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                                                ABSTRACT 

 

The magnocellular neurosecretory cells (MNCs) of the hypothalamus are able to 

change their firing rate and pattern in response to small changes in external osmolality due to the 

involvement of osmosensitive ion channels. The firing rate and pattern determine the release of 

vasopressin (VP), a primary hormone regulating osmolality by controlling water excretion from 

the kidney. Both VP- and oxytocin (OT)-MNCs
 
display irregular and infrequent fire when 

plasma osmolality is
 
near normal, and they progressively increase the frequency of firing to fast 

continuous firing with increases in osmolality. VP-MNCs also respond to osmotic stimulation by 

adopting
 

a phasic pattern of firing, which maximizes neuropeptide secretion. Sustained
 

dehydration also causes structural and functional adaptations in MNCs.  

Voltage-dependent Ca
2+

 channels play many important roles not only in the regulation 

of cell excitability but also in intracellular signal transduction, and L-type Ca
2+

 channel-mediated 

Ca
2+

 signals initiate intracellular signal transduction events that activate long-lasting changes in 

brain function and behavior. Our electrophysiological and immunocytochemical studies 

demonstrate that 16-24 h of water deprivation causes
 
a significant increase in the amplitude of L-

type Ca
2+

 current (from –55.5
 
± 6.2 to –99.1 ± 10.0 pA) but not in other types of Ca

2+
 current. 

This increase occurred in both VP- and OT-MNCs. Such an increase in L-type Ca
2+

 current may 

contribute to modulation of firing rate and pattern, regulation of vasopressin release, structural 

adaptation in MNCs during sustained dehydration.  

The mechanisms underlying the transition of the electrical behaviour are not 

completely understood. Ion channels, especially osmosensitive ion channels, play key roles in 

the modulation of MNC firing. A voltage-gated, 4-AP- and TEA-insensitive slowly activating 
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outward current displayed a significant increase in about 66% of MNCs when the osmolality of 

the external solution was acutely increased from 295 to 325 mosmol kg
-1

. The responding cells 

showed an increase in net outward current from 12.3 ± 1.3 pA/pF to 21.4 ± 1.8 pA/pF. The 

reversal potential of this current was near the equilibrium for K
+
 and shifted with changes of K

+
 

concentrations in external solution, suggesting that this current is a K
+
-selective current. The 

KCNQ/M current selective blockers linopirdine (150 µM) and XE991 (5 µM) suppressed this 

current. The IC50 of XE991 blockade was 3.9 μM. The KCNQ/M channel openers retigabine (10 

µM) and flupirtine (10 µM) significantly increased the current and shifted its activation curve 

toward more negative potentials. E4031, a specific blocker of ERG K
+
 channels, did not 

significantly block this current. The results from immunocytochemistry suggest that MNCs 

express KCNQ2, KCNQ3, KCNQ4, and KCNQ5, but not KCNQ1. These data suggest that this 

osmosensitive current could be a KCNQ/M current. Studies using single unit extracellular 

recording in hypothalamic explants showed that 10 µM XE991 increased MNC firing rate and 

that 20 µM retigabine decreased firing rate or caused a cessation of firing. These data suggest 

that a KCNQ/M current contributes to the regulation of MNC firing. KCNQ/M channels play 

key roles in regulating neuronal excitability in many types of central neurons. Slow activation of 

this current during firing might suppress activity by hyperpolarizing the cells and thus contribute 

to a transition between fast continuous and burst firing.       

Our studies will be beneficial to understand the mechanisms that control VP and OT in 

response to acute changes in osmolality and also the mechanisms underlying MNC adaptation 

during sustained dehydration.  
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1. INTRODUCTION 

1.1. Body fluid homeostasis and the central osmoreceptors 

The extracellular fluid (ECF) compartment, one of two major compartments containing 

body water, includes three major subcompartments: blood plasma, interstitial fluid, and 

transcellular fluid (Nanovic, 2005), and it contains many cations and anions. Na
+
 and Cl

-
 are the 

major cation and anion (Guyton & Hall, 1996), respectively. The cell, a fundamental element of 

all life, has a surrounding plasma membrane, which forms a relatively separated intracellular 

environment. The cell membrane as biological membrane is a lipid bilayer which is a 

permeability barrier due to its property of semipermeability and thus causes great differences in 

the concentrations of particles across the plasma membrane (Guyton & Hall, 1996). Thus, the 

differences in the concentrations of substances as osmoles across the membrane will lead to a 

difference in pressure across the membrane (Guyton & Hall, 1996), which is called osmotic 

pressure and is dependent on the numbers of solutes in the ECF (Guyton & Hall, 1996). The 

osmoles per kilogram of solvent determine the value of osmolality (Guyton & Hall, 1996). 

Mammals, through the regulation of sodium and water balance, are able to keep their osmotic 

pressure at a stable set point, which varies between types of organisms (Bourque, 1998; Candela 

& Yucha, 2004). Osmoreceptors in the central nervous system play a crucial role in the body 

fluid homeostasis (Bourque & Oliet, 1997). The site of central osmoreceptors was explored sixty 

years ago, and the anterior region of the hypothalamus was first thought to be the central 

osmoreceptors that control the release of vasopressin (VP; Verney, 1947; Jewell & Verney, 

1957). VP, as an antidiuretic hormone, is the primary hormone that regulates plasma osmolality 

by binding to the receptors on the cells in the collecting ducts of the kidney to control water 

excretion from the kidney (Chinard, 1964; Nielsen et al., 1995; Bourque & Oliet, 1997). VP 
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plays many physiological roles by acting on G protein-coupled VP receptors, which include three 

types (Petersen, 2006; Ball, 2007), V1a, V2, and V1b receptors. The primary locations of the V1a 

receptors, which  contribute to muscle contraction, glycogenolysis, platelet adhesion, and brain 

functions such as learning and memory, social behaviour, and thermoregulation, are in vascular 

smooth muscle, uterus, liver, platelets, and central nervous system (Petersen, 2006; Ball, 2007). 

The pituitary corticotroph is the primary location of  the V1b receptors, which regulate the release 

of adrenocorticotropic hormone (Ball, 2007). Osmoreceptors of the hypothalamus express V1a 

and V1b receptors, which may mediate inhibitory or excitatory effects of VP on the 

osmoreceptors (Hurbin et al., 1998). The primary location of the V2 receptors are in the 

basolateral membrane of the collecting duct in the distal nephron (Ball, 2007). VP can bind to V2 

receptors to cause translocation of aquaporin-2 (AQP2) water channels from cellular vesicles to 

the apical plasma membrane, which enables the reabsorption of water into the cells (Petersen, 

2006). Water exit from the cells is then mediated by AQP3 and AQP4 water channels expressed 

in the basolateral plasma membrane of the collecting duct principal cells (Petersen, 2006). 

Mutations of the V2 receptors cause insensitivity of the collecting duct to VP and ultimately lead 

to nephrogenic diabetes insipidus (Spanakis et al., 2008).  

The level of plasma VP is dependent on osmolality of the plasma (Bourque, 1998). VP, 

a peptide of 9 amino acids (van Kesteren et al., 1992), is synthesized in magnocellular 

neurosecretory cells (MNCs), which are central osmoreceptors (Bourque & Oliet, 1997). The 

supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of the hypothalamus are  

primary locations of the somata of the  MNCs (Figure 1.1; Bourque & Oliet, 1997). Both the 

SON and the PVN contain two paired parts. Each of the SONs contains about 4400 to 7000 

MNCs in rats, and each of the PVNs contains approximately 1300 to 2000 MNCs (Swanson & 
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Sawchenko, 1983). In addition, the MNCs are also found in the region between the SON and the 

PVN (Swanson & Sawchenko, 1983). The MNCs also synthesize another hormone, oxytocin 

(OT), which causes the uterus to contract at birth and milk ejection during lactation (Bourque & 

Oliet, 1997). In some cases, OT can also play a role in osmoregulation by natriuresis, and 

changes in the plasma osmolality can lead to alteration of plasma levels of both VP and OT 

(Bourque & Oliet, 1997).  

In addition, the neurons located in the lamina terminalis (Figure 1.1), including the 

median preoptic nucleus (MnPO), the subfornical organ (SFO), and the organum vasculosum of 

the lamina terminalis (OVLT), target the MNCs through synaptic transmission and also sense 

small changes in osmolality (Bourque & Oliet, 1997). These neurons therefore are also central 

osmoreceptors and play a central role in the regulation of body fluid homeostasis (Bourque et al., 

1994). Some peripheral osmoreceptors (Figure 1.1), which are situated primarily in the hepatic 

portal vein, the gastrointestinal tract, the oropharyngeal cavity, and so on, also play a role in the 

regulation of body fluid homeostasis (Bourque, 2008). 
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Figure 1.1 Central and peripheral osmoreceptors. ACC, anterior cingulate cortex; AP, area 

postrema; DRG, dorsal root ganglion; IML, intermediolateral nucleus; INS, insula; 

MnPO, median preoptic nucleus; NTS, nucleus tractus solitarius; OVLT, organum 

vasculosum laminae terminalis; PAG, periaqueductal grey; PBN, parabrachial nucleus; 

PP, posterior pituitary; PVN, paraventricular nucleus; SFO, subfornical organ; SN, 

sympathetic nerve; SON, supraoptic nucleus; SpN, splanchnic nerve; THAL, thalamus; 

VLM, ventrolateral medulla. (Bourque, 2008) (Reproduced with permission from 

Copyright Clearance Center) 
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1.2 The magnocellular neurosecretory cells (MNCs) and vasopressin (VP) release 

1.2.1 VP secretion is a Ca
2+

-dependent event 

VP and OT are produced by the MNCs. Axons from the MNCs extend through the 

median eminence and terminate in the neural lobe of the neurohypophysis (Hatton, 1997). VP 

and OT are packed into secretory vesicles after synthesis in the somata of the MNCs. These 

vesicles are transported through axons to the terminals in the neurohypophysis and the secretory 

granules are then translocated to the plasma membrane. The secretory vesicle membrane will 

fuse with the plasma membrane and the hormone and other contents in the secretory granules, 

following an increase in intracellular Ca
2+

 level ([Ca
2+

]i), are then released into the extracellular 

space (Theodosis et al., 1978; Bicknell, 1988; Lim et al., 1990; Lindau et al., 1992). Thus, VP 

and OT are released into the blood stream by Ca
2+

-dependent exocytosis and the release is a 

Ca
2+

-dependent event (Fisher & Bourque, 2001). Ca
2+

 entry across the plasma membrane in 

MNCs is conducted primarily by voltage-dependent Ca
2+

 channels (VDCCs), which play many 

crucial roles not only in the regulation of membrane excitability but also in cellular signal 

transduction (Fisher & Bourque, 2001). The voltage sensitivity is an important feature of these 

channels, and such a property enables them to respond to depolarization in the MNC terminals 

induced by propagation of excitatory signals from the cell body. Thus, the depolarization in the 

terminals leads to the VDCCs to open and causes Ca
2+

 influx and subsequent hormone release. 

Na
+
/Ca

2+
 exchangers in a reverse mode can also contribute to the Ca

2+
 entry across the plasma 

membrane (Saris & Carafoli, 2005). In addition, sequestration of intracellular Ca
2+

 in neurons 

plays an important role in the regulation of [Ca
2+

]i and the endoplasmic reticulum contributes to 

the regulation of [Ca
2+

]i by using internal membrane Ca
2+

-ATPase to pump Ca
2+

 into stores or by 

using Ca
2+

 release channels to release Ca
2+

 from the stores into the cytosol (Carafoli, 2002). Ca
2+
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release from the internal Ca
2+

 stores can also contribute to hormone release in the MNCs (Li & 

Hatton, 1997a; Sladek & Kapoor, 2001). 

 

1.2.2 Voltage-dependent Ca
2+

 channels 

The VDCCs, which are broadly expressed in various tissues including excitable cell 

types, are composed of a superfamily of ion channels sensitive to membrane potentials and 

selectively permeable to Ca
2+

, and they have been reviewed in detail in MNCs (Fisher & 

Bourque, 1996) and in other types of cells (Hofmann et al., 1999; Catterall, 2000; Fisher & 

Bourque, 2001; Jeziorski & Greenberg, 2006). Ca
2+

 signaling plays crucial roles in cellular 

functions such as excitation-contraction coupling in muscle cells, excitation-secretion coupling 

in neuroendocrine cells, synaptic transmission, gene expression, and other Ca
2+

-dependent 

events. The VDCC is a multimeric complex (Figure 1.2) containing an α1 subunit, which forms 

the Ca
2+

-selective pore of the channel and contains the binding site for the channel blockers, and 

three auxiliary subunits including a transmembrane α2-δ subunit, an intracellular β subunit, and a 

transmembrane γ subunit (Hofmann et al., 1999; Catterall, 2000; Jeziorski & Greenberg, 2006). 

Ten individual genes for α1 subunits have been identified (Table 1.1), and they form three 

families, CaV1, including CaV1.1 (α1S), CaV1.2 (α1C) CaV1.3 (α1D), and CaV1.4 (α1F), CaV2, 

including CaV2.1 (α1A), CaV2.2 (α1B), and CaV2.3 (α1E), and CaV3, including CaV3.1 (α1G), 

CaV3.2 (α1H), and CaV3.3 (α1I). The α1 subunit is composed of four homologous domains from 

domain I to domain IV, each of which contains six transmembrane segments from S1 to S6. The 

S4 segment has positively charged residues and is a voltage sensor. The VDCCs, due to the 

differences in biophysical and pharmacological properties, are divided into several subtypes 

including L- (CaV1.1, CaV1.2, CaV1.3, and CaV1.4), P/Q- (CaV2.1), N- (CaV2.2), R- (CaV2.3), 
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and T-types (CaV3.1, CaV3.2, and CaV3.3) (Table 1.1), and specific Ca
2+

 entry from these 

different subtypes play individual roles in Ca
2+

-dependent events (Fisher & Bourque, 2001). 

Several types of the VDCCs, including N-, P/Q-, and L-types, are functionally expressed in the 

somata and/or axon terminals of the MNCs (Table 1.1; Fisher & Bourque, 1995, 1996; Foehring 

& Armstrong, 1996; Glasgow et al., 1999; Joux et al., 2001).  
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Figure 1.2 Structure of the voltage-gated Ca
2+

 channels. AID: alpha interaction domain, GK:  

guanylate kinase, SH3: Src homology 3. (Jeziorski & Greenberg, 2006) (Reproduced 

with permission from Copyright Clearance Center) 
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Table 1.1 Subtypes, pharmacology, and roles of voltage-dependent Ca
2+

 channels. (Fisher & 

Bourque, 1996, 2001) 
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1.2.2.1 L-type Ca
2+

 channels 

1.2.2.1.1 Biophysics and pharmacology of the L-type Ca
2+

 channels 

L (for long-lasting)-type Ca
2+

 channels belong to CaV1 family. The channel activates at 

voltages more positive than -40 mV and are therefore high voltage-activated Ca
2+

 channels 

(Nowycky et al., 1985; Fox et al., 1987) except for the CaV1.3, which activates at more negative 

potentials (> -50 mV) and mediates a low threshold Ca
2+

 current (Koschak et al., 2001). Peak 

current can be obtained when the voltages are beyond 0 mV (Nowycky et al., 1985; Fox et al., 

1987). The L-type Ca
2+

 channel has a conductance of 25 pS and the channel shows very slow 

inactivation with a t1/2 of over hundreds of milliseconds (Nowycky et al., 1985; Fox et al., 1987), 

which is dependent on intracellular Ca
2+

 level and membrane potentials (Lee et al., 1985; Morad 

& Soldatov, 2005). One of important features of the L-type Ca
2+

 channel is that the channel 

shows sensitivity to dihydropyridine (DHP) because the S5 and S6 segments of domain III and 

the S6 segment of the domain IV in the α1 subunits contain DHP binding sites (Striessnig et al., 

1998), and the channel can therefore be activated by agonists such as Bay K 8644, but selectively 

blocked by its antagonists such as nifedipine. The selective blockers of the L-type Ca
2+

 channel 

from DHP derivatives have been shown to have a therapeutic role and are broadly used in the 

clinic (Triggle, 2006), specifically in the treatment of hypertension. 

 

1.2.2.1.2 Distribution, physiology, and pathophysiology of the L-type Ca
2+

 channels 

Four members of the L-type Ca
2+

 channels have been identified (Table 1.2 ) and they 

are CaV1.1 (α1S), CaV1.2 (α1C), CaV1.3 (α1D), and CaV1.4 (α1F) (Hofmann et al., 1999). The L-

type Ca
2+

 channels have been found to be expressed in various tissues. CaV1.1 is specifically 

expressed in regions of the T-tubular membrane of the skeletal muscle in which contraction is 
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triggered by membrane depolarization and plays a key role in the excitation-contraction coupling 

of the skeletal muscle (Schneider & Chandler, 1973; Tanabe et al., 1988). Thus, mutations at 

charged residues in the S4 segment of the channel lead to thyrotoxic hypokalaemic periodic 

paralysis, a heritable muscle disorder (Dias da Silva et al., 2002). In addition, mutations 

(R1086H and R1086C) of the proteins mediating the CaV1.1 channel gene are associated with 

malignant hyperthermia (Striessnig et al., 2004), a potentially lethal inherited autosomal 

dominant disorder and also linked with a mutation of ryanodine receptor type 1 of muscle 

sarcoplasmic reticulum (Striessnig et al., 2004). CaV1.4 is specifically expressed in the retina 

with a role in synaptic transmission between photoreceptors and bipolar cells (Strom et al., 

1998), and in immune cells with unknown roles. Mutations of the proteins mediating the CaV1.4 

channel gene in the retina lead to congenital stationary night blindness, an inherited non-

progressive eye disorder (Strom et al., 1998). Both CaV1.2 and CaV1.3 are broadly expressed in 

many cells and play several physiological roles such as the regulation of learning and memory, 

blood pressure, heart development and rhythm, hair cell generation, insulin secretion, and 

bladder contraction (Table 1.2; Bourinet et al., 2004; Moosmang et al., 2005). The L-type Ca
2+

 

channel signaling system, therefore, has physiological and pathophysiological significance and 

offers several therapeutic targets (Striessnig et al., 2006). Mice with homozygous knockout of 

the CaV1.2 gene only survive till day 14.5 post coitum because of the dysfunction of 

cardiomyocytes (Seisenberger et al., 2000). Ca
2+

 currents mediated by the CaV1.2 channels 

contribute to about 50% of phenylephrine-induced vascular contraction (Moosmang et al., 2003), 

and the relaxant effects of the DHP in vascular smooth muscle totally disappear in the knockout 

mice of the CaV1.2 gene (Sinnegger-Brauns et al., 2004). In addition, effects of DHP on 

inhibiting the L-type Ca
2+

 current and insulin secretion in pancreatic β cells are absent in those 
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mice (Sinnegger-Brauns et al., 2004). These studies suggest that the CaV1.2 Ca
2+

 channel plays 

an essential role in regulating contractility of vascular smooth muscle, blood pressure, and 

insulin secretion. The knockout of the CaV1.3 channel gene causes congenital deafness and 

dysfunction of the cardiac pacemaker (Platzer et al., 2000), suggesting that the Ca
2+

 channels 

formed by the CaV1.3 play crucial physiological roles in cochlear and outer hair cells and cardiac 

pacemaker cells. 

 

Table 1.2 Distribution and function of the L-type Ca
2+

 channel-subtypes (Moosmang et al., 

2005; Striessnig et al., 2004; Strom et al., 1998; Bourinet et al., 2004) 
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1.2.2.1.3 L-type Ca
2+

 channels in gene expression and brain function 

Although Ca
2+

 can influx through all types of VDCCs, Ca
2+

 influx through L-type Ca
2+ 

channels preferentially activates some cellular signal transduction pathways and plays a crucial 

role in transcriptional responses (Cartin et al., 2000; West et al., 2001; Spangenburg et al., 2004; 

Wamhoff et al., 2004). Specifically in the central nervous system, the L-type Ca
2+

 channel-

mediated Ca
2+

 signals initiate intracellular signal transduction events that activate long-lasting 

changes in brain function and behaviour (Hetzenauer et al., 2006; Striessnig et al., 2006). Both 

CaV1.2 and CaV1.3 are broadly and functionally expressed in the central nervous system 

(Moosmang et al., 2005). However, CaV1.3, unlike CaV1.2, can mediate a low threshold Ca
2+

 

current and thus regulate neuronal excitability and neurotransmitter release by subthreshold Ca
2+

 

signaling (Koschak et al., 2001). The L-type Ca
2+

 channels not only contribute to N-methyl-D-

aspartate (NMDA) receptor-independent long-term potentiation (LTP; Morgan & Teyler, 1999) 

but also downregulate NMDA receptor-dependent LTP by the β3 subunits of the CaV channels 

(Jeon et al., 2008). Ca
2+

 influx from the L-type Ca
2+

 channels of the CaV1.2 and CaV1.3 

subfamily in the brain can preferentially activate transcription factors such as cAMP-responsive
 

element binding (CREB) proteins (Figure 1.3; Hardingham et al., 1999; Weick et al., 2003; 

Zhang et al., 2006) and c-Fos (Hetzenauer et al., 2006; Zhao et al., 2007). Formation of LTP and 

various forms of memory are tightly associated with activity of the CREB proteins (Frank & 

Greenberg, 1994; Yin & Tully, 1996; Silva et al., 1998). Ca
2+

 entry can cause phosphorylation of 

the CREB proteins by two pathways (Rajadhyaksha & Kosofsky, 2005), a calmodulin kinase IV-

dependent pathway and a mitogen-activated protein kinase signaling pathway. The molecular 

and cellular mechanisms underlying this role of the L-type Ca
2+

 channel in brain function are not 

completely known. However, some specific structures of the L-type Ca
2+

 channel are important. 
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The L-type Ca
2+

 channel expresses an isoleucine-glutamine motif in the C-terminus of the 

channel, which is a binding site of Ca
2+

-calmodulin and also necessary for activation of the 

pathways (Dolmetsch et al., 2001). In addition, phosphorylation of the CREB proteins induced 

by Ca
2+

 entry from the L-type Ca
2+

 channel needs the involvement of PDZ, postsynaptic
 
density-

95 (PSD-95)/Discs large/zona occludens-1 (ZO-1), domain proteins in the C-termini of both 

CaV1.2
 
and CaV1.3 subunits (Figure 1.3; Weick et al., 2003; Zhang et al., 2005). The CaV1.3 

subunits, through the PDZ domain protein, also connect with Shank (SH3 domain and ankyrin 

repeat-containing synaptic scaffolding protein), which also interacts with an adaptor protein 

(Figure 1.3; Zhang et al., 2005), and this interaction is critical for the phosphorylation of the 

CREB proteins (Zhang et al., 2006; Calin-Jageman et al., 2007). 

In addition to activating the CREB proteins, Ca
2+

 entry from the L-type Ca
2+

 channels 

can also activate other important transcription factors. Ca
2+

 entry specifically from the L-type 

Ca
2+

 channels activates calcineurin (Rajadhyaksha & Kosofsky, 2005), which is a protein 

phosphatase also known as protein phosphatase 2B. Calcineurin can control nuclear factor of 

activated T cell, a cytoplasmic component of transcription factors, and thus regulate expression 

of several genes (Rajadhyaksha & Kosofsky, 2005). Thus, calcineurin plays important roles in 

learning and memory (Groth et al., 2003). The L-type Ca
2+ 

channel in rat hippocampus also 

mediates activation of nuclear factor-kappa B, a protein complex of transcription factors (Shen et 

al., 2002). Therefore, the activation of these transcription factors by Ca
2+

 entry from the L-type 

Ca
2+

 channels contributes to formation of various types of memory and processes of synaptic 

plasticity and thus causes long-lasting changes in brain function and behaviour. 
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Figure 1.3 L-type Ca
2+ 

channel (LTCC)-mediated Ca
2+

 pathways on activation of the 

transcription factor, cAMP-responsive
 
element binding (CREB) proteins. CaM, 

calmodulin; ITTL, Ile-Thr-Thr-Leu; MAP, mitogen-activated protein; PDZ, postsynaptic
 

density-95 (PSD-95)/Discs large/zona occludens-1 (ZO-1); PP2A, protein phosphatase 

2A; PP2B, calcineurin; VSNL, Val-Ser-Asn-Leu;, Shank, SH3 domain and ankyrin 

repeat-containing protein. (?, unknown proteins) (Rajadhyaksha & Kosofsky, 2005) 

(Reproduced with permission from Copyright Clearance Center) 
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1.2.2.1.4 Expression of the L-type Ca
2+

 channels in MNCs 

L-type Ca
2+

 channels are expressed not only in the somata of the MNCs but also in the 

terminals (Fisher & Bourque, 1996) and the proportion of the L-type Ca
2+

 channels is about 

23%-28% of the total VDCC currents in the somata of the MNCs (Fisher & Bourque, 1995; 

Foehring & Armstrong, 1996). Both CaV1.2 and CaV1.3 are expressed in the somata and 

dendrites of the MNCs (Joux et al., 2001).  

 

1.2.2.2 T-type Ca
2+

 channels 

T (for transient and tiny)-type Ca
2+

 channels belong to CaV3 family and mediate tiny 

Ca
2+

 currents with single channel conductance of 3.6-9 pS (Huguenard, 1996). The T-type Ca
2+

 

current is a transient current with a time constant of inactivation of between 10-100 ms, which is 

dependent on voltages, channel subtypes, and cell types expressing the channel (Huguenard, 

1996). The T-type Ca
2+

 current activates at voltages more positive than -60 mV (Nowycky et al., 

1985) and is therefore a low voltage-activated Ca
2+

 current. The T-type Ca
2+

 channel can be 

selectively blocked by a scorpion toxin (kurtoxin; Chuang et al., 1998). The T-type Ca
2+

 channel 

has been identified in many neurons, and its physiological roles such as regulating sleep rhythm, 

neuropathic pain, and absence epilepsy have been reviewed in detail (Shin et al., 2008). In some 

excitable cells, like cardiac pacemaker cells, the low threshold T-type Ca
2+

 channel activates at 

voltages below the threshold of action potentials and contributes to generation of spontaneous 

action potentials (Noble, 1984). In addition, the T-type Ca
2+

 channel contributes to a low 

threshold-activated afterdepolarizing potential to initiate burst firing in dorsal root ganglion 

neurons and thus regulates the generation of neural information (White et al., 1989). The T-type 

Ca
2+

-channel also has a physiological significance in endocrine cells such as pancreatic β cells 
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(Bhattacharjee et al., 1997). The T-type Ca
2+

 current is expressed in the somata of the MNCs but 

not in the axon terminals, and may play an important role in modulating MNC firing rate and 

pattern (Fisher & Bourque, 1995, 1996). 

 

1.2.2.3 N-type Ca
2+

 channels 

N (for neither L nor T)-type Ca
2+

-channels belong to the CaV2.2 family and have 

intermediate biophysical properties between L-type Ca
2+

 channels and T-type Ca
2+

 channels 

(Nowycky et al., 1985; Fox et al., 1987). The N-type Ca
2+

 channel can be selectively blocked by 

a cone snail toxin ω-conotoxin-GVIA (McCleskey et al., 1987). The N-type Ca
2+

 channel is 

broadly expressed in neurons and endocrine cells, interacts with SNARE (soluble N-

ethylmaleimide-sensitive factor attachment receptor) proteins, participates in the coupling 

between excitation and secretion, and thus regulates neurotransmitter release (Fisher & Bourque, 

2001; Fox et al., 2008). In addition, the N-type Ca
2+

 channel has also been found to play an 

important role in modulating long-term changes in brain function by regulating LTP (Jeon et al., 

2007). The N-type Ca
2+

 channel is expressed in both the somata of the MNCs and in the 

terminals (Fisher & Bourque, 1996) and the proportion of the N-type Ca
2+

 current is about 26%-

40% of the total VDCC currents in the somata of the MNCs (Fisher & Bourque, 1995; Foehring 

& Armstrong, 1996). 

 

1.2.2.4 P/Q-type Ca
2+

 channels 

The P-type Ca
2+

 channel was first identified in mammalian Purkinje cell neurons and 

the presynaptic terminals in the squid giant synapse, and has a conductance of about 10-12 pS 

(Llinas et al., 1989). The Q-type Ca
2+

 channel was first isolated from rat cerebellar granule 
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neurons and its proportion in total Ca
2+

 currents is the largest in these cells (Randall & Tsien, 

1995). Like the N-type Ca
2+

 channel, the P/Q-type Ca
2+

 channel is also a high voltage-activated 

Ca
2+

 channel, but belongs to CaV2.1. The P/Q-type Ca
2+

 channel can be selectively blocked by a 

funnel web spider toxin ω-agatoxin-IVA. However, the differences between the P-type Ca
2+

 

channel and the Q-type Ca
2+

 channel are that the Q-type Ca
2+

 channel shows inactivation and is 

much less sensitive to ω-agatoxin-IVA (Randall & Tsien, 1995). The P/Q-type Ca
2+

 channel also 

interconnects with the SNARE proteins, participates in the coupling between excitation and 

secretion, and thus triggers neurotransmitter release (Fisher & Bourque, 2001; Fox et al., 2008). 

The biophysical and pharmacological properties of the current expressed in the MNCs suggest 

that the P-type Ca
2+

 current is present only in the somata of the MNCs with a proportion of about 

17%-20% of total Ca
2+

 currents and that the Q-type Ca
2+

 currents is present only in the terminals 

(Fisher & Bourque, 1995, 1996; Foehring & Armstrong, 1996). 

 

1.2.2.5 R-type Ca
2+

 channels 

R (for resistance)-type Ca
2+

 channels are high voltage-activated Ca
2+

 channels but 

decay more rapidly than other high voltage-activated Ca
2+

 channels (Zhang et al., 1993). The R-

type Ca
2+

 channel-mediated current can be significantly detected at voltages more positive than -

40 mV (Zhang et al., 1993). The R-type Ca
2+

 channel has a single channel conductance of about 

14 pS and the channel-mediated peak Ca
2+

 current can be obtained at about 0 mV (Zhang et al., 

1993). The R-type Ca
2+

 channel is resistant to the selective blockers of L-, N-, P/Q-, and T-type 

Ca
2+

 channels (Zhang et al., 1993), but selectively blocked by SNX482, a peptide purified from 

the venom of an African tarantula (Arroyo et al., 2003). In addition, the R-type Ca
2+

 channel, 

compared with the T-type Ca
2+

 channel, displays much more rapid deactivation (Randall & Tsien, 
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1997). These properties above suggest that the R-type Ca
2+

 channel may not afford a steady Ca
2+

 

current; however, the R-type Ca
2+

 channel can cause a transient but large rise of [Ca
2+

]i (Randall 

& Tsien, 1997). Thus, the R-type Ca
2+

 channel can also play a role in neurotransmitter release 

(Waterman, 2000; Fisher & Bourque, 2001). In addition, a recent study showed that the R-type 

Ca
2+

 channel in dendritic spines plays a specific role in activation of small-conductance Ca
2+

-

mediated K
+
 (SK) channels (Bloodgood & Sabatini, 2007), which is important in controlling 

neuronal firing frequency (Faber & Sah, 2003).  

 

1.3 Electrical Activity in MNCs 

1.3.1 Firing rate and pattern determine hormone release 

Studies have revealed that the MNCs are able to change their firing rate and pattern in 

response to small changes in external osmolality (Bourque, 1998; Figure 1.4). However, VP- and 

OT-MNCs can display a great difference in firing patterns during the stimuli. Both the VP-

MNCs and the OT-MNCs display infrequent and irregular firing (<3 Hz) under normal 

conditions, and both can progressively increase the frequency of firing to fast continuous firing 

(>3 Hz) with increases in osmolality (Figure 1.5) induced by hyperosmotic injection, dehydration, 

carotid occlusion, or haemorrhage (Poulain & Wakerley, 1982; Bicknell, 1988). Under normal 

conditions, 73% and 10% of MNCs show slow irregular and fast continuous firing, respectively 

(Poulain et al., 1977). After haemorrhage, the VP-MNCs increase firing frequency to 6.4 ± 0.6 

Hz in four minutes. The OT-MNCs, however, gradually activate over 20 minutes and only 

increase firing rate to 3.7 ± 0.7 Hz (Poulain et al., 1977). The VP-MNCs can also respond to 

osmotic stimuli by adopting a phasic pattern of firing (Figure 1.5) characterized by burst 

discharges of action potentials (5-15 Hz for about 20 seconds) divided by rest
 
intervals lasting 5-
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25 seconds (Poulain & Wakerley, 1982; Bicknell, 1988). About 90% of the VP-MNCs after 

haemorrhage and 84-100% of the VP-MNCs following 6 h dehydration show phasic firing, 

which is absent in other hypothalamic neurons (Poulain et al., 1977; Wakerley et al., 1978). 

Although the OT-MNCs can also increase their firing rate during dehydration and haemorrhage, 

only 3-4% of the OT-MNCs display phasic firing after 24 h dehydration. During a suckling-

induced milk ejection, however, the OT-MNCs can show burst firing, a discharge of action 

potentials with a high frequency of 30-60 Hz (Poulain et al., 1977). VP-MNCs do not respond to 

the suckling-induced milk ejection (Poulain et al., 1977). 

 

 

 

 

 

 

 

 

 

Figure 1.4 Effects of plasma osmolality on vasopressin secretion and firing rate in VP-

MNCs. (Bourque, 1998) (Reproduced with permission from Copyright Clearance Center) 
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Action potentials initiated in the somata of the MNCs depolarize the membrane in the 

terminals through spike propagation and thus activate the VDCCs of the terminals to cause VP 

release from the neurohypophysis (Bicknell, 1988; Fisher & Bourque, 2001). Therefore, VP 

release is dependent on the frequency of MNC firing. The contribution of each action potential to 

the amount of released VP increases with increases in the firing frequency, but constant firing 

will cause neuronal fatigue and ultimately lead to a decrease in VP release (Bicknell, 1988). 

Studies have shown that VP release over a given period is maximized at 10-15 Hz, and an 

increase in firing frequency will no longer cause more secretion of VP and will even lead to a 

decrease in secretion (Bicknell, 1988). In addition, VP release during an optimal firing rate starts 

decreasing when the duration of the stimulation is over 20 s (Bicknell, 1988), and the time for 

significant recovery from the fatigue is about 10-20 s. Thus, the release of VP is determined 

primarily by the firing rate and pattern in the somata of the MNCs (Bicknell, 1988). The phasic 

pattern of firing with a burst of 20 s duration at 12-13 Hz followed by rest intervals of about the 

same
 
length allows secretory response of the MNCs to recover during the rest intervals and 

thereby maximizes the secretion of VP (Poulain & Wakerley, 1982; Bicknell, 1988).  
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Figure 1.5 MNCs can display three types of electrical activity. The mechanisms of the shift in 

electrical activity from slow irregular to fast continuous and eventually phasic firing are 

still unclear. Scale mark is 200 µV and 10 s. The figure was modified from Poulain et al.. 

(Poulain et al., 1977) 
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1.3.2 Initiation of firing and burst 

Plasma osmolality regulates the level of membrane polarization and the firing rate in 

the MNCs (Bourque, 1998). When the plasma osmolality is near the set point, the resting 

membrane potential of the MNCs is between -58 mV and -68 mV in rats (values vary with 

species; Bourque, 1998). Extrinsic (synaptic inputs) and intrinsic factors can cause a small 

increase in the membrane potential to reach the threshold of an action potential, which is 

between -44 mV and -55 mV, and initiate firing in the MNCs (Mason, 1980; Bourque, 1989; 

Gribkoff & Dudek, 1990; Bourque, 1998). The former mainly depolarizes the neurons by 

excitatory postsynaptic potentials due to the activation of excitatory receptors; the latter is 

attributed to intrinsic properties of the MNCs such as osmosensitive channels and activity 

dependent currents, which play key roles in regulating firing rate and pattern of the MNCs. An 

osmosensitive stretch inactivated cation channel has been identified in the MNCs (Oliet & 

Bourque, 1993). The activity dependent currents contribute to a depolarizing afterpotential 

(DAP), which follows action potentials and can summate into plateau potentials in the MNCs 

(Andrew & Dudek, 1983). 

 

1.3.2.1 Stretch inactivated cation channels (SICs) 

1.3.2.1.1 Molecular nature and biophysical properties of the SICs 

MNCs are intrinsically osmosensitive because increases in osmolality can depolarize 

the cell membrane and initiate spontaneous firing in isolated MNCs (Oliet & Bourque, 1992). 

This is attributed to an osmosensitive stretch inactivated cation channel (SIC; Oliet & Bourque, 

1993). The SIC belongs to the transient receptor potential vanilloid (TRPV) family of cation 
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channels, and is a splice variant of TRPV1 with a truncated N-terminal domain (Sharif-Naeini et 

al., 2006). TRPV1, which is also known as a capsaicin receptor and is highly expressed in the 

central nervous system (Tóth et al., 2005), is a nonselective ligand-gated cation channel that can 

also be activated by heat and low pH (Tominaga et al., 1998; Jhaveri et al., 2005). The SIC was 

also found to sense changes in temperature in the VP-MNCs and hyperthermic stimuli activated 

the SIC (Sharif-Naeini et al., 2008a), suggesting that the SIC may play a role in regulating VP 

release by a thermal control. 

Current-voltage analysis has indicated that the open channel conductance of the SIC is 

about 32 pS (Oliet & Bourque, 1993). The trivalent inorganic cation gadolinium (Gd
3+

), which 

can block mechanosensitive cation channels, can dose-dependently block the SIC with an IC50 of  

about 30 μM (Oliet & Bourque, 1996). Ruthenium red, a blocker of the TRPV channels, can 

completely inhibit the SIC at 10 µM (Sharif-Naeini et al., 2006). In addition, the SIC in the 

MNCs is sensitive to SB366791 (Sharif-Naeini et al., 2008a), a potent and selective antagonist of 

the TRPV1 channels (Gunthorpe et al., 2004).  

The SIC is a mechanosensitive cation channel, which is reversibly regulated by 

altering pipette pressure or osmolality of the extracellular solution (Oliet & Bourque, 1993). 

When the extracellular solution is hypertonic, the MNCs shrink, which causes the SIC to open 

and cations to flow into the cells (Figure 1.6). The influx of the cations then depolarizes the cell. 

The mechanism underlying the osmosensitivity of the SIC in the MNCs has recently been 

revealed in part, and this is due to the interactions between the cellular cytoskeleton and the 

channel proteins (Zhang et al., 2007b). The SIC displays no mechanosensitivity after the MNCs 

are treated with cytochalasin-D, which disrupts cellular actin microfilaments. Jasplakinolide, 

which promotes actin polymerization, increases
 
the osmosensitivity of the channel in the MNCs.  
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Figure 1.6 MNCs are intrinsically sensitive to changes in osmolality of the extracellular 

fluid. A stretch inactivated cation channel (SIC) has been demonstrated to play an 

important role in the increase in MNC firing during elevations in osmolality. (Bourque, 

1998; Liu, 2004) (Reproduced with permission from Copyright Clearance Center) 
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1.3.2.1.2 Ionic selectivity of the SICs 

Under physiological conditions, studies from voltage-clamp experiments have 

indicated that the current mediated by the SIC has a reversal potential of -41.5 mV and this is 

affected by concentrations of both the external Na
+
 and K

+
 but not Cl

-
, suggesting that the SIC is 

a non-selective cation channel (Oliet & Bourque, 1993). Subsequent research has indicated that 

the SIC is permeable not only to monovalent cations with a selectivity sequence of 

K
+
 > Cs

+
 > Na

+
, but also to divalent cations. The ratio of K

+
 to Na

+
 permeability (PK/PNa) is 

about 3.6 (Zhang & Bourque, 2006). However, an increase in the concentration of Na
+
 of the 

extracellular solution causes an increase in the permeability of the channel to Na
+
 (Bourque et al., 

2002; Zhang & Bourque, 2006). Thus, these properties of the SIC enable it to be considered as 

an intrinsic Na
+
 sensor (Bourque et al., 2002). In addition, the SIC is also highly permeable to 

Ca
2+

, and the ratio of Ca
2+

 to Na
+ 

permeability is about 5 (Zhang & Bourque, 2006). Thus, Ca
2+

 

may flow through the SIC and this activation may cause subsequent Ca
2+

-induced Ca
2+

 release 

from internal Ca
2+

 stores in the MNCs. Ca
2+

 imaging studies have also shown a significant 

increase in intracellular Ca
2+

 level after the activation of the SIC in the MNCs (Zhang & 

Bourque, 2006). It is interesting that external Ca
2+

 can also block the SIC in the MNCs by an 

unknown mechanism with an IC50 of 4.9 mM (Zhang & Bourque, 2006).  

 

1.3.2.1.3 Contribution of the SICs to osmosensory transduction 

The SIC can sense small changes in osmolality and mediate the influx of cations such 

as Na
+
, and it may therefore play an important role in the increase in MNC firing during 

elevations in osmolality (Figure 1.6). Since the SIC current is modulated by osmotic stimuli, its 
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contributions to osmosensory transduction in the MNCs have been investigated. Studies from the 

whole-cell patch-clamp recording have shown that the SIC contributes about 60% of the input 

conductance of the MNCs when osmolality is near normal (Bourque & Oliet, 1997). Furthermore, 

both ruthenium red and Gd
3+

 block macroscopic osmoreceptor currents and the increase in 

membrane conductance in response to hyperosmolality in the MNCs at the same concentration 

that they block the SIC (Bourque & Oliet, 1997). This suggests that the SIC contributes to 

osmoreception in the MNCs (Bourque & Oliet, 1997). Excitatory peptides such as angiotensin II, 

cholecystokinin, and neurotensin cause excitatory effects in the MNCs by activating the SIC 

(Chakfe & Bourque, 2000, 2001). These excitatory peptides may act on their respective receptors 

to activate Gq/11 proteins to modulate the second messenger system and thus regulate osmolality 

by modulating the open probability of the SIC in the MNCs (Chakfe & Bourque, 2000, 2001; 

Bourque et al., 2002). 

Since the SIC underlies osmosensitivity through to the involvement of actin filaments, 

cytochalasin-D significantly reduces the excitatory
 
effect caused by hypertonic stimuli in the 

MNCs by disrupting cellular actin microfilaments. Jasplakinolide, in contrast, greatly increases 

the excitatory
 
effect by promoting actin polymerization (Zhang et al., 2007b). Although 

hypertonic stimuli cause increases in membrane conductance and depolarizing potentials by 

regulating the SIC (Bourque & Oliet, 1997) in wild-type mice, ruthenium red-sensitive increases 

in membrane excitability are absent in mice in which the TRPV1 gene has been knocked out 

(Sharif-Naeini et al., 2006). Furthermore, knockout of the TRPV1 gene in mice causes 

dysfunction in the regulation of VP release and plasma osmolality (Sharif-Naeini et al., 2006). 

The SIC is also highly expressed in OVLT neurons, which are also intrinsically sensitive to 

changes in osmolality of the ECF (Bourque, 1998), and the channel also contributes to 
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osmoregulation in these neurons. Ruthenium red-sensitive osmosensory signal transduction in 

the OVLT neurons disappears in the knockout mice of the TRPV1 gene (Ciura & Bourque, 

2006). Furthermore, water intake is decreased in the knockout mice of the TRPV1 gene in 

response to water dehydration  (Ciura & Bourque, 2006). The studies above suggest that the SIC 

plays key roles in osmosensory transduction in central osmoreceptors and thus regulates VP 

release and body fluid homeostasis (Sharif-Naeini et al., 2008b).  

 

1.3.2.2 Depolarizing afterpotentials 

In addition to the SIC, which plays an important role in the increase in MNC firing 

during elevations in osmolality (Bourque et al., 2002), a depolarizing afterpotential, which is an 

activity dependent current, plays key roles in regulating firing rate and pattern of the MNCs (Li 

et al., 1995; Li & Hatton, 1997a). 

 

1.3.2.2.1 Properties of the depolarizing afterpotentials 

 The depolarizing afterpotential (DAP) was first reported in MNCs by Andrew et al. in 

1983 (Andrew & Dudek, 1983). The DAPs can sum and lead to a transient elevation of the 

membrane potential for tens of seconds to form a plateau potential (Figure 1.7), which causes 

generation of a burst (Andrew & Dudek, 1983). The DAP is not dependent on axonal conduction 

or chemical synapses but independently generated by an endogenous mechanism (Andrew & 

Dudek, 1983). Both VP-MNCs and OT-MNCs can exhibit the DAP in rat hypothalamic slices 

and also in acutely isolated MNCs (Oliet & Bourque, 1992; Erickson et al., 1993; Armstrong et 

al., 1994). However, there is a different percentage in expression of the DAP between the VP-
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MNCs and the OT-MNCs since they display different firing patterns in response to osmotic 

stimuli. The studies using intracellular recording in the hypothalamic explants have shown that 

individual spikes evoked with current pulses is followed by a DAP in about 55% of VP-MNCs 

and 32% of OT-MNCs (Armstrong et al., 1994). After brief trains of spikes, however, even more 

VP- and OT-MNCs will display the DAP (Armstrong et al., 1994). Therefore, there is a greater 

tendency for the VP-MNCs to express the DAP than the OT-MNCs. 

 

 

 

Figure 1.7 Depolarizing afterpotential (DAP). The traces are taken from sharp electrode 

recordings in the explants, and DAP is evoked by current pulses. (Roper et al., 2003) 

(Reproduced with permission from Copyright Clearance Center) 
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1.3.2.2.2 Voltage- and Ca
2+

-dependence of the depolarizing afterpotentials 

The DAP is greatly dependent on the level of membrane polarization and the internal 

concentration of Ca
2+

 (Bourque, 1986; Andrew, 1987; Li & Hatton, 1997a, b; Li et al., 1999). 

The DAP appears when the membrane potentials are over its activation threshold of -65.7 ± 0.7 

mV (Li & Hatton, 1997b). The amplitude and duration of the DAP are determined by the 

numbers of action potentials evoking the DAP and the levels of membrane potential (Andrew, 

1987; Li & Hatton, 1997b, a). A larger DAP can be induced by twin pulses than by single pulse 

(Li & Hatton, 1997b). The DAP induced by a single spike in the MNCs clamped at about -63 

mV has an amplitude of 3.00 ± 0.19 mV, a duration of 1.02 ± 0.06 s, and a time to peak 

amplitude of 0.32  ± 0.04 s, while the DAP induced by three spikes has an amplitude of 5.76 ± 

0.26 mV, a duration of 2.19 ± 0.11 s, and a time to peak amplitude of 0.51 ± 0.06 s (Li & Hatton, 

1997a). Therefore, increases in membrane potentials will cause increases in the amplitude of the 

DAP in the MNCs (Li & Hatton, 1997b). The cell membrane potential can be lifted by 3 mV for 

a period lasting several seconds due to the activation of the DAP (Figure 1.7; Roper et al., 2003). 

As with those identified in molluscan pacemaker neurons (Thompson & Smith, 1976), 

the DAP in the MNCs is also strongly dependent on the level of intracellular Ca
2+

 (Bourque, 

1986; Li et al., 1995; Li & Hatton, 1997a; Li et al., 1999). The studies examining the 

relationship between the DAP and intracellular Ca
2+

 level in the MNCs have shown that Cd
2+

 

and removal of extracellular Ca
2+

 reduce or abolish the DAP (Bourque, 1986; Li et al., 1995). In 

addition, Ca
2+

 in internal Ca
2+

 stores also plays an important role in the modulation of the DAP 

in the MNCs. Ryanodine or ruthenium red, which block ryanodine receptor-induced Ca
2+

 release 

channels, cause decreases of the DAP amplitude by 50% and duration by 45% (Li & Hatton, 

1997a). In addition, thapsigargin and cyclopiazonic acid, which specifically inhibit the internal 
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sarcoplasmic/endoplasmic reticulum Ca
2+

-ATPase and thereby deplete Ca
2+

 stores (Seidler et al., 

1989; Thastrup et al., 1990), also cause decreases of the DAP amplitude by 50% and duration by 

45% in the MNCs (Li & Hatton, 1997a). Moreover, the internal application of BAPTA [1,2-

bis(2-aminophenoxy)ethane-N,N,N',N'-tetraaecetic acid, a Ca
2+

 chelator], abolishes the DAP in 

the MNCs (Li et al., 1995). Caffeine-stimulated Ca
2+

 release from Ca
2+

-induced Ca
2+

 release 

channels (Leijten & van Breemen, 1984) can greatly increase the amplitude and duration of the 

DAP in the MNCs (Li & Hatton, 1997a). In contrast, heparin-induced block of Ca
2+

 release from 

inositol 1, 4, 5-trisphosphate (IP3)-induced Ca
2+

 release channels (Nilsson et al., 1988) does not 

reduce the amplitude and duration of the DAP in the MNCs (Li & Hatton, 1997a). These studies 

suggest that the DAP is greatly dependent on the concentration of intracellular Ca
2+

 and that both 

Ca
2+

 influx via the VDCCs and Ca
2+

 release from Ca
2+

-induced Ca
2+

 release channels (but not 

from IP3-induced Ca
2+

 release channels) increase the DAP and contribute to phasic firing in the 

MNCs (Li & Hatton, 1997a). 

 

1.3.2.2.3 Ionic mechanisms of the depolarizing afterpotentials 

 Although the DAP plays a key role in the promotion of phasic firing and thus 

modulates MNC firing patterns (Li et al., 1995; Li & Hatton, 1997a), the studies exploring the 

ionic mechanisms of the DAP have not reached a clear conclusion. DAPs are mediated by a 

subthreshold persistent sodium channel in rat subfornical organ neurons (Washburn et al., 2000), 

by calcium-activated non-specific (CAN) cation channels in the medial lateral habenula 

(Partridge & Swandulla, 1988; Chang & Kim, 2004; Hung & Magoski, 2007), in Aplysia bag cell 

neurons (Hung & Magoski, 2007), in olfactory bulbar neurons (Pressler & Strowbridge, 2006), 

and in thyroid follicular cells (Partridge & Swandulla, 1988), and by other Ca
2+

-activated 
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channels in mouse sympathetic neurons (Martinez-Pinna et al., 2000). CAN channels are 

encoded by TRP genes (Hardie & Minke, 1993). The TRP superfamily includes six main 

subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), 

TRPML (mucolipin), and TRPA (ankyrin; Nilius et al., 2007). One of important characteristics 

of the CAN channels is that they do not display any inactivation caused by intracellular Ca
2+

 or 

by membrane potential, and they can therefore afford a persistent excitatory effect and play 

important physiological roles in excitable cells (Partridge et al., 1994). CAN channels are 

expressed in neurons and non-neurons and are permeable to Na
+
, K

+
, and Ca

2+
, and even Cs

+
, Li

+
, 

Cl
-
, and tetraethylammonium (TEA; Partridge et al., 1994). Two unique subtypes of CAN 

channels from the TRPM family, TRPM4 and TRPM5, are selective for monovalent cations but 

impermeable to Ca
2+

 (Nilius et al., 2007). This is very different from other TRP channels, which 

are highly permeable to Ca
2+

. TRPM4 and TRPM5 are also Ca
2+

- and voltage-dependent and can 

be blocked by flufenamic acid (FFA; Gottlieb et al., 2006), which is a blocker of the CAN 

channels and can block the DAP, suggesting that the CAN channels mediated by TRPM4 and 

TRPM5 could mediate the DAP in the MNCs (Teruyama & Armstrong, 2007).  

The ionic mechanisms of the DAP in the MNCs are not completely understood. Li & 

Hatton reported (using whole-cell patch-clamp recording in the MNCs) that the current 

mediating the DAP, which was evoked by three brief depolarizing pulses, had a reversal 

potential of -87.4 ± 1.6 mV, which nears the expected the equilibrium potential for potassium 

(EK, -89.4 mV), and that the reversal potential shifted with changes in the concentrations of K
+
 in 

the external solution (Li & Hatton, 1997b). Moreover, under their conditions, the DAP in the 

MNCs could be reversibly blocked by TEA, a non-selective blocker of K
+
 channels. These data 

suggest that generation of the DAP is dependent on a reduction of outward K
+
 currents in the 
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MNCs. In addition, Cs
+
, a blocker of K

+
 channels, can also suppress the DAP, which is evoked 

by trains of a constant number of action potentials, by directly blocking the currents contributing 

to the DAP but not by interfering with [Ca
2+

]i (Ghamari-Langroudi & Bourque, 1998). In 

contrast, another study has shown that TEA cannot block the DAP induced by evoking trains of 

action potentials in the MNCs during intracellular recording (Greffrath et al., 1998). Moreover, 

both DAP and phasic firing are inhibited by FFA during intracellular recording in the MNCs 

(Ghamari-Langroudi & Bourque, 2002), with no changes in the membrane potential or Ca
2+

-

dependent parameters of the spikes evoking the DAP. Thus, FFA also causes a direct blockade of 

the channel mediating the DAP (Ghamari-Langroudi & Bourque, 2002), suggesting that the DAP 

may be mediated by a CAN channel in the MNCs. In addition to this well known Cs
+
-sensitive 

DAP, a Cs
+
-resistant fast DAP, which is evoked by a train of action potentials

 
and has a much 

faster time course than the Cs
+
-sensitive

 
DAP, has recently been reported using whole-cell

 
patch-

clamp recordings in the MNCs (Teruyama & Armstrong, 2007). This fast DAP is expressed in 

all VP-MNCs (but in only 20% of OT-MNCs) and is also Ca
2+

-dependent. The fast DAP can be 

affected by concentrations of both the external Na
+
 and K

+
 but not Cl

-
, and is blocked by FFA, 

suggesting that it may also be mediated by a CAN channel, possibly by TRPM4 and/or TRPM5 

(Teruyama & Armstrong, 2007). DAPs are evoked under different experimental conditions in the 

studies above and have different properties. These studies also demonstrate that although the 

DAP plays a key role in generation of phasic firing in the MNCs, the ionic mechanisms of the 

DAP are unclear and that it may be mediated by multiple currents.  
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1.3.2.2.4 The depolarizing afterpotentials in phasic firing 

 Only VP-MNCs normally display phasic firing in rats (Armstrong et al., 1994), but 

OT-MNCs could also possess the machinery for phasic bursting because they can be induced to 

fire by a phasic pattern when [Ca
2+

]i is increased (Li et al., 1995). Since OT-MNCs can 

sometimes exhibit a DAP in rat hypothalamic slices but only VP-MNCs normally display phasic 

firing (Armstrong et al., 1994), the appearance of the DAP does not mean that phasic firing will 

subsequently be initiated in the MNCs. The DAP does however play a key role in initiating the 

phasic burst and the reasons are summarized below. Phasic firing can be terminated because of 

abolishment of the DAP by depletion of intracellular Ca
2+

 (Li et al., 1995; Li & Hatton, 1997a) 

or by blockade of the CAN channels (Ghamari-Langroudi & Bourque, 2002). Moreover, a 

reduction in [Ca
2+

]i in the MNCs displaying phasic firing can eliminate phasic firing (Li et al., 

1995). An elevation of [Ca
2+

]i in the MNCs, in contrast, facilitates generation of the DAP and the 

plateau potential and thus promotes phasic firing (Li et al., 1995). In addition, histamine by 

acting on H1 receptors to activate G-proteins and Ca
2+

-independent pathways can enhance the 

DAP and thus promote phasic firing in the MNCs (Li & Hatton, 1996), while dynorphin, by 

acting on κ-opioid receptors to inhibit the DAP, can cause burst termination (Brown et al., 2006). 

Furthermore, a depolarizing current pulse in cat MNCs (which have resting potentials similar to 

that of the rat) cannot elicit a DAP or a plateau potential (Fagan & Andrew, 1991), which can be 

evoked by injecting currents in the rat MNCs. Phasic firing is absent in the cat MNCs (Fagan & 

Andrew, 1991). These studies suggest that the DAP is a requisite but not sufficient feature for 

initiating and sustaining phasic bursts in the MNCs (Erickson et al., 1993). 
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1.3.2.3 Plateau potentials 

Plateau potentials, which were originally identified in cultured MNCs of foetal mice 

(Legendre et al., 1982), are due to summation of DAPs. The DAP can summate to form a much 

larger, slow, persistent depolarizating plateau potential because of two possible mechanisms, as 

suggested by Roper et al. (Roper et al., 2004). One is that an increase in intracellular Ca
2+

 after 

action potentials leads to suppression of K
+
 currents and thus causes further depolarization of 

membrane. The other is that the depolarization causes further activation of the VDCCs and the 

Ca
2+

-dependent DAP. The plateau potential, which has a threshold of about -45 mV, can rise to 

peak at about -20 mV and then gradually and slowly repolarize to a steady phase at -30 mV 

(Legendre et al., 1988). The plateau potential can last over one hundred seconds and then quickly 

fall down with a fast repolarizing phase followed by a refractory period, which takes 10-30 s and 

is mediated by calcium-activated K
+
 channels (Legendre et al., 1982; Legendre et al., 1988). The 

plateau potential, like the DAP, also displays voltage-sensitivity and can be inactivated by a 

hyperpolarizing pulse (Legendre et al., 1982; Andrew, 1987). The plateau potential can be totally 

inhibited by hyperpolarizing potentials below -90 mV.  The plateau potential is sensitive to the 

application of TTX or to low-Na
+
 recording solutions, but not to alterations of extracellular K

+
 

(Andrew, 1987). In addition, a decrease or removal of extracellular Ca
2+

 also suppresses or 

abolishes the plateau potential, respectively, suggesting that it is also Ca
2+

-dependent (Bourque, 

1986; Andrew, 1987). Sr
2+

, an agonist of Ca
2+

 channels, greatly enhances the plateau potential or 

allows cells to regain plateau potentials to sustain phasic firing (Andrew, 1987).  
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1.3.3 Termination of firing and burst 

Phasic bursts can last tens of seconds in MNCs, and then the cells cease firing during 

rest intervals (Bicknell, 1988). The specific mechanisms underlying the termination of phasic 

bursts are complicated and not completely understood (Roper et al., 2004). However, the DAP 

summates into the plateau potential that causes an initially high firing rate that then progressively 

decreases because of adaptation mediated by some inhibitory currents (Figure 1.8), which 

include a hyperpolarizing afterpotential (HAP) and an afterhyperpolarizing potential (AHP; 

Andrew & Dudek, 1984; Roper et al., 2003). These inhibitory currents might cause a decrease in 

the ability of the DAP to sustain the plateau potential and phasic firing. 

 

1.3.3.1 Hyperpolarizing afterpotentials and afterhyperpolarizing potentials 

1.3.3.1.1 Hyperpolarizing afterpotentials  

The membrane potential of the MNCs, after single action potential, becomes more 

negative than that in the resting state to form an undershoot phase merging into a HAP (Andrew 

& Dudek, 1984; Bourque et al., 1985; Roper et al., 2003). The HAP is expressed in both VP-

MNCs and OT-MNCs, and there are no significant differences in amplitude between the two 

types (Armstrong et al., 1994). The HAP can briefly hyperpolarize the cells for 25-125 ms and 

has amplitude of 7.4 ± 0.8 mV (Figure 1.8; Andrew & Dudek, 1984; Bourque et al., 1985). The 

HAP is transient, and it mono-exponentially decays with a time constant of 17.5 ± 6.1 ms 

(Bourque et al., 1985). Data from intracellular recordings have shown that the HAP in the MNCs 

is voltage dependent and has a reversal potential of -85 mV (Bourque et al., 1985), which is near 

EK. This reversal potential is not significantly modulated by either the level of intracellular Cl
- 
or 
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extracellular Mg
2+

, suggesting that the HAP is mediated by a subtype of voltage-dependent K
+
 

channel (Bourque et al., 1985). In addition, the magnitude and duration of the HAP is greatly 

affected by the level of intracellular Ca
2+ 

(Bourque et al., 1985), suggesting that the HAP is 

mediated by a large-conductance Ca
2+

-activated K
+
 (BK) channel (Andrew & Dudek, 1984; 

Bourque et al., 1985; Roper et al., 2003). A transient, Ca
2+

-dependent outward K
+
-selective 

current, which is sensitive to 4-aminopyridine (4-AP; a non-selective blocker of K
+
 channels) but 

not to TEA, also contributes to the HAP and modulates firing rate in the MNCs (Bourque, 1988; 

Bourque et al., 1998). The HAP is unlikely to be involved in the termination of phasic bursts in 

the MNCs because its transient property suggests that it would not be able to contribute to an 

inhibitory rest interval that remains over hundreds of milliseconds (Andrew & Dudek, 1984; 

Bourque et al., 1985). However, the nature of the HAP suggests that it can influence the 

interspike interval so that the cell can transiently stay below critical threshold voltage and thus 

limit firing frequency in the MNCs (Andrew & Dudek, 1984). 

 

1.3.3.1.2 Afterhyperpolarizing potentials 

Unlike the HAP, activation of an AHP in the MNCs requires a brief spike train of high 

frequency or a prolonged stimulation, in which case it is followed by a DAP (Andrew & Dudek, 

1984). There is therefore a partial overlap among the DAP, the HAP, and the AHP. The 

amplitude and duration of the AHP, which is expressed in both VP-MNCs and OT-MNCs 

(Armstrong et al., 1994), are greatly dependent on both the strength and duration of the 

depolarizing pulses that activate them (Andrew & Dudek, 1984) and not significantly different 

between the two types of MNCs (Armstrong et al., 1994). The AHP can hyperpolarize the MNCs 
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by 12.5 mV for hundreds of milliseconds (Figure 1.8) and then decay with a time constant of 

about 500 ms (Andrew & Dudek, 1984; Roper et al., 2003). The AHP in the MNCs may contain 

multiple components and the currents contributing to the AHP are not completely known. The 

AHP is generated by an increase in a K
+ 

conductance and is Ca
2+

-dependent, suggesting that the 

AHP is also mediated by Ca
2+

-activated K
+
 channels (Andrew & Dudek, 1984). The generation 

of this type of AHP is dependent on electrical activity in the cells and a spike train with fifteen 

action potentials can cause the maximal amplitude of the AHP (Kirkpatrick & Bourque, 1996). 

This AHP can be selectively blocked by apamin and d-tubocurarine (Bourque & Brown, 1987; 

Armstrong et al., 1994; Kirkpatrick & Bourque, 1996), selective blockers of small-conductance 

Ca
2+

-mediated K
+
 (SK) channels, and this indicates that the AHP is conducted by SK channels. 

This apamin-sensitive AHP follows a train of action potentials and is referred to as the mAHP 

(Kirkpatrick & Bourque, 1996). There is also an apamin-insensitive AHP, which follows a
 
single 

spike and is referred to as the fast AHP (fAHP; Kirkpatrick & Bourque, 1996). The nature of the 

post-train AHP (the mAHP) suggests that it could contribute to an inhibitory rest interval and be 

involved in the termination of phasic bursts by suppressing the DAP and the plateau potential, 

and thus play an important role in controlling firing rate and pattern in the MNCs (Andrew & 

Dudek, 1984; Bourque et al., 1985). Another study has indicated that although the mAHP may 

be able to contribute to the termination, the mAHP is unnecessary for the burst termination 

because the MNCs, after blockade of the mAHP by apamin, still display phasic firing but 

increase the rate and duration of the bursts (Kirkpatrick & Bourque, 1996). 
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A 

 

B 

 

Figure 1.8 Hyperpolarizing afterpotentials (HAP) and afterhyperpolarizing potentials 

(AHP). The traces are taken from whole-cell recordings in the slice, and AHP and HAP 

are evoked by current pulses. (Roper et al., 2003) (Reproduced with permission from 

Copyright Clearance Center) 
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Greffrath et al. also reported that 26% of MNCs express a slow Ca
2+

-dependent AHP 

(sAHP), which decays with a time constant of 1010.3 ± 311.30 ms and could be mediated by 

intermediate-conductance Ca
2+

-activated K
+
 (IK) channels (Greffrath et al., 1998). This sAHP 

could regulate the firing rate and pattern of the MNCs by attenuating the DAP (Greffrath et al., 

1998). A non-BK and non-SK-mediated, calcium-activated slow AHP, which decays with a time 

constant
 
of 1.4 ± 0.1 sec and is inhibited by carbachol, has been reported in principal neurons in 

the lateral nucleus of the amygdala (Sah & Faber, 2002). A muscarine-sensitive slow AHP that 

decays with a time constant of 2031 ± 244 ms and does not appear to be mediated by BK, IK, or 

SK channels, is expressed in the MNCs and modulates phasic firing by attenuating the DAP and 

the plateau potential (Ghamari-Langroudi & Bourque, 2004). In addition, an apamin-insensitive 

slow AHP has been reported in the MNCs and shows a significant increase in peak
 
amplitude in 

OT-MNCs during lactation (Teruyama & Armstrong, 2005). These types of slow AHPs are 

possibly generated by a long train of action potentials in the MNCs. Such a sAHP is also 

reported in other excitable cells, and it is interesting that several types of sAHP can be regulated 

by various neurotransmitters (Sah & Faber, 2002). The physiological roles of the sAHP, 

specifically in the termination of the phasic burst or in the transition from fast continuous to 

phasic firing, are unclear because of the absence of selective modulators of the currents 

contributing to the sAHP. 

 

1.3.3.1.3 Ca
2+

-dependent K
+
 channels 

Ca
2+

-activated K
+
 (KCa) channels belong to a subfamily of K

+
 channels, the opening 

and closing of which are controlled by intracellular Ca
2+

 (Faber & Sah, 2003). The KCa channels 

were first reported in human erythrocytes (Gárdos, 1958). They were first identified in neurons 
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by Meech in Aplysia nerve cells where they caused a TEA-sensitive, Ca
2+

-dependent 

hyperpolarization (Meech, 1972). The KCa channel is composed of two distinct types of subunits 

(Faber & Sah, 2003): four α subunits and a β subunit. The α subunit contains six transmembrane 

domains from S1 to S6 (Faber & Sah, 2003). There is a specific site in the C-terminus of the α 

subunit in the channel and the site is linked to calmodulin, which can bind Ca
2+

. The binding 

leads to a conformational change of the structure in the KCa channel and thus causes the opening 

of the channel (Fanger et al., 1999).  

KCa channels are broadly expressed in various types of excitable and non-excitable 

cells. The KCa channels have been divided into three families based on their biophysical and 

pharmacological properties: BK, IK, and SK channels (Faber & Sah, 2003). The BK channel, 

which contains a calcium-binding motif known as the “Ca
2+

 bowl” in the cytoplasmic C-

terminus (Schreiber & Salkoff, 1997), is much more sensitive to intracellular Ca
2+

, possibly 

because it is closer to the Ca
2+

 source than the SK channel using calmodulin as a Ca
2+

 sensor, 

and the BK channel can therefore rapidly respond to [Ca
2+

]i on the cytosolic face to alter its 

activity (Roper et al., 2003; Fakler & Adelman, 2008). In addition, there are also positively 

charged residues in the S4 segment of the α subunit of the BK channel, and therefore activation 

of the channel is also dependent on the level of membrane depolarization (Jan & Jan, 1997). The 

BK channel is highly selective to K
+
, and current-voltage analysis has indicated that it has a big 

channel conductance (about 200-300 pS; Blatz & Magleby, 1984; Latorre et al., 1989; McManus, 

1991). The BK channel can be selectively blocked by iberiotoxin and paxilline (Galvez et al., 

1990; Sanchez & McManus, 1996). In addition, TEA and charybdotoxin can also block the BK 

channel (Blatz & Magleby, 1984; Smith et al., 1986). The BK channel contributes to the 

generation of the fAHP in neurons and thus modulates spike broadening, which may regulate 
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neurotransmitter release (Shao et al., 1999; Faber & Sah, 2003). The IK channel has an 

intermediate single channel conductance of about 20-85 pS (Latorre et al., 1989; Ishii et al., 

1997). Different from the BK channel, the IK channel is not voltage dependent and is blocked by 

clotrimazole. Apamin does not have any effect on the current conducted by the IK channel. The 

IK channel can mediate a sAHP and thus control excitability and firing pattern of cells (Greffrath 

et al., 1998; Vogalis et al., 2002). The SK channel has a small conductance of about 2-20 pS and 

is also voltage-independent (Latorre et al., 1989; Ishii et al., 1997). Three types of SK channels, 

SK1, SK2, and SK3, have been identified (Kohler et al., 1996). The SK channel is insensitive to 

TEA at low concentrations, charybdotoxin, and iberiotoxin but is specifically sensitive to apamin 

and tubocurarine. A study have also shown that the SK2 and the SK3 are more sensitive to 

apamin and contribute to the mAHP (Stocker et al., 1999), and that the SK1 is much less 

sensitive to apamin and may contribute to the sAHP (Kohler et al., 1996). MNCs express BK 

and SK3 (Dopico et al., 1999; Stocker & Pedarzani, 2000; Greffrath et al., 2004), and IK is 

possibly expressed in the MNCs (Greffrath et al., 1998). The SK channel contributes to the 

generation of the mAHP and thus regulates neuronal firing rate and pattern in the MNCs 

(Kirkpatrick & Bourque, 1996). In addition, a recent study showed that the SK channel, which, 

unlike the BK channels, is more sensitive to Ca
2+

 entry through the NMDA receptors than 

through the VDCCs and plays a role in a Ca
2+

-mediated feedback loop, which is generated due to 

activation of NMDA receptors (Ngo-Anh et al., 2005; Gu et al., 2008). Thus, the SK channel 

may play a role in regulating LTP and memory formation (Ngo-Anh et al., 2005; Gu et al., 2008). 
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1.3.3.2 Other inhibitory currents 

Besides the inhibitory K
+
 currents discussed above, MNCs also express other 

inhibitory K
+
 currents, such as a voltage-dependent delayed rectifier K

+
 current (Cobbett et al., 

1989). This delayed rectifier K
+
 current activates at potentials more positive than -40 mV with a 

sigmoidal time course. After activation during voltage steps, the current can be maintained for 

about 300 ms and then displays time-dependent, slow inactivation. This current is blocked by 

TEA but not by 4-AP. This slowly inactivating K
+ 

current may greatly modulate the spike 

repolarization and control firing frequency at the beginning of the phasic burst in the MNCs 

(Cobbett et al., 1989). In addition, a time- and voltage-dependent slow, outwardly rectifying K
+
 

current is expressed in OT-MNCs but not in VP-MNCs (Stern & Armstrong, 1995). This K
+
 

current is sensitive to TEA and Ba
2+

 but insensitive to Cs
+
, 4-AP, iberiotoxin, and apamin (Stern 

& Armstrong, 1997). It appears to be Ca
2+

-dependent because it is sensitive to block by Cd
2+

 

(Stern & Armstrong, 1997). The properties of this current suggest that it may regulate firing rate 

and pattern in the OT-MNCs (Stern & Armstrong, 1995). In addition, the MNCs also express 

some background K
+
 currents such as TASK (TWIK-related acid-sensing K

+
 currents), TREK 

(TWIK-related K
+
 currents), and TRAAK (TWIK-related arachidonic acid activated K

+
 currents), 

some of which are sensitive to mechanical factors or extracellular pH but not to voltage (Talley 

et al., 2001; Han et al., 2003). However, the physiological significance of these channels in the 

MNCs is not known. The MNCs of the PVN express a slowly inactivating K
+
 current mediated 

possibly by a KV1 K
+
 channel and this current rapidly repolarizes

 
the cell membrane after a 

strong depolarization (Bains et al., 2001). 

A voltage-gated cation current, which activates slowly at voltages more positive than -

60 mV and shows slow deactivation, has recently been identified in the MNCs in our laboratory 
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(Liu et al., 2005). This cation current is insensitive to TEA and 4-AP but sensitive to Ba
2+

 and 

could be conducted by a subtype of K
+
 channels (Liu et al., 2005). This current displays 

osmosensitivity in about 60% of the MNCs, and was therefore referred as the osmosensitive 

current (OC). Although both the mechanisms underlying the OC and its physiological roles are 

incompletely understood, it may, if it is a K
+
 current, contribute to a slowing or termination of 

firing by a hyperpolarizing effect during the discharge of action potentials in the MNCs and thus 

contribute to the transition between fast continuous and phasic firing.  

 

1.4 Effects of dehydration on MNCs 

MNCs respond to osmotic stimuli not only by changing their firing rate and pattern but 

also by displaying other functional changes. The cell membrane of the MNCs, like other 

biological membranes, is semipermeable, and the MNCs can undergo changes in cell volume in 

response to changes in osmolality of the ECF (Zhang & Bourque, 2003). The cell, through the 

modulation of intracellular signal transduction, alters cellular functions such as cell excitation, 

gene expression, hormone secretion, cell proliferation, and so on (Lang et al., 1998a). However, 

the MNCs show different changes in cell volume in response to osmotic stimuli between acute 

hypertonic stimuli in isolated cells (Zhang & Bourque, 2003) and chronic dehydration in live rats 

(Hatton, 1997). While most cells display regulatory volume decrease (RVD) or increase (RVI) 

upon swelling or shrinking (Lang et al., 1998a), respectively, the MNCs acutely isolated from 

the rat SON show significant sustained decrease or increase upon changes in external osmolality 

(Zhang & Bourque, 2003). These sustained changes are not accompanied by a change in cell 

membrane capacitance (Zhang & Bourque, 2003), which is partly dependent on total membrane 

surface area and is obtained from electrophysiological method. These suggest that the MNCs do 
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not change their total membrane surface area but rather change size (which is obtained from the 

cell images) by folding or unfolding reserved membrane (Zhang & Bourque, 2003). Such 

changes in response to osmotic stimuli involve the interaction of the cell membrane with actin 

filaments (Zhang et al., 2007b). Thus, osmosensitive channels can continuously respond to 

alteration in osmolality of the ECF (Zhang & Bourque, 2003). However, sustained dehydration 

in live rats causes hypertrophy of the MNCs in both somata and dendrite such that the space in 

the perivascular basal lamina are extensively filled by the MNCs (Hatton, 1997). Sustained 

dehydration induced by 7 days of substitution of tap water with 2% saline leads to an increase in 

volume of MNC region in the SON by 54% (Salm & Hawrylaka, 2004). In addition to the 

change in morphology of the MNCs, other structural changes are also detected in both the SON 

and in the neurohypophysis during sustained dehydration (Hatton, 1997). Glial cells around the 

SON also undergo a long-lasting structural change in response to sustained dehydration such that 

their coverage of the MNCs significantly decreases. Moreover, the MNCs also experience 

functional plasticity, which includes increases in excitatory glutamatergic and noradrenergic 

inputs, decreases in GABAergic and taurine input, and an increase in inhibitory kappa opioid 

receptors due to their translocation to the MNC plasma membrane (Shuster et al., 1999; Di & 

Tasker, 2004; Bourque, 2008). Furthermore, cellular processes such as signal transduction and 

gene expression are also modulated in the MNCs during sustained dehydration, leading to an 

increase in VP gene expression (Zingg et al., 1986; Ding et al., 1994; Hurbin et al., 2002) and in 

c-Fos gene expression in the OVLT, PVN, and SON (Oldfield et al., 1994; Gottlieb et al., 2006). 

Therefore, sustained osmotic stimuli can cause long-term changes in brain function and such 

plastic changes take several days or even months to reverse following rehydration (Zingg et al., 
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1986; Miyata et al., 1994; Yagita et al., 1994; Hatton, 1997; Hawrylak et al., 1998). The 

mechanisms of these changes are incompletely understood. 

 

1.5 Modulation of MNC firing by neuroactive agents 

Since the MNCs are targeted by the neurons from the OVLT, MnPO, and SFO 

(Bourque, 1998), electrical activity of the MNCs can be modulated by neuroactive agents 

released from presynaptic terminals (Figure 1.1). These neuroactive agents include some 

excitatory agents such as acetylcholine, glutamate, histamine, angiotensin, and substance P, and 

some inhibitory agents such as γ-aminobutyric acid, taurine, and opioid peptides. Their 

physiological roles in modulating MNC firing and hormone release have been reviewed in detail 

(Renaud & Bourque, 1991; Sladek & Kapoor, 2001; Sladek, 2004). In addition, the MNCs not 

only release VP and OT from their axon terminals in the neural lobe of neurohypophysis but also 

release the hormones from their dendrites (Mason et al., 1986; Di Scala-Guenot et al., 1987; 

Landgraf & Ludwig, 1991; Ludwig et al., 1995). Dendritic release can optimize subsequent 

hormone release from the terminals by generating autocrine and/or retrograde feedback control 

(Wotjak et al., 1994; Gouzenes et al., 1998; Hirasawa et al., 2004). In addition, neuropeptides 

such as dynorphin and apelin (a peptide originally extracted from bovine stomach) are co-stored 

and co-released with VP from the dendrites of the MNCs and thus generate a direct autocrine 

feedback regulation by exerting inhibitory effects on MNC firing (Brown et al., 1999; Brown & 

Bourque, 2004; De Mota et al., 2004; Brown et al., 2006). Unlike dendritically released VP, 

which causes inhibitory effects during the whole periods of a phasic burst not only in the original 

neuron but also on neighbouring neurons (Brown & Bourque, 2004; Brown et al., 2007), 

dendritically released dynorphin has an inhibitory effect only on the MNC releasing it (Brown et 



 47 

al., 2007). Phasic bursts may be terminated by a dynorphin-induced postspike inhibitory effect 

on the DAP and plateau potentials, and therefore dynorphin may contribute to phasic firing in the 

MNCs to facilitate VP release (Brown & Bourque, 2004; Brown et al., 2006).  

 

1.6 M-Currents 

MNCs change their electrical behaviour in response to small changes in external 

osmolality through the regulation of ion channels (Bourque, 2008), and ion channels, especially 

osmosensitive ion channels, therefore play key roles in the modulation of MNC firing and 

hormone release. In addition to the SIC (Bourque et al., 2002) and the activity dependent 

currents (Roper et al., 2003), other currents may play roles in regulating firing rate and pattern of 

the MNCs. M-currents, which are voltage-gated K
+
 currents (Robbins, 2001), play key roles in 

regulating cellular excitability and mutations of the proteins mediating the KCNQ/M currents 

can lead to cellular dysfunction and many diseases (Jentsch, 2000). However, it is not known 

whether M-currents are expressed in MNCs and whether they play roles in the modulation of 

MNC firing and hormone release. 

 

1.6.1 Subtypes, structure, and biophysical properties of KCNQ/M channels 

M-currents, which are inhibited by the activation of muscarinic receptors (Figure 1.9), 

were first identified in frog sympathetic neurons (Brown & Adams, 1980). The M-currents are 

mediated by channels composed of members of a family of time- and voltage-gated K
+
 channels 

termed KCNQ channels or KV7 channels (Robbins, 2001). Like other subtypes of voltage-
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dependent K
+
 channels, the KCNQ/M channel is composed of four α subunits and one β subunit 

(Robbins, 2001), and each of the α subunits contains six transmembrane domains from S1 to S6. 

The α subunits contribute to the generation of a single P-loop forming a K
+
-selective pore. The 

S4 segment with positively charged residues is a voltage sensor. Five members of the KCNQ 

channel gene family encoding the α subunits have been identified (KCNQ1-5; Robbins, 2001). 

Each of the channel subunits can be homomultimers of any of the five types such as KCNQ1, 

KCNQ2, and so on, or of some combinations of heteromultimers such as KCNQ2/3, KCNQ3/4, 

and KCNQ3/5 (Table 1.3; Robbins, 2001). Only KCNQ3 subunits can co-assemble with KCNQ2, 

KCNQ4, and KCNQ5 subunits to form heteromultimers (Robbins, 2001). The classic M-current 

is mediated by KCNQ2/3 heteromultimers (Wang et al., 1998). However, homomultimers of 

KCNQ1, KCNQ2, KCNQ3, KCNQ4, and KCNQ5 (Robbins, 2001) have many properties similar 

to those of the classic M-current (Wang et al., 1998; Lerche et al., 2000; Selyanko et al., 2000). 

Heteromultimers of KCNQ3/4 and KCNQ3/5 can also mediate M-currents in expression systems 

(Kubisch et al., 1999; Lerche et al., 2000), and coexpression of the KCNQ4 and the KCNQ5 

with the KCNQ3 can lead the channel-mediated currents to increase in amplitude by about 2 fold 

or 4-5 fold, respectively. Although there is evidence for the existence of KCNQ3/5 (Yus-nájera 

et al., 2003), native KCNQ3/4-mediated M-current has not been reported in any cells. The 

KCNQ/M channels are low threshold-activated K
+
 channels and M-currents activate slowly at 

potentials more positive than -60 mV (Robbins, 2001). One important feature of the M-currents 

is that they display little and no inactivation (Robbins, 2001). Although recent studies have 

shown that the KCNQ4 and the KCNQ5 display some intrinsic inactivating properties (Jensen et 

al., 2007), the small inactivation of the KCNQ4 channel completely disappears after the 

application of the KCNQ/M channel openers (Jensen et al., 2007; see below). 
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Figure 1.9 Signal pathways of M-currents. DAG, diacylglycerol; ER, endoplasmic reticulum; 

IP3, inositol 1,4,5-trisphosphate; PIP2, Phosphatidylinositol (4,5)-bisphosphate; PKC, 

protein kinase C; PLC, Phospholipase C. (Suh & Hille, 2007b) 
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1.6.2 Pharmacology of KCNQ/M channels 

After M-currents were identified, several known K
+
 channel regulators were used to 

try to modulate the channels. The pharmacology of the KCNQ/M channels has recently been 

reviewed in detail (Table 1.3; Robbins, 2001; Miceli et al., 2008; Xiong et al., 2008). Unlike 

voltage-dependent A-type K
+
 channels, the KCNQ/M channels are insensitive to 4-AP (Robbins, 

2001). The KCNQ/M channels display different sensitivity to TEA (Hadley et al., 2000; Lerche 

et al., 2000), and this is dependent on the subtypes of the channels. Extracellular TEA blocks 

KCNQ1, KCNQ2, KCNQ3, KCNQ4, and KCNQ5 with IC50s (in mM) of 5.0, 0.3, >30, 3, 

and >30, respectively. Thus, KCNQ1, KCNQ2, and KCNQ4 are very sensitive to extracellular 

TEA, as is KCNQ2/3 which has an IC50 of 3.5 mM (Wang et al., 1998). However, KCNQ3 and 

KCNQ5 are much less sensitive to the extracellular TEA. Both KCNQ3 and KCNQ5 channel 

subunits contain a threonine residue within the pore
 
loop of the channels and this makes them 

have a low sensitivity to extracellular TEA (Wang et al., 1998; Lerche et al., 2000). There is a 

tyrosine residue instead of the threonine residue in the pore loop of the KCNQ2 channel subunits 

(Wang et al., 1998), which makes the channel have a high sensitivity to extracellular TEA. In 

addition, internal TEA accelerates activation of and retards deactivation of KCNQ/M channel 

(Suh & Hille, 2007a). Furthermore, internal TEA as an open channel blocker causes an 

inactivation of the KCNQ/M channels (Suh & Hille, 2007a), as does it in other K
+
 channels 

(Armstrong, 1966). Ba
2+

, a non-selective blocker of K
+ 

channels, can also display a blocking 

effect on KCNQ/M channels (Robbins, 2001). 

The identification of KCNQ/M currents was difficult until the discovery of the 

selective channel blockers (Costa & Brown, 1997; Wang et al., 1998), linopirdine and its 

analogue, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone]. These agents have been 
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proposed as cognitive enhancers because they increase the release of acetylcholine (Saletu et al., 

1989) and other neurotransmitters (Tam et al., 1991). Linopirdine directly blocks the KCNQ/M 

channels from the extracellular side of the channels (Costa & Brown, 1997). The IC50 of 

linopirdine is dependent on the subtype of the channel (Robbins, 2001). KCNQ1, KCNQ2, 

KCNQ3, and KCNQ2/3 are much more sensitive to linopirdine with IC50 of less than 10 μM; 

however, KCNQ4 and KCNQ3/4 are much less sensitive to linopirdine with IC50s of more than 

200 µM and less than 200 µM, respectively (Kubisch et al., 1999). XE991 is more powerful not 

only in increasing release of the neurotransmitters (Zaczek et al., 1998) but also in blocking 

KCNQ/M channels (Wang et al., 1998). Thus, the KCNQ/M channels are more sensitive to 

block by XE991 (Wang et al., 1998). 
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Table 1.3 Pharmacology of KCNQ/M channels. (Robbins, 2001; Søgaard et al., 2001; Tatulian 

et al., 2001)  
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Several KCNQ/M channel openers have recently been identified (Wu & Dworetzky, 

2005; Xiong et al., 2008). A well known opener of the KCNQ/M channels is retigabine (Main et 

al., 2000), which can selectively open the KCNQ/M channels (Tatulian et al., 2001), especially 

at a low concentration (less than 10 µM). Retigabine directly binds to a tryptophan residue 

within the S5 segment of the KCNQ/M channels to cause activation of the channels (Schenzer et 

al., 2005). The S5 segments of KCNQ2, KCNQ3, KCNQ4, and KCNQ5 subunits contain such a 

tryptophan residue while the KCNQ1 subunit does not (Schenzer et al., 2005). Thus, KCNQ2, 

KCNQ3, and KCNQ4, and KCNQ5, but not KCNQ1, are sensitive to retigabine (Tatulian et al., 

2001; Wickenden et al., 2001). Retigabine increases the KCNQ/M currents by increasing open 

probability of the channels (Tatulian & Brown, 2003), speeding activation of the KCNQ/M 

currents (Tatulian et al., 2001), slowing deactivation of the currents (Tatulian et al., 2001), 

shifting voltage sensitivity of the channels to more negative voltages (Tatulian et al., 2001), and 

canceling inactivation of the channels (Jensen et al., 2007). Flupirtine, an analog of retigabine, 

and BMS-204352 are also used as openers of the KCNQ/M channels (Wu & Dworetzky, 2005).  

 

1.6.3 Signal pathways of M-currents 

M-currents, which are inhibited by the activation of muscarinic receptors (Brown & 

Adams, 1980), are mediated by voltage-gated KCNQ channels (Wang et al., 1998). Thus, two 

interesting and important issues appear. What subtype of the muscarinic receptors is involved in 

the activation? What messengers contribute to the signal transduction pathway from activation of 

the receptors to closure of the KCNQ/M channels? Oxotremorine-M, an agonist of the 

muscarinic receptors, displays no inhibitory effects on native M-currents in sympathetic ganglion 
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neurons of mice with mutation of M1 muscarinic receptors (Hamilton et al., 1997). Another 

recent study also showed that the activation of M1 muscarinic receptors stimulated by 10 µM 

oxotremorine-M causes inhibition of the M-currents mediated by expressed KCNQ2/3 channels 

(Selyanko et al., 2000). These studies suggest that M1 muscarinic receptors couple to the 

KCNQ/M channel. The activation of M1 receptors by oxotremorine-M can reduce the native M-

currents by about 60-90% (Hamilton et al., 1997; Haley et al., 1998; Winks et al., 2005), and this 

inhibitory effect is not significantly different from that oxotremorine-M does on the M-currents 

mediated by expressed KCNQ2/3 channels (Selyanko et al., 2000). 

In addition, the knockdown of the α subunit of Gq-proteins in rat superior cervical 

ganglion neurons leads to a significant decrease in the inhibitory effect of oxotremorine-M on M-

currents (Haley et al., 1998), demonstrating that Gq-proteins are involved in the suppression of 

M-currents by oxotremorine-M. Intracellular Ca
2+

 as a second messenger is not involved in the 

suppression of the M-currents by oxotremorine-M (Shapiro et al., 2000), but the KCNQ/M 

currents display a certain sensitivity to intracellular Ca
2+ 

(Delmas & Brown, 2005), possibly 

because the C-terminus of the KCNQ/M channels contains a binding site for calmodulin, which 

serves as a Ca
2+ 

sensor (Bal et al., 2008; Haitin & Attali, 2008). In addition, recent studies have 

shown that plasma membrane-associated phospholipase C (PLC) is involved in the receptor-

channel signal transduction pathways of the M-currents (Suh & Hille, 2002). U73122, a PLC 

inhibitor, prevents the inhibitory effect of muscarine on M-currents. Thus, the membrane lipid 

phosphatidylinositol (4,5)-bisphosphate (PIP2), which is derived from the cleavage of 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and is also cleaved by PLC into diacylglycerol 

(DAG) and IP3 (Oude Weernink et al., 2004), may be involved in the receptor-channel 

transduction pathways (Suh & Hille, 2002). 
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PIP2 is one of eight common phosphoinositides (PI), which are distinguished by 

phosphorylation  of the inositol 3-, 4-, and 5-hydroxyl positions and include PI, three isomers of 

phosphatidylinositol phosphate (PIP), three isomers of phosphatidylinositol bisphosphate and 

PIP3 (Suh & Hille, 2005). PIP2 has, in recent years, been identified as a crucial second messenger 

that regulates a number of cellular processes including regulation of ion channels, the actin 

cytoskeleton, vesicle trafficking, gene expression, and cell survival (McLaughlin et al., 2002; 

Doughman et al., 2003; Suh & Hille, 2005). PIP2 is synthesized by PIP kinase type I using 

PI(4)P as substrate and type II using PI(5)P as substrate (Doughman et al., 2003). In addition, 

type III PIP kinases may contribute to the synthesis of PIP2 by using PI to synthesize PI(5)P 

(Sbrissa et al., 1999). Phenylarsine oxide (Wiedemann et al., 1996) and wortmannin (Nakanishi 

et al., 1995), both of which can inhibit PI (4) kinase to block the synthesis of  the PI(4)P and thus 

block the replenishment of PIP2, can prevent recovery of M-currents from the suppression of the 

muscarinic receptor activation and can also directly inhibit M-currents (Suh & Hille, 2002). 

Oxotremorine-M can cause a decrease in PIP2 levels in the plasma membrane and a subsequent 

increase in the cytoplasmic IP3 level (Suh et al., 2004). In addition, dioctanoyl PIP2 (diC8-PIP2), 

a synthetic form of PIP2, increases KCNQ/M currents by increasing open probability of the 

channels (Li et al., 2005). These data suggest that PIP2 is required for the activation of the 

KCNQ/M channels.  

Thus, muscarine, by acting on the M1 muscarinic receptors to activate the Gq-proteins, 

activates PLC to deplete the PIP2 and thus suppresses the KCNQ/M-currents (Figure 1.9; Suh et 

al., 2004). Intracellular ATP is involved in PIP2 metabolism and is necessary for the synthesis of 

the PIP2, and it can therefore increase recovery of the M-currents from muscarinic suppression 

(Suh & Hille, 2002). Intracellular Mg
2+

 is involved in G-protein cycling and is necessary for 
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activation of the proteins (Suh et al., 2004). It can therefore enhance the inhibition of M-currents 

by muscarine and decrease KCNQ/M currents (Suh & Hille, 2007a). 

 

1.6.4 KCNQ/M channels and cell volume 

Osmotic stimuli can cause cell swelling or shrinking, and the cells will display RVD or 

RVI upon the swelling or shrinking (Lang et al., 1998a), respectively. Changes in cell volume 

play an important role in the modulation of intracellular signaling pathways and cellular 

functions (Lang et al., 1998a), which include changes in intracellular ion composition and 

subsequently in cell
 
membrane potential because the alterations of activity of ion transporters and 

channels including K
+ 

channels. Several types of K
+
 channels, including KCa channels 

(Fernandez-Fernandez et al., 2002; Roman et al., 2002), KCNQ/M channels (Grunnet et al., 

2003; Hougaard et al., 2004; Jensen et al., 2005b), voltage-gated KV1 (Deutsch & Chen, 1993; 

Felipe et al., 1993) and KV4 channels (Wang et al., 2005), and inwardly rectifying K
+
 channels 

(Wurm et al., 2006), can alter their activity in response to the changes in cell volume. Several 

subtypes of KCNQ/M channels have been demonstrated to display a sensitivity to cell volume. 

Expressed KCNQ1 channels in cultured COS-7 cells were the first of the KCNQ/M channel 

family to be found to sense small changes in cell volume (Kubota et al., 2002). In addition, 

native KCNQ1 channel-mediated currents also sense changes in cell volume in primary neonatal 

rat cardiomyocytes and thus play an important role in regulating cardiomyocyte volume during 

injury (Calloe et al., 2007). Cell swelling enhances the KCNQ1 channel-mediated current, 

whereas cell shrinkage decreases the current. The osmosensitivity of the KCNQ1 channel 

disappears after the cells are treated by cytochalasin D, which has no any effects on the KCNQ1 
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channel-mediated current under normal osmolality (Grunnet et al., 2003; Calloe et al., 2007). 

Furthermore, phalloidin, a compound promoting actin polymerization, can abolish the effect of 

cytochalasin D on the KCNQ1 channel (Grunnet et al., 2003). These data suggest that the 

KCNQ1 channel underlies osmosensivity due to the involvement of the actin cytoskeleton, as 

does the SIC (Zhang et al., 2007b). Besides the KCNQ1 channel, KCNQ4 (Hougaard et al., 2004) 

and KCNQ5 (Jensen et al., 2005b) channels have also been found to be modulated by changes in 

cell volume. 

 

1.6.5 Distribution, physiology, and pathophysiology of the KCNQ/M channels 

KCNQ/M channels are broadly expressed in various tissues (Robbins, 2001) and play 

key roles in regulating cellular excitability. Mutations of the proteins mediating the KCNQ/M 

currents can lead to cellular dysfunction and many diseases (Table 1.4; Jentsch, 2000). KCNQ1 

is primarily expressed in cardiac tissues, intestine, kidney, and inner ear, and contributes to a 

slow delayed rectifier K
+
 (IKs) current to repolarize cardiac action potentials, Cl

-
 homeostasis by 

regulating the balance of ionic currents, regulation of cell volume, and K
+
 recycling (Robbins, 

2001), respectively. Dysfunction of the KCNQ1 channel or mutations of the proteins mediating 

the channel will cause long QT syndrome in the heart (Barhanin et al., 1996). Four of the 

KCNQ/M channels, KCNQ2, KCNQ3, KCNQ4, and KCNQ5, are expressed in the brain 

(Robbins, 2001) and play crucial roles in regulating neuronal excitability. The KCNQ2/3 

heteromultimer forms the classic M-current with a low threshold (Wang et al., 1998), and 

regulates the subthreshold excitability in various neurons (Delmas & Brown, 2005). In addition, 

the voltage-gated KCNQ2/3-mediated M-current can be modulated by several neurotransmitters 
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and intracellular signal pathways (Jentsch, 2000; Delmas & Brown, 2005). This enables them to 

control firing frequency and excitability in multiple ways in various central and peripheral 

neurons (Delmas & Brown, 2005). Mutations of the proteins mediating the classic M-current can 

disrupt neuronal firing pattern and ultimately lead to a genetic form of epilepsy and other forms 

of neuronal dysfunction (Jentsch, 2000). Epilepsy is a very common neurological disease and 

over 0.5-0.8% of the population in the world is affected by this disease (Schroeder et al., 1998; 

Hirtz et al., 2007). Mutations in the KCNQ/M-type K
+
 currents are responsible for benign 

familial neonatal convulsions (BFNC; Yang et al., 1998), an autosomal dominant epilepsy in 

infancy. A decrease in the M-currents by 25% can lead to BFNC (Schroeder et al., 1998). 

Homozygous mouse pups in which KCNQ2 channel gene has been knocked out only survive for 

a few hours after birth and neurons in mice expressing fewer KCNQ2 channels are 

hyperexcitable (Watanabe et al., 2000). KCNQ4 is expressed primarily in the cochlea, but also in 

some brain regions (primarily in the central auditory pathway and in other nuclei of the brain 

stem), heart and skeletal muscle (Kubisch et al., 1999; Kharkovets et al., 2000), and contributes 

to a large voltage-gated K
+
 current (IK,L) in type I hair cells and an IK,n K

+
 current activated at 

negative potentials (Housley & Ashmore, 1992) in outer hair cells (Kharkovets et al., 2000). 

Therefore, the KCNQ4 channel plays a key role in hearing, and mutations of the proteins 

mediating the KCNQ4 channel gene will lead to nonsyndromic autosomal dominant progressive 

hearing loss (DFNA2; Kharkovets et al., 2000). KCNQ5 is broadly expressed in the brain, 

skeletal muscle (Schroeder et al., 2000), and other tissues (Robbins, 2001). KCNQ5 

homomultimers and KCNQ3/5 heteromultimers can also mediate native M-currents (Shah et al., 

2002; Yus-nájera et al., 2003; Brueggemann et al., 2007). There are no studies demonstrating 

that mutations of the proteins mediating the KCNQ5 channel gene are related to any diseases. 
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However, it is possible that the KCNQ5 channel-mediated M-current is involved in the formation 

of BNFC because the expression of the KCNQ5 channel is altered during formation of the 

disease (Yus-nájera et al., 2003). In addition, expression of the KCNQ5 channel in skeletal 

muscle increases during myocyte proliferation and differentiation, and the KCNQ5 channel, 

therefore, may play a role in myoblast proliferation (Roura-Ferrer et al., 2008). 

 

 

Table 1.4 Expression and role in diseases of KCNQ/M channels. * Indicates that this protein 

is known to associate with the subunit in the tissue that is affected in the disease, and that 

its mutation causes the same disease (for example, KCNE1 mutations also cause the 

RWS and the JLNS). BFNC, benign familial neonatal convulsions; JLNS, Jervell and 

Lange-Nielsen syndrome; LQTS, long-QT syndrome; RWS, Romano–Ward syndrome. 

(?: unknown) (Jentsch, 2000) (Reproduced with permission from Copyright Clearance 

Center) 
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Retigabine can cause the activation of KCNQ2, KCNQ3, and KCNQ4, and KCNQ5 

(Tatulian et al., 2001; Wickenden et al., 2001), which are expressed in neurons, but not the 

activation of KCNQ1, which is primarily expressed in cardiac tissues (Robbins, 2001). Such a 

property of retigabine may allow it to have a clinical application in the treatment of the diseases 

involving neuronal hyperexcitability, such as epilepsy and neuropathic pain (Blackburn-Munro 

et al., 2005). 
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2. RATIONALE, HYPOTHESIS, AND OBJECTIVES 

MNCs change their electrical behaviour in response to small changes in external 

osmolality through the regulation of ion channels (Bourque, 2008) and the rate and pattern of 

action potentials generated in the MNC somata determine the release of hormone (Bicknell, 

1988). Ion channels, especially osmosensitive ion channels, therefore play key roles in the 

modulation of MNC firing and hormone release. My studies will explore the relationship 

between osmoregulation and ion channels involved in the modulation of firing rate and pattern in 

MNCs.  

2.1 Voltage-dependent Ca
2+

 channels play many important roles not only in the 

regulation of cell excitability but also in intracellular signal transduction (Fisher & Bourque, 

2001). Several types of the Ca
2+

 channels, including N-, P/Q-, and L-types, have been identified 

in the MNC somata and terminals (Fisher & Bourque, 1996). Although total Ca
2+

 currents in the 

MNCs are not affected by an acute change in osmolality of the extracellular solution (Liu et al., 

2005), it is not known whether there is a change in total Ca
2+

 currents during sustained 

dehydration. It is possible that one or more types of Ca
2+ 

currents may be affected during 

sustained dehydration.  

2.2 The OC recently identified in our laboratory is an osmosensitive cation current in 

the MNCs and its properties suggest that it might play physiological roles in the MNCs (Liu et 

al., 2005). However, the biophysical properties of the OC such as its ion selectivity, the 

molecular nature of the channel mediated the OC, and its physiological role, are still unclear, and 

these suggest that further investigation of the OC is necessary.  
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Based on these observations and the data provided by the previous studies, I therefore 

tested the following hypotheses. 

1). Sustained dehydration causes an increase in one or more types of Ca
2+ 

currents expressed in 

the MNCs. 

2). The MNCs express a K
+
 current mediated by KCNQ/M subunits, and this current is activated 

by increases in the osmolality of the extracellular solution and plays a role in osmosensitivity of 

MNC electrical behaviour. 

The objectives of the first project will investigate whether L-type Ca
2+

 currents, which 

initiate local signaling events that activate gene expression by phosphorylation of the CREB 

proteins and thus cause long-term changes in brain function (see section 1.2.2.1.3), are 

upregulated during sustained dehydration, which induces an adaptation including ultrastructural 

changes and gene expression in the SON (see section 1.4). The objectives of the second project 

will investigate the following properties and roles of the OC. 

1). Ion selectivity of the channels mediating the OC. 

2). Molecular nature of the channels mediating the OC. 

3). Physiological roles of the OC in regulating MNC firing pattern. 
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3. MATERIALS AND METHODS 

3.1 Chemicals 

XE991 was from Biotrend USA and was dissolved in DMSO. Retigabine was kindly 

provided by Valeant Research and Development (USA) and dissolved in DMSO. Flupirtine was 

from Sigma (St. Louis, USA) and dissolved in DMSO. E4031 was from BIOMOL International 

LP, USA and dissolved in water. Linopirdine and nifedipine were from Sigma (St. Louis, USA) 

and dissolved in ethanol and DMSO, respectively. All other chemicals were also from Sigma (St. 

Louis, USA). The final concentration of ethanol was not over 0.15% and ethanol at this 

concentration did not affect the electrophysiological properties of the OC. The final 

concentration of DMSO was not over 0.1% in most of these studies. (The DMSO concentration 

was slightly higher when XE991 at 20 and 30 µM were used and when XE991 was used with 

retigabine or flupirtine). DMSO at these concentrations had no significant
 
effect on the amplitude 

of evoked Ca
2+

 currents and OC. The drugs were delivered to the extracellular recording 

solutions by a pipette.   

 

3.2 Animal and cell preparation 

 Male Long Evans rats (Charles River, QC, Canada) weighing 250-300g, were 

anaesthetized by halothane inhalation and killed by decapitation in accordance with the 

guidelines of the Canadian Council on Animal Care and our University Ethics Committee. For 

the studies on L-type Ca
2+

 current, rats deprived of water for 16-24 h prior to killing were used 

for the dehydrated condition. Plasma osmolality
 
can be increased to 330-340 mosmol kg

-1
 by 

such dehydration, which can also cause structure changes in the SON (Wakerley et al., 1978; 
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Hatton, 1997). Osmolality of the solutions for dissection and recording were maintained at 325 ± 

3 mosmol kg
-1

 for the dehydrated rats. MNCs were prepared as previously described in Oliet et 

al. (Oliet & Bourque, 1992). Briefly, after the decapitation, the rat head was quickly put in cool 

physiological saline. The skull was carefully opened and the brain was quickly taken away from 

the cranial vault after optic nerves were cut. The inferior surface of the brain was exposed and 

the brain was moistened by ice-cold PIPES [piperazine-1, 4-bis (2-ethanesulfonic acid)] solution 

composited of (in mM, pH 7.1): PIPES 20, NaCl 110, KCl 5, MgCl2 1, glucose 25, and CaCl2
 
1. 

The PIPES solution had an osmolality of 295 mosmol kg
-1

. A brain slice with a thickness of 

about 1.0 mm containing most of SON was obtained. The slice was put in a dish containing ice-

cold PIPES solution and then fixed with pins. Two tissue blocks containing most of SON were 

obtained and then placed in a 15 ml glass tube containing
 
10 ml PIPES solution with trypsin 

(Type XI, 0.6 mg/ml). The solution was continuously bubbled with 100% O2 in a water bath at 

34°C for 90 min, and the tissues were then transferred to a trypsin-free PIPES solution, which 

was also continuously bubbled with 100% O2 at room temperature for 30 min. Finally, a series of 

fire-polished Pasteur glass pipettes with decreasing
 
diameters were used to triturate the two 

blocks of tissue. Thus, MNCs acutely dispersed were obtained and the cells were plated on 

culture dishes with glass bottoms. The dishes were covered to prevent evaporation and the cells 

were allowed to settle and attach for about one hour at room temperature before recording. 

 

3.3 Whole-cell patch-clamp recording 

 Whole-cell patch-clamp recordings were performed in the cells with a cross-sectional 

diameter greater than 15 µm at room temperature, and over 96% of the cells with this size are 

MNCs (Oliet & Bourque, 1992). The recordings were performed using an EPC-9 amplifier 



 65 

(HEKA, Germany) operated with Pulse software
 
(HEKA, Germany). Electrodes were pulled 

from borosilicate capillary glass
 
(1.2 × 0.68 mm; A-M Systems Inc, USA) on a P-97 horizontal

 

pipette puller (Sutter Instrument Company, USA) and polished
 
using a microforge (Narashige). 

For the isolation of Ca
2+

 currents, a protocol similar to that described in Liu et al. (Liu et al., 

2005), was used and NMDG (N-methyl-D-glucamine)/Ca
2+

 recording solution was used for Ca
2+

 

current recording. The extracellular solution contains
 
(in mM): NMDG 90, CaCl2 2, glucose 10, 

Hepes 10, TTX 0.0002, TEA
 
20, 4-AP 4, and pH 7.35. A VAPRO pressure osmometer 

(WESCOR, Logan, UT, USA) was used to measure the osmolality of the recording solution 

before each experiment, and mannitol was added for adjustment of the osmolality (295 or 325 

mosmol kg
-1

) as required. The recording electrodes (2.5–6 MΩ)
 
were filled with a solution that 

contains (in mM): Tris 110, MgCl2
 
1, EGTA 1.6, TEA 40, Na2ATP 2, phosphocreatine 14, and 

pH 7.2. The internal recording solution had an osmolality of 290 mosmol kg
-1

. For the further 

investigation of the properties of the OC previously identified as a tail current (the remaining 

current during the closing period of an opening channel after voltage steps), the external 

recording solution contains (in mM, pH 7.35): NaCl 120, KCl 3, glucose 10, CaCl2 2, HEPES 10, 

TEA 20, 4-AP 4, and TTX 0.0002. The recording electrodes (2-4 MΩ) were filled with a 

solution that was composed of (in mM; pH 7.2): KCl 125, MgCl2 5, Tris 5, EGTA 1, TEA 15, 

Na2ATP 1, GTP 0.1, phosphocreatine 7, and pH 7.2. We call these recording solutions (for the 

isolation of the OC) the TEA/physiological solutions. 

 

3.4 Extracellular recording 

Single unit extracellular recording was performed in a hypothalamic explant as 

previously described in Bourque and Renaud (Bourque & Renaud, 1983). Briefly, after the brain 
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was obtained from male Long-Evans rats, it was placed in a bubbled (with a 95% O2 and 5% 

CO2 gas mixture) artificial cerebrospinal fluid (ACSF; pH 7.4) containing (in mM): KCl 4, 

NaH2PO4 1.23, NaCl 112, NaCO3 25.95, glucose 10, MgCl2 1, and CaCl2 1. The osmolality of 

the ACSF solution was adjusted to 295-300 mosmol kg
-1

 using mannitol. The brain with the 

inferior surface exposed was glued to a lid of a culture dish with LOCTITE quick set 404 

industrial adhesive. A block of explant (about 8 mm × 8 mm × 2 mm) containing the 

hypothalamus was cut with a razor
 
blade and was fixed to a small block of Sylgard with pins in a 

recording chamber. The ACSF was bubbled with a 95% O2 and 5% CO2 gas mixture and 

preheated to 34°C using a single channel heater controller (Warner Instruments, Canada) and 

flowed at about 1 ml/min onto the surface of the explant from a perfusion pipette. Finally, a 

small opening in the arachnoid membrane of the explant was made with fine forceps, and then 

the explant was allowed to equilibrate in bubbled (with a 95% O2 and 5% CO2 gas mixture) 

ACSF for at least 90 min. Single unit extracellular recording was performed from SON neurons, 

located in a region along the edge of the optic chiasm to the junction of the middle cerebral 

arteries and anterior cerebral arteries. Recordings were made with electrodes made with 

borosilicate capillary glass
 
(1.2 × 0.68 mm; A-M Systems Inc, USA) pulled on a vertical pipette 

puller (Narashige). Electrodes (15-30 MΩ) filled with 1 M NaCl were inserted to the explant to a 

depth less than 200 µm to detect firing of individual MNCs. An Axoclamp 2A amplifier (Axon 

Instruments) and a Digi-data 1200B interface (Axon Instruments) were used for recording, and 

data analysis was performed with pClamp 9.0 software (Axon Instruments). 
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3.5 Immunocytochemistry 

Immunocytochemistry studies were performed in acutely isolated MNCs following 

patch-clamp recording to identify VP- and OT-MNCs as previously described (Fisher et al., 

1998). Following recordings, mild positive pressure was applied to allow dissociation of the 

patch pipette from the recorded cell. A round mark around the recorded cell was then made on 

the bottom of the dish using ink, and an image of the cell and the spots around the cell was 

obtained using a cooled CCD camera attached to a Zeiss Axiovert 200
 
microscope with a 40 x 

objective or was sketched in a notebook. About 80% of these cells were found the next day. The 

dish containing the marked cell was rinsed using phosphate-buffered saline (PBS, pH 7.4) three 

times, and the cell was then fixed in PBS with 4% paraformaldehyde, 0.05% sodium periodate, 

and 0.34% lysine at room temperature for 20 min. The cell was thoroughly washed using PBS (8 

times) to remove paraformaldehyde and then incubated with blocking solution
 
 composed of PBS 

with 4% normal donkey serum (Jackson Immunoresearch) and
 
0.02% Triton X-100 at room 

temperature for 30-60 min. After blocking, the cell was incubated with primary antibody 

overnight at 4°C. For the identification of VP- and OT-MNCs, goat primary antibodies (Santa 

Cruz Biotechnology, USA), anti-neurophysin (NP) I (1:100; which recognizes OT-releasing 

MNCs) and anti-NP II (1:100; which recognizes VP-releasing MNCs) were used. For the 

identification of KCNQ/M channel subunits in MNCs, rabbit antibodies recognizing the channel 

proteins of KCNQ2, KCNQ3, KCNQ4, and KCNQ5 from Santa Cruz Biotechnology were used 

(1:100). Other rabbit antibodies recognizing KCNQ2 (1:500) and KCNQ3 (1:500), gifts from Dr. 

K. Mackie of Indiana University, USA, and KCNQ4 (1:800), a gift from Dr. B. Kachar of 

NIDCD/NIH, USA, were also used and yielded similar results. One dish without the primary 

antibody was used as a negative control during each experiment. After the incubation with 
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primary antibodies, the cells were rinsed using the blocking solution 8 times, and then treated 

with secondary antibodies, either donkey anti-goat (Cy3; Jackson Immunoresearch,
 
1:500) which 

was used for the identification of VP- and OT-MNCs, or donkey anti-rabbit (FITC; Jackson 

Immunoresearch,
 
1:500) which was used for the identification of KCNQ/M channel subunits. 

The dishes were covered with a box to avoid light, and incubated with the secondary antibodies 

for 30 min at room temperature. The cells were then rinsed first with blocking solution 4 times 

and subsequently with PBS 4 times. Finally, following addition of mounting solution (Citifluor, 

Marico Inc.), the cells were covered with a glass coverslip. The cells were viewed with the Zeiss 

inverted Axiovert-200 microscope under two conditions, differential contrast interference (DIC)
 

and fluorescence imaging. A cooled CCD camera was used to obtain images.  

 

3.6 Data analysis  

Currents including total Ca
2+

 currents, L-type Ca
2+

 currents and the OC, unless stated 

otherwise, were measured from the baseline to the peak. In addition, current density was 

generated by division of the current amplitude by cell membrane capacitance, which was 

displayed automatically by the Pulse software. Data were entered in a Prism worksheet 

(GraphPad software), and results were shown as mean ± SEM with “n” (number of cells). 

Statistical analysis was estimated by Student's t test or one-way ANOVA, as appropriate. The 

difference was regarded to be significant when P < 0.05.  
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4. RESULTS 

4.1 Total Ca
2+

 currents and L-type Ca
2+

 current in cells from normal and dehydrated rats 

VDCCs play many important roles in the regulation of cell excitability and cellular 

signal transduction (Fisher & Bourque, 2001). Although total Ca
2+

 currents in the MNCs are not 

affected by an acute change in osmolality of the extracellular solution (Liu et al., 2005), it is not 

known whether they are affected by sustained dehydration. It is possible that one or more types 

of Ca
2+ 

currents may be affected by sustained dehydration. We first investigated the amplitude of 

the total Ca
2+

 current and the L-type Ca
2+

 current in normal and dehydrated rats. 

 

4.1.1 Isolation of total Ca
2+

 currents and L-type Ca
2+

 current  

Two groups of rats were involved in this study. One group was normally hydrated (the 

control rats) while the other was deprived of water for 16-24 h
 
(the dehydrated rats). MNCs were 

acutely isolated from the SON of two groups of rats and whole-cell patch-clamp recording was 

performed in NMDG/Ca
2+

 solution with osmolalities of 295 mosmol kg
-1

 for control MNCs and 

325 mosmol kg
-1

 for dehydrated MNCs. The recording solutions did not contain K
+
. The 

solutions contained TTX to block Na
+
 channels, and TEA and 4-AP to block K

+
 channels. The 

cells were held at -100 mV or -80 mV, depolarized to -10 mV or 0 mV for 400 ms, respectively, 

and then returned to the holding potentials. A large inward Ca
2+

 current, after the long 

depolarizing step, was observed (Figure 4.1A). When the Ca
2+

 current become steady, a selective 

blocker of L-type Ca
2+

 channels, nifedipine (10 µM), was applied to the extracellular recording 

solution. The L-type Ca
2+

 current was then measured by subtracting currents evoked with 

nifedipine from those without nifedipine. Nifedipine was dissolved in DMSO and the final 
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concentration of DMSO was not over 0.1%. DMSO at this concentration had no significant
 
effect 

on Ca
2+

 currents. Traces in Figure 4.1B display L-type Ca
2+

 currents after the subtraction in 

control and dehydrated MNCs. The traces suggest that amplitude of the L-type Ca
2+

 current 

appears to be much larger in cells from dehydrated rats than that in control rats. Since there was 

no significant difference in total and nifedipine-sensitive Ca
2+

 currents evoked by the two 

depolarizing steps mentioned above, the data from the experiments performed using the two 

different depolarizing protocols were pooled together for analysis.  
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Figure 4.1 Total Ca
2+

 currents and L-type Ca
2+

 current in cells from normal and 

dehydrated rats. A, left, Currents were evoked by steps from -100 mV to -10 mV for 

400 ms before and after the addition of 10 µM nifedipine in MNSs from normal rats. A, 

right, Currents were evoked by steps from -100 mV to -10 mV for 400 ms before and 

after the addition of 10 µM nifedipine in MNCs from dehydrated rats. B, left, The 

subtracted current showing the nifedipine-sensitive current in normal rats. B, right, The 

subtracted current showing the nifedipine-sensitive current in dehydrated rats.  
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4.1.2 Sustained dehydration significantly increases the amplitude and density of L-type 

Ca
2+

 current but not total Ca
2+

 currents 

Figure 4.2A shows that the amplitude of total Ca
2+

 currents were slightly but not 

significantly increased from -214 ± 16 pA to -237 ±
 
17 pA during sustained dehydration (n = 36 

and 42 for cells from control and dehydrated rats, respectively). However, there was a significant 

difference in amplitude of the L-type Ca
2+

 current between control (-55.5 ± 6.2 pA) and 

dehydrated rats (-99.1 ± 10.0 pA; Figure 4.2B), demonstrating that sustained dehydration causes 

a significant increase in amplitude of the L-type Ca
2+

 current (n = 36 and 42 for control and 

dehydrated rats, respectively; P < 0.001). Thus, the L-type Ca
2+ 

currents expressed as a 

percentage of total Ca
2+

 currents, following 16-24 h dehydration, was increased from
 
26.0% to 

41.8%.  

OT-MNCs undergo hypertrophy and an increase in cell membrane capacitance during 

lactation (Teruyama & Armstrong, 2005), and both types of MNCs undergo hypertrophy during 

sustained dehydration (Lin et al., 1996). Our data also showed that there was a significant 

difference in cell membrane capacitance between control (13.4 ± 0.5 pF) and dehydrated rats 

(16.7 ± 0.5 pF), demonstrating that sustained dehydration causes a significant increase in the cell 

membrane capacitance (n = 36 and 42 for cells from control and dehydrated rats, respectively; P 

< 0.001; Figure 4.3A). The L-type Ca
2+

 current was then divided by the cell membrane 

capacitance to obtain current density. Figure 4.3B shows that there was also a significant 

difference in the L-type Ca
2+

 current density between control (-4.5 ± 0.6 pA/pF) and dehydrated 

rats (-6.4 ± 0.6 pA/pF), demonstrating that sustained dehydration also causes a significant 

increase in the L-type Ca
2+

 current density (n = 36 and 42 for cells from control and dehydrated 
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rats, respectively; P < 0.05). These data demonstrate that the L-type Ca
2+

 current was increased 

by 78.6% in amplitude and by 42% in density during sustained dehydration. 

 

 

 

Figure 4.2 Sustained dehydration causes a significant increase in amplitude of L-type Ca
2+

 

current but not total Ca
2+

 currents. A, A bar graph showing the amplitude of total Ca
2+

 

currents in normal and dehydrated rats (n = 36 and 42 for control and dehydrated rats, 

respectively; P > 0.05). B, A bar graph showing the amplitude of L-type Ca
2+

 currents in 

normal and dehydrated rats (n = 36 and 42 for control and dehydrated rats, respectively; 

***
 P < 0.001). 
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Figure 4.3 Sustained dehydration increases cell capacitance and density of L-type Ca
2+

 

current. A, A bar graph showing cell capacitance in cells from normal and dehydrated 

rats (n = 36 and 42 for cells from control and dehydrated rats, respectively; 
***

P < 0.001). 

B, A bar graph showing the density of L-type Ca
2+

 current in normal and dehydrated rats 

(n = 36 and 42 for control and dehydrated rats, respectively; 
*
P < 0.05). 
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We also used acutely isolated MNCs from control rats to determine whether a 1.5 h 

treatment in hyperosmolar solution could cause increases in the cell capacitance or L-type Ca
2+

 

currents. The cell capacitance in the MNCs cultured in 320 mosmol kg
-1

 (15.0 ± 1.4 pF, n=9) 

physiological PIPES solution for about 90 min was not significantly larger than that in the MNCs 

maintained in 290 mosmol kg
-1

 (13.8 ± 1.1 pF, n=10) physiological PIPES solution. The 

amplitude of L-type Ca
2+

 currents in the MNCs cultured in 320 mosmol kg
-1

 (-76.9 ± 15.0 pA, 

n=9) physiological PIPES solution for about 90 min was not significantly larger than that in the 

MNCs maintained in 290 mosmol kg
-1

 (-65.0 ± 9.5 pA, n=10) physiological PIPES solution. 

 

4.1.3 Current-voltage relationship of total Ca
2+

 current and L-type Ca
2+

 current in cells 

from normal and dehydrated rats 

The cell was depolarized from a holding potential of -80 mV to a series of potentials 

from -70 mV to +20 mV (in 10 mV increments every 1.5 s) for 400 ms and then returned to -80 

mV. After the Ca
2+

 currents were stable, 10 µM nifedipine was added to the extracellular 

solution to block L-type Ca
2+

 current. The amplitude of L-type currents were then determined by 

subtracting currents evoked with nifedipine from those without nifedipine. The current-voltage 

relationship of the total Ca
2+

 currents in control and dehydrated MNCs is displayed in Figure 

4.4A, which shows that peak Ca
2+ 

current was obtained at -10 mV in the MNCs. The results 

indicate that sustained dehydration induced a significant increase in amplitude of the total Ca
2+

 

currents only at 0 mV (-6.4 ± 0.6 versus -4.5 ± 0.6
 
pA/pF, n = 27 and 31 for cells from control 

and dehydrated rats, respectively; P < 0.01), with no significant difference at other voltages. 

Peak current of the L-type Ca
2+

 current was also obtained at -10 mV in the MNCs (Figure 4.4B). 
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In addition, Figure 4.4B also shows that there were significant differences in amplitudes of the 

L-type Ca
2+

 current between control and dehydrated rats at voltages between -20 and +10 mV (n 

= 27 and 31 for cells from control and dehydrated rats, respectively), demonstrating that 

sustained dehydration causes a significant increase in amplitude of the L-type Ca
2+

 current. This 

is consistent with the data described above. It is interesting to note, as is shown in Figure 4.4B, 

that the L-type Ca
2+

 current activated at -50 mV, confirming that a low threshold-activated L-

type Ca
2+

 current is present in the MNCs. This is consistent with a previous study demonstrating 

that MNCs express a non-inactivating nifedipine-sensitive Ca
2+

 current that displays activation at 

-50 mV (Fisher & Bourque, 1995). 
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Figure 4.4 Current-voltage relationship of total Ca
2+

 current and L-type Ca
2+

 current in 

cells from normal and dehydrated rats. The cell was depolarized from a holding 

potential of -80 mV to a series of potentials from -70 mV to +20 mV (in 10 mV 

increments every 10 s) for 400 ms. A, The current-voltage relationship of total Ca
2+

 

currents evoked by a series of potentials in control and dehydrated rats (n = 27 and 31 for 

cells from control and dehydrated rats, respectively). B, The current-voltage relationship 



 78 

of L-type Ca
2+

 currents evoked by a series of potentials in control and dehydrated rats (n 

= 27 and 31 for cells from control and dehydrated rats, respectively). 

 

4.1.4 Sustained dehydration increases cell membrane capacitance and L-type Ca
2+

 current 

in both VP- and oxytocin (OT)-MNCs 

Since SON contains two types of neurons, VP-MNCs and OT-MNCs, and VP- and 

OT-MNCs can display differences in firing patterns (see section 1.3.1) during osmotic 

stimulation (Poulain et al., 1977; Wakerley et al., 1978), we tested whether there were 

significant differences in the increase in the L-type Ca
2+

 current between VP-MNCs and OT-

MNCs in control and dehydrated rats. We used immunocytochemical techniques to identify the 

cells after whole-cell patch-clamp recording. Cells were identified as VP-MNCs if they were 

immunopositive for NP II or immunonegative
 

for NP I or as OT-MNCs
 

if they were 

immunopositive for NP I or immunonegative for NP
 
II. One dish without the primary antibody 

was used as a negative control during each experiment. Immunocytochemical identification, after 

whole-cell patch-clamp recording, was successfully performed in 31 MNCs, including 8 VP-

MNCs and 5 OT-MNCs in control rats, and 14 VP-MNCs and 4 OT-MNCs in dehydrated rats. 

Figure 4.5A, left, shows a cell that was immunoreactive for anti-NP II following recording, 

suggesting that it was a VP-MNC. Figure 4.5A, right, shows a recorded cell that was 

immunoreactive to anti-NP I, suggesting that it was an OT-MNC. After the types of the recorded 

cells were determined using post-recording immunocytochemical technique, we investigated 

whether there was a difference in cell membrane capacitance between VP-MNCs and OT-MNCs 

in control and dehydrated rats. Figure 4.5B, shows that there was an increase in the cell 
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membrane capacitance in both VP- and OT-MNCs during sustained dehydration. The cell 

membrane capacitance of the VP-MNCs was 14.5 ± 1.1 pF in control rats and 16.5 ± 0.8 pF in 

dehydrated rats (n = 8 and 14, respectively), but this increase was not significant (probably due 

to
 
the relatively small number of cells sampled). The cell membrane capacitance of OT-MNCs 

was 12.4 ± 1.3 pF in control rats and 16.2 ± 0.9 pF in dehydrated rats (n = 5 and 4, respectively), 

and the difference was significant (P < 0.05). The amplitude of L-type Ca
2+

 current of VP-MNCs 

was -57.4 ± 15.0 pA in control rats and -109.1
 
± 16.9 pA in dehydrated rats (n = 8 and

 
14, 

respectively; Figure 4.5C), and this difference was significant (P < 0.05). In addition, Figure 

4.5C also shows that the amplitude of L-type Ca
2+

 current in OT-MNCs was also much larger in 

dehydrated rats than that in control rats (-122.0 ± 28.8 pA versus -59.0 ± 16.1 pA; n = 4 and 5, 

respectively; P < 0.05). These data demonstrate that sustained dehydration increases the L-type 

Ca
2+

 current in both VP- and OT-MNCs. 
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Figure 4.5 Sustained dehydration increases cell capacitance and L-type Ca
2+

 current in 

both VP- and OT-MNCs. A, Immunofluorescence images following post-recording 

showed immunoreactivity to anti-NP II (left) and anti-NP I (right). The scale bar is 15 

µM. B, A bar graph showing cell capacitance in control and dehydrated rats that were 

immunoreactive for VP (n = 8 and 14, respectively) and OT (n = 5 and 4, respectively; 
*
P 

< 0.05). C, A bar graph showing the amplitude of L-type Ca
2+

 current in control and 

dehydrated rats that were immunoreactive for VP (n = 8 and 14, respectively; 
*
P < 0.05) 

and OT (n = 5 and 4, respectively; 
*
P < 0.05). 
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 4.1.5 Summary and discussion: sustained dehydration increases L-type Ca
2+

 current 

Our data from whole-cell patch-clamp recording studies indicate that although the total 

VDCC currents only displayed a small increase (which was significant at only one voltage), the 

L-type Ca
2+

 current was increased by 78.6% in current amplitude and by 42% in current density 

following 16-24 h dehydration. This is consistent with the results of radioligand binding studies 

in our laboratory (Star, 2005). In those studies, the density of L-type Ca
2+

 channels was 

determined by binding of 
3
H-isradipine, which is a DHP and can selectively bind to L-type Ca

2+
 

channels, in the SON and neurohypophysial
 

tissues. Specific binding was estimated by 

subtracting non-specific binding of the mean of triplicate assays from total binding and the BMAX 

(maximal number of binding) and KD (dissociation constant) were
 
determined by GraphPad 

software. The radioligand binding studies show that the numbers of L-type Ca
2+

 channels were 

significantly increased (by 32.2%) in the SON, but not in the neurohypophysis, during sustained 

dehydration (Star, 2005).  

Our data from the whole-cell patch-clamp recording also showed that a low threshold-

activated L-type Ca
2+

 current was detected in the MNCs (Figure 4.4B). This current may be 

mediated by the CaV1.3 channel, which can activate at a low voltage (Koschak et al., 2001). This 

finding is consistent with a previous report indicating that the MNCs express a non-inactivating 

L-type Ca
2+

 current that displays activation at -50 mV (Fisher & Bourque, 1995). A study using 

the single-cell RT-PCR technique in our laboratory also indicated that the MNCs express both 

the CaV1.2 and the CaV1.3 channel subunits (Zhang et al., 2007a). This is consistent with a 

previous immunocytochemical study, which demonstrated that both the CaV1.2 and the CaV1.3 

channel subunits are expressed in somata and proximal dendrites of the MNCs (Joux et al., 

2001). 
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Our results from post-recording immunocytochemistry demonstrate that the increase in 

the L-type Ca
2+

 current during sustained dehydration occurred in both VP-MNCs and OT-

MNCs. Although VP-MNCs release VP to regulate plasma osmolality, OT, in some cases, can 

also play a role in osmoregulation by natriuresis, and plasma levels of both vary with changes in 

plasma osmolality (Bourque & Oliet, 1997). Furthermore, hypertrophy can be caused in both 

VP-MNCs and OT-MNCs during sustained dehydration (Lin et al., 1996). Thus, it is reasonable 

that sustained dehydration causes the increase in the L-type Ca
2+

 current in both the VP-MNCs 

and the OT-MNCs (also see 5.1.1). 

In addition, MNC membrane capacitance was also increased by 24.6% following 

sustained dehydration, which is consistent with previous studies demonstrating that sustained 

dehydration causes hypertrophy of the MNCs in live rats (Hatton, 1997). This leads to an 

increase in volume of MNC region in the SON by 54% following sustained dehydration induced 

by 7 days of substitution of tap water with 2% saline (Salm & Hawrylaka, 2004), despite a 

decrease in glial coverage (Hatton, 1997). Although our data indicate that the increase in cell 

capacitance in VP-MNCs was not significant, it may be due to
 
the relatively small number of 

cells compared. 

In summary, our data demonstrate that sustained dehydration causes increases in cell 

membrane capacitance and in the amplitude and density of L-type Ca
2+

 currents in MNCs, and 

that increases in L-type Ca
2+

 currents occur in both VP-MNCs and OT-MNCs. 
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4.2 The osmosensitive current (OC) is increased by acute hypertonic stimulation 

MNCs change their electrical behaviour in response to small changes in external 

osmolality through the regulation of ion channels (Bourque, 2008), and ion channels, especially 

osmosensitive ion channels, therefore play key roles in the modulation of MNC firing and 

hormone release. Our data show that L-type Ca
2+

 currents are increased in MNCs following 

sustained dehydration. However, MNCs may express other currents, which display 

osmosensitivity and regulate MNC firing rate and pattern. An osmosensitive current (the OC) has 

been identified in acutely isolated MNCs in our laboratory (Liu et al., 2005). The biophysical 

properties of the OC such as its ion selectivity, the molecular nature of the channel mediated the 

OC, and its physiological role, are still unclear, and we will investigate its properties and 

physiological role. 

 

4.2.1 Isolation of the OC 

The OC is a cationic current and was isolated as a tail current (the remaining current 

during the closing period of an opening channel after voltage steps) in external and internal 

recording solutions without K
+
 (ICa medium; Liu et al., 2005). The OC is voltage-dependent and 

activated at potentials more positive than -60 mV. The OC was observed in the presence of 20 

mM TEA and 4 mM 4-AP in the external recording solution and 40 mM TEA in the internal 

recording solution, but was blocked by 0.25 mM Ba
2+

. We performed experiments to investigate 

the biophysical properties, molecular nature, and physiological role of the OC. Since the OC, 

which was isolated in ICa medium in the absence of K
+
, might be mediated by a subtype of K

+
 

channels (Liu et al., 2005), we evoked the OC in the presence of 3 mM K
+
 in the external 
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solution and 125 mM K
+
 in the internal solution. TEA (20 mM) and 4-AP (4 mM) in the external 

solution, and TEA (15 mM) in the internal solution were included to block most K
+
 currents. 

TTX (0.2 µM) was used to block inward Na
+
 current. These recording solutions are called the 

TEA/physiological solutions. The reason why the inward Ca
2+

 current was not blocked will be 

discussed in the following section. 

Cells were depolarized from a holding potential of -80 mV to 0 mV for 400 ms, and 

then returned to -80 mV in TEA/physiological solution with an osmolality of 295 mosmol kg
-1

. 

During the depolarization, inward Ca
2+

 current and outward currents were obtained (Figure 4.6A, 

left). The stimulation was repeated until the currents became stable. The cell was then perfused 

with TEA/physiological solution with an osmolality of 325 mosmol kg
-1

, and the depolarizing 

stimulation was performed until the currents became stable again, typically 2-5 minutes. The 

sizes of both the inward currents and the outward currents were then measured. Figure 4.6B, left, 

shows the inward Ca
2+

 currents evoked in a MNC in NMDG/Ca
2+

 solutions with osmolality of 

295 mosmol kg
-1 

and then with osmolality of 325 mosmol kg
-1

. Ca
2+

 current density was -8.0 ± 

1.4 pA/pF and -7.9 ± 1.3 pA/pF in 295 mosmol kg
-1 

and 325 mosmol kg
-1

 solutions (n=6, P > 

0.05), respectively. This suggests that there were no significant differences in the Ca
2+

 currents 

between the two conditions (Figure 4.6B, right). Figure 4.6A, left, shows that the amplitude of 

the net outward current was increased after the cell was switched to 325 mosmol kg
-1

 solution. 

This current, which can display an increase with increases in osmolality, is called the  

osmosensitive current, or OC. The subtracted outward current was obtained by subtracting 

currents evoked in 295 mosmol kg
-1

 solution from those in 325 mosmol kg
-1

 solution, and is 

displayed in Figure 4.6A, left (inset). The net outward current was increased in 40 of 61 MNCs 

(66%) tested, which is similar to the percentage of MNCs that displayed an increase (59%) in the 
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density of the OC isolated as a tail current in ICa medium (Liu et al., 2005). Figure 4.6A, right, 

shows that the density of the net outward current was significantly increased from 12.3 ± 1.3 

pA/pF in 295 mosmol kg
-1

 solution to 21.4 ± 1.8 pA/pF in 325 mosmol kg
-1

 solution (n=40, P < 

0.0001). Figure 4.6A, inset, also shows that the OC was slowly activating and displayed slow 

inactivation. The OC inactivated by 35.7% ± 4.6% by the end of the 400 ms depolarizing step. 

Since osmotic pressure is normally maintained within a very narrow range in mammals, 

we tested whether the OC was sensitive to small changes in external osmolality. Our data show 

that the OC displays a significant increase from 14.0 ± 2.3 pA/pF to 19.6 ± 3.3 pA/pF (n=6, P < 

0.05) after external osmolality was increased from 295 to 305 mosmol kg
-1

. 
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Figure 4.6 A slow outward current sensitive to increases in external osmolality. A, left, 

Currents evoked by steps from -80 mV to 0 mV for 400 ms in 295 mosmol kg
-1

 and then 

325 mosmol kg
-1 

TEA/physiological external solutions. Inset, The difference between the 

two currents. A, right, The density of evoked outward currents in 40 responding cells in 

295 mosmol kg
-1 

and 325 mosmol kg
-1

 TEA/physiological external solutions (
***

P < 

0.0001). B, left, Ca
2+

 currents were evoked by a step from a holding potential of -80 mV 

to 0 mV for 400 ms in 295 mosmol kg
-1

 and then 325 mosmol kg
-1

 NMDG/Ca
2+

 external 

solutions. B, right, The density of evoked Ca
2+

 currents in 5 cells in 295 mosmol kg
-1

 and 

325 mosmol kg
-1 

NMDG/Ca
2+

 external solutions (n=6, P > 0.05). 
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4.2.2 Voltage-dependence of the OC 

In order to determine which ion channel mediates the OC in MNCs, we investigated 

the biophysical and pharmacological properties of the OC. Since voltage sensitivity is an 

important feature of many types of ion channels, we tested whether the OC was voltage-

dependent. The cell was depolarized from a holding potential of -80 mV to a series of potentials 

from -70 mV to 0 mV (in 10 mV increments every 10 s) for 400 ms and then returned to -80 mV 

in 295 mosmol kg
-1

 solution and then in 325 mosmol kg
-1

 solution. Figure 4.7A, left, shows the 

subtracted currents at a series of potentials from -60 mV to 0 mV. The plot in Figure 4.7A, right, 

shows that the OC is activated at potentials more positive than -60 mV, and the current-voltage 

relationship of the OC demonstrates that it is mediated by a voltage-dependent ion channel. 
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Figure 4.7 The OC is voltage-dependent. A, Cells were stepped from a holding potential of -80 

mV to a series of potentials between -70 mV and 0 mV for 400 ms (in 10 mV increments 

every 10s) in 295 mosmol kg
-1

 and then 325 mosmol kg
-1

 external solutions. The traces 

show the difference between the two conditions. B, A plot of the density of the subtracted 

outward currents evoked from -80 mV to a series of potentials between -70 mV and 0 mV 

for 400 ms (n=3).  
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4.2.3 Ca
2+

-dependence of the OC 

Ca
2+

-sensitivity is an important feature of several types of ion channels. Previous 

studies from our laboratory showed that 16 µM Cd
2+

 blocked the OC as a tail current in ICa 

medium by about 40%, but the application of BAPTA (a Ca
2+

 chelator) in the pipette
 
solution, 

did not block the increase of the OC when the cells were switched from 295 to 325 mosmol kg
-1

 

external solutions (Liu, 2004). These data suggest that although the OC is not primarily Ca
2+

 

dependent, the OC could be partly Ca
2+

-dependent or sensitive to Ca
2+

 entry through a subtype of 

Ca
2+

 channels, and this is the reason why we did not block the inward Ca
2+

 current. We therefore 

further investigated the Ca
2+

-dependence of the OC. Nifedipine at 10 µM significantly decreased 

the OC as a tail current in ICa medium with 325 mosmol kg
-1

, and the density of the tail current 

was -9.2 ± 1.8 pA/pF and -3.6 ± 0.6 pA/pF before and after the addition of nifedipine (n=4, P < 

0.05). In addition, nifedipine also decreased the outward current in TEA/physiological solution 

with 295 mosmol kg
-1

. Figure 4.8A shows the outward current in 9 MNCs in 295 mosmol kg
-1

 

solution. Nifedipine decreased the density of the outward current from 11.9 ± 1.9 pA/pF to 6.7 ± 

1.5 pA/pF (n=9, P < 0.05; Figure 4.8B). Figure 4.8C shows the outward current was increased 

from 6.3 ± 1.9 pA/pF to 10.2 ± 2.3 pA/pF in 6 out of 9 MNCs when the cells were switched from 

295 to 325 mosmol kg
-1

 external solutions in the presence of 10 µM nifedipine (n=6, P < 0.05). 

These results are consistent with the previous studies, which suggest that the increase of the OC 

does not require Ca
2+

 (Liu, 2004). These data demonstrate that the OC could be sensitive to Ca
2+

 

entry through L-type Ca
2+

 channels and that the increase of the OC does not require Ca
2+

. 
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Figure 4.8 Ca
2+

-dependence of the OC. Currents were evoked by steps from -80 mV to 0 mV 

for 400 ms. A, Currents evoked in 295 mosmol kg
-1

 solution before and after the addition 

of 10 µM nifedipine. B, A bar graph showing the density of the peak outward currents in 

295 mosmol kg
-1 

solution before and after addition of 10 µM nifedipine (n=9, 
*
P < 0.05). 

C, A bar graph of the density of the outward currents in 295 and 325 mosmol kg
-1

 

external solutions in the presence of 10 µM nifedipine (n=6, 
*
P < 0.05). 
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4.2.4 Reversal potential of the OC 

Since the reversal potential of an ion current reflects the selectivity of the channel type 

mediating the current, we determined the reversal potential of the OC. To do this, we obtained 

the density and direction of subtracted tail currents at a series of different potentials following 

activation of the current by a depolarizing voltage step. The cell in Figure 4.9A was depolarized 

from a holding potential of -80 mV to 0 mV for 250 ms and then returned to different potentials 

from -120 mV to -50 mV (in 10 mV increments every 10 s) in 295 mosmol kg
-1

 solution and 

then in 325 mosmol kg
-1

 solution. The trace in Figure 4.9A, upper, shows subtracted tail currents 

at a series of potentials from -120 mV to -50 mV. These experiments were performed in an 

external solution with 3 mM K
+
. The reversal potential can be determined from the subtracted 

tail currents (Figure 4.9A, upper). The direction of the subtracted tail currents in this cell 

changed at about -100 mV. The plot in Figure 4.9A, bottom, shows the mean current-voltage 

results for 5 cells and demonstrates that the reversal potential of the OC was between -100 mV 

and -90 mV. This was near EK (predicted using the Nernst equation to be at -94 mV with 3 mM 

K
+
 in the external solution and 125 mM K

+
 in the internal solution), suggesting that the OC could 

be mediated by a K
+
-selective channel. If this is the case, it would be predicted that the reversal 

potential would shift with changes in the K
+
 concentration in the external solution. We therefore 

repeated the experiments in an external solution that contained 30 mM K
+
 (and 27 mM less Na

+
). 

The cell in Figure 4.9B was depolarized from a holding potential of -80 mV to 0 mV and then 

returned to different potentials from -80 mV to -10 mV (in 10 mV increments every 10 s) for 250 

ms in 295 mosmol kg
-1

 solution and then in 325 mosmol kg
-1

 solution. The trace in Figure 4.9B, 

upper, shows the subtracted tail currents at a series of potentials from -80 mV to -10 mV. The 

direction of the subtracted tail currents in this cell changed at about -40 mV (Figure 4.9B, upper). 
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The plot in Figure 4.9B, bottom, shows the mean current-voltage results for 5 cells and 

demonstrates that the reversal potential of the OC was between -40 mV and -30 mV, which again 

was near EK (predicted to be at -36 mV with 30 mM K
+
 in external solution and 125 mM K

+
 in 

internal solution). These data demonstrate that the reversal potential of the OC is near the EK and 

shifts with changes of the K
+
 concentration in the external solution, suggesting that the OC is a 

voltage-sensitive K
+
-selective current. 
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Figure 4.9 The OC is a K
+
-selective current. A, above, Traces of OC tail currents in 3 mM 

external K
+
. Currents were evoked by stepping from -80 mV to 0 mV for 250 ms and 

then to a series of potentials between -120 mV and -50 mV. Subtraction of currents 

evoked in 295 mosmol kg
-1

 from those evoked in 325 mosmol kg
-1

 led to the OC tail 

currents. A, below, A plot of the density of the subtracted tail currents in 3 mM external 

K
+
 (n=5).  B, above, Traces of OC tail currents in 30 mM external K

+
. Currents were 

evoked by stepping from -80 mV to 0 mV for 250 ms and then to a series of potentials 

between -80 mV and -10 mV. B, below, A plot of the density of the subtracted tail 

currents in 30 mM external K
+
 (n=5).   
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4.2.5 Pharmacology of the OC 

4.2.5.1 Ba
2+

 blocks the OC 

Since the OC is a voltage-gated K
+
 current, we tested the effect of Ba

2+
, a non-

selective blocker of K
+
 channels. When the outward currents were increased in MNCs switched 

from 295 mosmol kg
-1

 to 325 mosmol kg
-1

 solution, 0.3 mM Ba
2+

 was applied to the external 

solution. The trace in Figure 4.10A, left, shows that the outward current in 325 mosmol kg
-1

 

solution was decreased by 0.3 mM Ba
2+

. Ba
2+ 

(0.3 mM) decreased the density of the outward 

currents from 17.4 ± 4.0 pA/pF to 10.5 ± 3.3 pA/pF (n=7, P < 0.05; Figure 4.10B). The outward 

currents evoked under these conditions may contain ionic currents other than the OC. Therefore, 

to confirm that Ba
2+

 blocks the OC, we compared the effects of 0.3 mM Ba
2+

 added at 295 

mosmol kg
-1

 and then at 325 mosmol kg
-1

 solution in MNCs expressing the OC. Figure 4.10C 

shows that the density of Ba
2+

-sensitive currents was increased from 5.6 ± 1.4 pA/pF to 9.8 ± 2.0 

pA/pF (n=4, P< 0.05) after the cell was switched to 325 mosmol kg
-1

 solution, suggesting that 

the OC is sensitive to Ba
2+

. This is consistent with previous studies on the pharmacology of the 

OC isolated as a tail current in ICa medium (Liu et al., 2005).  

Evoked currents were unaffected by stromatoxin, which selectively blocks KV4.2 

channels and members of the KV2 family of channels with IC50 of less than 3 nM and 25 nM, 

respectively (Escoubas et al., 2002). The density of the outward current in 295 mosmol kg
-1

 

solution was 16.9 ± 5.5 pA/pF and 17.5 ± 5.5 pA/pF (n=4, P > 0.05) before and after the addition 

of 30 nM stromatoxin (Figure 4.11). 
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Figure 4.10 The OC is sensitive to Ba
2+

. Currents were evoked by steps from -80 mV to 0 mV 

for 400 ms. A, Currents evoked in 325 mosmol kg
-1

 solution before and after the addition 

of 0.3 mM Ba
2+

. B, A bar graph showing the density of the peak outward currents in 325 

mosmol kg
-1

 solution before and after addition of 0.3 mM Ba
2+

 (n=7, 
*
P < 0.05). C, A bar 

graph of the density of the currents blocked by 0.3 mM Ba
2+ 

in 295 and 325 mosmol kg
-1

 

solutions (n=4, 
*
P < 0.05). 

 

 

 

 



 96 

 

Figure 4.11 The outward current is insensitive to stromatoxin. Currents were evoked by steps 

from -80 mV to 0 mV for 400 ms. A, Currents evoked in 295 mosmol kg
-1

 solution 

before and after the addition of 30 nM stromatoxin. B, A bar graph showing the density 

of the peak outward currents in 295 mosmol kg
-1

 solution before and after addition of 30 

nM stromatoxin (n=4, P > 0.05). 
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4.2.5.2 The OC is insensitive to apamin. 

Since the OC was partly Ca
2+

 dependent, we tested whether the OC was mediated by 

KCa channels. Since BK channels are very sensitive to extracellular TEA (which was included in 

our external recording solutions) and IK channels are not voltage dependent (Faber & Sah, 2003), 

the OC could be not mediated by them. We tested the effect of apamin, a selective blocker of SK 

channels, on the OC. When the outward currents were increased in MNCs switched from 295 

mosmol kg
-1

 to 325 mosmol kg
-1

 solution, 100 nM apamin was applied to the external solutions. 

The trace in Figure 4.12A shows that the outward current in 325 mosmol kg
-1

 solution before and 

after the addition of 100 nM apamin. The density of the outward currents was 23.9 ± 5.4 pA/pF 

to 23.3 ± 5.7 pA/pF before and after the addition of 100 nM apamin (n=5, P > 0.05; Figure 

4.12B). This result indicates that the OC is not mediated by SK channels. 
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Figure 4.12 The OC is insensitive to apamin. Currents were evoked by steps from -80 mV to 0 

mV for 400 ms. A, Currents evoked in 325 mosmol kg
-1

 solution before and after the 

addition of 100 nM apamin. B, A bar graph showing the density of the peak outward 

currents in 325 mosmol kg
-1

 solution before and after addition of 100 nM apamin (n=5, P 

> 0.05). 
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4.2.5.3 The OC is sensitive to block of linopirdine and XE991 

Since voltage-dependent KCNQ/M currents activate slowly at potentials more positive 

than -60 mV and display little and no inactivation (Robbins, 2001), the slowly activating OC 

could be mediated by a subtype of the KCNQ/M channels. Therefore, we tested effect of 

linopirdine, a selective blocker of KCNQ/M channels (Wang et al., 1998). The IC50 of 

linopirdine on KCNQ/M channels is dependent on the subtype of the channel (Robbins, 2001). 

The trace in Figure 4.13A shows that outward currents were decreased by 150 µM linopirdine in 

325 mosmol kg
-1

 solution. Figure 4.13B shows that the mean density of outward currents was 

decreased from 23.5 ± 3.6 pA/pF to 8.8 ± 2.1 pA/pF (n=8, P < 0.001) following addition of 150 

µM linopirdine in 325 mosmol kg
-1

 solution. Figure 4.13C shows that the density of linopirdine-

sensitive current was increased from 6.0 ± 1.8 pA/pF to 14.0 ± 2.0 pA/pF (n=9, P < 0.01) after 

the cell was switched to 325 mosmol kg
-1

 solution, suggesting that the OC is sensitive to 150 µM 

linopirdine. We also tested the effect of 10 µM linopirdine in MNCs, and linopirdine at 10 µM 

did not display a significant inhibitory effect (Figure 4.13D). The density of the OC in 325 

mosmol kg
-1

 solution was 25.8 ± 6.2 pA/pF and 24.0 ± 6.1 pA/pF (n=4, P > 0.05) before and 

after the addition of 10 µM linopirdine (Figure 4.13E), suggesting that the OC was significantly 

blocked only by high doses of linopirdine. We did not test the effect of linopirdine at 

concentrations higher than 150 µM because of the limited solubility of linopirdine. 

Since the OC was also sensitive to Ba
2+

, we tested whether the current sensitive to Ba
2+

 

was the same as that blocked by linopirdine. After the outward currents were blocked by 150 µM 

linopirdine in 325 mosmol kg
-1

 solution, 0.3 mM Ba
2+

 was subsequently added to the solution 

(Figure 4.14A). The density of the outward currents in 4 cells was 25.8 ± 6.2 pA/pF, 11.7 ± 3.3 

pA/pF, and 10.2 ±2.5 pA/pF before and after addition of 150 µM linopirdine and after addition 
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of 0.3 mM Ba
2+

 in 325 mosmol kg
-1

 solution (Figure 4.14B), respectively. This result indicated 

that subsequent addition of 0.3 mM Ba
2+ 

did not further significantly block the currents, 

suggesting that the current blocked by Ba
2+

 is the same as that sensitive to linopirdine. 
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Figure 4.13 The OC is sensitive to linopirdine at a high dose but not at a low dose. Currents 

were evoked by steps from -80 mV to 0 mV for 400 ms. A, Currents evoked in 325 

mosmol kg
-1

 solution before and after the addition of 150 µM linopirdine. B, A bar graph 

showing the density of the peak outward currents in 325 mosmol kg
-1

 solution before and 

after addition of 150 µM linopirdine (n=8, 
***

P < 0.001). C, A bar graph of the density of 

the currents sensitive to linopirdine in 295 and 325 mosmol kg
-1

 solutions (n=9, 
**

P < 

0.01). D, Currents evoked in 325 mosmol kg
-1

 solution before and after the addition of 10 

µM linopirdine. E, A bar graph showing the density of the peak outward currents in 325 

mosmol kg
-1

 solution before and after addition of 10 µM linopirdine (n=4, P > 0.05). 
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Figure 4.14 The currents sensitive to Ba
2+

 and linopirdine are the same. Currents were 

evoked by steps from -80 mV to 0 mV for 400 ms. A, Currents evoked in 325 mosmol 

kg
-1

 solution before and after addition of 150 µM linopirdine and 0.3 mM Ba
2+

. B, A bar 

graph of the density of peak outward currents in 325 mosmol kg
-1

 solution before and 

after addition of 150 µM linopirdine and 0.3 mM Ba
2+

 (n=4, 
**

P < 0.01). 
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Linopirdine is a selective blocker of KCNQ/M channels (Wang et al., 1998), but at 150 

µM (we tested its effect on the OC at this concentration) may block other types of K
+
 channels. 

Therefore, we tested the effect of XE991, a more powerful blocker of KCNQ/M channels (Wang 

et al., 1998). The trace in Figure 4.15A shows that the outward currents were blocked by 5 µM 

XE991 in 325 mosmol kg
-1

 solution. Figure 4.15B shows that the density of the outward current 

was decreased from 25.8 ± 3.6 pA/pF to 10.6 ± 3.3 pA/pF (n=8, P < 0.01). Figure 4.15C shows 

that the density of XE991-sensitive current was increased from 8.7 ± 1.5 pA/pF to 16.0 ± 4.2 

pA/pF (n=7, P < 0.05) after the cell was switched to 325 mosmol kg
-1

 solution, suggesting that 

the OC is sensitive to 5 µM XE991. We further tested the effect of XE991 by applying a series 

of concentrations (0.3, 1, 3, 10, 20, and 30 µM) in a 295 mosmol kg
-1

 solution to obtain the dose-

dependence of the inhibitory effect of XE991 on the outward currents (Figure 4.16A). The data 

are shown in Figure 4.16B (n=7). The IC50 of XE991 was 3.9 µM, suggesting that the OC is very 

sensitive to XE991 and could be a KCNQ/M current. 

Figure 4.17A shows that adding 0.3 mM Ba
2+

 after the outward currents were blocked 

by 5 µM XE991 in 325 mosmol kg
-1

 solution had little or no effect. The density of the outward 

currents in 6 cells was 24.4 ± 3.6 pA/pF, 7.0 ± 2.7 pA/pF, and 5.7 ± 2.3 pA/pF before and after 

addition of 5 µM XE991 and after addition of 0.3 mM Ba
2+

 in 325 mosmol kg
-1

 solution (Figure 

4.17B), respectively. This suggests that the current blocked by Ba
2+

 is the same as that sensitive 

to XE991. 
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Figure 4.15 The OC is sensitive to XE991. Currents were evoked by steps from -80 mV to 0 

mV for 400 ms. A, Currents evoked before and after the addition of 5 µM XE991. B, A 

bar graph showing the density of the peak outward currents in 325 mosmol kg
-1

 solution 

before and after addition of 5 µM XE991 (n=8, 
**

P < 0.01). C, A bar graph of the density 

of the currents sensitive to XE991 in 295 and 325 mosmol kg
-1

 solutions (n=7, 
*
P < 0.05). 
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Figure 4.16 XE991 blocks the outward current with a low IC50. A, left, Currents evoked by 

steps from -80 mV to 0 mV in 295 mosmol kg
-1

 solution before and after the addition of 

0.3, 1, 3, 10, 20, and 30 µM XE991. A, right, A bar graph of the density of peak outward 

currents in 295 mosmol kg
-1

 solution before and after addition of 0.3, 1, 3, 10, 20, and 30 

µM XE991 (n=7). 
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Figure 4.17 The current sensitive to Ba
2+

 is also sensitive to XE991. Currents were evoked by 

steps from -80 mV to 0 mV. A, Currents evoked in 325 mosmol kg
-1

 solution before and 

after addition of 5 µM XE991 and 0.3 mM Ba
2+

. B, A bar graph of the density of peak 

outward currents in 325 mosmol kg
-1

 solution before and after addition of 5 µM XE991 

and 0.3 mM Ba
2+

 (n=6, 
*
P < 0.05, 

**
P < 0.01). 
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4.2.5.4 Both flupirtine and retigabine increase the OC 

Since blockers of the KCNQ/M channels can decrease the OC in MNCs, we tested 

whether openers of KCNQ/M channels can increase the current. We first tested the effect of 

retigabine. The cells were depolarized from a holding potential of -100 mV to -40 mV for 400 

ms and returned to -100 mV in 295 mosmol kg
-1

 solution. When the current became stable, 10 

μM retigabine was added to the external solution. The current was measured at the end of a 400 

ms depolarizing step. Figure 4.18A shows that the outward currents evoked in 295 mosmol kg
-1

 

solution were increased by 10 μM retigabine. The density of the outward current was 

significantly increased from 6.5 ± 0.7 pA/pF to 11.1 ± 1.6 pA/pF (n=6, P < 0.05) by adding 

retigabine in 295 mosmol kg
-1

 solution (Figure 4.18B).  

 

Figure 4.18 Retigabine increases the outward current. A, Currents evoked by steps from -100 

mV to -40 mV in 295 mosmol kg
-1

 solution before and after the addition of 10 µM 

retigabine. B, A bar graph of the density of the outward currents measured at the end of 

400 ms depolarizing step in 295 mosmol kg
-1

 solution before and after addition of 

retigabine (n=6, 
*
P < 0.05). 



 108 

The effect of flupirtine, which is an analog of retigabine and can also increase 

KCNQ/M currents (Wu & Dworetzky, 2005), was also tested. The addition of 10 µM flupirtine 

caused an increase in outward currents evoked by a depolarizing step from the -80 mV to 0 mV 

for 400 ms in 295 mosmol kg
-1

 solution (Figure 4.19A). The current was measured at the end of 

the 400 ms depolarizing step. Figure 4.19B shows that the density of the outward currents was 

increased from 7.4 ± 2.3 pA/pF to 17.9 ± 3.3 pA/pF (n=7, P < 0.01) by 10 µM flupirtine. The 

holding currents required to hold the cells at -80 mV were increased after the addition of 

retigabine (75.6 ± 3.9 pA versus 189 ± 31.0 pA, n=6; P < 0.05) or flupirtine. This increase can be 

significantly blocked by 10 µM XE991, suggesting that the openers may activate the OC at -80 

mV. Figure 4.19C shows that the holding current, before and after the addition 10 µM flupirtine 

and after the addition of 10 µM XE991, were -91.0 ± 9.5pA, -352.5 ± 45.7 pA, and -158.5 ± 

17.7pA (n=4). Thus, the openers of the KCNQ/M channels may shift the threshold voltage of the 

OC to more negative potentials. Therefore, we tested the effect of retigabine on the current-

voltage relationship of the OC. 
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Figure 4.19 Flupirtine increases the OC. A, Currents evoked by steps from -80 mV to 0 mV 

before and after addition of 10 µM flupirtine in 295 mosmol kg
-1

 solution. B, A bar graph 

of the density of outward current measured at the end of 400 ms depolarizing step before 

and after addition of flupirtine in 295 mosmol kg
-1

 solution (n=7, 
**

P < 0.01). C, A bar 

graph showing the holding currents before and after the addition of flupirtine and XE991 

(n=4). 
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The cell was depolarized from a holding potential of -100 mV to a series of potentials 

from -90 mV to -20 mV (in 10 mV increments every 10 s) for 400 ms and returned to -100 mV 

in 295 mosmol kg
-1

 solution. After the currents became stable, 10-20 µM retigabine was applied 

to increase the currents and then 10 µM XE991 was added to block the currents. Thus, XE991-

sensitive current in the absence of retigabine was obtained by subtracting currents evoked in the 

presence of XE991 from those before addition of retigabine. In addition, XE991-sensitive current 

in the presence of 10-20 µM retigabine was obtained by subtracting currents evoked with XE991 

from those after addition of retigabine. Figure 4.20A, shows XE991-sensitive currents evoked by 

depolarizing steps to a series of potentials between -90 mV and -20 mV in 295 mosmol kg
-1

 

solution in the presence of 10 μM retigabine. Data of the effect of retigabine on the current-

voltage relationship of the OC from 4 cells were plotted (Figure 4.20B), and retigabine shifted 

the potential for the channel activation from about -40 mV to -80 mV. The results demonstrate 

that retigabine shifts activation curve of the OC to more hyperpolarized potentials. In the 

presence of retigabine, the XE991-sensitive currents activated at potentials equal to or more 

positive than -80 mV, which is consistent with the results described above showing that the 

holding current at -80 mV was increased by retigabine. 
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Figure 4.20 Retigabine shifts the activation curve of the OC in 295 mosmol kg
-1

 solution. 

Cells were stepped from a holding potential of -100 mV to a series of potentials between 

-90 mV and -20 mV for 400 ms (in 10 mV increments every 10s) in 295 mosmol kg
-1

 

solution. A. Traces showing XE991-sensitive currents in the presence of 10 µM 

retigabine. B, A plot of XE991-sensitive currents in the absence and presence of 

retigabine in 295 mosmol kg
-1

 solution (n=4). Retigabine shifted the potential for the 

channel activation from about -40 mV to -80 mV. 
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4.2.5.5 Muscarine inhibits the OC 

Since the OC is affected by selective modulators of the KCNQ/M channels, the OC 

could be mediated by a subtype of KCNQ/M channels. If so, muscarine should be able to inhibit 

the OC. Therefore, we tested the effect of muscarine on the OC. Currents were evoked by a 

depolarizing step from the -80 mV to 0 mV for 400 ms in 295 mosmol kg
-1

 solution before and 

after the addition of 30 µM muscarine. Muscarine inhibited the outward currents in 6 out of 9 

MNCs. An example of this is shown in Figure 4.21A. The density of the outward currents in 6 

cells responding to muscarine was significantly decreased from 13.4 ± 2.8 pA/pF to 10.7 ± 3.1 

pA/pF (n=6, P < 0.01; Figure 4.21B). Thus, the outward currents were also sensitive to 

muscarine. Next, we tested whether the current sensitive to muscarine was the same as that 

blocked by XE991 and linopirdine. 
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Figure 4.21 Muscarine inhibits the outward current. Currents evoked by steps from -80 mV 

to 0 mV in 295 mosmol kg
-1

 solution. A, Currents evoked before and after the addition of 

30 µM muscarine. B, A bar graph of the density of peak outward currents in 295 mosmol 

kg
-1

 solution before and after addition of muscarine (n=6, 
**

P < 0.01).  
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After outward currents were blocked by 5 µM XE991 in 295 mosmol kg
-1

 solution, 30 

µM muscarine was subsequently added to the solution (Figure 4.22A, left). The density of the 

outward currents in 295 mosmol kg
-1

 solution in 5 cells was 15.2 ± 1.3 pA/pF, 5.2 ± 1.5 pA/pF, 

and 5.5 ± 1.6 pA/pF before and after the addition of 5 µM XE991 and after the addition of 30 

µM muscarine (Figure 4.22A, right), respectively. Subsequent addition of muscarine did not 

further significantly inhibit the currents, suggesting that the current inhibited by muscarine is 

also sensitive to XE991. A similar study was performed with linopirdine, and Figure 4.22B, left, 

shows that 30 µM muscarine, after the outward currents were blocked by 150 µM linopirdine in 

a MNC in 295 mosmol kg
-1

 solution, did not effect the outward current. The density of the 

outward currents in 295 mosmol kg
-1

 solution in 6 cells was 12.7 ± 2.3 pA/pF, 5.2 ± 1.4 pA/pF, 

and 4.0 ± 1.0 pA/pF before and after the addition of 150 µM linopirdine and after the addition of 

30 µM muscarine (Figure 4.22B, right), respectively. This result indicated that subsequent 

addition of muscarine did not further significantly inhibit the currents, either, suggesting that the 

current inhibited by muscarine is sensitive to linopirdine. These data suggest the OC is sensitive 

to muscarine.  
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Figure 4.22 The current sensitive to muscarine is also sensitive to XE991 and linopirdine. 

Currents evoked by steps from -80 mV to 0 mV in 295 mosmol kg
-1

 solution. After the 

outward current was blocked by XE991 or linopirdine, and muscarine was subsequent 

added to block the current again. A, left, Currents evoked before and after addition of 5 

µM XE991 and 30 µM muscarine. A, right, A bar graph of the density of peak outward 

currents before and after addition of XE991 and muscarine in 295 mosmol kg
-1

 solution 

(n=5, 
**

P < 0.01). B, left, Currents evoked before and after addition of 150 µM 

linopirdine and 30 µM muscarine. B, right, A bar graph of the density of peak outward 

currents in 295 mosmol kg
-1

 solution before and after addition of linopirdine and 

muscarine (n=6, 
*
P < 0.05). 
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4.2.5.6 The OC is insensitive to E4031 

Therefore, many properties of the OC suggest that it is conducted by a subtype of 

KCNQ/M channels. KCNQ/M-currents were originally identified in sympathetic neurons 

(Brown & Adams, 1980), and can be blocked by selective blockers of the KCNQ/M channels, 

linopirdine and XE991 (Wang et al., 1998), but with different IC50s (Robbins, 2001). In addition 

to currents mediated by KCNQ/M channels, there are other K
+
 currents that have similar 

biophysical and pharmacological properties and are therefore called KCNQ/M-like currents 

(Selyanko et al., 1999). One such type of voltage-gated K
+
 channels, the ether-a-go-go-related 

gene (ERG) K
+
 channel, mediates KCNQ/M-like currents in neurons (Selyanko et al., 1999). 

The ERG K
+
 channel consists of three subtypes: ERG1, ERG2, and ERG3 (Schwarz & Bauer, 

2004). The ERG K
+
 channel is expressed in heart, brain, and other tissues and plays important 

physiological roles in these tissues (Schwarz & Bauer, 2004). The ERG K
+
 channel-mediated 

current shows many similarities to those mediated by KCNQ/M channels (Selyanko et al., 1999; 

Hirdes et al., 2004). Furthermore, the ERG K
+
 channel-mediated current is also sensitive to the 

changes in cell volume (Rees et al., 1995; Lees-Miller et al., 1997). Therefore, we tested the 

effect of E4031, a selective blocker of ERG K
+
 channels with an IC50 less than 200 nM (Shi et 

al., 1997), on the OC. 

After the outward current was evoked by a depolarizing step from holding potential of 

-80 mV to 0 mV for 400 ms in 325 mosmol kg
-1

 solution, 0.5 µM E4031 was added to the 

solution (Figure 4.23A). The density of the outward currents before and after the addition of 0.5 

µM E4031 was 21.4 ± 3.4 pA/pF and 19.4 ± 2.4 pA/pF (Figure 4.23B), respectively, and there 

was no significant difference (n=7, P > 0.05), suggesting that the OC is not mediated by a 

subtype of the ERG K
+
 channels. 
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Figure 4.23 The OC is insensitive to E4031. A, Currents evoked in 325 mosmol kg
-1

 solution 

before and after addition of 0.5 µM E4031. B, A bar graph of the density of peak outward 

currents in 325 mosmol kg
-1

 solution before and after addition of 0.5 µM E4031 (n=7, 

P > 0.05). 
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4.2.6 Expression of KCNQ/M channel subunits in MNCs 

Since the biophysical and pharmacological properties of the OC suggest that it could 

be mediated by a subtype of KCNQ/M current in acutely isolated MNCs, we tested whether the 

MNCs express subunits of the KCNQ/M channels. RT-PCR (reverse transcription-polymerase 

chain reaction) studies using whole SON tissue, which were performed by Dr. WRA Kosala JS 

Rajapaksha, a former post-doctoral fellow in Dr. Fisher‟s laboratory, indicated that the tissue 

expresses KCNQ2, KCNQ3, KCNQ4, and KCNQ5, but not KCNQ1 (Zhang et al., 2008). Since 

the SON also consists of other types of cells that could also express subunits of the KCNQ/M 

channels, a study of single-cell RT-PCR was performed by Dr. Rajapaksha in 25 MNCs (Zhang 

et al., 2008), which indicated that 6, 18, 3, and 7 cells expressed KCNQ2, KCNQ3, KCNQ4, and 

KCNQ5 channel subunits, respectively. 

Immunocytochemical studies using antibodies directed against KCNQ/M channels 

specifically labeled MNCs. Rabbit antibodies recognizing the channel proteins of KCNQ2, 

KCNQ3, KCNQ4, and KCNQ5 from Santa Cruz Biotechnology were purified. One dish without 

the primary antibody was used as a negative control during each experiment. These studies 

indicated that MNCs express KCNQ2, KCNQ3, KCNQ4, and KCNQ5 channel subunits (Figure 

4.24). In Figure 4.24, KCNQ4 primary antibody was from Dr. B. Kachar of NIDCD/NIH, USA. 

Double staining studies suggested that these channel subunits were expressed in both VP- and 

OT-MNCs (Figure 4.24), which is consistent with a previous study showing that the OC isolated 

in ICa medium as a tail current was expressed in both types of MNCs (Liu, 2004). These data 

suggest that subunits of KCNQ/M channels are expressed in MNCs and that the MNCs are able 

to express the KCNQ/M currents. 
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Figure 4.24 Immunocytochemical studies suggest that MNCs express KCNQ2, KCNQ3, KCNQ4, and KCNQ5. A, Images show 

the DIC (upper) and immunofluorescence images (middle and bottom) of both VP- and OT-MNCs that showed 

immunoreactivity to anti- KCNQ2, KCNQ3, KCNQ4, and KCNQ5. The negative control without primary antibodies 

recognizing the KCNQ channel proteins was also displayed. The scale bar is 20 µM. 

 

1
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4.2.7 The role of the OC in regulating MNC firing patterns 

The physiological role of the OC in regulating MNC firing is not known. Our studies 

suggest that the OC could be a KCNQ/M current, and the physiological roles of KCNQ/M 

currents have not been investigated in the MNCs. However, studies from other labs have shown 

that the MNCs express a muscarine-sensitive sAHP, which is insensitive to apamin, and that 

muscarine increases the firing rate and the duration of spontaneous phasic bursts in rat SON 

(Ghamari-Langroudi & Bourque, 2004). The muscarinic modulation in MNC firing pattern could 

be due to involvement of KCNQ/M channels. Since the OC is sensitive to 5 µM XE991 and 10 

µM retigabine (and these drugs are selective for KCNQ/M channels at such concentrations; 

Wang et al., 1998; Xiong et al., 2008), we tested the effects of these modulators on MNC firing 

patterns to investigate whether the KCNQ/M currents regulate MNC firing. 

Single unit extracellular recording was performed in hypothalamic explants as 

previously described in Bourque and Renaud (Bourque & Renaud, 1983). Such recording makes 

it possible to study a more intact preparation in which MNCs fire in patterns similar to those 

showed in vivo. XE991 and retigabine were delivered to the cells through a perfusion system. 

Figure 4.25A shows that 10 µM XE991 increased the firing rate in MNCs showing fast 

continuous firing (n=2). XE991 (10 µM) also initiated firing in silent MNCs (Figure 4.25B, n=4) 

and increased the duration of spontaneous phasic bursts (Figure 4.25C, n=1). Furthermore, 

Figure 4.25D shows that 20 µM retigabine decreased the firing rate or caused a cessation of 

firing in 4 out of 6 MNCs showing fast continuous firing. These results suggest that a XE991- 

and retigabine-sensitive current plays a role in the regulation of MNC firing. This also supports 

the hypothesis that modulation of the OC by changes in osmolality might affect the MNC firing 

pattern. 
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Figure 4.25 XE991 and retigabine modulate MNC firing patterns. A, XE991 increased firing 

rate in MNCs with fast continuous firing (n=2). B, Effect of XE991 in silent MNCs (n=4). 

C, Effect of XE991 in a MNC with phasic firing (n=1). D, Retigabine decreased firing 

rate in MNCs (n=4). 
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4.2.8 Summary and discussion: the OC is increased by acute hypertonic stimulation and 

could be a KCNQ/M-like current 

The MNCs can regulate plasma osmolality by releasing VP to control water excretion 

from the kidney. Since the release of VP is dependent on the rate and pattern of MNC firing 

(Bicknell, 1988; Bourque, 2008), ion channels, especially osmosensitive ion channels, contribute 

to the changes in their electrical activity and thus regulate the release of hormone. The 

mechanisms underlying the transition of the electrical behaviour are not completely understood. 

The SIC contributes to increases in MNC firing during elevations in osmolality (Bourque et al., 

2002). We here report that the MNCs express an osmosensitive inhibitory K
+
 current (the OC). 

The properties of the OC, although it also senses changes in osmolality of the ECF, are different 

from those of the SIC (Oliet & Bourque, 1993) and those of a stretch-sensitive background K
+
 

current (Han et al., 2003). Neither of these channels are voltage-dependent, while the OC is. The 

SIC is mediated by a non-selective cation (K
+
, Na

+
, and Ca

2+
) channel (Zhang & Bourque, 2006), 

while the OC is conducted by a K
+
-selective channel. The SIC is mediated by TRPV1 (Sharif-

Naeini et al., 2006), whereas we propose that the OC is a KCNQ/M-like current. Our evidence 

for this assertion is summarized below.  

Firstly, the OC is voltage-dependent and activates at the voltages more positive than -

60 mV, and these biophysical properties are similar to those of the KCNQ/M channels. Although 

the inactivation of the OC is greater than that reported for KCNQ/M channels (Jensen et al., 

2007), the OC under our conditions was isolated in internal recording solutions containing 15 

mM TEA. TEA from the internal side of the plasma membrane displays open-channel blocking 

effects and changes kinetics of K
+
 channels, including KCNQ/M channels (Suh & Hille, 2007a), 

and makes the channels show an inactivating effect (Armstrong, 1966). Thus, the presence of 15 
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mM TEA in the internal recording solution in our study may change the kinetics of the OC and 

contribute to an increase in its inactivation.  

Secondly, the OC is regulated by selective modulators of the KCNQ/M channels such 

as linopirdine (Wang et al., 1998), XE991 (Wang et al., 1998), and retigabine (Xiong et al., 

2008), but not by E4031, a specific blocker of the ERG K
+
 channels (Shi et al., 1997). Although 

our data show that the OC is significantly blocked only by 150 µM linopirdine but not by 10 µM 

linopirdine and linopirdine at 150 µM can blocks other K
+
 channels, the KCNQ/M channels are 

blocked by linopirdine with different doses (Robbins, 2001). KCNQ1, KCNQ2, and KCNQ3 are 

much more sensitive to linopirdine, with IC50s of less than 10 µM, but KCNQ4, KCNQ3/4, and 

KCNQ5 are much less sensitive to linopirdine (especially KCNQ4 and KCNQ3/4 with IC50 of 

more than 200 µM and less than 200 µM, respectively; Kubisch et al., 1999). The OC is blocked 

by XE991 with an IC50 of less than 5 µM, and XE991 at this concentration selectively blocks 

KCMQ/M channels (Wang et al., 1998). Furthermore, retigabine, which is a selective opener of 

the KCNQ/M channels, increases the OC amplitude and shifts its voltage sensitivity to more 

negative potentials, and this is consistent with its effects on KCNQ/M channels (Tatulian et al., 

2001).  

Thirdly, the OC is significantly inhibited by muscarine, and this is also consistent with 

the characteristics of KCNQ/M channels (Schroeder et al., 2000; Selyanko et al., 2000). 

Muscarine can inhibit about 80 % of the KCNQ/M currents by acting on M1 receptors coupled to 

G-proteins to deplete PIP2 (Haley et al., 1998; Selyanko et al., 2000; Suh & Hille, 2002); 

however, the inhibitory effect of muscarine on the OC is much smaller. This may be due to the 

fact that there is 20 mM TEA in our external recording solution, since TEA can specifically bind 

to the M1 receptors (Tiger et al., 1989; Balduini et al., 1990). The specific binding of TEA to the 
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M1 receptors will directly interfere with binding of muscarine to the receptors in the MNCs. 

Thus, the inhibitory effect of muscarine on the OC may be greatly underestimated in the MNCs 

due to the presence of TEA in the external solution.  

Fourthly, RT-PCR and immunocytochemical studies suggest that the MNCs express 

the subunits of the KCNQ/M channels, KCNQ2, KCNQ3, KCNQ4, and KCNQ5, suggesting that 

the MNCs are able to express KCNQ/M channels.  

Finally, modulators of KCNQ/M channels regulate firing rates and patterns in the 

MNCs. Since the OC is sensitive to linopirdine at a high concentration and linopirdine at 150 µM 

can block other K
+
 currents, we did not test whether linopirdine can regulate firing rates and 

patterns in the MNCs. XE991 (10 µM) increased the firing rate, whereas 10 µM retigabine 

decreased the firing rate or caused a cessation of firing in rat supraoptic neurons. These data 

suggest that the modulators at such concentrations may modulate the MNC firing by regulating 

the KCNQ/M channels. We cannot conclude that the modulators regulate the MNC firing by 

regulating the OC because the modulators could modulate the firing by regulating other subtypes 

of the KCNQ/M channels in the MNCs. These data suggest that the MNCs could express one or 

more subtypes of the KCNQ/M currents and that the OC may regulate MNC firing rate and 

pattern.  

In summary, an osmosensitive current, the OC, has been identified in acutely isolated 

MNCs. We propose that the OC is a KCNQ/M-like current because most properties of the OC 

are similar to those of KCNQ/M channels. However, this has not yet been confirmed by the 

study using mice with knockout of the KCNQ/M channel genes. In addition, some properties 

(such as sensitivity to TEA and linopirdine, and inactivating property) of the OC are inconsistent 

with those of the classic KCNQ/M current. Since XE991 and retigabine as selective modulators 
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of KCNQ/M channels and they can modulate the OC and MNC firing, the OC may play an 

important role in regulating the rate and pattern of MNC firing. 
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5. GENERAL DISCUSSION 

5.1 Sustained dehydration causes an increase in L-type Ca
2+

 current 

5.1.1 Possible mechanisms underlying the increase in L-type Ca
2+

 current 

Our results from whole-cell patch-clamp recordings demonstrate that 16-24 h of water 

deprivation significantly increases the L-type Ca
2+ 

currents by 78.6% in amplitude and by 42% in 

density. This increase occurs in both VP- and OT-releasing MNCs. This is consistent with 

radioligand binding studies of tissue from the SON, which show that the density of binding sites 

for the L-type Ca
2+

 channel ligand is increased by 32.2% following sustained dehydration (Star, 

2005). These radioligand binding assays showed an increase in L-type Ca
2+

 channels that was 

smaller than that suggested by the whole-cell patch-clamp recordings, which is possibly due to 

the different experimental approaches used for the two studies. In the whole-cell patch-clamp 

recording, isolated MNCs were used and the L-type Ca
2+

 current was obtained from single 

MNCs. However, whole SON tissues, which contain other types of cells, were used for the 

radioligand binding study, and other types of cells may also express L-type Ca
2+

 channels, which 

in these cells could be insensitive to sustained dehydration. This would lead to an 

underestimation of the increase in channels in MNCs. The L-type Ca
2+

 channel is expressed not 

only in somata of the MNCs but also in their dendrites (Joux et al., 2001), and the increase in the 

L-type Ca
2+

 channels during sustained dehydration could occur in both locations. Since most of 

the MNC dendrites were lost during the isolation procedure, the recording primarily reflected the 

L-type Ca
2+ 

currents in the somata of the MNCs and could underestimate or overestimate the 

overall change depending on where the change in current primarily occurs.  
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Sustained dehydration does not cause significant changes in the levels of mRNA 

coding for Ca
2+

 channel α1 subunits (Zhang et al., 2007a). The mechanisms underlying the 

increase in L-type Ca
2+

 current are unknown in rat MNCs. However, there are three possibilities, 

including increases in the functional activity of pre-existing channels, increases in the number of 

channels on the plasma membrane due to an increase in synthesis of the L-type Ca
2+

 channel, or 

translocation of the channels from intracellular stores to the plasma membrane. 

One possibility is an increase in the functional activity of the pre-existing channels, 

which could be caused by changes in ionic strength or in a second messenger system, or by 

mechanical force. The L-type Ca
2+

 channel can be modulated by second messengers such as 

Mg
2+

 and cAMP (Yamaoka & Kameyama, 2003), which are altered by osmolality (Okada, 1997). 

Sustained dehydration could change the functional activity of the pre-existing L-type Ca
2+

 

channels in the plasma membrane by modulating a second messenger system. In addition, the L-

type Ca
2+

 channel is also mechanosensitive (Gannier et al., 1994; Matsuda et al., 1996). L-type 

Ca
2+

 channels can be activated by membrane stretch caused by carbon fibres (Gannier et al., 

1994) or by applying a positive pressure into the cell via patch pipette (Matsuda et al., 1996), 

which leads to a rapid increase in [Ca
2+

]i in isolated ventricular myocardial cells. This 

phenomenon can be blocked by streptomycin, a blocker of mechanosensitive channels (Gannier 

et al., 1994). In addition, the L-type Ca
2+

 current displays sensitivity to acute changes in 

osmolality of the extracellular recording solution. The L-type Ca
2+

 current in guinea-pig gastric 

smooth muscle was increased by 35% by an acute decrease in osmolality of the extracellular 

solution from 290 mosmol kg
-1

 to 202 mosmol kg
-1

 and decreased by 50% by an increase in 

osmolality of the extracellular solution from 290 mosmol kg
-1

 to 350 mosmol kg
-1

 due to an actin 

cytoskeleton-mediated change in membrane tension (Xu et al., 1996; Xu et al., 1997). This is 
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consistent with another study demonstrating that the L-type Ca
2+

 current in the human gastric 

smooth muscle cells was increased by 57% by a rapid decrease in osmolality of extracellular 

solution from 290 mosmol kg
-1

 to 222 mosmol kg
-1

 (Kim et al., 2000). The L-type Ca
2+

 current 

in rat anterior pituitary cells was decreased by 50% by a 63% increase in the osmolality of 

extracellular solution, with no change in cell capacitance (Ben-Tabou De-Leon et al., 2006). The 

decrease, which is independent of the actin cytoskeleton, is attributed to a decrease in channel 

activity (which is primarily dependent on single channel conductance, open possibility of the 

channel, and ionic-strength), but single channel conductance of the channel does not change 

(Ben-Tabou De-Leon et al., 2006). The changes in channel activity could be due to alteration in 

membrane tension at the phospholipid bilayer and/or in ionic-strength underneath the plasma
 

membrane (in which case changes in cytoplasmic salt levels cause activation of ion channels or 

transporters; Cannon et al., 1998), as suggested by Ben-Tabou De-Leon et al. (Ben-Tabou De-

Leon et al., 2006). These data, which showed that L-type Ca
2+

 current is increased by cell 

swelling, are opposite to those in our study in which L-type Ca
2+

 current is increased following 

sustained dehydration. Although this difference could be due to different molecular bases of 

osmosensory transduction in different cell types (Lang et al., 1998b) or to different mechanisms 

underlying the osmosensitivity under different experimental conditions, this does not explain 

why there is an increase in DHP binding sites following sustained dehydration in our studies 

(Star, 2005). In addition, an increase in channel activity due to mechanical force would be 

expected to occur quickly, whereas the Ca
2+

 current in the MNCs does not significantly change 

with acute change in extracellular osmolality (Liu et al., 2005). Furthermore, the density of L-

type Ca
2+

 current in acutely isolated MNCs maintained in 320 mosmol kg
-1

 physiological PIPES 

solution for about 90 min was not significant larger than that in the MNCs maintained in 290 



 129 

mosmol kg
-1

 physiological PIPES solution. These data suggest that the increase in the L-type 

Ca
2+

 current in our studies was not caused by a change in the activity of pre-existing channels. 

A second possibility is that the synthesis of the L-type Ca
2+

 channels in the MNCs 

increases. Stimulus-activated increases in the synthesis of the L-type Ca
2+

 channel in the plasma 

membrane have been reported in other types of cells. Isoprenaline-induced cardiac hypertrophy 

causes 26% increase in L-type Ca
2+

 current amplitude (although with no increase in current 

density) possibly because of an increase in protein synthesis of the channel (Meszaros et al., 

1997). Other studies have shown that the numbers of cardiac L-type Ca
2+

 channels are increased 

due to an increase in protein synthesis of the channel by a sustained decrease in estrogen levels 

(Johnson et al., 1997), blockers of L-type Ca
2+

 channels (Schroder et al., 2007), nerve growth 

factors (Tanaka & Koike, 1995), and β-adrenergic stimulators (Akuzawa-Tateyama et al., 2006). 

Although we cannot rule this possibility out, we (Zhang et al., 2007a) and other researchers 

(Hindmarch et al., 2006) have seen no evidence for increases in mRNA levels for any type of 

Ca
2+

 channel following sustained dehydration. 

A third possibility is the translocation of the L-type Ca
2+

 channel from intracellular 

stores to the plasma membrane. Translocation of Ca
2+

 channels from intracellular stores to the 

plasma membrane has been reported in Aplysia bag cell neurons (Strong et al., 1987; White et al., 

1998). The bag cell neurons express two types of Ca
2+

 channel α1 subunits. One mediating a 

basal Ca
2+

 current with a conductance of 12 pS is expressed on the plasma membrane. The other, 

which mediates a Ca
2+

 current with a conductance of 24 pS, is only localized on vesicles of the 

neurons under normal condition. The bag cell neurons can therefore express a basal Ca
2+

 current 

conducted by a 12 pS channel under normal condition. 
 
After activation of protein kinase C, the 

bag cell neurons, however, express another type of Ca
2+

 current with a conductance of 24 pS. 
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This study suggests that the Ca
2+

 channel with a conductance of 24 pS is translocated from the 

vesicles to the plasma membrane. Other studies have reported the translocation of L-type Ca
2+

 

channels in other types of cells. In HEK 293 cells, trafficking to or retention of the L-type Ca
2+

 

channel on the plasma membrane during chronic
 
hypoxia causes an increase in CaV1.3 L-type 

Ca
2+

 currents (Green & Peers, 2001; Scragg et al., 2004). Chronic
 
hypoxia increases levels of 

amyloid β peptides, which selectively cause insertion into the plasma membrane of CaV1.3 L-

type Ca
2+

 channels by interacting with the channels. In pancreatic β-cells, an increase in 

intracellular Ca
2+

 level decreases expression of CaV1.3 L-type Ca
2+

 channel subunits in the 

plasma membrane and increases the cytoplasmic distribution of the channel subunits, with no 

changes in the channel expression in the total cellular membranes (Huang et al., 2004), 

suggesting that the L-type Ca
2+

 channel is translocated from the intracellular stores to the plasma 

membrane. In addition, the α1 subunits of the L-type Ca
2+

 channel distribute not only in the 

plasma
 
membrane of the MNCs but also in an intracellular subplasmalemmal pool (Fisher et al., 

2000; Joux et al., 2001), possibly in the internal membrane of vesicles. This observation suggests 

the possibility that the L-type Ca
2+

 channel can translocate from the intracellular stores to the 

plasma membrane in the MNCs and that such translocation can cause an increase in the channel-

mediated current. 

These observations suggest that the L-type Ca
2+

 current could be functionally changed 

by multiple mechanisms, and there are some studies that could be able to determine the 

mechanisms underlying the increase in the L-type Ca
2+

 current following sustained dehydration. 

Immunocytochemical studies at the electron microscopic level using antibodies against Ca
2+

 

channel subtypes might be able to show whether there is an increase in L-type Ca
2+

 channel 

density in the MNC plasma membrane in normal and dehydrated rats. If it is possible to find 
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conditions in which the increase in L-type Ca
2+

 current can be activated in cultured isolated 

MNCs by treating with high osmolality and/or potential modulators such as VP (which causes 

the translocation of AQP2 water channels in the epithelial cells of the kidney collecting duct; 

Fenton et al., 2008), it will be helpful for studies of the mechanisms underlying the increase in 

the L-type Ca
2+

 current following sustained dehydration. Under these conditions, it would be 

possible to perform experiments about membrane recycling using activity dependent dye FM1-

43 to see whether changes in osmolality cause membrane recycling. Since Ca
2+

 channels could 

translocate from cytoplasmic vesicles to the plasma membrane, such an approach would make it 

possible to observe the uptake of fluorescently labeled DHPs which can selectively bind to the L-

type Ca
2+

 channel and thus determine whether the channel will be translocated to the plasma 

membrane with increases in osmolality. Furthermore, such an approach would also make it 

possible to observe the translocation of the L-type Ca
2+

 channel following increases in 

osmolality using transfection with a plasmid coding for the channels tagged with green florescent 

proteins. In addition, it would also be possible to block electrical activity in MNCs with drugs, 

the translocation with toxins such as tetanus toxin to block exocytotic fusion (Verderio et al., 

1999), or protein synthesis, and thus confirm whether the L-type Ca
2+

 channels are translocated 

to the plasma membrane with increases in osmolality. These experiments could help to elucidate 

the mechanisms underlying the increase in the L-type Ca
2+

 current in MNCs following sustained 

dehydration. 

 

 

 



 132 

5.1.2 Physiological roles of the increased L-type Ca
2+

 current during sustained dehydration 

The L-type Ca
2+

 channel plays many crucial physiological roles in many brain areas, 

including the SON (Fisher & Bourque, 1996; Moosmang et al., 2005) and activation of L-type 

Ca
2+

 current can mediate long-lasting changes in brain function (Hetzenauer et al., 2006; 

Striessnig et al., 2006). An increase in the L-type Ca
2+

 current in the MNCs during sustained 

dehydration might lead to the modulation of cell excitability, hormone release, gene expression, 

and structural adaptation.  

Firstly, an increase in the L-type Ca
2+

 current will further depolarize the MNCs to 

cause activation of voltage-dependent channels, and cause an increase in [Ca
2+

]i which would 

lead to the activation of Ca
2+

-dependent potentials such as the DAP, the HAP, and the AHP. 

These Ca
2+

-dependent potentials modulate MNC firing rate and pattern. Although it is not known 

whether the DAP is modulated by influx of Ca
2+

 through a specific Ca
2+

 channel, L-type Ca
2+

 

channels play important roles in the modulation of a slow after-depolarizing potential, which 

plays a role in the generation of bursts, and a hyperpolarization-activated, postspike depolarizing 

afterpotential, which plays a role in modulating spike frequency, in neuroendocrine Dahlgren 

cells of teleost Platichthys flesus. The blockade of the L-type Ca
2+

 current in these cells reduces 

the amplitude of the after-depolarizing potential by 95% and the hyperpolarization-activated, 

postspike depolarizing afterpotential by 76% (Brierley et al., 2004). Thus, an increase in the L-

type Ca
2+

 current during sustained dehydration might modulate the DAP and associated plateau 

potentials in the MNCs and thus regulate MNC firing pattern.  

In addition, an increase in the L-type Ca
2+

 current could also modulate the Ca
2+

-

dependent HAP and/or AHP. There is evidence from other cell types to suggest that an increase 
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in L-type Ca
2+

 current could cause selective increases in KCa currents. In rat CA1 hippocampal 

pyramidal neurons, the BK channel contributing to the fAHP is selectively activated by the N-

type Ca
2+

 channel, whereas the SK channel contributing to mAHP is selectively activated by the 

L-type Ca
2+

 channel (Marrion & Tavalin, 1998). Furthermore, another study suggests that the 

BK channel is selectively activated by the L-type Ca
2+

 channel due to their co-localization in the 

brain (Grunnet & Kaufmann, 2004). Mechanisms underlying such coupling between the L-type 

Ca
2+

 channel and the KCa channel are unknown. However, an α-actinin2 cytoskeletal
 
protein may 

play an important role in the formation of the coupling between the CaV1.3 L-type Ca
2+

 channel 

and the SK2 channel (Lu et al., 2007). In addition, Ca
2+

 entry through the L-type Ca
2+ 

channel 

also contributes to the activation of the sAHP (Shah & Haylett, 2000), which may play a role in 

regulating firing in neurons (Faber & Sah, 2003) including the MNCs (Ghamari-Langroudi & 

Bourque, 2004). A specific co-localization between the CaV1.3 L-type Ca
2+

 channel and the SK1 

channel, which may contribute to sAHP generation (Kohler et al., 1996), has been found in rat 

CA1 hippocampal neurons (Bowden et al., 2001). In CA pyramidal neurons, the blockade of the 

L-type Ca
2+

 current reduces the sAHP by 24% (Pineda et al., 1999). 

It is not known whether AHPs are increased in the MNCs during sustained dehydration, 

but increases do occur during lactation (Teruyama & Armstrong, 2005). During lactation, the 

amplitudes of both an apamin-sensitive mAHP and an apamin-insensitive
 
sAHP are significantly 

increased in OT-MNCs, but the density of only mAHP is significantly increased. In addition, 

there is a significant increase in cell capacitance in OT-MNCs but not in VP-MNCs during 

lactation. Total Ca
2+

 currents are also significantly increased in amplitude (but not in density) 

only in OT-MNCs during lactation. However, it is not known whether there is an increase in the 

L-type Ca
2+

 current and whether the increase in the L-type Ca
2+

 current is responsible for the 
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increases in the sAHP and/or mAHP during lactation. These data, however, suggest that an 

increase in the L-type Ca
2+

 current during sustained dehydration could contribute to the 

modulation of MNC firing rate and pattern by regulating the DAP, the HAP, and the AHP. 

Future studies attempting to determine whether water deprivation leads to increases in Ca
2+

-

dependent potentials using patch-clamp recording in the MNCs would be very helpful for the 

understanding of roles of the increased L-type Ca
2+

 current. In addition, studies investigating the 

roles of DHPs on MNC firing would be also helpful. 

Secondly, an increase in the L-type Ca
2+

 current could facilitate the release of VP/OT 

(Mason et al., 1986) and co-localized neuropeptides such as dynorphin (Brown & Bourque, 2004) 

and apelin (De Mota et al., 2004) from the MNC somatodendritic region. Dendritic release can 

optimize subsequent hormone release from the terminals by generating autocrine and/or 

retrograde feedback control (Wotjak et al., 1994; Gouzenes et al., 1998; Hirasawa et al., 2004). 

Unlike N-and P/Q-type Ca
2+

 channels, which play a key role in neurotransmission, the L-type 

Ca
2+

 channel is responsible for endocrine release and exocytotic release from neuronal somata 

(Fisher & Bourque, 2001). The L-type Ca
2+

 current mediates dynorphin release from the 

dendrites, but not from axons, in hippocampal granule cells (Simmons et al., 1995). In addition, 

the L-type Ca
2+ 

channel may play an important role in VP release from the somatodendritic 

region in the SON (Shibuya et al., 1998). In a rat SON slice preparation, pituitary adenylate 

cyclase activating polypeptides can cause VP release from the somatodendritic region by 

evoking Ca
2+

 entry. Blockers of the L- but not N-type Ca
2+

 channel selectively block the Ca
2+ 

entry and the VP release, suggesting a role of the L-type Ca
2+

 current in MNC dendritic release. 

An increase in the L-type Ca
2+ 

current during sustained dehydration might modulate MNC firing 

rate and patterns by contributing to the somatodendritic release of VP (Mason et al., 1986; 
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Wotjak et al., 1994) and co-localized dynorphin (Brown & Bourque, 2004) and apelin (De Mota 

et al., 2004), which are able to generate autocrine feedback control. 

Finally, an increase in the L-type Ca
2+

 current may contribute to regulation of increases 

in gene expression and other long-lasting changes in function of the SON during sustained 

dehydration. The L-type Ca
2+

 channel-mediated Ca
2+

 signals, specifically in the central nervous 

system, initiate intracellular signal transduction events that activate long-lasting changes in brain 

function and behaviour (Hetzenauer et al., 2006; Striessnig et al., 2006) because Ca
2+

 influx 

from the L-type Ca
2+

 channels of the CaV1.2 and CaV1.3 subfamily in the brain can preferentially 

activate transcription factors such as CREB proteins (Hardingham et al., 1999; Weick et al., 

2003; Zhang et al., 2006) and c-Fos (Hetzenauer et al., 2006; Zhao et al., 2007). Formation of 

LTP and various forms of memory are tightly associated with activity of the CREB proteins 

(Frank & Greenberg, 1994; Yin & Tully, 1996; Silva et al., 1998). Furthermore, signal 

transduction and gene expression are also modulated in the MNCs following sustained 

dehydration, leading to increases in VP gene expression (Zingg et al., 1986; Ding et al., 1994; 

Hurbin et al., 2002) and in c-Fos gene expression in the OVLT, PVN, and SON (Oldfield et al., 

1994; Gottlieb et al., 2006). An increase in L-type Ca
2+

 current during sustained dehydration 

may increase the rate at which the CREB proteins are phosphorylated in the MNCs, and such an 

increase could be important in the regulation of gene expression that
 
occurs during water 

deprivation. In addition, studies showed that although separate mechanisms might be involved in 

the hypertrophy of the MNCs and in cardiomyocytes, the L-type Ca
2+ 

channel, in part, is 

responsible for cardiomyocyte hypertrophy induced by serum stimulation (Lubic et al., 1995), 

and calcineurin activated by Ca
2+

 entry from the L-type Ca
2+

 channel may contribute to such 

mechanical stretch-induced hypertrophy (Fiedler et al., 2002; Zou et al., 2002; Zobel et al., 
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2007). Thus, an increase in the L-type Ca
2+

 current may contribute to the structural adaptation 

that occurs in the SON during sustained dehydration. 

 

5.2 The OC increased by acute hypertonic stimulation could be a KCNQ/M-like current 

5.2.1 Physiological roles of the OC 

We have identified a slowly activating and inactivating, osmosensitive current (the 

OC) in acutely isolated MNCs. This current increases with increases in extracellular osmolality 

in about 66% of the MNCs. The reversible potential of the OC demonstrates that the OC is 

mediated by a type of voltage-dependent K
+
 channels. What could be the physiological role of a 

slowly activating and inactivating voltage-dependent K
+ 

current that increases as osmolality is 

increased? It appears paradoxical that a K
+
 current would be activated by hypertonic stimulation 

that increases the output from these cells (i.e. the release of VP). However, the OC might play a 

role in mediating the transition between fast continuous and burst firing in MNCs. Activation of 

the OC might greatly decrease the firing rate and eventually lead to cessation of firing. The 

slowly activating and inactivating OC might activate during a burst of action potentials and 

might contribute to a slowing or termination of firing in MNCs. VP-MNCs respond to osmotic 

stimuli by adopting a phasic pattern of firing, and a phasic burst lasts for about 20 seconds 

(Poulain & Wakerley, 1982; Bicknell, 1988). Firing rate rapidly increases during the initial phase 

of the bursts to 30 Hz, and then decreases to about 10 Hz, leading to formation of a constant 

firing phase (Roper et al., 2004). The constant firing lasts over 10 s and abruptly ceases, leading 

to the termination of the bursts (Roper et al., 2004). The voltage-dependent, slowly activating 

OC could progressively activate during the burst, and thus gradually decrease firing rate. The 
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time for complete activation of the OC is unknown in MNCs since internal TEA in our 

experiments could affect biophysical properties of the OC (Armstrong, 1966). Our current data 

suggest that the OC could terminate MNC firing and cause formation of a shorter burst, which 

occurs in MNCs during sustained dehydration (Dyball & Pountney, 1973). Thus, the OC could 

be important in mediating the MNC firing in shorter bursts (Figure 5.1). 
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Figure 5.1 Hypothesized physiological role of the OC in regulating MNC firing rate and 

pattern. SIC play an important role in the increase in MNC firing during elevations in 

osmolality (Bourque et al., 2002). However, the properties of the OC suggest that it 

might slowly activate during a burst of action potentials and might contribute to a 

slowing or termination of firing in MNCs. Thus, the OC might contribute to the transition 

between fast continuous and phasic firing in MNCs. Scale mark is 200 µV and 10 s. The 

traces of this figure are adapted from Poulain et al. (Poulain et al., 1977). 

 

 

 



 139 

The molecular nature of the OC is not confirmed. However, pharmacological studies 

of the OC demonstrated that the OC is insensitive to extracellular TEA and is blocked by XE991 

with an IC50 of 3.9 µM. XE991 at this concentration selectively blocks KCMQ/M channels 

(Wang et al., 1998). In addition, retigabine, which is a selective opener of the KCNQ/M 

channels, increases the OC in amplitude and shifts the voltage sensitivity of the OC to more 

negative potentials, and this is consistent with its properties on the KCNQ/M channels (Tatulian 

et al., 2001). Thus, the pharmacological properties of the OC suggest that it could be mediated 

by a subtype of KCNQ/M channels. If the OC is mediated by a subtype of KCNQ/M channels, 

this is the first demonstration that the KCNQ/M current can regulate cell firing in the MNCs. If 

the OC is mediated by a subtype of KCNQ/M channels, which are located at the axon initial 

segments and nodes of Ranvier (Lai & Jan, 2006) and also in somatodendrites and neuronal 

terminals (Delmas & Brown, 2005) and play key roles in regulating neuronal firing frequency 

and excitability by multiple mechanisms (Delmas & Brown, 2005; Vervaeke et al., 2006), it 

could modulate MNC firing by the following possible mechanisms. 

The KCNQ/M channels contribute to the regulation of the resting membrane potential 

and modulate the critical threshold of action potentials in hippocampal pyramidal neurons (Shah 

et al., 2008), in rat visceral sensory neurons (Wladyka & Kunze, 2006), and in isolated mouse 

inner hair cells (Oliver et al., 2003). It is unknown whether the OC, if it is KCNQ/M current, 

regulates the resting membrane potential and critical threshold of action potentials in MNCs and 

thus modulate their excitability. This is possible because a recent study has shown that the 

resting membrane potential is depolarized by 1.6-6.3 mV by applying about 50 µM muscarine in 

all MNCs (Ghamari-Langroudi & Bourque, 2004). However, it is not known whether muscarine, 

as a non-selective agonist of muscarinic receptors (Garnier et al., 1998), changes the resting 
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membrane potential in the MNCs by acting on M1 receptors (which couple to KCNQ/M 

channels) to inhibit the KCNQ/M currents. 

In CA1 pyramidal cells, an inhibition of the KCNQ/M channels enhances a slow 

afterdepolarization, which generates a burst, and thus controls neuronal activity (Chen & Yaari, 

2008). This is consistent with a previous study demonstrating that the spike afterdepolarization 

and burst generation in hippocampal neurons were regulated by the KCNQ/M channels (Yue & 

Yaari, 2004). MNCs can also intrinsically generate a DAP, which follows action potentials and 

can summate into plateau potentials, and thus evoke a phasic burst (Andrew & Dudek, 1983). 

The DAP in the MNCs cannot be reduced by muscarine (Ghamari-Langroudi & Bourque, 2004), 

and this suggests that KCNQ/M channels may not display any effects on generation of the DAP. 

However, besides this Cs
+
-sensitive DAP in the MNCs (Ghamari-Langroudi & Bourque, 1998), 

a Cs
+
-insensitive fast DAP was recently identified in the MNCs that could also play a role in 

regulation of MNC firing (Teruyama & Armstrong, 2007). It is not known whether the OC can 

reduce this Cs
+
-insensitive voltage-dependent DAP by hyperpolarizing the cells and thus 

regulate the rate and pattern of MNC firing.  

Interestingly, a recent study using sharp electrode, whole-cell and perforated patch-

clamp recordings has shown that the mAHP is not mediated by SK channels but by a subtype of 

KCNQ/M channels in hippocampal CA1 pyramidal neurons (Gu et al., 2005). Moreover, 

dominant negative expression of the KCNQ2 subunits in CA1 pyramidal neurons leads to a 

decrease in spike frequency adaptation and in mAHP, and causes an increase in neuronal 

excitability (Peters et al., 2005). KCNQ/M channels mediate both a fast and a slow component of 

the AHP in dopamine neurons of ventral tegmental area and thus regulate the interspike intervals 

but not spike parameters such as amplitude, duration, and threshold (Koyama & Appel, 2006). In 
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addition, the KCNQ/M channels play a role in the modulation of the subthreshold 

accommodation
 
and

 
spike frequency adaptation by contributing to a slowly activating and 

deactivating K
+
 current (IKs) in nodes of Ranvier and thus control firing frequency in the sciatic 

nerve (Schwarz et al., 2006). A muscarine-sensitive sAHP has been identified in MNCs 

(Ghamari-Langroudi & Bourque, 2004). This sAHP does not contribute to modulation of spike 

parameters such as amplitude, duration, and broadening either, but muscarine increases firing 

rate and duration of the spontaneous phasic bursts in the MNCs (Ghamari-Langroudi & Bourque, 

2004). However, it is not known whether this sAHP is mediated by a subtype of the KCNQ/M 

channels and whether the OC can mediate an AHP and thus regulate MNC firing. 

These observations suggest that the OC, if it is a KCNQ/M-like current, can modulate 

the rate and pattern of MNC firing possibly by multiple mechanisms. Activation of the OC  

could slowly turn down the firing or behave as a „brake‟ on neuronal firing, as do the KCNQ/M 

currents in various types of neurons (Delmas & Brown, 2005). Future experiments using patch-

clamp techniques in the MNCs will investigate whether the OC affects the voltage-dependent 

DAP by hyperpolarizing the cells and whether the OC contributes to an AHP. In addition, since 

the OC is very sensitive to XE991 and retigabine, these drugs could be used to see whether the 

OC contributes to the transition between fast continuous and burst firing. These modulators are 

used to modulate MNC firing at different doses. For example, a high dose of retigabine could 

cause complete activation of the OC and thus terminate MNC firing. However, a smaller dose of 

retigabine could mimic the enhancement of the OC induced by an increase in extracellular 

osmolality and thus mimic the effects of the OC at different osmolalities.  
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5.2.2 The OC and somatodendritic release 

If the OC is a KCNQ/M current, which can be modulated by many neurotransmitters 

such as acetylcholine, and neuropeptides such as luteinizing hormone releasing hormone and 

angiotensin (Delmas & Brown, 2005), it could be a cellular target through the synaptic 

transmission and thus contribute to the modulation of osmosensory transduction. Furthermore, 

the MNCs can also release VP and other potential autocrine regulators from their dendrites 

(Mason et al., 1986; Di Scala-Guenot et al., 1987; Landgraf & Ludwig, 1991; Ludwig et al., 

1995). Dendritic release of VP can optimize subsequent hormone release in the terminals by 

generating feedback control (Wotjak et al., 1994; Gouzenes et al., 1998; Hirasawa et al., 2004). 

VP can display an excitatory effect to increase burst duration and/or decrease the duration of 

silence in faintly active neurons (periods of activity of < 10 sec) and thus contribute to the 

transition to phasic firing (Gouzenes et al., 1998). VP can generate excitatory effects in excitable 

cells possibly by enhancing Ca
2+

 entry and/or by inhibiting K
+
 currents. VP can increase Ca

2+
 

entry in vascular smooth muscle by causing the activation of T-type Ca
2+

 channels 

(Brueggemann et al., 2005), L-type Ca
2+

 channels (Katori et al., 2001), receptor-operated Ca
2+

 

channels (Katori et al., 2001), Ca
2+

 release channels of the sarcoplasmic reticulum (Katori et al., 

2001), store-operated Ca
2+

 channels (Byron & Taylor, 1995), and TRPC channels (Maruyama et 

al., 2006). However, VP can also rapidly and greatly inhibit the L-type Ca
2+

 channels in L6 cells, 

but this inhibition slowly recovers due to the activation of protein kinase C (Hantash et al., 

2006). VP can suppress the currents mediated by KCNQ/M channels in A7r5 rat aortic smooth 

muscle cells (Brueggemann et al., 2007) and in rat mesenteric arteries (Mackie et al., 2008), and 

by ATP-dependent K
+
 channels in insulin-secreting cells and vascular smooth muscle cells 

(Martin et al., 1989; Kawano et al., 2007; Shi et al., 2007). Thus, the OC, if it is a KCNQ/M 
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current, could be one of targets of VP released from the dendrites and this could contribute to the 

VP-induced feedback control.  

 

5.2.3 The OC and hormone release 

Many properties of the OC suggest that it could be a KCNQ/M current. KCNQ/M 

channels play a role in regulating the secretory release of neurotransmitters such as γ-

aminobutyric acid, norepinephrine, aspartate, dopamine and serotonin, and acetylcholine, and 

this has been reviewed in detail (Hansen et al., 2008). In addition, KCNQ/M channels also play a 

role in exocytotic secretion in pancreatic neuroendocrine cells (Thevenod, 2002; Lee et al., 

2008). Our data have demonstrated that the OC can modulate MNC firing. Since the release of 

hormone is determined primarily by the firing rate and pattern in the somata of the MNCs 

(Bicknell, 1988), the OC could play an important role in the control of the release of VP by 

regulating the rate and pattern of MNC firing. Muscarine (Bisset & Fairhall, 1996) and 

acetylcholine (Sladek & Kapoor, 2001) can increase the release of VP and OT, but it is not 

known whether modulation of KCNQ/M channels contributes to this effect. These studies 

suggest that the OC could be able to modulate the release of hormone in the MNC. 

 

5.2.4 Possible subtypes of the KCNQ/M channels mediating the OC 

The molecular nature of the OC remains unknown. If the OC is mediated by a subtype 

of KCNQ/M channels, the pharmacological data on the OC may help to determine which 

subunits of the KCNQ/M channels could be involved. Since different subunits of the KCNQ/M 

channels are blocked by TEA, linopirdine, and XE991 with different IC50s, (Robbins, 2001), our 

data have implications concerning which subtypes mediate the OC in the MNCs. The OC is 
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insensitive to TEA. Since the classic M-current expressed in many brain neurons is mediated by 

KCNQ2/3 heteromultimers and displays high sensitivity to extracellular TEA (Wang et al., 

1998), it is unlikely that the OC is mediated by these heteromultimers. The channel mediating 

the OC could therefore contain the TEA-insensitive KCNQ3 and/or KCNQ5 subunits (Hadley et 

al., 2000; Lerche et al., 2000). Since the OC was significantly blocked by 150 µM but not by 10 

µM linopirdine, the channel mediating the OC could contain the much less linopirdine-sensitive 

KCNQ4 subunits (Kubisch et al., 1999). In addition, the channels composed of the KCNQ5 

subunits are blocked by linopirdine at a high concentration (more than 10 µM; Robbins, 2001). 

Only the KCNQ3 subunit can co-assemble with KCNQ2, KCNQ4, and KCNQ5 subunits to form 

heteromultimers (Robbins, 2001). Thus, it appears that the most likely composition of the 

channel mediating the OC is KCNQ3/4, KCNQ3/5, or KCNQ5 subunits. Both the KCNQ4 

channel (Hougaard et al., 2004) and KCNQ5 channel (Jensen et al., 2005a) are sensitive to 

changes in cell volume, and this suggests that such composition of the channel mediating the OC 

(if it is a KCNQ/M current) is possible. 

Co-immunoprecipitation studies on KCNQ/M channels have been used to determine 

the existence of KCNQ2/3 and KCNQ3/5 heteromultimers in the central neurons (Cooper et al., 

2000; Yus-nájera et al., 2003). Such techniques in the future studies on the OC will be helpful 

for demonstrating which subtypes of the KCNQ/M channels could mediate the current. In 

addition, the knock down of KCNQ current expression using antisense and/or siRNA techniques 

could decrease the OC, if it is a KCNQ/M current. Such experiments may demonstrate the 

subtype(s) mediating the OC. If the knockout mice of some KCNQ/M channel genes are able to 

be obtained and lack the OC, the molecular nature of the OC may be confirmed. Knockout mice 

of some KCNQ/M channel genes, which are identified to be expressed in SON, will be involved 
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this study in the future. The OC should be completely eliminated in these knockout mice if it is 

mediated by the channels whose genes are knocked out. Studies have used the knockout mice of 

KCNQ4 channel gene to indicate that mutation of KCNQ4 subunits causes the hearing loss in 

DFNA2 (Kharkovets et al., 2006). 

 

5.2.5 Osmosensitivity of the OC 

The mechanisms underlying the osmosensitivity of the OC are unknown. There are 

three most likely possibilities for the channel displaying the osmosensitivity. One possibility is 

that the channel is directly gated by mechanical force. Mechanical force can modulate the 

activity of ion channels by an interaction between the channel proteins and mechanical force 

inducer (Hamill & Martinac, 2001) such as the lipid
 
bilayer, as with the TREK-TRAAK family 

(Kim, 2003), and/or cytoskeleton, as with the SIC in MNCs (Zhang et al., 2007b). The cells 

change their volume as an important physiological function in response to osmotic stimuli, and 

changes in volume, therefore, lead to alterations in the membrane tension, which determines the 

function of some ion channels and transporters (Lang et al., 1998a; Lang, 2007). A second 

possibility is that the channel is activated by a change in ionic strength (in which case changes in 

cytoplasmic salt levels cause activation of ion channels or transporters) due to osmotic stimuli, as 

with the volume-regulated chloride channel (Nilius et al., 1998; Voets et al., 1999; Wittels et al., 

2000). A third possibility is that the channel is modulated by second messengers such as Ca
2+

, 

Mg
2+

, cAMP, and/or by phosphorylation reactions of kinases such as protein kinase C (Okada, 

1997; Stutzin & Hoffmann, 2006), which are altered in function by osmolality. Many cellular 

signaling events such as second messenger cascades, phosphorylation of proteins,
 
and gene 

expression may be osmosensitive (Okada, 1997; Lang et al., 1998a).  
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Several subtypes of the KCNQ/M channels are sensitive to cell volume, and the 

current amplitudes are increased with decreases in extracellular osmolality (Grunnet et al., 2003; 

Hougaard et al., 2004; Jensen et al., 2005b). However, the OC is different, and it displays an 

increase with an increase in osmolality of extracellular recording solution (Figure 4.6). If the OC 

is mediated by a KCNQ/M channel, this difference could be due to different molecular 

mechanisms of osmosensory transduction in different cell types (Lang et al., 1998b). SIC, a 

splice variant of TRPV1 with a truncated N-terminus and a C-terminus of TRPV4, can 

functionally decrease or increase in MNCs in response to hypotonic or hypertonic stimuli, 

respectively (Sharif-Naeini et al., 2006). However, TRPV1 does not display any osmosensitivity 

(Liedtke et al., 2000). TRPV4 is activated by cell swelling, and inhibited in HEK293 cells 

(Strotmann et al., 2000) or unaffected in CHO cells (Liedtke et al., 2000) by cell shrinking. The 

mechanisms underlying the osmosensitivity of the OC (if it is a KCNQ/M current) in the MNCs 

may be different from that of the KCNQ/M channels mentioned above (in which case 

osmosensitivity of the channel is attributed to an interaction between the cellular cytoskeleton 

and the channel proteins; Grunnet et al., 2003). However, a second messenger cascade or 

intracellular signal pathway that regulates the OC in the MNCs might respond to osmolality of 

the extracellular solution in the MNCs. Many intracellular signaling pathways change with 

alterations in cell volume and thus play an important role in the modulation of cellular functions 

(Wehner et al., 2003; Stutzin & Hoffmann, 2006). One example is that the KCNQ/M channels 

can be modulated by PIP2 and protein kinase C (Delmas & Brown, 2005). PIP2 can directly 

regulate the KCNQ/M channels (Suh & Hille, 2002) possibly by binding to the channels to 

increase their open probability (Li et al., 2005). KCNQ/M channels can also indirectly be 

modulated by PIP2 by the activation of the protein kinase C pathway and subsequent cytoskeletal
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reorganization due to PIP2 hydrolysis (Lan et al., 2006). Phosphoinositide signalling (Wehner et 

al., 2003) is altered in response to osmotic stimuli due to the changes in activity of many kinases 

and enzymes. PLC, which can cleave cellular PIP2, can be activated by membrane stretch 

(Brophy et al., 1993; Ruwhof et al., 2001; Barfod et al., 2005; Nam et al., 2007), and such 

activation can cause the hydrolysis of PIP2 and subsequent activation of large conductance 

background K
+
 channels in B lymphocytes (Nam et al., 2007), and K

+
 and Cl

-
 channels in HTC 

rat hepatoma cells (Barfod et al., 2005). Such stretch-induced activation in B lymphocytes is not 

dependent on the cellular cytoskeleton (Nam et al., 2007). Furthermore, the level of PIP2 in the 

plasma membrane is significantly increased by hypertonic stimuli in guinea pig cardiac myocytes, 

M1, COS, and HEK-293 cells (Nasuhoglu et al., 2002), in Ehrlich Lettre ascites cells (Nielsen et 

al., 2007; Rasmussen et al., 2008), and in HeLa cells (Nasuhoglu et al., 2002; Yamamoto et al., 

2006). This increase could be attributed to the activation of type I PIP kinases in response to 

hypertonic stimuli (Yamamoto et al., 2006). Thus, the level of membrane PIP2 can display 

changes with alterations in osmolality of the extracellular solution (Nasuhoglu et al., 2002; 

Yamamoto et al., 2006; Nam et al., 2007; Nielsen et al., 2007; Rasmussen et al., 2008). Osmotic 

modulation of the KCNQ/M currents might occur through the PIP2 system, and PIP2 metabolism 

might play an important role in modulating the osmosensitivity of the OC. The OC, if it is a 

KCNQ/M current, might respond to a different intracellular signaling pathway that has been 

known for osmosensory transduction from other KCNQ/M channels reported to sense changes in 

cell volume. 
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5.3 Does the OC as a KCNQ/M-like current couple to the L-type Ca
2+

 current? 

Although the increase in the L-type Ca
2+

 current, which is identified in dehydrated rat, 

and the increase in the OC, which is found in isolated MNCs in response to acute hypertonic 

stimulation and could be a KCNQ/M current, are recognized in the MNCs under different 

experimental conditions, there might be a relationship between the two currents because the two 

channels can couple to many other plasma membrane proteins. The L-type Ca
2+

 channel can 

couple to a number of plasma membrane proteins including KCa channels (Marrion & Tavalin, 

1998; Grunnet & Kaufmann, 2004), ryanodine receptor-mediated Ca
2+

 release channels 

(Catterall, 1991), Na
+
/Ca

2+
 exchangers (Pott et al., 2007), TRPC6-like cation channels (Poteser 

et al., 2003), angiotensin AT1A receptors (Oz et al., 1998), and β1-adrenoreceptors (Yatani et 

al., 1995). In addition, KCNQ/M channels can couple to several plasma membrane proteins 

including M1 muscarinic receptors (Schroeder et al., 2000; Selyanko et al., 2000), dopamine D2 

receptors (Ljungstrom et al., 2003), and β3-adrenoreceptors (Kathofer et al., 2000). Interestingly, 

a recent study showed a relationship between the L-type Ca
2+

 channel and a KCNQ/M channel in 

hippocampal CA1 pyramidal neurons (Wu et al., 2008). This study indicated that the L-type Ca
2+

 

channel opener Bay K 8644 increases the KCNQ/M current, and that the selective L-type Ca
2+

 

channel blocker, nimodipine, decreases the KCNQ/M current (Wu et al., 2008). These data 

strongly suggest a functional coupling between the L-type Ca
2+

 channel and the KCNQ/M 

channel. Thus, an interesting question about the sensitivity of the KCNQ/M channels to Ca
2+

 

appears. The KCNQ/M channels show some sensitivity to intracellular Ca
2+ 

(Delmas & Brown, 

2005) possibly because of a binding site of calmodulin operating as a Ca
2+

 sensor in the C-

terminus of the channels (Bal et al., 2008; Haitin & Attali, 2008). The effects of intracellular 

Ca
2+

 on the modulation of the KCNQ/M channels, however, are discrepant. Intracellular Ca
2+

 has 



 149 

been reported to both increase and decrease the KCNQ/M channel-mediated current; its effect is 

dependent on [Ca
2+

]i and the current is enhanced with an increase in [Ca
2+

]i when [Ca
2+

]i is less 

than 200 nM (Tokimasa, 1985; Marrion et al., 1991; Yu et al., 1994; Marrion, 1996; Selyanko & 

Brown, 1996; Cruzblanca et al., 1998; Gamper & Shapiro, 2003; Gamper et al., 2005). Our data 

also showed that the OC isolated as a tail current in ICa medium was sensitive to the Ca
2+

 channel 

blocker, Cd
2+

 (Liu, 2004), and to the selective L-type Ca
2+

 channel blocker, nifedipine. 

Furthermore, the outward current was also blocked by nifedipine in TEA/physiological solution. 

These studies suggest that there might be a possibility that the OC couples to the L-type Ca
2+

 

channel in MNCs. However, an increase in the OC in response to acute hypertonic stimulation 

may be not attributed to an increase in the L-type Ca
2+

 current because the OC still displays an 

increase in the presence of nifedipine when the cells are switched from 295 to 325 mosmol kg
-1

 

external solutions (Figure 4.8). In addition, an increase in the L-type Ca
2+

 current was small and 

not significant after the MNCs isolated from normal rat were cultured in 320 mosmol kg
-1

 

physiological PIPES solution for about 90 min. 

 

5.4 Significance of these studies 

The osmotic pressure of the ECF in mammals has to be set at an ideal point, and VP is 

the hormone primarily responsible for its maintenance (Bourque, 1998). MNCs sense small 

changes in external osmolality to change their electrical activity and thus determine the release of 

VP (Bicknell, 1988; Bourque & Oliet, 1997). The uncontrolled synthesis and release of VP leads 

to a number of physiological perturbations and diseases (Bourque & Oliet, 1997). The MNCs 

change their electrical behaviour through the regulation of ion channels (Bourque, 2008), 

especially osmosensitive ion channels. Our studies indicate that sustained dehydration causes an 
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increase in the L-type Ca
2+

 current in the MNCs, and such an increase may contribute to the 

modulation of MNC firing, hormone release, and adaptation during sustained dehydration. In 

addition, our studies also demonstrate that a KCNQ/M-like current is increased by acute 

hypertonic stimulation and that this current may be able to regulate the rate and pattern of MNC 

firing and hormone release. The identification of this current may lead to a better understanding 

of the mechanisms of the transition between fast continuous to burst firing in MNCs. Therefore, 

our studies will be beneficial to understand the mechanisms that control VP and OT in response 

to acute changes in osmolality and also the mechanisms underlying MNC adaptation during 

sustained dehydration, and may be helpful for the treatment of these related diseases and the 

improvement of health. 

 

5.5 Future directions 

 For L-type Ca
2+

 channel project, future studies will investigate whether an increase in 

the L-type Ca
2+

 current causes the modulation of Ca
2+

-dependent potentials, somatodendritic 

release, gene expression, and MNC hypertrophy. In addition, future studies will also investigate 

and whether the increase is attributed to a reversible translocation of the channels from internal 

storage sites to the plasma membrane and/or an enhancement of the channel activity.  

For the OC project, future studies will investigate whether an increase of the OC in 

MNCs displaying fast continuous firing can cause the transition between fast continuous to burst 

firing or the generation of phasic firing. In addition, future studies will also investigate whether 

the OC affects the DAP and the associated plateau potential by hyperpolarizing the cells, and 

whether the OC contributes to an AHP. The molecular nature of the OC remains unknown. Co-



 151 

immunoprecipitation studies on KCNQ/M channels and knock down of KCNQ current using 

antisense and/or siRNA techniques will help to determine whether the OC is mediated by a 

KCNQ/M channel and which subtype of the KCNQ/M channels mediates the OC if it is a 

KCNQ/M current. If the knockout mice of some KCNQ/M channel genes are able to be obtained, 

the molecular nature of the OC may be confirmed in the MNCs. In addition, the mechanisms of 

the OC underlying osmosensitivity need to be explored. Mechanical force, or changes in cellular 

signaling events or ionic strength due to osmotic stimuli, may be responsible for the 

osmosensitivity of the OC. 
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6. CONCLUSIONS 

Our data indicate that there is a selective increase in the L-type Ca
2+

 current in MNCs 

during sustained dehydration. Such an increase may be attributed to an increase in functional 

channel numbers of plasma membrane and/or channel activity and may contribute to plastic 

changes in the SON during sustained dehydration. 

In addition, we have also identified a slowly activating osmosensitive current in 

acutely isolated MNCs from rat SON, and many properties of this current suggest that it could be 

mediated by a subtype of the KCNQ/M channels. Slow activation of this current during MNC 

firing might suppresses activity by hyperpolarizing the cell and this contributes to the transition 

between fast continuous and burst firing. Thus, this osmosensitive current might contribute to 

promotion of phasic firing in the MNCs and thus regulate the release of hormone. 
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