater R2 

values will be reached for the monthly scale than for the eight-day scale. 

 

Figure 4.27: Model and MODIS ET relationship for 05BB001 
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Figure 4.28: Model and MODIS ET relationship for 08ND12 

4.3.2.4 Objective Function values 

Figures 4.29 to 4.32 present the distribution of three objective functions pertaining to 50 
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Figure 4.29: Boxplots of the model performances for the behavioral parameter sets selected 

by “Cut” and “Radial” methods, using ANUSPLIN data 
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Figure 4.30: Boxplots of the model performances for the behavioral parameter sets selected 

by “Cut” and “Radial” methods, using CaPA data 
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Figure 4.31: Boxplots of the model performances for the behavioral parameter sets selected 

by “Cut” and “Radial” methods, using WFDEI data 
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Figure 4.32: Boxplots of the model performances for the behavioral parameter sets selected 

by “Cut” and “Radial” methods, using combined data 
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The first point of these figures is about the differences between the “Cut” and “Radial” 

methods for selecting behavioral parameter sets. The NSE and NSE-Log values related to 

parameters chosen by “Cut” shows larger variation of the boxplots compared to “Radial,” meaning 

that “Radial” was more stable in selecting behavioral parameters for these objective functions.   

The second point is that the median NSE and NSE-Log value in “Radial” is higher than 

that for “Cut,” which means that parameter sets resulting in higher NSE and NSE-Log values were 

chosen by this method; however, the reverse is true in the case of BIAS objective functions. In 

most cases, boxplots of BIAS are narrower in the “Cut” method and also have lower values for the 

median.  

Valuable results were produced by comparing the boxplots of different basins. As seen in 

figure 4.21 (p. 74) , basins 08NB012 and 05BB001 had a relatively better model performance for 

ANUSPIN and CaPA, which is consistent with the above figures, showing that these two basins 

boxplots (ANUPLIN and CaPA, respectively) are narrower and have higher median values for the 

NSE and NSE-Log. Basin 08ND012 shows a narrower boxplot in almost all cases, especially over 

NSE and NSE-Log objective functions; hence, when high flow and low flow were investigated, 

the model had better prediction ability for this basin.  

In addition, comparing the results of different forcing data indicates that for WFDEI, 

preferable results came not only in terms of objective functions (both maximum and median 

values) but also in the width of boxplots. The boxplots of the NSE and NSE-Log values of the 

“Radial” column and the BIAS of the “Cut” column are considerably narrower for WFDEI 

compared with those for other forcing data.  

Figure 4.32 shows the results of the model using a combination of WFDEI and CaPA as 

forcing data. By applying the combined forcings to the model it is expected to catch the best result 

of WFDEI and CaPA when they are applied individually. However, when a large enough number 

of parameter sets are run by the model, all the parameter sets of CaPA and WFDEI can be contained 

as well. Figures 4.30 to 4.32 show that some cases (basin 08NB019 in the “Radial” column, for 

instance) show better results for WFDEI than the best results of the combined data and also with 

the narrower boxplots. These findings suggest that if a higher number of parameter sets were run 

by the model, more acceptable results would be achieved by combining precipitation products. 
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However, regardless of the values of objective functions, the narrower boxplots of the “Radial” 

method for WFDEI indicated a better performance of WFDI than for the combined data. Overall, 

the “Radial” method was better than the “Cut” method in finding the behavioral parameter sets. 

Therefore, to further investigate the model performance and parameter uncertainty, the “Cut” 

method was discontinued. Only the results of the “Radial” method are provided. 

4.3.2.5 Model Validation  

In order to evaluate the model performance we used calibration and validation procedures 

for all five basins.  The record of simultaneous forcing and observed streamflow data was split into 

a calibration (2002-2008) and validation (2009-2012) periods for each basin. We used one-year 

spin-up period (year 2002) to reach an equilibrium model state for initialization of our runs.  

Model was run (10,000 times) for period 2003-2008 and the behavioral parameter sets 

using radial method were picked in the calibration procedure. Subsequently model was run again 

for these parameter sets for period 2009-2012. Figures 4.33 and 4.34 show the objective function 

values of behavioral parameter sets for calibration and validation periods and for each product. 

Results show that model performance is generally well at the validation stage as revealed by the 

outcome of NSE, NSE-Log and BIAS of behavioral parameter sets for both CaPA and WFDEI 

forcings.  

In order to make sure that parameters sets selected in calibration period reasonably generate 

the streamflow for the validation period, we compared the best objective function values of 

behavioral parameter sets with the ones for all parameter sets (10,000 ones) of this period (figures 

4.35 and 4.36). Results show that best objective function values for parameter sets selected in 

calibration are very close to the best values for all parameter sets specifically for basins 08NK002 

and 08ND012 indicating that parameter sets picked from calibration period are able to produce 

reasonable results for validation period as well.  
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Figure 4.33: Boxplots of the model performances for calibration and validation period, 

using CaPA data 
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Figure 4.34: Boxplots of the model performances for calibration and validation period, 

using WFDEI data 
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Figure 4.35: Best objective function values for validation period, using CaPA data 
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Figure 4.36: Best objective function values for validation period, using WFDEI data 
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4.3.2.6 Precipitation Correction factor impact on model performance 

In this part, we attempted to mitigate the bias problem of WFDEI and CaPA data by 

adjusting the daily data and using a precipitation correction factor (P1). WFDEI and CaPA data 

were used to run the model by applying a multiplicative correction factor. 10,000 parameter sets 

each containing 12 parameters (11 model and one correction factor, P1) were generated and applied 

to the model. The range of parameters were consistent with the previous sections.  

Figures 4.37 and 4.38 demonstrate the performance of the model for WFDEI and CaPA, 

respectively, when the data were multiplied by the P1 correction factor.  
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Figure 4.37: Boxplots of the model performances for the behavioral parameter sets selected 

by “Radial” methods, using WFDEI data 
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Figure 4.38: Boxplots of the model performances for the behavioral parameter sets selected 

by “Radial” methods, using CaPA data 
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A comparison of figures 4.37 and 4.38 with figures 4.30 and 4.31 shows that the differences 

of model performance with and without the precipitation correction factor are more pronounced 

for CaPA. Changing the WFDEI precipitation factor slightly alters the best value of objective 

functions compared with CaPA. This result suggested that although the NSE values of all basins 

(except basin 08MB019) were increased for WFDEI figures, these changes were not more than 

0.02 (which corresponds to basin 08NK002), while the maximum change was 0.23 for CaPA (the 

NSE values of basin 08ND012 increased from 0.6 to 0.83). The other important effect of the P1 

factor on CaPA precipitation data was that it decreased both minimum and median values of the 

BIAS criterion for all five basins.  In some cases (especially for WFDEI) the best NSE-Log values 

using P1 factor, are lower than those with no correction parameter. This result brings us back to 

the number of parameter sets that were not large enough to cover all parameter combinations. 

Nevertheless, both sets of precipitation data, to some extent, benefited from a correction factor to 

better represent the actual precipitation.  

4.3.2.7 Parameters Identifiability 

Figures 4.39 and 4.40 display the parameter identifiability of the model corresponding to 

CaPA and WFDEI (with the P1 correction factor) data, and figure 4.41 shows the identifiability of 

parameters when a combination of products was used. To compare different model parameters, the 

original values are normalized.  
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Figure 4.39: Identifiability of model parameters, using CaPA data 
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                Figure 4.40: Identifiability of model parameters, using WFDEI data 
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     Figure 4.41: Identifiability of model parameters, using combined data 
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All three figures show similar patterns in terms of parameters that were identifiable, 

however, with the various median, maximum, and minimum values. The only noticeable 

differences in the constraining of the parameters are found between the CaPA and WFDEI 

boxplots showing that the parameters of WFDEI (figure 4.40) tend to be more constrained.  

Some parameters are well-defined, since the behavioral parameter values lie in a narrow 

region of the parameter range, such as P1, DC (except for basin 08NK002), Kf (or Ks), whereas 

other parameters are spread across the entire range. 

The boxplots of Kf and Ks illustrate that for each basin, only one of these two parameters 

can be identified. The identified parameter can compensate for the unidentifiable parameter. 

Additionally, in some cases, basin 08ND012, for example, higher values were assigned to Ks 

compared to Kf, which contrasts with the nature of the two parameters. These higher values 

indicated errors in the structure of the model or pointed to some important processes that are not 

involved in streamflow estimation. To prevent these errors, more accurate ranges could be applied 

in the Monte-Carlo simulation, especially Kf and Ks. In other words, in this study if there were no 

overlap between their ranges, Kf would not reach higher values than Ks. 

The identifiability of P1, DC and Kf/Ks means that among the different model parameters, 

model results were largely dependent upon three: P1 (precipitation correction factor), Kf or Ks 

(runoff routine), and Dc (snow routine).  Parameters of other routines (soil, evapotranspiration, 

and glacier) could be compensated in the model by other parameters. Runoff is highly influenced 

first by precipitation inputs and then by snow melt. Therefore, the dominant role of the climate 

(P1) and snow routine (DC) parameter for the model performance was not surprising. Figures 4.39, 

4.40, and 4.41 show that among the non-identifiable parameters some parameters appear to be 

more constrained than others. For instance, for basin 08NK002 when WFDEI was used, parameter 

FC exhibits a somewhat higher identifiability than BETA in soil routine parameters (soil routine 

contains three parameters of FC, BETA, LP). This higher identifiability occurred because the 

model was more sensitive to FC compared to the other two parameters in this area. Previous studies 

of parameter identifiability on HBV have shown that FC has a larger impact on the model 

performance than BETA (Ouyang et al., 2014) and LP, has the least sensitivity (Ouyang et al. 

2014).   



103 

 

In the other studies of HBV model, different parameters were found to be well or badly 

defined (Ouyang et al., 2014; Uhlenbrook, Seibert, Leibundgut, & Rodhe, 1999). Non-

identifiability of parameters can result from either over-parameterization or model structure errors 

(Pokhrel, Gupta, & Wagener, 2008; Sorooshian, Duan, & Gupta, 1993). These findings suggested 

that it is difficult to know in advance whether a specific parameter will be well defined or not.  

4.3.2.8 P1, P2 range 

Figure 4.42 shows the values of precipitation correction factors (without normalization) of 

behavioral parameters correspond to WFDEI and CaPA data. And figure 4.43 shows a range of P1 

and P2 values of behavioral parameter sets when combined data were used. A value closest to 1 

indicates that the raw precipitation product performed well in approximating the streamflow.  

Figure 4.42: Range of precipitation correction factor (P1) for WFDEI and CaPA data 
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Figure 4.43: Range of precipitation correction factors (P1 and P2) for combined data 

 

As can be seen in the above figures, basins with underestimated precipitation are higher in 

CaPA in comparison with WFDEI since the latter boxplots are more constrained and the median 

values are closer to 1.  CaPA showed the larger bias for three basins out of five, requiring more 

than one and a half times the correction for basin 08ND012, for instance, in order to approximate 

total water inputs to the basin.  

Figure 4.21 (p. 74) showed that ANUSPLIN had the maximum NSE and NSE-log for basin 

08NB012 due to the higher precipitation data it estimated. This result is in agreement with the 

above figure, which shows that the boxplot of basin 08NB012 related to WFDEI data has the 

highest distance from 1. The results demonstrated that the higher the estimate for P1, the lower the 

calculations for the NSE and NE-Log. For instance, basin 08NK002, with a median P1 of 1.1, has 

a median and maximum of 0.79 and 0.82 for NSE, respectively, and 0.79 and 0.85 for NSE-log. 

Basin 08ND012 has a median P1 of 1.2; the values are 0.76 and 0.82 for NSE and 0.71 and .0.82 

for NSE-log, when WFDEI is used as an input.  

Moreover, median and maximum P1 values of 0.97 and 0.82 for basin 08MB019 indicate 

that, unexpectedly, overestimation of WFDEI was the reason for the error in streamflow generation 

by the model. However, WFDIE results in a higher NSE and NSE-log for this basin compared to 

ANUSPIN, although the latter’s average annual estimates were lower than the average 
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precipitation of WFDEI. Meaning that dynamic of daily WFDEI values (not the total annual 

amount) were more reasonably representative of real precipitation data compared that those for 

ANUSPLIN.  

When the combined data were adjusted, P2 spread across the entire value range (figure 

4.43), which indicated that one multiplier factor (in this case P1) could be enough to adjust the 

precipitation data if they are either used individually or are combined. Secondly, the P1 values are 

less constrained. In other words, they are less identifiable compared to those in figure 4.42. The 

reason for this difference is that one more parameter (P2) was added to the Monte-Carlo simulation. 

The higher number of parameters increased model uncertainty and probably reduced the number 

of identifiable parameters (Shen, Chen, & Chen, 2012).   
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 Conclusion 

5.1 Summary of study 

In this study, we investigated the applicability of the HBV-EC model in simulating 

streamflow in 25 basins in the Canadian Rocky Mountains. For climate data, we applied three 

different products to the model: ANUSPLIN, CaPA, and WFDEI. The results of the model showed 

good agreement between observed and simulated runoff, with the average maximum NSE higher 

than 0.7 for 14 of the 25 basins. 

These three products showed a discrepancy in precipitation and temperature data, more or 

less, for different basins, with the maximum difference of 600mm/ year and 1.9◦C related to 

discrepancy of CaPA-ANUSPLIN precipitation and WFDEI-ANUSPLIN temperature data. 

However, three forcings showed a very good agreement for the smallest basin, 08NP004, which 

has an area of 92.8km2. 

A more rigorous analysis of hydro-climate data and modeling results were carried out on 

five selected basins: 08NB019, 05BB001, 08NB012, 08NK002, and 08ND012. Average weekly 

climate data illustrated that basins 08ND012 and 08NB019 have the highest precipitation values, 

occurring mostly in winter as snow. These two basins also generated the largest average 

streamflow during the year and with the same peak timing in weeks 23 and 26.  

For these five basins, the uncertainty of hydrological model parameters and forcing data were also 

investigated. Uncertainties of the model were characterized using the Monte-Carlo simulation, and 

two cutoff methods – “Radial” and “Cut” – were used to select the behavioral parameter sets. 

“Radial” picked up 50 parameter sets within a distance of Pareto front to the origin. “Cut” chose 

parameter sets having NSE and NSE-Log of a minimum of 0.5 and BIAS of less than a value so 

that eventually 50 parameter sets were selected. Model performance of behavioral parameter sets 

showed that to distinguish between behavioral and non-behavioral parameters, “Radial” is more 

stable and reliable than “Cut” since it showed more constrained boxplots of NSE and NSE-Log 

and with higher median values. However, “Cut” was determined to be more appropriate in 
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selecting the behavioral parameters regarding the BIAS objective function which returns to the 

variable values of BIAS were used for parameters selection in this approach.  

The identifiability of behavioral parameters showed that among all 13 parameters (11 

model and two precipitation correction factor parameters), P1, DC, Kf /Ks (the only parameter 

identified each time) were well-defined and varied within smaller ranges, more or less. The degree 

of variability depended on the basin and forcing data. However, most of the parameters could not 

be identified and good simulations could be achieved over a wide range of parameter values. Non-

identifiability of parameters can result from over-parameterization, model structure errors, or 

missing processes within the model. It has been argued that the problem of identifying a unique 

parameter set and model variant is not an issue for practical model applications. In other words, 

different parameter sets and model variants are equally suitable to simulate runoff during a 

calibration period, and any one of these sets may be applied. However, using different parameter 

sets may largely limit the use of models for other purposes such as parameter regionalization. 

Although the applicability of the HBV-EC model has been evaluated in various basins with 

encouraging results, caution is recommended when using this model for studying the impact of 

climate or land-use changes and for describing basin hydrology. To conclude, this study showed 

that when applying the HBV-EC conceptual hydrological model, uncertainty of the model 

parameters and its impacts on model predictions have to be considered. Future research is needed 

to promote recommendations and procedures suitable for operational use.  

To identify the impact of forcing data uncertainty on streamflow simulations, three climate 

data sets were input into the model. The magnitude of error for streamflow simulations varied 

depending on the catchment conditions and the forcing data employed. The best results of objective 

functions showed that WFDEI had the best reliability and was more capable of estimating accurate 

climate data for three basins (08NB019, 08ND012, and 08NK002) of the five selected. For two 

other basins (05BB001 and 08NB012), CaPA and ANUSPLIN resulted in higher NSE and NSE-

Log since they tended to estimate higher average precipitation for those areas. Therefore, the 

higher the precipitation simulated by the product, the better the performance using NSE and NSE-

Log criteria. This outcome demonstrated that all three climate products underestimated 

precipitation for almost all five basins; therefore, a multiplier correction factor (P1 ranging from 

0.5 to 2) was applied to adjust the precipitation data (only CaPA and WFDEI data). The results 
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showed that both WFDEI and CaPA precipitation data required the correction factor to represent 

the accurate input water, although this factor is more pronounced for CaPA than for WFDEI. The 

median values of P1 for behavioral parameter sets were calculated as 1.39, 0.9, 1.36, 1.23, and 1.6 

for CaPA, while they were 0.83, 0.93, 1.4, 1.10, and 1.23 for WFDEI, corresponding to basins 

08NB019, 05BB001, 08NB012, 08NK002, and 08ND012, respectively.  

5.2 Recommendations  

 The sub-period calibration method developed by Gharari et al. (2013) can 

be applied to analyze the temporal changes in the parameter identifiability and calibration 

over the period of study for all 25 basins. The method involves calibrating the model 

independently on different sub-periods and selecting the parameter sets that are more time 

consistent across all sub-periods.  

 This analysis framework can be further extended to other uncertainty 

sources, including uncertainty from evapotranspiration, along with different objective 

functions (e.g., RMSE). Since parameter identifiability is sensitive to the choice of cutoff 

threshold method, other approaches can be applied to investigate uncertainties.  

 Sensitivity analysis of parameters is key in identifying dominant parameters 

that control model behavior. Therefore, to better understand model/parameter 

uncertainties, it is recommended that a reliable sensitivity analysis be applied to model 

parameters (Razavi & Gupta 2015). 

 It is recommended that a more comparative study be carried out including 

more complex models for cold regions (such as CRHM, Pomeroy et al. 2007) to investigate 

whether they preform similarly to the results on this thesis. It should be note that the 

available input data is one the main crucial criteria to select the model. Therefore if the 

required data for different models (especially physically-based ones) can be obtained, a 

comparative study would be a useful approach to assess whether adding complexity will 

necessarily lead to improved performance of hydrological modelling in the Canadian 

Rocky catchments and to what extent. 
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 APPENDIX 

Table 6.1: Average temperature (T) and annual precipitation (P, mm/year) 

  ANUSPLIN CaPA WFDEI 

Basin ID P  T P  T P  T 

08NP004 794.31 2.41 829.24 2.67 759.23 2.39 

08NK002 701.28 1.35 647.79 1.12 781.73 -0.06 

08NG065 723.54 1.73 592.73 1.04 555.14 0.12 

08ND012 1081.41 0.68 1000.43 0.18 1297.92 -0.25 

08NB019 1177.64 0.37 835.41 -0.29 1363.83 -1.32 

08NA002 831.7 0.75 574.97 0.39 631.47 -0.23 

08KB003 661.43 1.3 1263.22 0.99 814.58 1.56 

08KA005 745.61 -0.07 825.52 -0.9 646.35 0.32 

08NB014 1066.13 0.39 880.14 -0.76 1339.09 -0.43 

08NB012 797.41 -0.58 719.42 -1.94 684.91 -1.69 

08LB038 897.18 1.14 1095.74 0.42 1040.19 0.76 

07FB006 581.93 0.95 835.81 0.83 796.88 0.59 

07FB003 563.48 1.16 765.41 1.01 791.38 0.75 

07AA001 677.54 -0.33 599.74 -1.42 590.36 -0.41 

07EC002 584.7 -0.06 875.06 -0.11 512.15 -0.26 

07EC004 582.45 -0.48 757.98 -0.67 505.35 -0.74 

07ED003 544.43 1.12 729.79 1.37 578.75 0.83 

07EE007 580.51 1.89 1082.39 1.67 839.91 1.38 

05AA008 628.66 2.68 573.08 2.32 821.46 1.33 

05AA022 758.18 2.88 701.26 2.68 769.98 1.61 

05AA023 607.99 2.59 552.64 2.45 749.38 0.77 

05BB001 591.56 -0.51 594.57 -1.34 568.51 -2.16 

05BG006 613.55 1.51 517.6 1.01 583.59 -0.41 

05BL022 677.35 0.71 594.66 0.54 722.03 -1.28 

05DA007 786.29 -0.97 744.94 -2.1 690.22 -1.9 
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Table 6.2: Runoff ratio of basins for different climate products 

Basin ID ANUSPLIN CaPA WFDEI 

08NP004 0.84 0.8 0.88 

08NK002 0.69 0.75 0.62 

08NG065 0.64 0.78 0.83 

08ND012 1.18 1.28 0.98 

08NB019 0.98 1.38 0.85 

08NA002 0.62 0.9 0.82 

08KB003 2 1.05 1.62 

08KA005 1.2 1.08 1.38 

08NB014 1.26 1.53 1.01 

08NB012 1.14 1.26 1.33 

08LB038 1.38 1.13 1.19 

07FB006 1.37 0.95 1 

07FB003 1.25 0.92 0.89 

07AA001 0.25 0.28 0.28 

07EC002 0.9 0.6 1.03 

07EC004 1 0.77 1.16 

07ED003 0.79 0.59 0.74 

07EE007 1.65 0.89 1.14 

05AA008 0.61 0.67 0.47 

05AA022 0.79 0.86 0.78 

05AA023 0.47 0.51 0.38 

05BB001 0.87 0.87 0.91 

05BG006 0.37 0.43 0.39 

05BL022 0.56 0.64 0.53 

05DA007 1.02 1.08 1.16 

 

 

 


