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ABSTRACT 

Monoamine oxidase (MAO) is a mitochondrial deaminating enzyme that exists as 

two isoforms, MAO-A and -B. The MAO-mediated reaction generates hydrogen peroxide 

(H2O2) as a normal by-product. Dysregulation of MAO has been implicated in a variety 

of neuropsychiatric and neurodegenerative disorders, as well as in the aging process. 

Endogenous regulators of MAO-A function include calcium (Ca2+) and the p38 

mitogen-activated protein kinase (MAPK). Although the effect of p38(MAPK) is thought 

to rely on induction of mao-A gene expression, post-translational modification of the 

MAO-A protein is also possible.  

Using standard biochemical approaches in combination with pharmacological 

interventions and recombinant DNA strategies, specific aspartic acid residues (within 

putative Ca2+-binding motifs) were demonstrated to contribute to MAO-A activity. 

Furthermore, MAO-A activity and its sensitivity to Ca2+ was negatively regulated by the 

p38(MAPK), which is usually activated during cell stress. The effect of p38(MAPK) on 

MAO-A function relies specifically on Serine209 in MAO-A, which resides in a 

p38(MAPK) consensus motif. The serine phosphorylation status of MAO-A determines 

its capacity for generating peroxy radicals and its toxicity in established cell lines (e.g. C6, 

N2a, HEK293A, HT-22) and in primary cortical neurons. p38(MAPK)-regulated MAO-A 
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activity is also linked to neurotoxicity associated with the Alzheimer disease-related 

peptide, β-amyloid (Aβ). These data suggest a unique neuroprotective role for 

p38(MAPK) centered on a negative feedback regulation of the Ca2+-sensitive, 

H2O2-generating enzyme MAO-A. 
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1  LITERATURE REVIEW 
 

Monoamine amine oxidase, intracellular Ca2+ levels, and certain cellular signal 

transduction cascades, such as the p38(MAPK) pathway, are known to play important 

roles in the process of aging, in neuropsychiatric disturbances, and in neurodegeneration. 

In the present study, a new mechanism based on monoamine oxidase, p38(MAPK) and 

Ca2+ was characterized and shown to contribute to pathological cell function. This review 

of the literature will include a review of the MAO literature, a brief review of the relevant 

literature on the cellular effects and regulation of Ca2+, and a brief review of the 

p38(MAPK) literature as it pertains to toxicity.  

 

1.1 Monoamine oxidase 

Monoamine oxidase (MAO) [amine: oxygen oxidoreductase (deaminating) 

(flavin-containing); MAO; E.C. 1.4.3.4] is an enzyme located on the outer membrane of 

the mitochondria in most cell types [1]. Its physiological function is the oxidative 

deamination of biogenic and xenobiotic monoamines in the central nervous system (CNS) 

and peripheral tissues. The general reaction is RCH2NH2 + H2O + O2 → RCHO + NH3 + 

H2O2, wherein oxygen is used to remove an amine group from a substrate molecule, 
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resulting in the generation of the corresponding aldehyde (RCHO), as well as ammonia 

(NH3) and hydrogen peroxide (H2O2) (Fig. 1). 

 

1.1.1  Discovery and nomenclature 

The enzyme was first discovered in human liver tissue and due to the simultaneous 

oxidation and deamination of tyramine, was named tyramine oxidase [2]. Almost ten 

years later, it was established that epinephrine, norepinephrine, and dopamine were also 

substrates for this enzyme and it was renamed monoamine oxidase (MAO) [3]. MAO has 

two isoforms, MAO-A and MAO-B [4] that, although having evolved from the same 

ancestral gene [5], are encoded by two different genes [6] located tail-to-tail on the Xp 

11.23-Xp 22.1 short arm [7, 8]. Both gene sequences are comprised of 15 exons and 14 

introns that span at least 60 kb [5], resulting in a 70% sequence similarity in both genes 

[6].  

 

1.1.2  Amine oxidase classification 

Amine oxidases are classified on the basis of their chemical structures [9] and many 

can be categorized according to their co-factors. One group contains flavin adenine 

dinucleotide (FAD) and the other contains copper (Cu2+) and topaquinone as second 

cofactors. FAD-containing amine oxidases can be subdivided into mitochondrial 

monoamine oxidases (MAOs) and cytoplasmic polyamine oxidases. Copper-containing 

amine oxidases are often named according to their specific substrates, such as 
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Fig. 1: Reaction pathway of monoamine metabolism by oxidative deamination by 

mitochondrial MAO. The primary product of MAO acting on a monoamine is the 

corresponding aldehyde. The aldehyde is rapidly further oxidized by aldehyde 

dehydrogenase (ADH) to a carboxylic acid, which is the final excreted metabolite. Note 

that the FAD-FADH2 cycle generates hydrogen peroxide which itself requires 

inactivation by catalase or, in the brain, glutathione peroxidase.  
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semicarbazide-sensitive amine oxidase (SSAO) [10], which can be inhibited by cyanide 

and semicarbazide [11]. These amine oxidases have their own specific substrates and 

inhibitors. For example, SSAO is not inhibited by clorgyline and deprenyl, which are 

specific MAO inhibitors [12]. 

 

1.1.3  Specificities of inhibitors and substrates, and tissue distribution of MAOs 

The two MAO isoforms differ in their specificities for inhibitors [13-15] and 

substrates [4, 12, 15, 16], as well as in their cellular and tissue distributions [17-20]. 

MAO-A is inhibited by clorgyline at low concentrations, with recovery of MAO-A 

activity and protein levels within 14 days [21], and metabolizes serotonin, noradrenaline, 

and adrenaline. MAO-B is inhibited by l-deprenyl at low concentrations, and metabolizes 

benzylamine and beta (β)-phenylethylamine. Clorgyline and deprenyl do not exert any 

significant influence on other amine oxidases, such as diamine oxidase and SSAO [12]. 

In humans, dopamine is metabolized by MAO-B [22] or by both isoforms [23] and in rats 

by MAO-A [4, 24]. In most species, dopamine, tyramine, and tryptamine are common 

substrates for both MAO isoforms [15, 25, 26]. However, this is not an absolute rule, as 

under different conditions and in different species various biogenic amines can be 

metabolized by both forms of MAO [16]. For example, both enzymes show broader 

substrate preference at a high substrate concentration [12]. Furthermore, the xenobiotic 

and dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can be 
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oxidized by MAO-B to form a neurotoxic substance, MPP+, that can cause permanent 

Parkinson-like symptoms in human, although not in rodents [27-29]. 

The distribution of MAO-A and MAO-B in various tissues of different species has 

been investigated using specific inhibitors in combination with immunohistochemical, 

enzyme autoradiographic, and in situ hybridization techniques. MAO has been detected 

in rodent, cat, rabbit, cow, dog, gerbil, monkey, and human brain tissues [17-20, 30-42]. 

In the human brain, MAO-A exists predominantly in catecholaminergic neurons, while 

MAO-B is found in serotonergic neurons and glial cells [18, 30, 43-45]. The role of 

MAO in these mismatching regions may protect neurons from stimulation by oxidizing 

extraneous amines that can act as false neurotransmitters [30, 43]. In the brain, the 

highest expression of MAO-A is found in the locus coeruleus, whereas the highest 

expression of MAO-B is found in the raphé nuclei [18, 46]. Studies on MAO activity in 

the human brain reveal region-specific levels. For example, MAO-A activity occurs in 

the locus coerulus, the nucleus subcoeruleus, and the medullary reticular formation > 

hypothalamus > amygdala > hippocampus > accumbens > substantial nigra > frontal 

cortex > cerebellum, whereas MAO-B activity occurs in the raphé nuclei > nucleus 

centralis superior > hypothamlamus, accumbens > caudate, hippocampus > amygdala > 

substantia nigra > frontal cortex > cerebellum [30, 38]. In peripheral tissues, the two 

MAO isoforms often co-localize. Indeed, the regional distribution patterns of MAO-A 

and MAO-B do not differ markedly, except in the kidney and in the duodenum. The 

highest level of MAOs is found in the liver and the lowest in the spleen. In lung and 
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duodenal mucosa, MAO-A is more abundant than MAO-B, and in myocardium more 

MAO-B is found than MAO-A [32, 47]. Finally, the human placenta predominantly 

expresses MAO-A [21], whereas human platelets and lymphocytes express only MAO-B 

[48].  

The distribution of mRNA transcripts of MAO-A and MAO-B in human fetal tissues 

also varies, with relative concentrations for MAO-A being: small intestine ≥ placenta ≥ 

lung ≥ muscle ≥ kidney ≥ brain ≥ spinal cord ≥ meninges ≥ liver > spleen > adrenal 

gland; and for MAO-B, small intestine > kidney ≥ liver > adrenal gland > heart > spinal 

cord > lung [17, 47].  

The widespread tissue distributions of MAO mRNAs, proteins and respective 

activities do not always directly correlate. 

 

1.1.4  MAOs change during development and aging 

The study of MAOs during development and aging is very important as it is believed 

that monoamine neurotransmitters play an important role during morphogenesis [49-52]. 

At very early stages of neural tube formation, neurotransmitter monoamines act as 

multifunctional regulators by acting on second messenger systems. After neurulation, 

these neurotransmitters play an important role, not only in normal neural transmission, 

but also in neural differentiation and morphogenesis. As such, any change in MAO 

responsible for metabolizing these important monoamine neurotransmitters would have 

vital influences on brain structural and functional development [53]. Northern blot 
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analysis on the human fetal brain (19 weeks) reveals that MAO-A and MAO-B mRNA 

are expressed in similar brain regions [17], although the level of MAO-A transcript is 

generally higher than that of MAO-B. In the human fetal brain, activity of MAO-A 

presents well before that of MAO-B, and MAO-A activity is almost at adult levels at the 

time of birth, with little or no increase with aging. In contrast, MAO-B activity is low at 

birth, but increases steadily with aging [54-57]. MAO activity in rodents shares the same 

pattern as that in humans. In the brains of rats and mice, MAO-A activity shows a clear 

decrease between 4 and 9 weeks, a stable level between 9 weeks and 19 months, and a 

slight increase between 19 and 25 months, whereas MAO-B activity shows an age-related 

increase [34, 46]. This increase in MAO-B activity with aging may be attributed to the 

proliferation of glial cells, which is the cell type where MAO-B is predominantly 

expressed [58]. MAO-A is predominantly expressed in neuronal cells, whose overall 

number decreases with aging and even more so during neurodegeneration [59]. If this is 

the case, then little or no increase in total MAO-A activity within the aging brain suggests 

that MAO-A activity must increase in each remaining neuron. 

 

1.1.5  Cloning of human MAO 

The MAO isoforms were sequenced from human liver [6]. Both proteins, when 

overexpressed in mammalian cells, displayed similar specificities for substrates and 

inhibitors as their endogenous counterparts [60]. The deduced amino acid sequences of 

MAO-A and MAO-B consist of 527 and 520 amino acids with molecular weights of 59.7 
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kDa and 58.8 kDa, respectively, and a 70% sequence similarity. Examination of the 

primary structure of cloned MAO-A and MAO-B revealed that they are products of two 

separate genes. Northern blot analysis with MAO-A or -B cDNA probe reveals that the 

size of mao mRNA transcripts in human tissues corresponds with the cloned cDNAs [6]. 

Moreover, it has been demonstrated the cloned mao-B from human platelet is identical to 

that in the frontal cortex, thus providing a valid [peripheral] biological marker for 

determining the function of neuronal MAO-B in the human population [61]. 

 

1.1.5.1  The MAO promoter 

To understand the mechanism for regulation of transcription and cell and tissue 

distribution specificities of MAO-A and MAO-B, the promoter regions of their respective 

genes, mao-A and mao-B, have been extensively investigated. The maximal promoter 

activity is found in a 0.14 kb fragment for mao-A and a 0.15 kb fragment for mao-B. Both 

are GC-rich, containing Sp1 binding sites. The mao-A promoter fragment contains three 

Sp1 sites in reverse orientations and lacks a TATA box, which is often associated with 

down-regulation of promoter activity. Two of the Sp1 sites are located within the 

downstream 90 base pair (bp) direct repeat and the third one is at the 3'-end of the 

upstream 90 bp direct repeat. In contrast, the mao-B fragment contains a 

Sp1-CACCC-Sp1-TATA structure and deletion of any of these elements reduces 

promoter activity. Additional Sp1 sites, CACCC elements, CCAAT boxes, and direct 

repeats (four 30 bp direct repeats in mao-A and two 29 bp direct repeats in mao-B) are 
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found in both gene sequences farther upstream of the promoter [62]. Using the Sp1 motif 

of mao-A as a bait, a novel controlling factor of mao-A promoter activity (R1) has been 

cloned and shown to repress mao-A promoter activity resulting in down-regulation of 

enzyme activity [63]. Moreover, the different organization of promoters may explain the 

varying responses of MAO-A and MAO-B to stimulation. For example, phorbol 

12-myristate 13-acetate (PMA, a known activator of PKCs) treatment elevates mao-B 

gene and protein levels, while mao-A/MAO-A remains constant [64]. 

 

1.1.5.2  Three dimensional structure of MAO-A and MAO-B and their important 

domains 

MAO-A and -B cDNAs have been cloned from human, rat, mouse, rabbit, and bovine 

species. Comparison of the gene sequences of mao-A and mao-B across species reveals 

an 87% sequence similarity [65] as well as several functional motifs that contain highly 

conserved amino acid residues critical for substrate binding, an active site, co-factor 

flavin adenine dinucleotide (FAD) binding sites, and other binding sites for other factors, 

such as imidazoline binding sites (Fig. 2).  

 

1.1.5.2.1 Important amino acid residues in MAO 

 In 2001, a study demonstrated that a single amino acid residue, MAO-A (Ile-335) and 

MAO-B (Tyr-326), can switch substrate specificities and sensitivity to selective 

inhibitors between the corresponding enzymes [66, 67]. Phe-208 in rat MAO-A and  
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Fig. 2: 3-D structure of hMAO-A (similar to that of MAO-B). Ribbon representation 

of the MAO-A monomer. The FAD-binding domain (residues 13–88, 220–294, and 

400–462) is shown in blue; the substrate-binding domain (89–219 and 295–399) is 

shown in red; and the C-terminal membrane region (463–506) is shown in green. 

Residues 1–12, 111–115, and 507–527 are not visible in the electron density map. A 

dashed line connects residues 110–116. FAD and clorgyline are represented by the 

yellow and light-blue “ball-and-stick” format, respectively. The active site cavity-shaping 

loop 210–216 is depicted as the thick black line [Used with permission: De Colibus et 

al. (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): 

Relation to the structures of rat MAO A and human MAO B. PNAS 102: p12684-9]. 
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Ile-199 in rat MAO-B are also reported to contribute to substrate and inhibitor 

specificities [68], although mutations of these two corresponding residues in human 

MAOs do not cause this switch [69]. It is also reported that in human MAO-A, Lys-305, 

Trp-397, Tyr-407, and Tyr-444 and their corresponding amino acids in human MAO-B, 

e.g., Lys-296, Trp-388, Tyr-398, and Tyr-435, play important roles in MAO catalytic 

activity. The crystal structure further revealed that Lys-305, Trp-397, and Tyr-407 in 

MAO-A and Lys-296, Trp-388, and Tyr-398 in MAO-B may contribute to FAD binding. 

Tyr-407 and Tyr-444 in MAO-A (Tyr-398 and Tyr-435 in MAO-B) may be involved in 

stabilizing the substrate binding, while Asp-132 in MAO-A (Asp-123 in MAO-B) located 

at the loop of the substrate-binding site has no effect on MAO-A or MAO-B catalytic 

activity [70]. 

 

1.1.5.2.2 FAD binding sites in MAO 

 Oxidation of amines by MAO is coupled to the reduction of FAD, an essential 

cofactor. Comparison of MAO-A and MAO-B sequences from many species reveal 

several regions in MAO-A and MAO-B that are highly conserved (78~86%) [71]. These 

regions include a nucleotide-binding site near the amino terminal end that is found in the 

majority of enzymes that require FAD, and an FAD-binding site near the 

carboxy-terminal region. The location of an ADP-binding fold in the amino terminal 

region suggests this region is also involved in FAD binding [72]. FAD initially binds to 

the non-covalent flavin-binding regions near the amino-terminal region and, subsequently, 
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is covalently bound to Cys-406 in MAO-A and Cys-397 in MAO-B [73]. Another 

FAD-binding site around residues 222-227 of MAO-B in many species is highly 

conserved, and residues Gly-226 and Asp-227 are required for covalent flavinylation and 

catalytic activity of MAO-B, but not for non-covalent binding of FAD [74]. A functional 

study of all nine cysteines in human MAO-A and MAO-B reports that the MAO-A 

(Cys374Ser) and MAO-B (Cys397Ser) substitution mutants abolish the full catalytic 

activity, possibly due to the prevention of covalent binding of FAD [75]. 

 

1.1.5.2.3 Crystal structure of MAO 

 The study of the three-dimensional structure of MAO has advanced due, in large part, 

to investigations using selective irreversible inhibitors [76]. There is much similarity 

between human MAO-A and MAO-B; one difference is that human MAO-B is dimeric, 

whereas human MAO-A crystallizes as a monomer [77]. Another difference is that the 

cavity-shaping loop is larger in human MAO-A than in human MAO-B or rat MAO-A 

(note: rat MAO-A crystallizes as a homodimer), suggesting that this cavity-shaping loop 

is involved in the process of dimerization [78]. 

 

1.1.5.2.4 Membrane insertion region of MAO 

 Studies on the membrane insertion region in rat liver MAO-B reveal that deletion of 

the 28 carboxy-terminal amino acids blocks the localization of MAO-B to mitochondria. 

The fused protein of cytochrome b5 with this carboxy-terminal 28 amino acids is found 



 13 

expressed in mitochondria instead of remaining in cytoplasm [79], suggesting that the 

mitochondrial targeting signal of rat MAO-B is located within this region [79]. Similar 

studies on human MAO-B show that 30 amino acids within this region determine 

mitochondrial localization [80, 81]. Recently, crystallography has revealed that the 

carboxy-terminal amino acids 463-506 in human MAO-A are responsible for membrane 

anchoring [78].  

 

1.1.5.2.5 Imidazoline binding site on MAO 

 Imidazoline is an active pharmacological compound known to interact with its own 

receptor and signaling pathways by interacting with a family of imidazoline-binding 

proteins. Evidence indicates that MAO-A and MAO-B contain a binding motif that 

makes both proteins imidazoline binding proteins [82, 83]. The imidazoline binding 

domain in human MAO-B is contained within residues K149-M222 [84], distinct from 

the active site which determines substrate and inhibitor binding [85]. Binding of 

imidazoline inhibits MAO activity independently of the interaction with the catalytic 

region [83, 86, 87].  

 

1.1.5.2.6 Substrate and inhibitor recognition and binding domain (active site) in 

MAO 

 Inhibitor binding studies reveal that the MAO-A inhibitor clorgyline and the MAO-B 

inhibitor l-deprenyl identically bind to N(5) of the FAD moiety (recall, FAD is the 
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enzyme co-factor). The binding site is the same in MAO-A and MAO-B, suggesting that 

differing specificity on both substrate and inhibitor is dependent on the presence of 

additional recognition sites, presumably near the active site, in each isoform. Studies of 

MAO structure-inhibitory relationships reveal that the MAO-B recognition site is smaller 

than that of MAO-A [13]. The size of the recognition site allows MAO-A and MAO-B to 

differentiate substrates, whereas additional differences in their amino acids explain the 

selective interaction with different inhibitors. The region between residues 120-220 and 

residues 50-400 is responsible for determination of the substrate preference of rat liver 

MAO-A and MAO-B, respectively, while the middle portion of residues 220-400 may 

contribute to the relative catalytic activity towards their respective substrates [88]. 

Furthermore, crystal structures of the cavity-shaping loop at residues 210-216 in human 

MAO-A and 201-206 in human MAO-B [78] indicate that these may also contribute to 

substrate recognition, while residues 89-219 and 295-399 of human MAO-A may 

contribute to substrate/inhibitor-binding domains [78]. This supports the observation that 

the deletion of carboxy-terminal amino acids in human MAO-A loses the enzyme activity 

[80, 89] and explains why replacement of the carboxy-terminal amino acids of MAO-B 

with those of MAO-A imparts MAO-A activity and inhibitor specificity to the MAO-B 

protein [90]. 
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1.1.6 Neurotransmitter and behavioral changes in MAO-A or MAO-B knock-out 

models 

Examinations of MAO-A and/or MAO-B knock-out mice have clearly linked 

alterations in neurotransmitter metabolism to behavioral changes [91, 92]. Compared to 

their wild-type litter mates, MAO-A knock-out mice have increased levels of serotonin 

(5-HT), norepinephrine, and dopamine in the frontal cortex, hippocampus, and 

cerebellum [93]. Similar changes are observed in mice treated prenatally with MAO-A 

inhibitors [94], as well as in MAO-A-deficient men (this syndrome is called Brunner 

syndrome) in a large Dutch kindred [95, 96], all of which manifest aggressive behavior 

[92, 95]. Males with Brunner syndrome are deficient in MAO-A due to a mutation at 

C936T in exon 8, resulting in a premature termination, i.e., “stop”, codon [8, 96, 97]. 

MAO gene deletion is also associated with Norrie disease, which manifests as eye 

problems, mental retardation, and regression. The proximity of the two mao genes on the 

X chromosome can facilitate conditions where both genes are affected, predisposing to 

the disease [8, 98].  

Recently, overexpression of MAO-A, specifically in the forebrain of MAO-A 

knock-out mice, has been shown to restore somatosensory cortex organization similar to 

that seen in wild-type mice and to abrogate aggressive symptoms associated with the 

MAO-A knock-out genotype, apparently by replenishing levels of 5-HT, noradrenaline 

and possibly dopamine [99]. This study confirms that the neurotransmitters play 

important roles in the early stage of neuronal development [51]. 
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MAO-B knock-out mice do not manifest any change in behavior, but do present 

elevated levels of the MAO-B preferred substrate, phenylethylamine (PEA). Moreover, 

MAO-B knock-out mice are resistant to MPTP/MPP+-induced Parkinson-like pathology 

[91, 100]. MAO-A knock-out mice present some disruption of emotional learning, such 

as the classical fear conditional and step-down inhibitory avoidance, resulting from the 

chronically elevated noradrenaline and 5-HT levels [93]. Thus, both MAO-A knock-out 

or MAO-B knock-out mice provide a valuable tool with which to study of the role of 

MAO in neuropsychiatric and neurodegenerative disorders. 

 

1.1.7 MAO and related neurological disorders  

The ability of the MAO isoforms to produce the free radical substrate H2O2 as a 

by-product of neurotransmitter catabolism has drawn much attention to these enzymes 

during the study of aging, neurodegenerative diseases, and psychiatric and behavioral 

traits. 

 

1.1.7.1 MAO-A inhibition and neuropsychiatric disorders 

The altered levels and imbalance of neurotransmitters in the CNS, especially 5-HT, 

noardrenaline, and other MAO-A preferred monoamines, induce evident psychiatric and 

behavioral changes: MAO-A inhibition is effective in many neuropsychiatric disorders, 
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such as depression/aggression [91], smoking [101, 102], alcoholism [103], and 

schizophrenia [104]. 

 

1.1.7.1.1 Depression 

Depression is a state of intense sadness, melancholia, or despair that develops to the 

point of being disruptive to an individual’s social functioning and/or activities of daily 

living. It is a chronic, recurring, and potentially life-threatening illness that affects about 

7-18% of the worldwide population [105]. Clinically diagnosed depression is currently 

one of the leading causes of disability in many countries. In patients with depression, as 

well as in animal models of depression, levels of 5-HT and noradrenaline (both MAO-A 

substrates) are lower than normal [106]. MAO inhibitors were the first class of 

antidepressant agents to be developed and were commonly used from the 1960s until the 

mid-1980s [107]. However, these drugs presented serious side effects and 

food-/drug-drug interactions. This, in addition to a better understanding of the 

neurobiology of depression, led to the development of alternative therapeutic approaches, 

including novel MAO inhibitors, selective serotonin (or noradrenaline) re-uptake 

inhibitors, tricyclic antidepressants, triple monoamine re-uptake inhibitors, omega-3 fatty 

acids, melatoninergic agonists, and receptor antagonists for corticotrophin-releasing 

factor, glucocoticoid, substance-P, and NMDA receptors [108]. Developments in 

therapeutic focal brain stimulation, including vagus nerve stimulation, transcranial 

magnetic stimulation, magnetic seizure therapy, and deep brain stimulation are also being 
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considered [109]. The role of psychotherapy, both as monotherapy and as adjunct therapy, 

is also an active avenue of investigation [110]. 

 

1.1.7.1.2 MAO-A inhibition and depression 

1.1.7.1.2.1 The development of MAO-A inhibitors 

Many of the original antidepressants were developed based on the structures and the 

functions of the monoamine oxidase inhibitor iproniazid and the tricyclic agent 

imipramine [111]. The antidepressant profiles of monoamine oxidase inhibitors were 

determined serendipitously [112]. 

As a means of mood elevation, MAO inhibition was revealed during the late 1940s 

with compounds including isoniazid that were being used to treat tuberculosis patients. 

Many of the treated patients experienced an episode of mood-elevation while taking these 

drugs. In the 1950s during clinical trials, it was ultimately determined that these drugs 

could inhibit MAO activity [113]. Treatment of depression quickly began to rely on 

MAO inhibitors (MAOIs). 

 

1.1.7.1.2.2 Types of MAO inhibitors 

The first generation of MAOIs was non-selective, irreversible, caused severe side 

effects, including dizziness, sedation, insomnia, weight gain, dry mouth and sexual 

dysfunction, and included a risk of food/drug-drug interactions, such as severe 

hypertension after intake of tyramine-rich foods. This latter phenomenon, termed the 
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“cheese effect” was associated with aged and fermented foods, such as cheese and wine, 

which contain large amounts of tyramine. Tyramine is normally degraded by MAO-A 

and MAO-B in the gut and liver, but with irreversible MAO inhibition tyramine cannot 

be properly metabolized and, subsequently, enters the CNS where it affects noradrenergic 

neurons and increases the release of noradrenaline, resulting in potentially fatal increases 

in heart rate and blood pressure. These side effects severely hampered the use of the first 

generation of MAOIs in the clinic. 

The second generation of MAOIs was selective, but still irreversible, with clorgyline 

being the representative MAO-A inhibitor and l-deprenyl (also called selegiline) being 

the representative MAO-B inhibitor. Chronic treatment with clorgyline, but not 

l-deprenyl, results in the reduction of dihydroalprenolol binding (to β-adrenergic 

receptors) and cyclic AMP response to noradrenaline in the rat cortex, and the elevation 

of cytoplasmic and synaptic noradrenaline and 5-HT, which mediates pre- and 

post-synaptic receptor changes [13]. However, its use in the clinic was still hampered by 

the “cheese effect”.  

The third generation of MAOIs is selective and reversible. Moclobemide is a 

reversible inhibitor of MAO-A (RIMA). The great advantage of RIMAs is that they are 

safe to use, as their reversibility avoids the “cheese effect”. Tyramine ingested in food 

can easily replace the RIMA from MAO-A and get metabolized by both the “liberated” 

MAO-A and by the intact MAO-B (RIMAs do not target MAO-B in the gut or liver). 
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Another type of MAO inhibitor with cholinesterase inhibition is 

N-propargyl-3R-aminoindan-5yl-ethyl methylcarbamate (TV-3326). The chronic oral 

administration of this compound inhibits cholinesterase as well as neuronal MAO-A and 

MAO-B activity, but has no effect on the small intestine in rats and rabbits. This new 

inhibitor is the most promising medication in the treatment of depression and dementia in 

both Alzheimer’s disease (AD) and Parkinson’s disease (PD) [114]. 

 

1.1.7.1.2.3 MAO-A inhibition in depression 

MAO-A inhibitors are effective in the clinical treatment of depression, but their 

association with side-effects and the interactions with food and other drugs made them 

less appealing for use in the clinic, gradually being replaced by tricyclic antidepressants 

and selective serotonin reuptake inhibitors [110, 115]. 

 

1.1.7.2 MAO inhibition and neurodegenerative diseases 

1.1.7.2.1  Overview of neurodegenerative diseases 

Neurodegenerative diseases consist of a group of CNS disorders characterized by the 

gradual and progressive loss of structure and/or function of neurons, mostly resulting 

from death of neurons [116]. Neuronal death often begins long before the patient 

experiences any symptoms, which become more noticeable when many cells have died 

and certain parts of the brain can no longer function properly. Several etiologies can be 

cause for the initiation of neurodegeneration, including stroke, heat stress, trauma, 
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bleeding, and inflammation, among others. Depending on the part of the brain affected by 

neurodegeneration, a different diagnosis and disease will prevail. For example, the death 

of hippocampal and cortical neurons is responsible for the symptoms of AD; the death of 

midbrain dopaminergic neurons is responsible for the symptoms of PD; the death of 

striatal neurons which control body movement results in Huntington’s disease (HD); and 

the loss of motor neurons in the spinal cord results in amyotrophic lateral sclerosis 

(ALS). 

 

1.1.7.2.2 Molecular mechanisms well-known for neurodegeneration 

Over the past several decades, there have been many studies on the molecular 

mechanisms of neurodegeneration, with the following corresponding hypotheses: 

1) Oxidative stress: cytotoxic free radicals generated from oxidative reactions lead to 

cell damage and cell death. 

2) Calcium homeostasis: disruption of calcium (Ca2+) homeostasis and sustained 

increases in cytosolic-free Ca2+ can lead to cell death. 

3) Mitochondrial abnormalities: the function of the mitochondrial respiratory enzyme 

chain is directly impaired. 

4) Excitotoxicity: excessive excitation is harmful to cells and results in death. 

5) Immunologic mechanism: autoimmune mechanisms are responsible for a variety of 

neurological diseases. 

6) Infectious agents: different infectious agents can cause degeneration. 
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7) Toxins: MPTP/MPP+, carbon monoxide, cyanide, manganese, carbon disulfide, and 

organophosphates directly cause neuronal death. 

8) Protein misfolding: improper post-translational modifications cause protein 

misfolding, which precludes recognition or degradation by ubiquitination, resulting in 

the deposition in the extracellular or intracellular environment which might be toxic 

to neurons. 

9) Trace metal level alteration: accumulation of iron or aluminum and other trace metals 

or the reduction of selenium or magnesium can directly influence the functions of 

neurons. 

 

1.1.7.2.3 Parkinson’s disease 

1.1.7.2.3.1 Brief overview 

Parkinson’s disease (PD) was first described by James Parkinson in 1817 and is the 

second most-prevalent neurodegenerative disorder in the western world, with a 

prevalence of 1% at 65 years and 5% at 85 years [117]. Although the etiology of PD is 

still unknown, it is characterized by the selective and progressive loss of dopaminergic 

neurons resulting in the depigmentation of the substantia nigra [118, 119]. The depletion 

of dopamine within the striatum results in the dysregulation of motor functions, thus 

inducing the clinical symptoms classically associated with PD, including slowness of 

movement, muscular rigidity, resting tremor, and postural instability [120]. Controlling 

symptoms by the manipulation of an exogenous dopamine precursor 
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L-3,4-dihydroxyphenylalanine (L-DOPA) is the basis of therapy for this disease [121]. 

Subsequent advances in therapy included combining L-DOPA with a peripheral 

decarboxylase inhibitor to allow more L-DOPA to enter the brain and, similarly, 

catechol-O-methyltransferase (COMT) inhibition to prolong the half-life of L-DOPA and 

dopamine. However, these cannot prevent progression of the disease. A better 

understanding of the neuropathology of PD and the need for new treatment strategies has 

led research into MAO inhibition, dopamine receptor agonism, glutamate antagonist 

therapy, antiapoptotic approaches, mitochondrial protection therapy, free radical 

scavenger therapy, gene therapy, neurotrophic factor therapy, stem cells, 

neurotransplantation, and neurosurgery as possible courses of action [120, 122]. 

 

1.1.7.2.3.2 MAO inhibition and Parkinson’s disease 

MAO-B inhibition is routinely used in the clinical treatment of PD. Dopamine is a 

common substrate for MAO-A and MAO-B, but in human basal ganglia, MAO-B is 

much more abundant. A strong basis for the eventual clinical use of l-deprenyl in PD 

patients began with experimentation in the 1970s [123] and was championed by the 

observation that l-deprenyl in combination with L-DOPA slowed down the progress of 

degeneration of dopaminergic neurons better than L-DOPA alone, without adverse 

effects such as the “cheese effect” [124-126]. Involvement of MAO-B was confirmed 

with the pro-neurotoxin N-methy-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) that can 

be transformed to MPP+ by MAO-B and is toxic to dopaminergic neurons in the 
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substantia nigra in animal models, resulting in PD-like neurodegeneration. Pretreatment 

with l-deprenyl protects these neurons [27, 28] and MAO-B knock-out mice are resistant 

to MPTP-induced neurotoxicity [58]. MAO-B inhibition remains a valid treatment in PD.  

Recent research evidence demonstrates that the effect of l-deprenyl on protecting the 

cells confronted with apoptotic stimulations may be independent of inhibition of MAO-B 

activity since neuroprotection is associated with concentrations of the drug that are too 

low to inhibit the enzyme [127, 128]. These so-called neuroprotective effects of 

l-deprenyl and related compounds, such as rasagiline, include activation of Bcl-2 family 

members, elevation of SOD and GSH levels, up-regulation of tyrosine hydroxylase (TH) 

and aromatic amino acid decarboxylase (AADC) [129-132], interactions with the 

mitochondrial pore complex, and modulation of amyloid precursor protein cleavage 

[133-135]. 

Recently, RIMAs such as moclobemide have been used to treat PD patients because 

of the limited side effects associated with them, particularly the diminished 

tyramine-associated “cheese effect” [136]. An additional factor is that MAO-A is also 

responsible for dopamine metabolism in vivo. In autopsied brains of patients who 

received clorgyline or l-deprenyl prior to death, dopamine levels are not as elevated as 

much as those of 5-HT, noradrenaline, and PEA, suggesting that the two isoforms of 

MAO are redundant in terms of dopamine metabolism [124, 137, 138]. Additionally, 

treatment with moclobemide increases dopamine release in rodent brains [136] and 

improves motor functions in PD patients [139]. Another advantage of RIMAs, such as 
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moclobemide [140], brofaromine [141], and befloxatone [142], is that dopamine in 

excess of that required for the binding to its receptors can displace moclobemide and get 

degraded [107]. 

Moclobemide is also used to treat PD patients, due to its anti-depressant properties. 

20-40% of PD patients also suffer from depression as a result of significant reductions of 

noradrenaline in the locus coeruleus and of 5-HT in the raphé nucleus, levels of which are 

enhanced following treatment with moclobemide [143]. 

 

1.1.7.2.4 Alzheimer’s disease 

1.1.7.2.4.1 Brief overview 

Alzheimer’s disease is the most prevalent of the neurodegenerative disorders, perhaps 

as a consequence of an ever-increasing aged population. AD affects 2-3% of people aged 

65 years, with a prevalence that doubles every five years after the age of 65 and increases 

drastically to 25-50% in people aged 85 years. It is reported to affect more than 24.3 

million people worldwide, with 4.6 million new patients every year. The number of 

people afflicted with AD doubles every 20 years, with the total expected to reach 81.1 

million by 2040 [144, 145].  

This neurodegenerative disorder is named after the German psychiatrist, Dr. Alois 

Alzheimer. In 1901, one of his patients, Mrs. Auguste D., was the first person to be 

diagnosed with AD. This disease is characterized by the onset of a progressive 

impairment of memory, associated with cognitive impairment, declining ability to 
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perform daily activities, and neuropsychiatric symptoms, or behavioral changes. The 

earliest symptom is loss of memory, i.e., forgetfulness, which deteriorates as the disease 

progresses. Gradually, cognitive impairment, such as loss of attention, recognition and 

decision-making, combines with dysfunction of language, movement control, and 

dementia. Three pathological changes are observed in AD patient brains: (1) prominent 

neuronal loss in temporoparietal and frontal cortex; (2) extracellular amyloid plaques 

composed of beta-amyloid (Aβ); and (3) intracellular neurofibrillary tangles composed of 

hyperphosphorylated tau. The exact etiology is still unknown, but according to 

epidemiological and genetic studies, 5-10% of cases are identified as an autosomal 

dominant disorder leading to familial [early onset] AD that presents before the age of 65 

[146]. These cases are linked to mutations in the amyloid precursor protein (APP) and 

presenilin (PS) genes, and these mutations have all been linked to increased Aβ 

production. However, the majority of cases are sporadic [late onset] AD and thought to 

result from an interaction between genetic and environmental risk factors during the 

process of aging [145]. A large study based on 11884 pairs of twins revealed that the 

influence of heritability for sporadic AD is up to 80% in both females and males [147]. 

The actual molecular mechanisms of AD could include Aβ production and its 

aggregation and deposition within plaques, tau hyperphosphorylation with tangle 

formation, oxidative stress, neurotransmitter disturbances, excitotoxicity, mitochondrial 

dysfunction, inflammatory processes, and neurovascular dysfunction [145, 148-150]. 

Based on these hypotheses, a variety of treatments have been used in the clinic, including: 
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acetylcholinesterase inhibitors to maintain the level of acetylcholine in both hippocampus 

and neocortex where it is important for memory formation [151]; NMDA receptor 

antagonists to prevent neuronal excitotoxicity induced by glutamate/NMDA receptor 

activation [152]; secretase modulators, for example, β-secretase inhibitors [153], 

γ−secretase inhibitors [154], and/or α-secretase activators [155] to “force” APP 

processing down the non-amyloidogenic pathway (thereby reducing Aβ production) 

[156]; Aβ fibrillization inhibitors, such as small peptides (these would prevent the toxic 

β-sheet conformation of Aβ, by inhibiting the interaction of Aβ  with various modulators) 

[157]; copper and zinc chelators (prevent the effect of metal ions on Aβ  deposition) 

[158]; anti-tau drugs (decreasing phosphorylation of tau proteins) [159, 160]; 

anti-oxidants [149]; estrogen supplements [161]; anti-cholesterol drugs [162]; 

anti-inflammatory drugs [163]; Aβ  immunotherapy [164]; and MAO inhibitors [165, 

166]. 

 

1.1.7.2.4.2 Oxidative stress in Alzheimer’s disease 

Besides Aβ toxicity and tau hyperphosphorylation, oxidative stress is another 

well-accepted causal factor in AD pathology. Oxidative stress results from an imbalance 

between the production of reactive oxygen species (ROS) and the system’s ability to 

detoxify the ROS or to repair ROS-induced damage (i.e., lipid peroxidation and DNA 

damage). This often occurs when the body’s antioxidant defenses are unable to cope with 

a large free radical load. An important source of ROS is the mitochondrion, which 
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produces these radicals during normal oxidative respiration. Another important source is 

H2O2-generating enzymes, such as MAOs (Fig. 3). There is a great deal of evidence 

suggesting that oxidative stress plays a crucial role in the initiation and progression of 

AD [148, 149]. This is supported by the observation that ROS, such as H2O2, can mediate 

Aβ neurotoxicity [167] and by the elevated oxidative damage in transgenic mouse models 

of AD [168, 169]. 

 

1.1.7.2.4.3 MAO inhibition in Alzheimer’s disease 

Both neuronal MAO-A and MAO-B have been implicated in AD. MAO-B activity 

and mRNA have been reported to be increased in platelets of AD patients [170, 171], as 

well as in the hippocampus, thalamus, and cerebral cortex, which are regions that 

undergo much neuronal cell death during AD [172, 173]. The MAO-B increase is 

presumably due to the increase in glial cells in these areas, as MAO-B is mainly 

expressed in glial cells. These glial cells have been found in the proximity of Aβ plaques 

[43, 174, 175]. 

The contribution of MAO-A to AD is not as clear. Reports indicate that MAO-A 

activity and mRNA are elevated in several AD brain areas including the occipital cortex, 

frontal lobe of neocortex, parietal cortex, and locus ceruleus [173, 176, 177], as well as 

caudate nucleus, thalamus and white matter [178]. Other reports indicate that total 

MAO-A activity decreases in AD brains [59, 176]. However, the 31% decreased MAO-A 

activity in locus ceruleus is demonstrated to be concomitant with a nearly 70~80% 
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Fig. 3: The mechanism of neurotoxicity induced by iron and hydrogen peroxide via 

the Fenton reaction. Metabolism of monoamines by MAO is a source of hydrogen 

peroxide (H2O2) in the brain. Normally the H2O2 is then inactivated by glutathione 

peroxidase (GPO), but it can be converted, chemically, by Fe2+ ions (Fenton reaction) 

into the highly reactive hydroxyl radical. This radical has widespread deleterious effects 

which can cause neuronal damage and death. When GSH levels are low and MAO and 

Fe2+ are increased, the possibility of shuttling H2O2 via the Fenton reaction is 

correspondingly increased. Oxidative damage to neurons is a direct consequence of this 

reaction. 
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neuronal cell loss [59, 176, 179], which suggests that the average MAO-A activity per 

surviving neuron actually increases [176]. In AD patients, total MAO-A activity or the 

number of MAO-A immunoreactive neurons is further implicated in cognitive decline 

[59]. Moreover, 3,4-dihydroxy-phenylglycolaldehyde, the metabolic product of the action 

of MAO-A on norepinephrine, is increased in locus ceruleus, which is vulnerable during 

AD, thus further associating a toxic effect for MAO-A and neuronal loss in AD [179]. 

Estrogen, a neuroprotective hormone, can selectively decrease MAO-A activity and 

mRNA levels in many brain areas [180, 181], which further supports a contribution by 

MAO-A to neuronal cell death. In serum withdrawal-induced neuronal apoptosis, 

MAO-A activity is selectively increased as is the activation of the pro-apoptotic 

caspase-3 [182, 183]. H2O2 generated by MAO induces cell apoptosis in kidney [184], 

while MAO-A, not MAO-B, can bind with an endogenous neurotoxin, 

N-methyl(R)salsolinol, to reduce mitochondrial membrane potential (Δψm), thus 

suggesting an additional means of inducing cell apoptosis [185]. These 

neurodegenerative mechanisms may all contribute to AD and PD.  

mao-A, but not mao-B, gene polymorphisms are tightly associated with the 

neurological changes in AD [186]. In a recent study, mao-A gene polymorphism 

combined with serotonin transporter gene polymorphism and Apoε4 was clearly linked to 

late onset AD patients [187], indicating the synergistic potential of various risk factors in 

AD. Furthermore, administration of olanzapine (an atypical antipsychotic with 
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neuroprotective potential to AD-related toxicity [188]) significantly increased mao-A 

mRNA levels in rat frontal cortex [189]. 

MAO-A and MAO-B inhibition are both used as treatment strategies in AD. The 

MAO-B inhibitor l-deprenyl inhibits the accumulation of fibrillar Aβ [190]. It is also 

reported that l-deprenyl can reverse age-related memory impairment [191]. However, 

these neuroprotective effects may rely on mechanisms independent of MAO-B inhibition, 

as the concentrations used are lower than those required for MAO-B inhibition, yet they 

do stimulate nitric oxide production and vasodilatation [192] as well as block apoptosis 

[127, 131, 193]. MAO-A inhibitors, especially RIMAs, such as moclobemide, are mainly 

used in the treatment of cognition impairment and depression in AD patients [194]. 

These combined data support important roles for MAO-A and MAO-B in 

neuropsychiatric and neurodegenerative disorders. Although the exact mechanisms 

involved remain unclear, a valid assumption is that part of their effects rely on H2O2 

production during the enzymatic reaction. 

 

1.2 Intracellular Ca2+ signaling 

1.2.1  Intracellular Ca2+ concentration and adjustment 

Calcium is the most abundant mineral and cation in the body, accounting for 

approximately 1.5% of total body weight. 99% of calcium is stored in bones and teeth, 

and the other 1% is distributed between extracellular fluids and intracellular space, such 

as cytosol, mitochondria, endoplasmic reticulum, and nucleus [195]. In the extracellular 
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fluids, 46-50% of calcium is ionized as Ca2+, which is the only bio-active form; 40% is 

combined with Ca2+-binding protein such as albumin; less than 10% of Ca2+ is bound 

with citrate or phosphate and sulphate groups to make complexes. In resting cells, 

intracellular Ca2+ is maintained at a low concentration (~0.1 μM), which is 10,000 times 

lower than that found extracellularly [195].  

Ca2+ plays a crucial role in the anatomy, physiology, and biochemistry of cells and 

organisms, particularly in cellular signal transduction pathways. Therefore, the 

concentration of intracellular Ca2+ needs to be tightly regulated. When cells are 

stimulated, extracellular Ca2+ enters cells by voltage-dependent Ca2+ channels or 

receptor-operated channels, such as NMDA glutamate receptors, or storage-operated 

channels when storage in endoplasmic reticulum (ER) is low or depleted. Within the cells, 

a transient Ca2+ elevation can be sequestered by intracellular organelles, such as the 

endoplasmic reticulum, the mitochondrion, or the nucleus. Ca2+ also can be bound with 

numerous Ca2+-binding proteins, such as calmodulin and calbindin D28K, which is an 

important buffering protein for Ca2+ in the brain [196]. Ca2+ extrusion through the 

plasma-membrane Ca2+-ATPase and Na+-Ca2+ exchangers is another means of decreasing 

Ca2+ levels back to resting levels [197].  

The ER and mitochondria are intracellular organelles that are bi-directional in that they 

are involved in both uptake and release of free Ca2+, so as to control levels within the 

cytoplasm. This has been shown during many cellular functions, including gene 

expression, protein processing, neurotransmitter release, neuronal outgrowth, synapse 
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formation, and neuronal signal propagation (Fig. 4). The ER is important for the uptake 

of most of the elevated cytosolic Ca2+ (following influx) and it accomplishes this by way 

of Ca2+ pumps, named sarco- and endo-plasmic reticulum Ca2+ ATPases. The luminal 

concentration of free Ca2+ in ER can reach 1 mM [198, 199]. The mitochondrion is the 

second most important organelle associated with uptake of free Ca2+ by a specific Ca2+ 

carrier, a uniporter, which can be allosterically activated by Ca2+. Although its molecular 

nature is still unclear [200], a recent patch clamp study suggests it as a Ca2+-selective ion 

channel [201]. Its Ca2+-uptake ability is also greater than previously believed as it has 

recently been shown to accumulate Ca2+ up to 800 μM in stimulated intact chromaffin 

cells [202]. Mitochondrial Ca2+ uptake is dependent on Δψm [203]. When a large local 

Ca2+ elevation by plasmic ion channels or Ca2+ release from the ER occurs, it will drive 

the mitochondrion to use the full respiratory capacity to accumulate Ca2+ [204, 205]. 

Various stimuli can also induce the release of Ca2+ from these organelles back to 

the cytoplasm to trigger or maintain cellular processes. The release of Ca2+ from the ER 

is initiated by the activation of receptors such as the inositol 1,4,5 triphosphate (IP3) 

receptor and the ryanodine receptor (RyR) on its membrane, the latter receptor being 

important for Ca2+-induced Ca2+ release [206]. An additional process relies on the high 

Ca2+ concentration gradient between intra- and extra-ER environments that provides the 

driving force for Ca2+ release [207, 208]. Ca2+ release from the mitochondrion is operated 

by the Na+-Ca2+ exchanger [209, 210], the H+-Ca2+ exchanger [200, 211] and a transient 
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Fig. 4: Ca2+ signalling depends on Ca2+ from several sources. (in brief) Intracellular 

cytoplasmic Ca2+ (Ca2+
C) levels can increase either from sources outside the cell (Ca2+

O) 

or from stores within the endoplasmic reticulum (Ca2+
ER). Ca2+

O may enter through (1) 

voltage-operated Ca2+ channels (VOCs) in excitable cells such as neurons or muscle 

cells, or (2) receptor-operated Ca2+ channels (ROCs) in response to neurotransmitters. 

Storage-operated Ca2+ channels (SOCs; 3) open when the internal Ca2+ stores are 

depleted; these are mainly found in excitable cells. Ca2+
ER is released by two types of 

channels. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is generated by the action of the 

enzyme phospholipase C (PLC) on phosphatidylinositol 4,5- bisphosphate 

(PtdIns(4,5)P2) at the plasma membrane, in response to the action of growth factors, 

hormones or neurotransmitters at receptors (R). Ins(1,4,5)P3 acts on receptors in the 

endoplasmic reticulum (4), which cause the release of Ca2+
ER from the store. Ryanodine 

receptors also mediate the release of Ca2+
ER (5). Some of the Ca2+

ER is rapidly taken up by 

the mitochondria (Ca2+
m) and is then recycled to the endoplasmic reticulum (7). If the 

mitochondria become overloaded with Ca2+
m, the result is abnormal mitochondrial 

metabolism (8), which may activate programmed cell death. (Used with permission: 

Berridge et al. (1998) Calcium-a life and death signal. Nature 395: p. 645-648) 
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formation of the mitochondrial permeability transition pore (mPTP) [212, 213], which is 

known to minimize the effect of toxic Ca2+ loads on the mitochondrion [205]. 

 

1.2.2  Ca2+ homeostasis and neuronal fate 

Ca2+ homeostasis is the mechanism by which the body maintains proper Ca2+ levels 

by controlling the balance between Ca2+ entry from extracellular environment or release 

from intracellular organelles, and Ca2+ buffering, uptake, or extrusion systems. It is well 

known that many cell functions are sensitive to free intracellular Ca2+ concentrations and 

that Ca2+ is one of the most common second messengers modulating signal transduction 

in response to fluctuations in its availability. The transient rise of free intracellular Ca2+ is 

helpful to cell growth, secretion, metabolism, proliferation, gene expression, etc., 

whereas sustained elevated levels of Ca2+ (improperly buffered or sequestered) will 

induce cell death by necrosis and apoptosis. Therefore, the modulation of Ca2+ signal 

demands precise regulation. 

The first evidence that Ca2+ overload could lead to toxicity came from studies based 

on glutamate/NMDA receptor activation which clearly showed that a large Ca2+ influx 

led to neuronal cell death [214]. In addition, caffeine- and ryanodine-induced 

Ca2+-release from the ER can also induce cell death [215]. Following the release of Ca2+ 

from the ER, the decrease in Ca2+ can activate stress signals that promote the expression 

of cell death-associated genes. The associated gene products (i.e., proteins) often act to 

bind with Ca2+ in ER, which further decreases Ca2+ availability and initiates a detrimental 
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feed-forward cycle ending with cell death [216]. The release of Ca2+ from the ER can 

also activate the storage-operated Ca2+ channel on the plasmic cell membrane [217, 218], 

which aggravates the cytoplasmic Ca2+ level and increases the need for mitochondrial 

Ca2+ uptake. Anti-apoptotic protein Bcl-2 is already shown to maintain Ca2+ homeostasis 

in the ER [219] and mitochondrion [220]. Prolonged elevation of cytoplasmic Ca2+ can 

activate Ca2+-dependent proteases, protein kinases, phospholipases, and endonucleases, 

which leads to protein and DNA damage and, ultimately, apoptotic cell death [221-223]. 

Recent evidence shows that toxicity associated with a cellular Ca2+-overload is 

followed by a significant Ca2+ accumulation in mitochondrion that leads to the loss of 

Δψm, ROS production, mitochondrial permeability transition pore formation, and loss of 

ATP production [205].  

Mitochondrial Ca2+-uptake occurs when cytoplasmic Ca2+ concentration rise above 

300 nM [203]. It first activates many dehydrogenases within the tricarboxylic acid cycle, 

resulting in the immediate production of ATP [224, 225]. As the accumulation of Ca2+ in 

mitochondria and the production of ATP are both dependent on the Δψm, the prolonged 

Ca2+-uptake will eventually result in a decrease in ΔΨm, with influence on ATP 

production. Without efficient ATP production, the cell cannot maintain the ionic 

homeostasis (an ATP-dependent process) and the subsequent swelling ultimately leads to 

a loss of membrane integrity and necrosis. 

An increase in mitochondrial Ca2+ enhances oxidative phosphorylation (Fig. 5). The 

ensuing generation of ROS is clearly a result of mitochondrial Ca2+ uptake as a disruption  
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Fig. 5: Mitochondria-mediated generation of reactive oxygen species relies on Ca2+. 

Highlights within this diagram are: neuronal activity is associated with Ca2+ entry via a 

variety of channels, as well as with Ca2+ release from endoplasmic reticulum via 

receptors for inositol (1,4,5)-trisphosphate (IP3R) and ryanodine (RyR). Mitochondria 

that are localized close to Ca2+ influx or release sites into the cytoplasm take up Ca2+ via 

the mitochondrial Ca2+ uniporter (Uni). NADH and FADH transfer energy from the 

tricarboxylic acid (TCA) cycle to complex I and complex II of the electron transport 

chain, which establishes a potential (150–180 mV negative to cytosol, Δψm) and a 

proton gradient (ΔpH) across the inner mitochondrial membrane. This prompts protons to 

actuate complex V (ATP synthase), for Ca2+ and for transporters like adenine nucleotide 

translocase (ANT). The activity of TCA cycle enzymes is stimulated by Ca2+ (overlap in 

circles) and generation of reactive oxygen species (ROS) occurs at complexes I and III, 

as well as α-ketoglutarate dehydrogenase in the TCA cycle. GLUT-3: glucose 

transporter-3; TH: nicotinamide nucleotide transhydrogenase; MPTP: mitochondrial 

permeability transition pore; Ex1: H+/Ca2+ exchanger; Ex2: Na+/Ca2+ exchanger; KCs: 

potassium channels. (Used with permission: Kann and Kovac (2007) Mitochondria and 

neuronal activity. Am J Physiol Cell Physiol 292: p. C641-657).  
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of ΔΨm by toxins that prevent mitochondrial Ca2+-uptake [226] and inhibition of the Ca2+ 

uniporter [227] can prevent ROS generation. ROS are most often produced by complex I 

and III in the respiration chain in a ΔΨm-dependent mechanism [228, 229]. However, 

with prolonged Ca2+-uptake, the ΔΨm decreases, so ΔΨm-dependent ROS production is 

inhibited. As this is contradictory to the observed significant ROS production during Ca2+ 

insults to cells, a ΔΨm-independent mechanism may exist [230], perhaps reflecting the 

activation of additional enzymes, such as α-ketoglutarate dehydrogenase [205, 229].  

Moreover, Ca2+ accumulation in mitochondria can induce the mitochondrial 

permeability transition pore (mPTP), which is also sensitive to ROS production [231]. 

The mPTP allows the release of glutathione and cytochrome c into the cytoplasm. The 

loss of glutathione from mitochondria weakens the ability of the mitochondria to detoxify 

excesses in ROS, while cytoplasmic translocation of cytochrome c triggers caspase 

activation and apoptotic cell death. Furthermore, cytochrome c can bind to the IP3 

receptor along with IP3, with the additive effect of releasing more Ca2+ from the ER to 

cytosol; this feed-forward cycle enhances Ca2+-induced apoptosis [232]. 

It is clear that Ca2+ as a common second messenger can both benefit and damage cells, 

depending on the delicate balance between intrusion and extrusion, as well as release and 

uptake. Ca2+ is an important mediator of neuronal activity. 
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1.2.3 Intracellular Ca2+ is elevated in neurodegenerative disorders. 

The disruption of Ca2+ homeostasis is proposed as an important molecular mechanism 

underlying neurodegeneration [233]. The loss of homeostasis can result from many 

factors, including the reduction of Ca2+-binding proteins and disruption of Ca2+-uptake to 

target organelles, and has been associated with several conditions ranging from aging to 

neurodegenerative diseases such as Alzheimer’s disease and Huntington’s disease.  

The AD-related Aβ protein is able to incorporate into the plasma membrane, where, 

amongst its diverse effects, it can precipitate the formation of Ca2+-permeable pores 

leading to massive influxes that increase intracellular free Ca2+ levels [234]. In familial 

AD, the presenilin (PS) mutants are reported to induce a higher resting concentration of 

ER Ca2+ [235]. Upon stimulation of the cells, the ER will release a proportionally larger 

amount of Ca2+ to cytoplasm [236]. In contrast, the anti-apoptotic members of the Bcl-2 

family of proteins can control the concentration of ER Ca2+ [237], apparently by a direct 

interaction with PS proteins [238].  

In Huntington’s disease, the mitochondria from patients’ lymphoblasts are more 

sensitive to Ca2+ challenge and the ΔΨm decreases at an earlier time point following a 

hyperactivity of the NMDA receptor [239].  

Ca2+-buffering is compromised during the aging process, as Ca2+-binding proteins can 

decrease by 75%, an event that is exacerbated during neurodegeneration [240-245]. 

Ca2+-binding proteins are proteins that contain a motif, the EF-hand, which is present in 

multiple copies and selectively binds Ca2+ with high affinity. Each of these domains 
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consists of a loop of 12 amino acids of 2 α helices [246]. This motif was first observed 

between the E and F helices in the classical Ca2+-binding protein parvalbumin [247], 

hence the name. Ca2+-binding proteins are expressed ubiquitously in the cytoplasm of 

neuronal processes, thereby making it a neuronal marker. Among these proteins, 

calbindin-D 28K (CB28K) is the most abundant as it accounts for approximately 1% of 

the total soluble proteins [248].  

The NMR structure of CB28K reveals it consists of 6 distinct EF-hand subdomains, 4 

of which bind with Ca2+ [249]. CB28K is neuroprotective for neurons, even in cases of 

extreme toxicity [250-253]; however, it is reduced significantly during aging, and more 

so in neurodegenerative disorders [245]. The reduction of CB28K in neurons is likely to 

decrease their capacity to buffer any excess intracellular Ca2+ and to leave them 

vulnerable to any Ca2+ overload. 

 

1.3 p38(MAPK) and its signaling pathway 

1.3.1  Brief overview of the MAPK signaling pathway 

1.3.1.1  Cell signaling 

Cells receive stimulation or signals from their environment and must respond to 

them properly in order to govern basic cellular activities and perform cellular actions. 

These signals are “transduced” to the inside of the cell where they can act on enzymes or 

other molecules, such as second messengers, to induce the corresponding cell responses. 

This process is known as signal transduction.  
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1.3.1.2  MAPK signalling pathway 

Mitogen-activated protein kinase (MAPK) pathway is a highly conserved signal 

transduction pathway in mammalian cells. It responds to many external stimuli and exerts 

a variety of cellular responses, including growth, differentiation, inflammation, survival, 

and apoptosis. The pathway, or “cascade”, involves MAPKK kinase (MAPKKK, 

MAP3K: activates MEK), MAPK kinase (MAPKK, MEK: activates MAPKs), and 

MAPKs themselves (Fig. 6). Combinations of extracellular stimuli differentially affect 

these various “upstream” kinases, and therefore result in seemingly diverse, but very 

specific cell responses. MAPKKK, MAPKK and MAPK are all serine-threonine selective 

kinases. In most cases, the MAPKKK is activated by small G proteins such as Ras, Rac, 

and Rap1. While the mechanisms involved in the activation of MAPKKs and MAPKs are 

relatively well characterized, the activation of MAPKKKs remains less clear. The 

phosphorylation of MAPKs (on specific TXY motifs, where T=threonine; X=any amino 

acid; Y=tyrosine) promotes their enzymatic activity; thereafter, they target and 

phosphorylate their downstream targets on specific serine or threonine residue(s). 

There are three kinds of core MAPKs in this family: (1) extracellular signal-regulated 

kinases (ERKs) 1 and 2 (ERK1/2); (2) c-Jun NH2-terminal kinases or stress-activated 

protein kinases (JNK/SAPK) 1-3 (JNK 1-3); and (3) p38(MAPK) α, β, γ, δ [254]. 

Sequence comparison reveals that these MAPKs share 40-45% amino acid identity [255]. 

These three MAPKs contain different TXY motifs: TEY in ERKs, TPY in JNKs, and 

TGY in p38(MAPK), all of which are located in a loop close to the active site and 
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Fig. 6: Schematic of three signaling cascades and the putative motifs targeted by 

successive kinases in the cascade. The p38(MAPK) pathway is demonstrated on the 

right. A possible sequence of events could include: a growth factor (e.g. TGF-β) binds to 

its receptor and activates TGF-β-activated kinase (TAK); this kinase would 

phosphorylate MKK3 or MKK6 on a target serine (P-S, for phospho-Serine); once 

activated, MKK3 or MKK6 can phosphorylate the dual phosphorylation, pTGpY 

(phospho-threonine,glutamine,phospho-tyrosine) motif in p38(MAPK) and activate it. 

p38(MAPK) would then target one of many substrates (including MAO-A?) to induce a 

specific cellular outcome such as inflammation, apoptosis, growth or differentiation. The 

specific cellular outcome might depend on which growth factor activated the pathway or 

how many other pathways were affected, all of which contribute to a response. 
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targeted by specific upstream MAPKKs. Stimulation by specific external factors results 

in activation by their respective (and specific) upstream kinase; MEK 1, 2 

targets/activates ERK, MEK 4, 7 targets/activates JNK, and MEK 3, 6 targets/activates 

p38(MAPK) [256]. Classically, the ERK pathway is generally involved in the control of 

cell proliferation and differentiation by mitogens and growth factors, and the JNK and 

p38(MAPK) pathways are activated by environmental stressors, such as UV radiation, 

X-rays, heat shock, osmotic shock, and inflammation by cytokines including tumor 

necrosis factor (TNF) and interleukin-1 (IL-1) [257]. 

 

1.3.2  p38(MAPK) as a regulator in neuronal cell fate and cell functions 

1.3.2.1 Isoforms and inhibitors of p38(MAPK) 

p38(MAPK) is the latest of these three MAPKs to be discovered. It was originally 

identified as a 38-kDa kinase rapidly phosphorylated in response to endotoxic 

lipopolysaccharide (LPS) [258]. There are four isoforms of p38(MAPK), α, β,  γ, and δ. 

They share significant amino acid identity; for example, if comparing with the 

p38(MAPK)-α isoform, 73% amino acid identity to the β isoform, 63% for the γ isoform, 

and 57% for the δ isoform [259-261]. However, each isoform has its specific expression, 

activation, and substrate affinity, resulting in their varied functions. p38(MAPK)-α is 

expressed ubiquitously; p38(MAPK)-β is mainly expressed in the brain and heart; 

p38(MAPK)-γ is expressed primarily in skeletal muscle; and p38(MAPK)-δ is highly 

expressed in lung, kidney, gut and salivary gland, as well as endocrinological organs, 
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such as testis, ovary, adrenal and pituitary gland [261, 262]. Depending on the 

stimulation and the cells involved, these four isoforms can be activated by different 

upstream kinases, including the high-affinity MEK3/6 and the low-affinity MEK4 [263, 

264]. However, p38(MAPK) isoforms can be inhibited by a type of anti-inflammatory 

agent, i.e. pyridinyl imidazoles, the best known being the commercially available 

SB203580, which inhibits p38(MAPK) activity by binding to the ATP binding site, but 

does not inhibit ERK or JNK, or other serine-threonine protein kinases, perhaps due to 

the different catalytic residues in the regions within or near the ATP binding pocket 

[265]. 

 

1.3.2.2  Intracellular location of p38(MAPK) 

p38(MAPK) is expressed in both nucleus and cytoplasm of resting cells, but its 

cellular localization following cell stimulation is not clear. There is evidence that 

p38(MAPK) can translocate to nucleus from cytoplasm [266] and that activated 

p38(MAPK) can be exported from nucleus to cytoplasm to activate its cytosolic 

substrates [267]. 

 

1.3.2.3 Substrates of p38(MAPK) 

Activated p38(MAPK) phosphorylates several types of substrates. The first are other 

protein kinases, termed MAPK-activated protein kinases (MKs). The p38(MAPK)/MK 

family includes the mitogen- and stress-activated kinases (MSKs), the MAPK-interacting 
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kinases (MNKs), and MAPK-activated protein kinases 2/3/5 (MK2, MK3, and MK5) 

[268]. Depending on the signal from the upstream cascade, these substrate kinases of 

p38(MAPK) can phosphorylate many other proteins, leading to diverse cellular responses. 

The second group of p38(MAPK) substrates is the main one as it includes many 

important transcription factors, such as activating transcription factor (ATF)1/2/6, SRF 

accessory protein (Sap1), growth arrest and DNA damage inducible gene 153 

(GADD153), p53, C/EBPβ, monocyte enhance factor 2A/2C (MEF2A/2C), MITF1, 

DDIT3, ELK1, NFAT, Elk-1, NFκB, Ets-1, and high mobility group-box protein 1 

(HBP1) [255, 268, 269]. Additionally, there are other types of substrates for p38(MAPK), 

such as, cPLA2, Na+-H+ exchanger isoforms-1 (NHE-1), tau, kertin 8, stathmin and the 

hyperpolarization-activated cyclic nucleotide-gated channels [270]. Some other proteins 

can also be activated indirectly by p38(MAPK), such as tyrosine hydroxylase [271], 

cAMP response element-binding protein (CREB) [272], heat shock protein 27 (HSP27), 

and tritetraproline (TTP) [255]. 

 

1.3.2.4 Cellular functions of neuronal p38(MAPK) 

The variety of p38(MAPK) substrates suggests that this pathway has a wide range of 

functions. Pharmacological inhibition and genetic mutagenesis, as well as knock-out 

animal models, provide a way to understand the functions of p38(MAPK) in 

physiological and pathological cellular events. 
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1.3.2.4.1 p38(MAPK) and neuronal differentiation 

The rat pheochromocytoma cell line PC12 is a useful cell culture for the study of 

neuronal differentiation [273]. When treated with nerve growth factor (NGF), PC12 cells 

cease to multiply and begin to extend branching processes. The induction of neurite 

outgrowth by NGF activates two MAPK pathways, ERK [274, 275] and p38(MAPK) 

[276]. This converging effect can be explained by the fact that the upstream kinase of 

ERK, i.e., MEK, not only activates ERK, but also p38(MAPK) in some situations, and 

that CREB, which is a critical transcription factor for NGF-induced cell fate [277], is 

phosphorylated by both ERK and p38(MAPK) [278]. This “cross-talk” between the 

MAPKs is an additional means of enhancing the diversity of cellular influences.  

Bone morphogenetic protein (BMP)-2, a member of the Transforming Growth 

Factor-β superfamily, also induces PC12 cell differentiation [279] and activates 

p38(MAPK), but not ERK [269, 280]. Additionally, in the growth factor-independent 

PC12 cell differentiation process, p38(MAPK) plays a facilitating role in cAMP-induced 

neurite outgrowth [281]. The participation of p38(MAPK) in neurite outgrowth is also 

demonstrated in the MN9D dopaminergic neuronal cell line; the neurite outgrowth in 

these cells induced by the overexpression of calbindin-D 28K (CB28K) accompanies 

phosphorylation of p38(MAPK) without the change of JNK or ERK [282]. 
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1.3.2.4.2 p38(MAPK) and neuronal viability 

While the JNK pathway is clearly important in neuronal apoptosis [283], the role of 

the p38(MAPK) pathway in neurons is poorly understood. Even though both can be 

activated by similar stressors in many situations, p38(MAPK) activation appears 

complicated. In many models related to apoptosis, p38(MAPK) is activated and 

phosphorylated [284-287]. However, accumulating evidence suggests that p38(MAPK) 

signaling has diverse functions, not only in the control of cell death, but also in cell 

survival. For example, hemoxygenase (HO)-1 is involved in the defense mechanism 

against oxidative stress-mediated injury that can be induced by nitric oxide (NO) in a 

p38(MAPK)-dependent mechanism [288]. The transcription mediated by estrogen, which 

is well known as a neuroprotector, is also regulated by p38(MAPK), which 

phosphorylates its co-activator GRIP1 [288, 289]. The antidepressant amitriptyline is 

reported to increase glial cell line-derived neurotrophic factor (GDNF) production and 

the activity of p38(MAPK), as well as that of JNK and ERK [290]. Moreover, in primary 

neonatal rat ventricular myocytes, p38(MAPK) activation protects cells from 

anisomycin-induced apoptosis by activation of NF-κB [291]. In HeLa cells, the activation 

of p38(MAPK) prevents apoptosis induced by photodynamic therapy with hypericin 

[292].  

The duration of p38(MAPK) activation appears to be an important determinant of 

whether prevention or induction of apoptosis occurs. In TNF-induced apoptosis, the 

kinetics of p38(MAPK) and JNK activation are biphasic. In the early phase treatment, 
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early activation of p38(MAPK) and JNK supports cell survival, whereas the activation of 

p38(MAPK) and JNK in the later phase is related to caspase-dependent apoptosis [293]. 

In contrast, the rapid and transient activation of p38(MAPK) and/or JNK in SKT6 cells 

exposed to osmotic or heat shock induces cell differentiation rather than apoptosis, 

although prolonged activation ultimately induces apoptosis [294].  

Interestingly, one upstream activator for p38(MAPK), i.e., apoptosis signal-regulating 

kinase 1 (ASK1), may contribute to the contrasting responses of cell survival and death, 

mediated by p38(MAPK) in different cell types and/or following different external 

stimuli [295-297].  

These data suggest that p38(MAPK) can determine both cell survival and/or 

apoptosis, and that the ultimate outcome may rely more on the duration of its activation 

or on the upstream signal(s) involved.  

Recent evidence suggests that activation of the JNK signaling pathway may not be an 

absolute pro-apoptotic event. In the brain of Alzheimer’s disease patients, the c-Jun 

positive neurons are negative for TUNEL, suggesting that JNK signaling might provide a 

neuronal protection against the oxidative stress and inflammation insult [298]. Therefore, 

the observed activation of neuronal p38(MAPK) in early AD [299] cannot be interpreted 

as only a pro-apoptotic signal. 
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1.3.2.4.3 p38(MAPK) and other cellular functions 

Besides cell differentiation, neurite outgrowth, neural cell survival or death, 

p38(MAPK) is also reported to be important in neuronal migration, translational control, 

endocytosis, long-term depression, embryonic development, cancer progression, etc. [269, 

300]. 

 

1.4 Linking Ca2+, MAO-A, and p38(MAPK) in a unique mechanism that 

contributes to cell fate 

1.4.1  Background  

1.4.1.1 Ca2+ signaling and the increase in MAO-A activity occur coincidently in 

many neurological disorders  

It is known that NMDA receptor over-activation elevates intracellular Ca2+ levels. 

Interestingly, NMDA receptor function is altered in hepatic encephalopathic brains [301] 

concomitantly with a selective increase in MAO-A activity [302]. In neurodegenerative 

disorders, such as AD, Ca2+ overload/calbindin reduction [244] and simultaneous changes 

in MAO activity [176] may contribute to pathological ROS production. 

 

1.4.1.2 Evidence of the direct effect of Ca2+ on MAO-A activity 

Several research groups have reported that MAO-A activity is selectively elevated by 

the addition of Ca2+ in vitro [303, 304]. In addition, neuronal MAO-A and MAO-B are 

both increased in mice treated with the Ca2+ channel agonist (+/-)-Bay K8644 [305]. 
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Moreover, the observed selective increase of MAO-A activity in senescence-accelerated 

mouse brain is blocked by the Ca2+ channel antagonist nimodipine [306]. This combined 

evidence suggests modulation of MAO-A activity by Ca2+ and, as such, the motifs known 

to bind Ca2+, such as DXDXD, DXXD, or DXXXD [307-309], should be evident in the 

amino acid sequence of the MAO-A protein. This was investigated during the course of 

the thesis work. 

 

1.4.1.3 p38(MAPK) may regulate mao-A transcription, translation, and activity 

In the mao-A promoter sequence, there is a transcription factor R1 binding sequence 

that inhibits mao-A transcription and activity [63, 310]. Both R1 repressor function and 

MAO-A activity have been linked to the p38(MAPK) pathway [182]. In PC12 cells, NGF 

withdrawal induces p38(MAPK) activity and the production of mao-A gene which further 

supports a link between p38(MAPK) and MAO-A [311]. The tricyclic antipressant 

amitriptyline increases the synaptic level of monoamines such as 5-HT and noradrenaline 

(both substrates for MAO-A) and also increases p38(MAPK) activity [290], while 

p38(MAPK) is reported to also induce tyrosine hydroxylase, which is the important 

enzyme for catecholamine synthesis [271]. 

p38(MAPK) function is clearly linked to monoamine systems, yet it is still unclear 

whether the effect of p38(MAPK) is to activate or inhibit MAO function. p38(MAPK) 

phosphorylates serine or threonine residues that lie within a specific motif, RXXS/T 

(where R=Arginine; X=any amino acid; S=serine; T=threonine) [312]. If p38(MAPK) is 
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capable of directly targeting MAO-A, then the amino acid sequence in the MAO-A 

protein should contain a putative p38(MAPK) phosphorylation site, RXXS. This was also 

investigated during the course of the present thesis work. 

 

1.4.2 Hypothesis 

Given that Ca2+ can enhance MAO-A activity and that p38(MAPK) can affect 

monoamine systems in some cases by affecting MAO-A function, the hypothesis 

proposed for this thesis is: p38(MAPK) contributes to Ca2+-sensitive MAO-A function 

during experimental cell stress. 

 

1.4.3 Objectives of this project 

1. Test the effect of Ca2+ on MAO in vitro (in brain and cell culture extracts). 

2. Test the effect of Ca2+ on MAO ex vivo (by modulating Ca2+ levels with the treatment 

of Ca2+ ionophore A23187 or overexpression of CB28K). 

3. Determine whether MAO-A contains putative Ca2+ binding sites and, if so, 

mutagenize the sites to test their influence on MAO-A activity. 

4. Test the role of p38(MAPK) on MAO-A activity in neuronal cell populations. 

5. Determine whether MAO-A contains a putative p38(MAPK) target site(s) and, if so, 

mutagenize the site(s) to test its (their) influence on MAO-A activity. 

6. Test the contribution of p38(MAPK) to Ca2+-regulated MAO-A function in models of 

cell stress. 
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7. Whenever possible, include MAO-B as a means of comparing and contrasting its 

response with that of MAO-A. 
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2 MATERIALS AND METHODS 

 

2.1  Materials 

For lists of chemicals used and supplier addresses, please see Table 1-3. 

 

2.1.1  Plasmids 

In the present study, two commercially available mammalian expression vectors were 

used for cloning; these were pcDNA3.1/Hygro(+) and pCMV/myc/Mito (both from 

Invitrogen). A third expression vector, pREP-CB28K (CalbindinD-28K, was kindly 

provided by Dr. A. Pollock (University of California, San Francisco, CA).  

The pcDNA3.1/Hygro(+) vector was used for sub-cloning p38(MAPK). The 

pCMV/myc/Mito vector was used to sub-clone MAO-A or MAO-B. The myc/Mito 

vector targeted the protein to the mitochondria as a Myc-tagged fusion protein (for ease 

of detection of the expressed protein). All three vectors contained the ampicillin-resistant 

gene (ampR) for selective amplification of recombinant plasmids in bacterial cultures. 
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Table 1: List of Reagents, Kits and Suppliers 

 
Reagents Supplier 

Absolute Ethanol BDH 
Acrylamide Bio-Rad 
Agarose Invitrogen 
Bovine Serum Albumin EMD 
Bromophenol Blue EMD 
Calcium Chloride BDH 
Chloroform BDH 
Coomassie Briliant Blue R-250 Sigma 
1,2-Diacyl-sn-glycero-3-phospho-L-serine Sigma 
Diethylpyrocarbonate (DEPC) BDH 
Dimethylsuloxide (DMSO) Sigma 
N,N-Dimethylformamide BDH 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) Calbiochem 
Ethidium Bromide Sigma 
Ethylene-diamine Tetraacetic Acid Disodium Salt (EDTA) Sigma 
Goat Serum Sigma 
Glacial Acetic Acid EMD 
D-Glucose BDH 
Glycerol MP Biomedicals 
L-Glycine MP Biomedicals 
N-2-Hydroethylpiperazine-N’-2-ethane Sulfide Acid (HEPES) USB 
Hydrochloric Acid (HCl) EMD 
Hoechst 33258 Stain Sigma 
Isobutanol BDH 
Isopropanol EMD 
LiCl EMD 
Magnesium Chloride (MgCl2) EMD 
Magnesium Sulfate (MgSO4) EMD 
β-Mercaptoethanol EMD 
Methanol BDH 
Non-fat Dry Milk (Carnation) Nestle 
Paraformadehyde Sigma 
Phenol Sigma 
Phenylmethylsulfonyl Fluoride (PMSF) Sigma 
Polyethylene Glycerol (PEG) Sigma 
Potassium Chloride (KCl) BDH 
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Protease Inhibitor Cocktail Sigma 
Sodium Acetate BDH 
Sodium Chloride (NaCl) VWR 
Sodium Dodecyl Sulfate (SDS) ICN 
Sodium Bicarbonate (Na2CO3) EMD 
Sodium Fluoride (NaF) Sigma 
Sodium Hydroxide (NaOH) EMD 
Sodium Orthovnadate Sigma 
Sucrose BDH 
N,N’-Methylene-bis-acrylamide Bio-Rad 
N,N,N’,N’-Tetramethylenediamine (TEMED) Bio-Rad 
Tris-Acetate EMD 
Tris-HCl ICN 
Triton-X100 Sigma 
TrizolTM GIBCO-BRL 
Trypsin-EDTA GIBCO-BRL 
Tween-20 EMD 
Disuccinimidyl suberate (DSS) PIERCE 
2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) Molecular Probes 
Fluo-3AM Molecular Probes 

Cell growth reagents Supplier 
Ampicillin EMD 
Bacto-Agar BD 
Bacto-Tryptone BD 
Bacto-Yeast Extract BD 
Calf Serum GIBCO-BRL 
Collagen Type I (rat tail) BD 
Dulbecco’s Modified Eagle’s Medium: DEM/Low Hyclone 
Dulbecco’s Modified Eagle’s Medium: DEM/High Hyclone 
Fetal Bovine Serum GIBCO-BRL 
Opti-MEM Reduced Serum Medium Invitrogen 
Recovery Cell culture Freezing Medium GIBCO-BRL 

Pharmacological Agents Supplier 
A23187 Sigma 
SB203580 Cell signalling 
LY294002 Cell signalling 
PD98059 Cell signalling 
Hydrogen Peroxide (H2O2) Sigma 
Clorgyline (CLG) Sigma 
L-deprenyl (DEP) TOCRIS 
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Transfection Reagents Supplier 
ExGen500 Fermentas 
Lipofectamine2000 Invitrogen 

Radioactive-substrates Supplier 
14C-Serotonin (5-HT) Perkin-Elmer 
14C-Phenylalanine (PEA) Perkin-Elmer 

Commercial Kits Supplier 
BCATM Protein Assay Kit Pierce 
SuperScriptTM III First-Strand Synthesis System for RT-PCR Invitrogen 
Qiaex II Gel Extraction Kit 500 Qiagen 
Quantum Prep Plasmid Midiprep Kit Bio-Rad 
Quikchange Site-Directed Mutagenesis Kit Stratagene 
JC-1 Mitochondrial Membrane Potential Assay Kit Invitrogen 

 
 

Table 2: List of Antibodies and the dilution used for the Western Blotting. 
 

Primary Antibody Dilution Supplier 
β-Actin 1:3000 Sigma-Aldrich Inc 
MAO-A (H-70) 1:1000 Santa Cruz Biotech 
MAO-A (T-19) 1:1000 Santa Cruz Biotech 
CB28K 1:500 Santa Cruz Biotech 
MAO-B 1:1000 Santa Cruz Biotech 
C-Myc 1:1000 Santa Cruz Biotech 
p38(MAPK) 1:1000 Cell signalling Tech 
p-p38(MAPK) 1:500 Cell signalling Tech 
p-MK2 1:1000 Sigma-Aldrich Inc 
p-Ser 1:1000 Sigma-Aldrich Inc 

Secondary Antibody Dilution Supplier 
Donkey Anti-Goat IgG, HRP-conjugate 1:2000 Santa Cruz Biotech 
Goat Anti-Rabbit IgG, HRP-conjugate 1:2000 Cedarlane Laboratories 
Goat Anti-Mouse IgG, HRP-conjugate 1:2000 Cedarlane Laboratories 

 
 

Table 3: Names and Addresses of Suppliers 
 

Supplier Address 
BD (Becton Dickinson) 2771 Bristol Circle, Oakville, ON., Canada 
BDH 501-45th Street West, Saskatoon, SK., Canada 
Bio-Rad 5671 McAdam Road, Mississauga, ON., Canada 
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Cedarlane Laboratories 5516 8th line, Hornby, ON., Canada 
Cell Signaling Tech 159J Cummings Center Beverly, MA 01915, USA 
EMD Bioscience Inc 10394 Pacific Center Court, San Diego, CA 92121, USA 
Fermentas Life Science 830 Harrington Crt., Burlington, ON., Canada 
GIBCO-BRL Box 9418, Gaithersburg, MD 20898, USA 
ICN Biomedicals Inc 15 Morgan, Irvine, CA 932618-2005, USA 
Invitrogen 1600 Faraday Avenue, Carlsbad, CA 92008, USA 
Molecular Probes 2270 Industrial St.,Burlington, ON., Canada 
Perkin-Elmer 501 Rowntree Dairy Road, Mississauga, ON., Canada 
Santa Cruz Biotech 2161 Delaware Ave., Santa Cruz, CA, USA 
Sigma 2149 Winston Park Drive, Oakville, ON., Canada 
USB 300 Laurier Blvd., Brockville, ON., Canada 
Qiagen 2800 Argentia Road, Unit 7 Mississauga, ON., Canada 
Stratagene 11011 N. Torrey Pines Road, La Jolla, CA 92037, USA 
Pierce Box 117, Rockford, IL 61105, USA 
VWR 2360 Argentia Road, Mississauga, ON., Canada 
TOCRIS 16144 Westwoods Business Park, Ellisville, Missouri 63021, 

USA 
Hyclone 925 West 1800 South, Logan, UT 84321, USA 
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2.1.2  Competent cells 

Competent bacterial cells were processed from DH5α E. coli (American Type 

Culture Collection (ATCC) # 53868). DH5α E. coli cells were amplified by growing in 

LB broth overnight and aliquoted as 100 μl per Eppendorf tube, and stored at -70ºC for 

future use.  

 The DH5 α competent cells were prepared under sterile conditions according to the 

following (Molecular Cloning, Sambrook and Russell, 2001):  

a) Pick a single clone of E. coli cells from colonies freshly grown at 37ºC overnight on 

an LB-agar plate [2% bacto-agar (Becton Dickinson, Sparks, MD), in LB media for 

autoclave, 5 ml for each 10 cm plate] and disperse it in 5 ml of LB media in a 15 ml 

culture tube containing 1% bacto-tryptone, 0.5% bacto-yeast extract [both from 

Becton Dickinson, Sparks, MD) and 1% NaCl (EMD Chemicals, Gibbstown, NJ); 

adjusted to pH 7.0 with 5 M NaOH, and autoclaved before use].  

b) Incubate the culture at 37ºC overnight, with vigorous shaking.  

c) Transfer 400 µl of this culture into 40 ml of LB media in a 250 ml flask and incubate 

the culture at 37ºC for approximately one and half hours, with vigorous shaking.  

d) Transfer the culture into a 40 ml centrifuge tube and centrifuge at 3,000xg at 4ºC for 

3 min. Discard the supernatant and resuspend the pellet in 20 ml of ice-cold 

autoclaved 0.1 M CaCl2 
(EMD Chemicals, Gibbstown, NJ).  

e) Keep the resuspended solution on ice for 30 min and then centrifuge at 3,000xg, 4ºC 

for 3 min. 
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f) Discard the supernatant and resuspend the pellet in 3 ml of ice-cold 0.1 M CaCl2。 

Keep the cell solution at 4ºC overnight. Add 1.5 ml of 50% glycerol into the cell 

solution, mix well, and then aliquot 200 µl in each 1.5 ml Eppendorf tube, and store 

at -70ºC for future use.  

 

2.1.3  Cell cultures 

Seven cell lines were used during the course of this study. Rat pheochromocytoma 

(PC12;: ATCC# CRL-1721), human neuroblastoma (SH-SY5Y; CRL-2266), mouse 

neuroblastoma (N2a; CCL-131), human glioblastoma (T98G; CRL-1690), C6 glioma 

cells (CCl-107) and human embryonic kidney 293A cells (HEK; CRL-1573) were 

obtained from the American Type Culture Collection, (ATCC); the immortalized mouse 

hippocampal (HT-22) cells were kindly provided by Dr. P. Maher (The Scripps Research 

Institute, La Jolla, CA, USA).  

The HEK293A cells, N2a cells, T98G cells, HT-22 cells, and C6 cells were incubated 

at 37ºC in a humidified atmosphere, containing 5% CO2, and grown in low glucose 

Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% 

heat-inactivated horse serum, 25 units/ml penicillin, and 25 units/ml streptomycin (all 

from Gibco BRL, Box 9418, Gaithersburg, MD 20898, USA).  

The rat pheochromocytoma (PC12) cells were grown in DMEM with 10% 

heat-inactivated horse serum, 5% fetal bovine serum (Gibco BRL), 25 U/ml penicillin, 

and 25 U/ml streptomycin. Culture plates and flasks were coated with rat-tail collagen 
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(BD Biosciences, Bedford, MA, USA). Cell cultures were maintained at 37ºC with 5% 

CO2. 

The human neuroblastoma (SH-SY5Y) cells were incubated at 37ºC in a humidified 

atmosphere (containing 5% CO2) and grown in high glucose DMEM supplemented with 

10% heat-inactivated horse serum, 25 U/ml penicillin, and 25 U/ml streptomycin (all 

from Gibco BRL). 

 

2.1.4  Rat neuronal cortical culture 

Rat cortical cultures were prepared from E20 fetuses of time-pregnant 

Sprague-Dawley rats (Charles River Canada, Montreal, PQ, Canada) as previously 

described [313], with some modifications. In brief, the cortical area was dissected in 

Ca2+- and Mg2+-free Hank’s balanced salt solution (HBSS), supplemented with 15 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and antibiotics. Collected 

tissues were digested at 37ºC with 0.25% trypsin- ethylenediamine tetraacetic acid 

(EDTA) 15 min. The reaction was stopped by the addition of 10% fetal bovine serum 

(FBS), and tissues were rinsed 3-4 times with HBSS to remove FBS.  

Cell suspensions were prepared by repeated aspirations through a Pasteur™ pipette. 

Following centrifugation at 800xg for 10 min, the medium was removed and the cells 

resuspended in a chemically defined serum-free NeuroBasal medium, supplemented with 

1% N2, 2% B27, 50 μM L-glutamine, 15 mM HEPES, 10 U/ml penicillin, and 10 μg/ml 

streptomycin. Neurons were then plated in 6- or 96-well plates (or coverslips) coated 
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with 25 μg/ml poly-D-lysine and grown at 37ºC with a 5% CO2-humidified atmosphere. 

Within one day after plating, the medium was replaced with fresh NeuroBasal medium, 

containing the same components, except for L-glutamine and antibiotics. When the 

medium was replaced at 4-5 days in vitro (DIV), less than 1.0% of the cells showed 

GFAP positive staining. All treatments were performed at DIV 7. 

 

2.1.5  Animals 

All procedures involving animals, including care and maintenance, were executed 

according to the guidelines set forth by the University of Saskatchewan Animal Care 

Committee (University of Saskatchewan Protocol #20040094), the Canadian Council on 

Animal Care, and the National Institutes of Health. The inbred male or female adult 

Sprague-Dawley rats (350~400 g body weight) and CB57L/6 mice (18-20 g body weight) 

were housed at a constant temperature (20 ± 1 °C) on a 12-hr light/dark cycle, with free 

access to food and water.  

 

2.2  Methods 

2.2.1  Dissection of rat and mouse brains 

In accordance with protocol #20040094, as approved by the University of 

Saskatchewan Animal Care and Use Committee, both rats and mice were anaesthetized 

with sodium pentobarbital (65 mg/kg rat body weight or 30 mg/kg mouse body weight) 

and killed by decapitation. The brains were then quickly removed, and the hippocampus, 
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striatum, frontal cortex, cerebellum, and neocortex were immediately dissected. All brain 

samples were stored at -80°C. 

 

2.2.2  Detection of MAO activity in the absence or presence of Ca2+ 

 MAO-A and -B activities (nmol/h/mg protein) were estimated radiochemically 

according to the methods of Holt and Baker [314]: 

1. Homogenize the frozen brain tissues or cell pellet in potassium phosphate buffer and 

on ice with 10 strokes of a Dounce homogenizer.  

2. Determine protein concentration and aliquot 100 µg of protein per reaction tube.  

3. Gently bubble O2 through incubation buffer, potassium phosphate (0.2 M, pH 7.8) 

30-45 min of O2 per liter of buffer. 

4. Carry out reactions in 1.5 ml centrifuge tubes and include triplicates for each sample. 

Place tube racks on ice.  

5. When needed, add 1 µl of different concentrations of Ca2+ solution, according to the 

desired final Ca2+ concentration. Vortex briefly. Incubate at room temperature for 20 

min. 

6. To blank tubes, add 10 μl of HCl (3 M). 

7. Place tube racks in a water bath at 37ºC. To each tube, add 50 μl of appropriate 14C 

labeled substrate in a time-dependent order (for MAO-A activity: 250 μM of 

14C-5-HT (NEC-225); for MAO-B activity: 50 μM of 14C-PEA (NEC-502); incubate 

for 10 min. (MAO substrates are from PerkinElmer Life Sciences, (Woodbridge, ON) 
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8. Terminate the reaction by the addition of 10 μl HCl to all samples in the same order 

as substrate was added, except blank. 

9. Add 1 ml of ethyl acetate/toluene (1:1, v/v, water saturated) to each sample and 

vortex samples briefly. 

10. Centrifuge samples in microcentrifuge (setting 4.5) for 30 sec. 

11. Carefully pipette 700 μl of the upper organic layer into a small scintillation vial. Do 

not disturb the aqueous layer; if this happens, re-centrifuge the remaining samples. 

12. Add 4 ml of scintillation fluid and count for 3 min for d.p.m. 

13. To determine specific activity, add 50 μl of the radiolabeled substrate to scintillation 

vials to determine the enzyme-specific activity. 

14. Do wipe test following every experiment and record substrate usage and wipe test 

results in the log book. 

 

2.2.3  Kinetic study of MAO activity in the absence or presence of Ca2+ 

HT-22 cells were harvested and prepared for assay of MAO activity as above: in 

addition Ca2+ (1 mM) was added to a parallel set of tubes. All reaction mixtures were 

incubated at room temperature for 20 min. The radiolabeled substrate was prepared at 

different concentrations with oxygenated potassium phosphate buffer (0.2 M, pH 7.8), 

ranging from 15.625 μM to 5 mM. Vmax and Km were calculated using Prism 3.0 

software. 
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2.2.4  Plasmid construction and confirmation 

2.2.4.1  MAO-A and MAO -B full-length fragment 

Human mao-A and mao-B cDNAs were amplified from yeast expression constructs 

generously provided by Dr. D.E. Edmondson (Emory University School of Medicine, 

Atlanta, GA, USA). These were amplified by polymerase chain reaction (PCR) and then 

subcloned into the pCMV/myc/mito expression vector (Invitrogen Canada Inc.), which 

allowed for constitutive mitochondrial expression as well as detection using an anti-myc 

antibody (clone 9E10, Upstate Biotechniologies, Inc.). The PCR primers were flanked by 

by XhoI restriction sites as indicated:  

Forward: MAOAF (NS) XH (with XhoI site (underlined) and no start codon): CGC 

TCG AGG AGA ATC AAG AGA AG. MAOBF (NS) XH (with XhoI site and 

no start codon): ACC TCG AGA GCA ACA AAT GCG AC. 

Reverse: MAOA (R1, with XhoI site, but without stop codon) ATA CTC GAG AGA 

CCG TGG CAG GAG CTT G. MAOB (R1, with XhoI site, but without stop 

codon): CTC TCG AGG ACT CTC ACA AGT AGC CC. 

 

2.2.4.2  p38(MAPK) full-length fragment 

The pEBG-p38(MAPK)α expression vector was kindly provided by Dr. B. Zanke 

(Cross Cancer Institute, Edmonton, AB, Canada). It was amplified by PCR and subcloned 

into a pcDNA3.1 expression vector (Invitrogen Canada Inc.). The primers of this PCR 

were flanked with ECoRV and XhoI, as 
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Forward: p38HF1V (with ECoRV site and start codon): CGA TAT CAT GTC TCA 

GGA GAG GCC CAC. 

Reverse: p38HR1 (with XhoI site): CTC TCG AGT CAG GAC TCC ATC TCT TCT 

TG. 

 

2.2.4.3  Subcloning gene fragment into specific vectors 

PCR fragments and vectors were digested with appropriate restriction enzymes (all 

enzymes from MBI Fermentas Life Sciences) for subcloning/ligation, a process by which 

two DNA fragments, one containing target DNA and the other containing a plasmid 

vector, are combined by using T4 DNA ligase (MBI Fermentas). For digestion, the 

reaction was allowed to incubate at 37°C for 2-3 hrs, whereas the reaction mixture for the 

ligation was incubated at 22ºC for 2 hrs or, at 16°C overnight. 

 

2.2.5 Polymerase chain reaction (PCR) 

The following general PCR protocol (Sambrook, 1989: total reaction volume 50 µl) 

served for all PCR experiments performed in this study. Optimal reaction conditions (i.e. 

total volumes of reaction mixtures, primers, concentrations of DNA polymerase, 

incubation temperatures and times, template DNA, as well as MgCl2) were optimized for 

each DNA fragment.  

1. To a sterile thin wall PCR tube on ice, add and mix the following components:  

- 5 μl 10× PCR buffer (includes MgCl2)  
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- 5 μl dNTP mixture (Invitrogen, 2 mM)  

- 1.5 μl Sense primer (20 μM) 

- 1.5 μl Anti-Sense primer (20 μM) 

- 1 ng Template plasmid 

- 0.5 μl pfu DNA polymerase (MBI Fermentas)  

- Autoclaved distilled water, up to 50 μl per reaction 

2. Cap the tube and centrifuge briefly to collect the contents on the tube bottom. Put the 

sample in the PCR thermal cycler and incubate at 95ºC for 0.5 min to completely 

denature the template.  

3. Perform 25-30 cycles of PCR amplification as follows:  

- Denature at 94ºC for 30 sec  

- Anneal at 52-55ºC for 30 sec  

- Extend at 72ºC for 1 min 

4. Incubate the sample at 72ºC for an additional 5 min and maintain the reaction at 4ºC. 

The sample can then be stored at -20ºC until use.  

5. Visualize the amplification products by Agarose (Invitrogen) gel electrophoresis with 

ethidium bromide and DNA molecular weight standards (MBI Fermentas).  

6. Purification of the amplified DNA products from the Agarose gel was performed by 

QIAEX II Gel Extraction Kit (Qiagen), according to the manufacturer’s protocol.  
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2.2.6 Transformation 

Bacterial transformation is a process used to introduce a foreign plasmid into bacterial 

cells and to use the bacteria for amplification of this plasmid. The procedure for bacterial 

transformation (Sambrook, 1989) includes the following steps:  

1. Take out competent E. coli cells from -80ºC freezer.  

2. Turn on water bath to 42ºC.  

3. Put 50 µl competent cells into a 1.5 ml tube (Eppendorf). 

4. Keep tubes on ice.  

5. Add 1 µl of cDNA into E. coli competent cells and incubate on ice for 30 min. 

6. Put tube(s) with DNA and E. coli into 42ºC water bath for 45 sec.  

7. Put tubes back on ice for 2 min to reduce damage to the E. coli cells.  

8. Add 500 µl of SOC medium and incubate tubes at 37ºC for 0.5 hr.  

9. Spread the resulting culture on DYT plates (with Ampicillin added). Grow overnight.  

10. Pick colonies about 12-16 hrs later.  

 

2.2.7 Plasmid DNA preparation 

Plasmid DNA preparation was performed according to the DNA Maxiprep Protocol 

(Sambrook et al, 1989), as follows:  

1. Pick a single colony and inoculate into 5 ml of TB (Bacto-tryptone, 12 g, Bacto-Yeast 

Extract, 24 g, and Glycerol, 4 ml in 1000 ml, autoclaved) containing 100 mg/l 

ampicillin. Shake at 250 RPM, overnight.  
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2. Disperse the bacterial culture to 500 ml TB containing 100 mg/l ampicillin. Shake at 

250 RPM, overnight.  

3. Centrifuge cells in a rotor (Allegra TM 25R, Beckman Coulter Inc.) in the 250 ml 

bottle at 5000xg for 15 min.  

4. Resuspend cell pellet in 100 ml of STE buffer (500 mM NaCl, 10 mM Tris-Cl, 1 mM 

EDTA, pH 8.0) by vortexing and pipetting up and down. Centrifuge cells at 5000xg 

for 15 min. 

5. Remove supernatant and add 20 ml of Sol I (50 mM Glucose, 10 mM EDTA, pH 8.0, 

25 mM Tris-Base, pH 8.0) to the pellet and resuspend cells completely. A good 

suspension is consistent without clumps of cell pellet. 

6. Add 40 ml of Sol II (0.2 N NaOH/1% SDS lysis solution). Mix gently by inverting 

tube 5 times. Store at room temperature for 5-10 min, until the solution becomes clear, 

yellow.  

7. Add 20 ml of Sol III (5 M potassium acetate solution, pH 4.8). This solution 

neutralizes NaOH in the previous lysis step, while precipitating the genomic DNA 

and SDS in an insoluble white, rubbery precipitate. Shake bottle thoroughly. Incubate 

on ice for 5 min. Centrifuge at 5000xg for 20 min.  

8. Filter the supernatant through 4 layers of cheesecloth into a clean 250 ml bottle. The 

cheesecloth catches any fragments of SDS/genomic DNA aggregate.  

9. Precipitate the nucleic acids by adding 48 ml of isopropanol and let stand for 10 min 

at room temperature. Centrifuge at 5000xg for 15 min.  
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10. Aspirate off all the isopropanol supernatant. Rinse the pellet and walls of bottle with 

85% ethanol at room temperature. Let ethanol evaporate for a few minutes at room 

temperature. 

11. Dissolve the pellet in 3 ml of TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 7.5). 

Transfer nucleic acid suspension to a 50 ml tube. Add 4.8 ml of 5 M cold LiCl 

solution to precipitate RNA. Leave on ice for 10 min and centrifuge at 9000xg for 10 

min.  

12. Pour off the supernatant containing plasmid DNA into a clean 50 ml tube. Add an 

equal volume of isopropanol and precipitate the nucleic acids on ice for 10 min. 

Centrifuge at 9000xg for 10 min.  

13. Aspirate off all the isopropanol supernatant. Rinse the pellet and walls of bottle with 

85% ethanol at room temperature. Let ethanol evaporate for a few minutes at room 

temperature. 

14. Dissolve the pellet in 0.5 ml of TE buffer. Transfer TE solution into a 1.5 ml 

Eppendorf tube. Add 5 µl of RNAse A solution (10 mg/ml stock, stored at -20ºC), 

vortex and incubate at 37ºC for 20 to 30 min to digest remaining RNA.  

15. Precipitate the plasmid DNA with PEG solution (13% w/v 1.6 M NaCl/PEG 8000) by 

adding 0.4 ml and incubating 1 hr overnight on ice. This step discriminates very large 

plasmid DNA from small nucleic acid fragments as only the larger plasmid DNA 

precipitate.  
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16. Spin the PEG solution in the centrifuge at 12000xg for 2 min. Aspirate off the 

supernatant PEG buffer and dissolve the PEG pellet in 0.5 ml of 3H3H3HTE buffer. 

17. Extract proteins from the plasmid DNA adding about 0.3 ml PCIA 

(phenol/chloroform/isoamyl alcohol). Vortex vigorously for 30 sec. and centrifuge at 

full speed for 5 min at room temperature. Note organic PCIA layer will be at the 

bottom of the tube.  

18. Remove upper aqueous layer containing the plasmid DNA, carefully avoiding the 

white precipitated protein layer above the PCIA layer, and transfer to a clean 1.5 ml 

Eppendorf tube. Repeat 3 times. 

19. Add NaCl solution to a final concentration of 125 mM and mix well. Add 1 ml of 

absolute ethanol to precipitate the plasmid DNA, usually on ice for 10 min, and 

centrifuge at full speed for 5 min at room temperature.  

20. Aspirate off ethanol solution and resuspend or dissolve DNA pellet in 0.3 to 0.5 ml of 

TE buffer or H2O. This is the final stock of plasmid DNA, which is suitable for DNA 

sequencing and long-term storage.  

21. Measure the concentration of the plasmid DNA by diluting stock into water at 1:300. 

The absorbance at 260 nm, multiplied by the dilution factor and 50 is the DNA 

concentration in units of mg/ml for a 1 cm path length cuvette (i.e. 50 mg/ml/OD260).  
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2.2.8 Plasmid Transfection 

Transfection is the process used to introduce plasmid DNA into eukaryotic cells. This 

typically involves opening transient pores or 'holes' in the cell plasma membrane to allow 

uptake of plasmid DNA. Transfection is frequently carried out by mixing a cationic lipid 

with the material to produce liposomes, which, after application, fuse with the cell 

plasma membrane and deposit their cargo inside.  

In this study, ExGen 500 was applied as a transfection reagent. ExGen500 is a sterile 

solution of linear polyethylenimine (PEI) molecules (22 kDa) in water at a concentration 

of 5.47 mM in terms of nitrogen residues. PEI has a high cationic-charge density 

potential, making it an excellent DNA condensing and gene-delivering agent. A sterile 

solution of 150 mM NaCl is required to dilute ExGen 500 and plasmid DNA.  

 

2.2.8.1 Homemade preparation of ExGen 500 

The ExGen 500 used in this study was either supplied by MBI Fermentas or 

homemade, according the following protocol: 

 Start with 8 ml of nanopure H2O. 

 Adjust pH to 2.0, with concentrated HCl.  

 Weigh 10 mg of PEI. 

 Dissolve PEI completely in 8 ml acidified nanopure H2O (pH 2.0), check pH 

of solution after dissolving completely and adjust to pH 2.0 if necessary. 

 Once PEI is completely dissolved, change pH to 7.0. 
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 Adjust to a final volume of 10 ml. 

 Sterilize by using a 0.2 mm filter syringe. 

 Aliquot 1 ml to an Eppendorf tube and store at -20ºC for future use. Do not 

use PEI solutions that are older than 2 months.  

 

2.2.8.2 Transfection using ExGen 500 

Transfection was carried out according the following procedure, as recommended by 

MBI Fermentas:  

1. Prepare the following immediately prior to transfection. Use 1 µg of DNA per 3.3 µl 

(6 equivalents) of ExGen 500 per well of a 24-well plate. Subsequent optimization 

may further increase the transfection efficiency in a particular application, depending 

on the cell line and the gene expressed. 

2. Dilute 1µg of DNA in 100 µl of 150 mM NaCl. Vortex gently and spin down briefly. 

3. Add 3.3 µl of ExGen 500 (not the reverse order) and immediately vortex-mix the 

solution for 10 sec. 

4. Incubate at room temperature for 10 min.  

5. Add 100 µl of the ExGen 500/DNA mixture to each well. Generally, the volume of 

the ExGen 500/DNA mixture represents 1/10 of the total volume of the culture 

medium. 

6. Gently rock the plate back and forth, and from side-to-side to achieve even 

distribution of the complexes.  
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7. Incubate for 4 hrs. Replace with fresh complete growth media. 

8. Incubate at 37ºC for 24 to 48 hrs. The transfected gene expression can be monitored 

24 to 48 hrs (transient expression). 

 

2.2.9 Protein concentration determination 

The presence of protein in a sample can be determined by measuring the light 

absorbance at 280 nm. Bovine serum albumin (BSA, BCATM protein assay kit, Pierce) is 

the most commonly used standard for protein assays. A standard curve of known BSA 

concentrations is constructed first, and then the concentration of the unknown sample is 

determined by comparison to this curve.  

 

2.2.10 Immunoblot and immunoprecipitation 

2.2.10.1 Western blot or immunoblot (IB) 

Immunoblot is a method used to detect the protein expression level in a given sample 

of tissue homogenate or cell extract. It uses gel electrophoresis to separate denatured 

proteins by mass. The proteins are then transferred out of the gel and onto a membrane 

(typically nitrocellulose or PVDF), where they are "probed" using antibodies specific to 

the protein. As a result, the size, processing, or amount of protein in a given sample can 

be examined and also compared with several groups. Immunoblot was performed 

according to the following detailed procedures (Sambrook et al, 1989). 
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1. Prepare SDS-PAGE gel consisting of 4% Stacking gel and 10% Resolving gel 

(volumes listed below for two gels, each 1 mm thick).  

10% Resolving gel (10 ml) 4% Stacking gel (5 ml) 

- ddH
2
O, 4.01 ml - ddH

2
O, 3 ml 

- Buffer A, 2.5 ml - Buffer C, 1.25 ml 

- 30% Acrylamide, 3.33 ml - 30% Acrylamide, 0.67 ml 

- 10% APS, 50 μl - 10% APS, 50 μl 

- 10% SDS, 100 μl - 10% SDS, 50 μl 

- TEMED, 10 μl - TEMED, 5 μl 

Buffer A: 1.5 M Tris-HCL, pH 8.8, 0.5% SDS  

Buffer C: 0.5 M Tris-HCL, pH 6.8, 0.5% SDS  

Except for ddH2O (double-distilled H2O) and 10% SDS, the following 

other solutions were stored at 4ºC: 30% Acrylamide (Bio-Rad); APS, 

SDS, and TEMED (Sigma-Aldrich). 

2. Load prepared protein samples up to 30 μl per well with protein ladder (Bio-Rad) 

onto 1 mm thick gels and run gel in 1× Running buffer (25 mM Tris-HCl, 0.1% SDS 

and 250 mM Glycine) at 110 V until bromophenol blue dye reaches bottom of gel.  

3. Transfer the proteins from the gel to an Immuno-Blot PVDF membrane (Bio-Rad) in 

1×Transfer buffer (25 mM Tris-HCl, 250 mM Glycine, 0.00375% SDS, and 20% 

Methanol) at 0.23 A for 30-60 min on ice.  
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4. Briefly wash the membrane for 30 sec in 1×TBST buffer (25 mM Tris-HCl, pH 7.4, 

150 mM NaCl, and 0.1% Tween-20, Sigma-Aldrich) and soak the membrane in 10-15 

ml “blocking solution” (5% instant skim milk in 1×TBS buffer) for 60 min with 

gentle shaking at room temperature.  

5. Incubate the membrane in a primary antibody diluted with 1×TBST for 2 hrs at room 

temperature or overnight at 4ºC with gentle shaking, and then rinse the membrane in 

1×TBST buffer for 10 min, 3 times at room temperature on a rocker.  

6. Incubate the membrane with the HRP-conjugated secondary antibody (1:2000~5000, 

diluted with 1×TBST); gently shake at room temperature for 1 hr, and then rinse the 

membrane in 1×TBST buffer for 10 min, 3 times at room temperature on a rocker.  

7. Incubate the membrane for 1 min in ECL
TM 

Western Blotting Detection Reagent (GE 

Healthcare) and expose to X-Ray film (KODAK) and develop to visualize proteins.  

8. If required, re-expose the membrane. Strip the membrane with 1×stripping buffer (65 

mM Tris-HCl, pH 6.8, 2% SDS and 100 mM β-mercaptoethanol, Sigma-Aldrich) for 

30 min at 50ºC. Wash the stripped membrane for 3×10 min in a large volume of 

1×TBST buffer at room temperature on a rocker, prior to blocking in 5% milk 1×TBS 

solution.  

 

2.2.10.2 Immunoprecipitation (IP) 

Immunoprecipitation is the technique used for isolating an antigen out of solution 

using an antibody specific to that antigen, and is a standard method used to assess 
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protein-protein interaction. The protein of interest is isolated with a specific antibody and 

orteins sticking to this protein are subsequently identified by western blot. 

Immunoprecipitation was carried out according to the following steps (Sambrook et al, 

1989): 

 Harvest cells following the appropriate treatment (drug, transfection etc.) and 

wash with PBS, twice. 

 Completely remove the supernatant and resuspend the cell pellet in 1 ml of 

cold lysis buffer, containing 1x protease inhibitor cocktail.  

 Lyse the cells by placing the tube on ice for 30 min. 

 Spin cell lysate at 10,000xg at 4ºC for 15 min. 

 Collect supernatant, without disturbing the pellet, and transfer to a clean tube.  

 Determine protein concentration. 

 Aliquot 300-500 µg (1 μg/µl) per tube for IP. 

 Add 3-5 µg of antibody (1 µg:100 µg, antibody: protein). 

 Rock at 4ºC, overnight. 

 Add 30 µl sepharose or agarose (mix completely well immediately before 

addition). Use sepharose A for primary rabbit antibody and sepharose G for 

primary mouse antibody. 

 Rock at 4ºC, for 1 hr. 

 Spin at 10,000 g for 5 min and leave the pellet undisturbed. 
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 Rinse with 500 µl lysis buffer, spin at 10,000xg for 5 min, twice. Get rid of 

the supernatant as much as possible, still leaving the pellet undisturbed. 

 Add 25 µl 1x loading buffer, gently mix with finger. 

 Denature protein at 95~100ºC for 5 min. 

 Spin down the beads at 10,000xg for 5 min. 

 Separate supernatant from sepharose or agarose pellet, and load onto the gel.  

 Follow manufacturer’s instruction for SDS-PAGE. 

 

2.2.11 Reverse transcriptase polymerase chain reaction (RT-PCR) 

Reverse transcriptase polymerase chain reaction (RT-PCR) is a laboratory technique 

for amplifying a defined piece of a RNA molecule. The RNA strand is first 

reverse-transcribed into its complementary DNA, followed by amplification of the 

resulting DNA using polymerase chain reaction. According to the protocol of 

Invitrogen’s SuperscriptTM III First-Strand Synthesis System for RT-PCR, the steps were 

described below. 

2.2.11.1 RNA extraction 

1. Extract RNA from naïve or treated cells. 

2. Mix 0.75 ml of TRI REAGENT LS (Invitrogen Canada Inc.) with the cell pellet by 

passing the suspension several times through a pipette. Let sit at room temperature 

for 5 min to permit the complete dissociation of nucleoprotein complexes. 
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3. Add 0.1 ml of BCP (Invitrogen Canada Inc.) to cover the samples tightly, shake 

vigorously for 15 sec, and incubate 2 to 15 min at room temperature. Centrifuge the 

sample at 12,000xg for 15 minutes at 4ºC.  

4. Carefully transfer the colorless, upper aqueous phase (approximately 0.6 ml) 

containing the RNA into a clean micro-centrifuge tube, avoiding removal of the 

material collected at the interface (containing DNA) and the organic phase 

(containing protein).  

5. Add 0.5 ml of isopropanol (Sigma-Aldrich) into the aqueous phase and gently mix 

the solution. Allow the RNA to precipitate at room temperature for 10 min, then 

centrifuge at 12,000xg for 10 min at 4ºC.  

6. Remove the supernatant and wash the RNA pellet once with 1.0 ml of 75% ethanol 

(in water treated with DEPC, denatures RNases). Vortex the sample and centrifuge at 

7500xg for 5 min at 4ºC, or, if the RNA pellet accumulates on the side of the tube 

and has a tendency to float, spin at 12,000xg for 5 min to ensure sedimentation of the 

pellet before the ethanol is totally removed.  

7. Remove the ethanol wash and briefly air-dry the RNA pellet for 3~5 min at room 

temperature, then dissolve the pellet with 20 μl of DEPC-treated water by passing the 

solution through a pipette tip a few times and incubating at 55ºC for 10-15 min. 

8. RNA concentration is determined by spectrophotometry (Du640 spectrophotometer, 

Beckman Coulter Inc. An OD ratio 260/280 between 1.6-1.9 is considered free of 

DNA and protein. 
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9. Store the total RNA at -70ºC. 

 

2.2.11.2 First-strand cDNA synthesis 

To obtain the first-strand cDNA for PCR, reverse transcription using the total RNA 

isolated from the cell pellet was performed according to the following procedures. The 

total volume of reactive solution was 50 μl (Invitrogen).  

1. Add and mix the components as listed, to a 0.5 ml thin-wall PCR tube:  

- 1-5 ng Total RNA  

- 1 μl Oligo(dT)
20 

Primer (Invitrogen, 50 μM)  

- 1 μl dNTP mix (Invitrogen, 10 mM)  

- DEPC-treated water, up to 10μl. 

2. Incubate the mixture at 65oC for 5 min and then put on ice for at least 1 min.  

3. Prepare the following cDNA Synthesis Mix, adding each component to each tube in 

the following order: 

- 2 μl 10× RT buffer (Invitrogen)  

- 4 µl 25 mM MgCl2 

- 2 μl 0.1 M DTT (dithiothreitol)  

- 1 μl RNaseOUT (40 units/μl)  

- 1 μl SuperScript III Reverse Transcriptase (200 units/μl)  

4. Add 10 μl of cFNA synthesis mix to each RNA/primer mixture, mix gently, and 

collect by brief centrifugation. Incubate at 50ºC for 50 min.  
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5. Terminate the reaction at 85ºC for 5 min and chill on ice. 

6. Collect the reactions by brief centrifugation. Add 1 μl of RNase H to each tube and 

incubate for 20 min at 37ºC to remove the RNA template from the cDNA:RNA hybrid 

molecule. 

7. Store the cDNA at -20ºC or use immediately for PCR.  

 

2.2.12 Subcellular fractionation 

The subcellular fractionation method was used to separate the different intracellular 

organelles and cell compartments. Cells are lysed and subcellular components are 

separated by a series of centrifugations at increasing speeds. Following each 

centrifugation, the organelles that sediment to the bottom of the tube are recovered in the 

pellet. The supernatant is then recentrifuged at a higher speed to sediment the 

next-largest organelles. The aim in this study was to get obtain a mitochondrion-enriched 

fraction. All steps were performed on ice, according to the following procedure [315]. 

1. Harvest cells as usual, wash the cell pellet with 1X PBS twice. 

2. Resuspend the cell pellet with 1 ml 1X PBS, save 100 μl for total cell lysate (TCL) 

and lyse as usual; lyse the other 900 μl for subcellular fractionation. 

3. Spin cell suspension at 2500xg for 5 min, add 320 μl suspension buffer to pellet 

(containing 20 mM HEPES-KOH (pH 7.5), 320 mM sucrose, 10 mM KCl, 1.5 mM 

MgCl, 1 mM EGTA, 1 mM dithiothreitol, 1 mM orthovanadate, and a protease 

inhibitor cocktail). 
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4. Homogenize using 15-20 strokes, on ice. 

5. Spin homogenates as follows: 900xg, 10 min at 4ºC to get the P1 pellet containing 

cell debris, cell membrane and nuclei. 

6. Transfer the supernatant to a fresh tube, spin at 18,000xg, 50 min at 4ºC to get the P2 

mitochondria-enriched pellet. Save the supernatant as cytosol. 

7. Rinse all the pellets with buffer containing protease inhibitor cocktail, suspend pellets 

in lysis buffer (volume depends on pellet size). Determine protein concentration. 

8. Determine protein expression by immunoblot. 

 

2.2.13 Site-directed mutagenesis 

In vitro site-directed mutagenesis is a technique used for carrying out vector 

modification and studying protein structure-function relationships. In this study, we used 

the QuikChange site-directed mutagenesis kit (Stratagene) to make point mutations, e.g. 

targeted mutations of specific nucleotides in the plasmid DNA, resulting in substitutions 

of amino acids in the translated protein). The plasmid DNA is replicated using 

PfuTurbo® DNA polymerase as it replicates both plasmid strands with high fidelity and 

without displacing the mutant oligonucleotide primers. The basic procedures in the 

protocol the manufacturer provided utilize a super-coiled double-stranded DNA (dsDNA) 

vector, with an insert of interest and two synthetic oligonucleotide primers containing the 

desired mutation.  
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The primers must be individually designed, according to the desired mutation. The 

following considerations, according to Stratgene, should be made for designing 

mutagenic primers:  

1. Both of the mutagenic primers must contain the desired mutation and anneal to the 

same sequence on opposite strands of the plasmid. 

2. Primers should be between 25 and 45 bases in length, with a melting temperature (Tm) 

of ≥78°C.  

3. The desired mutation (deletion or insertion) should be in the middle of the primer 

with ~10 to 15 bases of correct sequence on both sides. 

4. Optimally, the primers should have a minimum GC content of 40% and should 

terminate in one or more C or G bases. 

5. Mutagenesis includes the following steps: 

- Synthesize two complementary oligonucleotides containing the desired mutation, 

flanked by unmodified nucleotide sequence. 

- Prepare the sample reaction(s) as indicated below: 

5 μl of 10× reaction buffer 

X μl (5-50 ng) of dsDNA template 

X μl (125 ng) of oligonucleotide primer #1 

X μl (125 ng) of oligonucleotide primer #2 

1 μl of dNTP mix 

ddH2O to a final volume of 50 μl 
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1 μl of PfuTurbo® DNA polymerase (2.5 U/μl) 

6. Denature the template at 95ºC for 30 sec. Run PCR with various cycle numbers 

according to the type of the mutant: Point mutations, 12 cycles; Single amino acid 

changes, 16 cycles; Multiple amino acid deletions or insertions, 18 cycles. Each cycle 

includes the following steps: 

- Denature at 95ºC for 30 sec 

- Anneal at 55ºC for 1 min 

- Extension at 68ºC for 1 min/kbp plasmid length 

7. Following temperature cycling, place the reaction on ice for 2 min to cool the reaction 

to ≤37ºC. 

8. Add 1 μl of the Dpn I restriction enzyme (10 U/μl) directly to each amplification 

reaction. Gently and thoroughly mix each reaction mixture by pipetting the solution 

up and down several times. Spin down the reaction mixtures in a microcentrifuge for 

1 min and immediately incubate each reaction at 37ºC for 1 hr to digest the parental 

(i.e., the non-mutated) supercoiled dsDNA. 

9. Transform the mutated plasmid to XL1-blue competent cells provided by the kit and 

express it. 

In the present study, the primers for MAO-A or MAO-B and p38 mutants include: 

MAO-A(D61A): forward: CTA TAA GGA ATG GAC ATG TTG CTT ACG TAG 

ATG TTG GTG GAG C; reverse: GCT CCA CCA ACA TCT ACG TAA GCA 

ACA TGC TCA TTC CTT ATA G. 
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MAO-A(D248A): forward: CCT GTC ACT CAC GTT GCC CAG TCA AGT GAC 

AAC; reverse: GTT GTC ACT TGA CTG GGC AAC GTG AGT GAC AGG. 

MAO-A(D328G): forward: GCT GCA TGA TCA TTG AAG GTG AAG ATG CTC 

CAA TTT C; reverse: GAA ATT GGA GCA TCT TCA CCT TCA ATG ATC 

ATG CAG C. 

p38(T/E): forward: CAC ACT GAT GAT GAG ATG GAA GGC TAC GTG GCT 

ACC AGG; reverse: CCT GGT AGC CAC GTA GCC TTC CAT CTC ATC 

ATC AGT GTG 

p38 (T/E Y/D, activated form): forward: GAT GAT GAG ATG GAA GGC GAC 

GTG GCT ACC AGG TGG TAC; reverse: GTA CCA CCT GGT AGC CAC 

GTC GCC TTC CAT CTC ATC ATC.  

p38(T/A): forward: CAC TGA TGA TGA GAT GGC AGG CTA CGT GGC TAC; 

reverse: GTA GCC ACG TAG CCT GCC ATC TCA TCA TCA GTG. 

p38(T/A Y/F, dominant negative form): forward: GAG ATG GCA GGC TTC GTG 

GCT ACC AGG; reverse: CCT GGT AGC CAC GAA GCC TGC CAT CTC. 

MAO-A(S/A): forward: GGC ACC ACT CGG ATA TTC GCT GTC ACC AAT 

GGT GGC CAG; reverse: CTG GCC ACC ATT GGT GAC AGC GAA TAT 

CCG AGT GGT GCC. 

MAO-A(S/E): forward: GGC ACC ACT CGG ATA TTC GAG GTC ACC AAT 

GGT GGC CAG; reverse: CTG GCC ACC ATT GGT GAC CTC GAA TAT 

CCG AGT GGT GCC. 
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MAO-B(S/A): forward: CAC AAC AAG AAT CAT CGC GAC AAC AAA TGG 

AGG AC; reverse: GTC CTC CAT TTG TTG TCG CGA TGA TTC TTG TTG 

TG. 

MAO-B(S/E): forward: CAC AAC AAG AAT CAT CGA GAC AAC AAA TGG 

AGG AC; reverse: GTC CTC CAT TTG TTG TCT CGA TGA TTC TTG TTG 

TG. 

MAO-A(Y/F): forward: TGC TGC CAA ACT CTT GAC TGA ATT TGG CGT 

TAG TGT TTT GGT TTT AG; reverse: CTA AAA CCA AAA CAC TAA CGC 

CAA ATT CAG TCA AGA GTT TGG CAG CA. 

MAO-A(Y/D): forward: TGC TGC CAA ACT CTT GAC TGA AGA TGG CGT 

TAG TGT TTT GGT TTT AG; reverse: CTA AAA CCA AAA CAC TAA CGC 

CAT CTT CAG TCA AGA GTT TGG CAG CA. 

To confirm the desired mutations and the absence of extraneous mutations, all the 

mutants were sequenced at the Plant Biotechnology Institute (University of 

Saskatchewan) through the start codon using a primer specific to the CMV promoter in 

pCMV: CGC AAA TGG GCG GTA GGC GTG; or a primer specific to the promoter 

T7-20 in pcDNA3.1: TAA TAC GAC TCA CTA TAG GG. 

 

2.2.14 DSS cross-linking reaction 

Disuccinimidyl suberate (DSS) (Pierce Chemical Co.) is a homo-bifunctional, 

non-cleavable, and membrane permeable cross-linker. It contains an amine-reactive 
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N-hydroxysuccinimide (NHS) ester at each end of an 8-carbon spacer arm. NHS esters 

react with primary amines at pH 7-9 to form stable amide bonds, along with release of 

the N-hydroxysuccinimide leaving group. Proteins, including antibodies, generally have 

several primary amines in the side chain of lysine (K) residues and the N-terminus of 

each polypeptide that are available as targets for NHS-ester cross-linking reagents.  

DSS application is helpful to determine the intracellular protein interaction prior to 

cell lysis, allowing for the detection of weak or transient protein interactions. The 

procedure includes several steps according to the protocol the manufacturer provided, as 

described below. 

Cells were plated in 100 mm2 dishes. Before harvesting for immunoblotting, the cells 

were incubated with the chemical cross-linker disuccinimidyl suberate (DSS; 

concentration at 0.1 mM) for 0.5 hr at room temperature. The DSS stock solution was 

prepared in DMSO; the control reaction contained the same amount of DMSO as the 

cross-linking reaction. Reactions were quenched with 1 M Tris·HCl, pH 7.5, at a final 

concentration of 50 mM for 15 min at room temperature. Cells were then harvested as 

usual. 

 

2.2.15 Visualization of intracellular Ca2+ levels 

Fluo-3-AM (Molecular Probes, 4H4H4HEugene, Oregon, USA) is cell-permeable, visible 

light–excitable, high affinity Ca2+ indicator. It is non-fluorescent in its free ligand form, 

but when it forms complexes with calcium, its fluorescence increases 60-80 times. It is 
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widely used to estimate the intracellular free Ca2+ concentration. According to the 

protocol the manufacturer provided, the procedure is listed below. 

1. Grow cells in a 12 well-plate with a cover-slip inside each well. Treat the cells. 

2. Prepare the loading buffer immediately prior to use. Add 16.5 mg Pluronic F127 to 

Fluo 3-AM/DMSO solution. Pluronic F127 prevents aggregation of Fluo 3-AM in 

HBSS and helps uptake with cells. Dilute the Fluo 3-AM solution with HBSS to 

prepare 4 µM Fluo 3-AM working solution.  

3. Remove the cell culture medium, and rinse cells with 1X PBS, twice. 

4. Add the Fluo 3-AM working solution to the cells, and incubate at 37oC for 30 min 

(Kwan et al., 2000) in a time-dependent order.  

5. Take the coverslip out and rinse with 1X HBSS, flip over on a bigger glass coverslip. 

6. Monitor the fluorescence at 528 nm (excitation: 488-500 nm) on an Olympus FV300 

Confocal Laser Scanning Biological Microscope. The intensity of the fluorescence 

reflects the levels of the intracellular free Ca2+. 

 

2.2.16 Detection of production of reactive oxygen species (ROS) 

Formation of reactive oxygen species (ROS) was determined by use of the fluorescent 

probe 2,7-dichlorofluorescine diacetate (DCFH-DA), as originally described by Keston 

and Brandt [316]. This fluorescence method is based on the incubation of cells with the 

probe DCFH-DA, which passively diffuses through cellular membranes, where the 



 88 

acetates are cleaved by intracellular esterases. Thereafter, the non-fluorescent compound 

DCFH is oxidized by ROS to the fluorescent compound DCF.  

The cells were seeded in a 12-well plate with a coverslip inside one well. After 

different treatments, the cells were rinsed by PBS twice and then incubated with 5 µM 

DCFH-DA (stock solution 5 mM in DMSO) at 37ºC in 5% CO2 atmosphere for 30 min. 

The extracellular medium was removed and the cells were added to 1.5 ml pre-warmed 

HEPES-buffered (20 mM) HBSS (pH 7.0), with 5 mM glucose. The thin coverslip was 

taken out and prepared to check for DCF fluorescence (Ex: 488 nm; Em: 530 nm). The 

change of DCF fluorescence of living cells allows the quantitation of intracellular ROS. 

 

2.2.17 Nuclear condensation detection by Hoechst staining 33258 

The Hoechst stain 33258 fluorescently labels DNA, commonly used to visualize 

nuclei and mitochondria. The dye is excited by 5H5H5Hultraviolet light at around 350 6H6H6Hnm, and 

emits blue/cyan fluorescent light around an emission wavelength at 461 nm, as described 

previously [317]. 

Primary cortical cells were cultured in a 12-well plate with a coverslip inside one well. 

After proper treatments, the medium was removed and the cells rinsed by 1X PBS buffer 

twice. Cells were fixed by 4% PFA for 20 min at room temperature. Cells were washed 

with 1X PBS buffer twice. Cells were loaded with Hoechst 33258 stain (10 μg/ml) for 10 

min at room temperature. Morphological evaluation of nuclear condensation and 
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fragmentation was performed immediately after staining on an Olympus FV300 

fluorescence microscope. 

 

2.2.18 JC-1 and the mitochondrial membrane potential 

Detection of the mitochondrial permeability transition event provides an early 

indication of the initiation of cellular apoptosis. The loss of mitochondrial membrane 

potential (Δψm) is a hallmark for apoptosis. This process is typically defined as a collapse 

in the electrochemical gradient across the mitochondrial membrane. Loss of Δψm can be 

detected by a unique fluorescent cationic dye, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl- 

benzamidazolocarbocyanin iodide, commonly known as JC-1. In non-apoptotic cells, 

JC-1 accumulates as aggregates in the mitochondria, resulting in red fluorescence. 

However, in apoptotic and necrotic cells, JC-1 exists in monomeric form and stains cells 

green. To measure Δψm changes in cells, we used JC-1 Mitochondrial Membrane 

Potential (Δψm) Detection Kit (Cat#30001, Cell Signaling Technology Inc., Cummings 

Center Beverly, MA, USA) with the protocol the manufacturer provided. 

For fluorescence microscopy, cells were grown on a glass cover slip in a 12-well 

plate, and treated as for every experimental design. JC-1 reagent was diluted to 1X 

immediately prior to use. The cell culture media was removed and loaded with enough 

diluted 1X JC-1 reagent to cover the cells. The cells were incubated at 37ºC in a 5% CO2 

incubator for 15 min. Medium was removed and washed once with 1X assay buffer. One 

drop of PBS was added and covered with a coverslip. A fluorescence microscope using a 
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“dual-bandpass” filter was used for immediate observation. The dye will remain in its 

monomeric form and appear green with an emission at 530 nm. The red aggregates emit 

at 590 nm. 

For fluorescence ratio detection, cells should be cultured to a density not to exceed 1 

x 106 cells/ml. Following treatment, 0.5 ml cell suspension is transferred into a sterile 

centrifuge tube and centrifuged at 400 g for 5 min at room temperature. The supernatant 

is removed and the cells resuspended in 0.5 ml 1X JC-1 reagent. The cells are then 

incubated at 37ºC in a 5% CO2 incubator for 15 min, then centrifuged at 400 g for 5 min. 

The supernatant is removed and the cell pellet resuspended in 2 mL 1X assay buffer, 

followed by centrifugation twice. The supernatant is then removed and the cell pellet 

resuspended in 300 μL assay buffer. 100 μL cell suspension is transferred into each of 

three wells of a black 96-well plate. Red and green fluorescence is measured [red 

fluorescence (excitation 550 nm, emission 600 nm) and green fluorescence (excitation 

485 nm, emission 535 nm)] using a fluorescence plate reader, and the ratio of red 

fluorescence divided by green fluorescence is then determined. The ratio of red to green 

fluorescence is decreased in dead cells and in cells undergoing apoptosis compared to 

healthy cells. 

 

2.3 Statistical analysis 

Significance (set at P<0.05) was assessed by unpaired Student’s t-test (two groups) 

or by one-way ANOVA (three groups or more) with post-hoc analysis relying on 
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Bonferroni’s Multiple Comparison Test. Data are represented as mean ± standard 

deviation (S.D.). 
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3  RESULTS 

 

3.1 Endogenous MAO activity in selected cells and the response of MAO to 

addition of Ca2+ to the reaction solution 

3.1.1 MAO gene expression and activity levels differ across cell lines 

C6 cells, HT-22 cells, PC12 cells, and N2a cells had higher levels of mao-A gene 

expression than did SH-SY5Y cells and HEK293A cells. T98G cells expressed almost no 

mao-A gene (Fig. 7A). The levels of mao-B gene expression were also uneven across the 

seven cell lines. Two fragments, possible splice variants, were detected in HT-22 cells 

and N2a cells (Fig. 7A). 

The activity levels in corresponding cell lysates did not match the levels of gene 

expression (for example, N2a cells had high mao-A gene expression, but were virtually 

MAO-A null). Similarly, MAO-B activities also did not match the level of mao-B gene 

expression (Fig. 7B).  

The basic conclusion here was that MAO activity did not necessarily concord with 

gene expression, indicating possible post-transcriptional as well as post-translational 

regulation of MAO-A function. 
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Fig. 7: Gene expression and activity levels of MAO-A and MAO-B in selected cell 

lines. Cell lines were screened for mao-A and mao-B gene expression (A, n=3) and MAO 

activities (B, n≥3; except SH-SY5Y and T98G, n=2). The expression of mao-A and 

mao-B genes varied across cell lines as did the level of activities in corresponding 

homogenates, and did not necessarily concord. Data are represented as mean ± StDev. 
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3.1.2 MAO activity is dependent on protein concentration 

The radioenzymatic assay for MAO activity suggested using 100 μg/100 μL as this 

lies within the linear range. Using C6 cell lysates, the linear range for this assay was 

confirmed to lie within the range of 50-200 μg/100 μL (Fig. 8). All subsequent MAO 

enzyme assays used 100 μg protein/100 μL. 

 

3.1.3 The effect of Ca2+ incubation time and Ca2+ concentration on MAO-A 

activity 

The optimal incubation of C6 cell lysates of Ca2+ was 20 min when MAO-A 

activity was elevated [P<0.01, vs. 0; F(5,23)=7.971] (Fig. 9A). Incubating with different 

concentrations of Ca2+ for 20 min, it was shown that the peak effect was at 1mM of Ca2+ 

[P<0.001, vs. 0; F(6,20)=43.98] (Fig. 9B), confirming previous data [303]. 

 

3.1.4 Ca2+ selectively enhances MAO-A activity in animal brain tissues 

In rat cerebellar homogenates, incubation with Ca2+ for 20 min enhanced MAO-A 

activity (basal levels: 24.07 ± 5.27 nmol/h/mg protein, P<0.05, vs. 0; F(6,27)=4.566) by 

approximately 69% (Fig. 10A). In contrast, MAO-B activity (basal levels: 40.66 ± 5.88 

nmol/H/mg protein) in rat cerebellar homogenates was not affected by addition of Ca2+ 

(Fig. 10B). 
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Fig. 8: MAO enzyme activity is dependent on protein concentration. MAO-A (●) 

and MAO-B (■) activities in C6 glial cell homogenates were assayed using increasing 

amounts of total protein to determine linear ranges and saturability. Data are represented 

as mean ± StDev (n=3). A concentration of 100 μg/100 μL reaction volume was used for 

the remainder of the MAO radioenzymatic assays. 
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Fig. 9: MAO-A activity in C6 cell homogenates is increased by Ca2+ in a 

time-dependent manner. (A) MAO-A (labelled as “A”) and MAO-B (“B”) activities 

were determined in C6 cell homogenates incubated with Ca2+ (1mM: ref. 303) for 

different periods of time. A 20-minute incubation with Ca2+ appeared to enhance MAO-A 

activity [P<0.01, vs. 0 mM; F(5,23)=7.971]. (B) MAO-A activity was enhanced by addition 

of Ca2+ to the incubation buffer, and confirmed a peak response at approximately 1mM 

[P<0.001, vs. 0 mM; F(6,20)=43.98]. Data are represented as mean ± StDev (n=3).  
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In mouse hipocampal, cerebellar and cortical homogenates, MAO-A activity was 

also selectively increased by addition of Ca2+ to the incubation buffer (P<0.05, vs. 0; 

F(6,20)=43.98) (Fig.10C&D). 

 

3.1.5 The effect of Ca2+ on MAO activity in glial C6 cells is sensitive to Mg2+ 

Incubation of C6 cell homogenate with Ca2+ (1 mM) resulted in an increase in 

MAO-A activity that was blocked with the co-incubation with Mg2+ [F(3,12)=12.80, 

P=0.0005]. MAO-B activity was not affected by incubation with either Ca2+ or Mg2+ 

[F(3,12)=0.2302, P=0.8376] (Fig. 11A). Unexpectedly, when further experiments were 

carried out, the basal level of MAO-A activity decreased and the response of MAO-A to 

Ca2+ was no longer evident (Fig. 11B). At this point it was questionable if cell confluence 

was a factor. 

 

3.1.6 MAO-A activity in hippocampal HT-22 cells is also selectively enhanced by 

Ca2+ and is sensitive to Mg2+ 

Because of the observed changes in MAO-A activity in C6 cells, another cell line 

was needed for characterization studies. MAO-A activity in the hippocampal HT-22 cell 

line also responded selectively, with a peak response of approximately 20% (with 1 mM 

Ca2+) [F(7,40)=4.481, P=0.0009] (Fig. 12). MAO-B activity was not influenced by Ca2+ 

[F(6,14)=0.8957, P=0.5243] (Fig. 12). Mg2+, a natural antagonist of Ca2+, blocked the  
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Fig. 10: Ca2+ selectively enhances MAO-A activity in regional homogenates from rat 

and mouse brain. MAO activity was examined in rat cerebellar (A&B) (P<0.05, vs. 0 

mM; F(6,27)=4.566) and in mouse hippocampal, cerebellar and cortical (C&D) (P<0.05, vs. 

0 mM; F(6,20)=43.98) homogenates. The effect of Ca2+ was selective for MAO-A in all 

samples tested. Data are represented as mean ± StDev (n=3).  
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Fig. 11: The effect of Ca2+ on MAO-A activity in C6 cell homogenates is not 

consistent. (A) Incubation of C6 cell homogenate with Ca2+ (1 mM) resulted in an 

increase in MAO-A activity that was sensitive to co-incubation with Mg2+ (an antagonist 

of Ca2+) [F(3,12)=12.80, P=0.0005]. MAO-B activity was not affected by incubation with 

either Ca2+ or Mg2+ [F(3,12)=0.2302, P=0.8376]. (B) It was observed that the basal 

MAO-A activity as well as its response to Ca2+ diminished in subsequent cultures. At this 

point it was unclear if this was due to the cells having been allowed to grow to 

confluency. Data are represented as mean ± StDev (n=3). **: P<0.01 versus vehicle 

control. 
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Fig. 12: Ca2+ selectively enhances MAO-A activity in HT-22 cell homogenates. (A) 

MAO-A activity was enhanced by incubation of HT-22 cell homogenates with increasing 

concentrations of Ca2+ [F(7,40)=4.481, P=0.0009]. (B) Ca2+ did not exert any effect on 

MAO-B activity [F(6,14)=0.8957, P=0.5243]. Data are represented as mean ± StDev (n=4). 

**: P<0.01; ***: P<0.001, vs. Vehicle control without Ca2+. 
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effect of Ca2+ on MAO-A activity, but did not exert any effect on its own [F(6,14)=9.39, 

P=0.0003] (Fig. 13), precluding a generalized effect of divalent cations. 

 

3.1.7 Ca2+ affects MAO-A kinetics in HT-22 cells 

Kinetic analyses of MAO-A activity in HT-22 cells revealed a decrease in KM 

(97.97 ± 7.044 with Ca2+, vs. 126.1 ± 21.08 without Ca2+; P=0.0244, t=2.464, df=6) in 

the presence of Ca2+ (1mM), indicating that Ca2+ facilitated the enzymatic reaction. VMAX 

remained unaltered (713.2 ± 12.32 with Ca2+, vs. 731.1 ± 29.29 without Ca2+; P=0.3029, 

t=1.127, df=6) suggesting that Ca2+ was potentially acting via an allosteric mechanism 

(Fig. 14).  

 

3.2 Overexpressed MAO-A, but not MAO-B, responds to incubation with Ca2+ 

mao-A and mao-B were amplified by PCR and subcloned into the XhoI restriction 

site of pCMV/myc/Mito expression vector and verified by DNA sequence analysis (Figs. 

15-17) which allowed for mitochondrial targeting and a C-terminal myc epitope tag for 

specific detection of the overexpressed protein (i.e. an anti-myc antibody could be used to 

detect any overexpressed protein).  

Plasmid DNA transfection and overexpression (24 and 48 h) of the MAO-A-myc 

and MAO-B-myc proteins were examined in HEK293A cells (as these cells are virtually 

functionally MAO-A null, see Fig. 7). Transfection efficiency using the GFP fluorophore 

was determined to be approximately 60-80% (not shown). Protein expression was 
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Fig. 13: The response of MAO-A to Ca2+ in HT-22 cells is sensitive to Mg2+. Inclusion 

of Ca2+ (1 mM) in the incubation buffer increased MAO-A activity in HT-22 cells, but 

inclusion of Mg2+ (an antagonist of Ca2+; 1 mM) did not [F(6,14)=9.39, P=0.0003], 

indicating the effect of Ca2+ on MAO-A activity was specific. The increase in MAO-A 

activity induced by Ca2+ was blocked by the addition of Mg2+. Data are represented as 

mean ± StDev (n=3). **: P<0.01 vs. vehicle control (CTL).  
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Fig. 14: Ca2+ affects MAO-A enzyme kinetics in HT-22 homogenates. Kinetic analysis 

of HT-22 MAO-A activity in the absence and presence of Ca2+ (1mM) revealed that Ca2+ 

decreased the KM (*:P=0.0244, t=2.464, df=6) and did not affect VMAX  (P=0.3029, 

t=1.127, df=6), suggesting that the enzyme reaction was accelerated. Data are represented 

as mean ± StDev (n=4). 
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Fig. 15: MAO-A and MAO-B cDNA were fused to a myc-epitope tag to allow 

monitoring of the overexpressed protein. The diagram shows the multiple cloning site 

(used for cutting DNA and inserting a gene) flanked by the mitochondrial (Mito) 

targeting sequence and the C-terminal Myc-epitope tag (before the stop codon) in the the 

pCMV/myc/Mito expression vector. MAO (-A or -B) cDNA was subcloned in-frame with 

the Mito targeting sequence and the myc-tag using the XhoI and NotI restriction sites. 

CMV: the cytomegalovirus promoter used to facilitate gene expression in mammalian 

cells. AMP: this gene is included to confer resistance to Ampicillin®, thus allowing for 

selection of bacterial colonies expressing the plasmid. 
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Fig. 16: Representative chromatograms of the cDNA sequence of mao-A in the 

pCMV/Myc/Mito expression vector. The entire open reading frame of the mao-A 

cDNA subcloned into pCMV/Myc/Mito was confirmed by DNA sequencing. The 

mitochondrial targeting sequence, the XhoI restriction site and the mao-A gene (with no 

ATG (start codon) were sequenced using the pCMV primer. The remainder of the 

sequence, including the end of the mao-A cDNA and the myc-epitope tag, was sequenced 

with the primers MAO-A(S209A)F and the MAO-A(F1) primers (positions are shown in 

the diagram). ATG indicates where the ATG for the mao-A cDNA had been removed (to 

allow for the fusion protein); “*” indicates the “stop” codon.  
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Fig. 17: Representative chromatograms of the cDNA sequence of mao-B in the 

pCMV/Myc/Mito expression vector. The entire open reading frame of the mao-B 

cDNA subcloned into pCMV/Myc/Mito was confirmed by DNA sequencing. The 

mitochondrial targeting sequence, the XhoI restriction site and the mao-B gene (with no 

ATG (start codon) were sequenced using the pCMV primer. The remainder of the 

sequence, including the end of the mao-B cDNA and the myc-epitope tag, was sequenced 

with the primers MAO-B(S200A)F and the MAO-B(F1) primers (positions are shown in 

the diagram). ATG indicates where the ATG for the mao-B cDNA had been removed (to 

allow for the fusion protein); “*” indicates the “stop” codon.  
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dependent on both the amount of DNA used for transfection as well as the time 

post-transfection (Fig. 18A). In the subsequent experiments, transient transfection was 

kept at 24 hours and the amount of DNA transfected was kept at 1.0 μg per well of a 

24-well plate (or equivalent). Subcellular fractionation revealed that MAO-A-myc 

expressed was limited, as expected, to the mitochondria-enriched fraction (P2), as it was 

not detected in the soluble cytosolic fraction (S) (Fig. 18B). 

MAO-A-myc and MAO-B-myc were overexpressed in HEK293A cells for 24 hours 

to test for their respective enzymatic activities. The overexpressed MAO-A-myc and 

MAO-B-myc proteins were very active and sensitive to their respective inhibitors, i.e. the 

MAO-A specific inhibitor clorgyline (1 μM, 30 minutes pretreatment) and the MAO-B 

specific inhibitor l-deprenyl (1 μM, 30 minutes pretreatment) (Fig. 18C). 

The mitochondria-enriched P2 fractions of HEK293A cells overexpressing either 

MAO-A-myc or MAO-B-myc were incubated with 5 mM Ca2+. The proteins were then 

resolved by SDS-PAGE and probed with anti-myc antibody. A high molecular weight 

band was observed in the MAO-A-myc+Ca2+ lane, but not in the MAO-B-myc+Ca2+ lane. 

Incubation with Mg2+ did not result in the appearance of a high molecular weight 

complex in MAO-A-myc extracts (Fig. 19). 

 

3.3 The effect of mutations of putative Ca2+-binding sites on MAO-A function 

The selective effect of Ca2+ on MAO-A suggested that putative Ca2+-binding sites 

might exist in MAO-A, but not in MAO-B. The deduced amino acid sequences of 



 108 

 

Fig. 18: The expression, subcellular distribution and activity of Myc-epitope tagged 

MAO-A. HEK293A cells were transfected with increasing quantities of the 

pMito-MAO-A-Myc plasmid DNA. (A) 24 or 48 hours later cell extracts were probed by 

immunoblot using the anti-myc antibody and protein expression was confirmed.  (B) 

Subcellular fractionation confirmed that the MAO-A protein was expressed in the P2 

mitochondria-enriched fraction and not in the cytosol (S). β-Actin expression was 

included to demonstrate equal protein loading. (C) The activities of MAO-A or MAO-B 

(using the pMito-MAO-B-Myc plasmid) in corresponding cell homogenates were 

inhibited by clorgyline or l-deprenyl (1μM, 30 min, preincubation), respectively. Data are 

represented as mean ± StDev (six replicates)
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Fig. 19: Ca2+ promotes the formation of a high molecular weight complex with 

overexpressed MAO-A-myc, but not MAO-B-myc. Mitochondrial extracts from 

HEK293A cells overexpressing either MAO-A-myc or MAO-B-myc were incubated with 

Ca2+ (5 mM, 10 min). A high molecular weight c-myc-specific band was observed in the 

MAO-A-myc extracts, but not in the MAO-B-myc extracts. Mg2+ (5 mM, 10 min) did not 

exert any effect on either MAO-A-myc or MAO-B-myc.  
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MAO-A in several mammalian species revealed several putative Ca2+-binding sites that 

follow the general DXD, DXXD and DXXXD motifs [307-309] (Fig. 20). Comparison of 

the deduced amino acid sequences for MAO-A and MAO-B revealed that some of these 

motifs were specific for MAO-A; three such putative Ca2+-binding motifs specific for 

MAO-A were targeted for mutagenesis to determine their role in MAO-A function. These 

motifs were situated at D61, D248, and D328 (Fig. 21, indicated by arrows in boxed 

motif). 

The codons for the aspartate residues (i.e. “D”) in the three putative Ca2+ binding 

sites were mutated to substitute the D for an alanine (“A”) for D61 and for D248 or to 

substitute for glutamine (“G”) for D328 to match the corresponding sequence in MAO-B. 

The chromatogram confirmed mutagenesis of the respective codons (Fig. 22A). 

Overexpression of the proteins was confirmed (Fig. 22B), yet activity assays revealed 

differences in their respective activities [F(4，20)=27.1, P<0.0001] (Fig. 22C). MAO-A wild 

type (WT) and MAO-A(D61A) were both very active, i.e. almost 500% over 

vector-transfected control. MAO-A(D248A) and MAO-A(D328G) were also active 

(~150-300% over vector-transfected control), but were clearly not as active as 

MAO-A(WT) (Fig. 22C). 

Overexpression of MAO-A(WT) and three Ca2+-binding site mutants in HEK293A 

cells resulted in a pattern of ROS production that paralleled their respective activities (Fig. 

23). Transfection itself did not induce ROS production, as demonstrated by the similar 

levels of ROS in vector-transfected cells and in naïve cells. 
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Fig. 20: Alignment of the MAO-A deduced amino acid sequences from four 

mammalian species. There is a high degree of sequence identity across species and 

several putative Ca2+-binding sites, e.g. DXXD, DXXXD and DXD are shown in bold. 
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Fig. 21: Alignment of the human MAO-A and MAO-B deduced amino acid 

sequences. Note the high sequence identity (~70%) as well as the lack of identity 

between putative Ca2+ binding motifs, e.g. DXXD, DXXXD and DXD, in the two 

sequences. The D61, D248 and D328 residues (indicated by arrows) are specific to 

MAO-A and were mutated to Alanine (A) or Glycine (G, in the case of D328, so as to 

correspond to the MAO-B sequence). Spacing using “….” was included to allow for 

proper alignment of the two protein sequences. 
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Fig. 22: Ca2+-binding site mutations affect MAO-A activity. (A) Chromatograms of 

the cDNA sequences that were mutated to allow for targeted amino acid substitutions in 

the expressed protein. The wild type codon is indicated below the mutated (underlined) 

codon. (B) The mutated proteins were overexpressed evenly in HEK293A cells (β-Actin 

expression demonstrates equal protein loading.), yet (C) were not equally as active [F(4，

20)=27.1, P<0.0001]. Data are represented as mean ± StDev (n=5). *: P<0.5 & ***: 

P<0.001 vs. vector control (VEC); ##: P<0.01 & ###: P<0.001 vs. MAO-A(WT). 
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Fig. 23: Ca2+-binding site mutations affect the ability of MAO-A to generate peroxy 

radicals. The potential of the overexpressed myc-tagged MAO-A(WT) and putative 

Ca2+-binding mutants on the production of peroxy radicals (a type of reactive oxygen 

species; ROS) in HEK293A cells was assessed using the H2O2-binding DCF fluorogen. 

The production of peroxy radicals by the Ca2+-binding mutants diminished in a manner 

corresponding to their respective activities. Data are representative of three separate 

experiments.  
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The toxicity of the overexpressed MAO-A proteins was further demonstrated by the 

loss of Δψm in neuronal N2a cell cultures. This was tested using the JC-1 stain, which 

was loaded into the cells. The JC-1 stain fluoresces green when it is localized to the 

cytoplasm as a monomer, and fluoresces red when taken up into the mitochondrion, as a 

function of the Δψm, where it exists as a polymer. When the Δψm is disrupted, the JC-1 

stain is not easily taken up by the mitochondria, resulting in less red fluorescence. 

Overexpression of the three putative MAO-A Ca2+-binding site mutants as well as the 

wild type of MAO-A resulted in different ratios of red to green (Fig. 24). MAO-A(WT) 

and MAO-A(D61A) overexpression resulted in the lowest ratio of red to green 

fluorescence (reflecting a loss of Δψm and indicating apoptotic processes were activated), 

whereas the other two overexpressed proteins did not affect the JC-1 ratio as significantly. 

The loss of red fluorescence loosely paralleled their inherent activities, again supporting a 

toxic role for overexpressed MAO-A and a contribution by Ca2+-binding site(s). 

 

3.4 The three MAO-A Ca2+-binding site mutants associate differently with a high 

molecular weight complex 

A protein’s function can be determined by its inclusion in a larger protein complex. 

To test whether MAO-A exists in such a complex and, if so, does its activity depend on 

this, HEK293A cells overexpressing either MAO-A(WT) or one of the three putative 

Ca2+-binding site mutants were treated with DSS, a cell-permeable protein cross-linking 

reagent. A high molecular weight (HMW, greater than 200 KDa) complex was observed  
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Fig. 24: Ca2+-binding site mutations in MAO-A affect the mitochondrial membrane 

potential (Δψm) in N2a cells. The potential of the overexpressed myc-tagged 

MAO-A(WT) and putative Ca2+-binding mutants to affect Δψm in mouse neuroblastoma 

N2a cells was tested using the JC-1 dye assay. The cultures overexpressing MAO-A(WT) 

and MAO-A(D61A) were considerably more toxic as determined by the lower ratio of 

red/green, indicating that the Δψm was disrupted. The ratio of green/red in cultures 

overexpressing MAO-A(D248A) and MAO-A(D328G) was comparable to that in the 

vector-transfected control group (VEC). Data are representative of two separate 

experiments. 
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following treatment with DSS (compared to no DSS treatment) (Fig. 25). Of the four 

overexpressed MAO-A proteins, MAO-A(D328G) was the least detectable in a HMW 

complex. 

 

3.5 Overexpressed MAO-A proteins do not respond to Ca2+ in HEK293A cells 

Neither the activity of overexpressed MAO-A(WT) nor the activities of any of the 

three MAO-A Ca2+-binding site mutants responded to the addition of Ca2+ to the 

incubation buffer (Fig. 26). 

 

3.6 Overexpressed MAO-A proteins do not respond to Ca2+ in N2a cells 

MAO-A(WT) and the Ca2+-binding site mutants were overexpressed in N2a cells as 

these cells were also virtually functionally MAO-A null (see Fig. 7). The activity of the 

overexpressed protein was evident, but, as with HEK293A cells (see section 3.5, above), 

there was no response to Ca2+ (Fig. 27). 

 

3.7 Cell confluence diminishes MAO-A activity and its response to Ca2+ in C6 cells 

The lack of response of MAO-A to Ca2+ in HEK293A and N2a cells (above) suggested 

that other factors might be influencing the sensitivity of MAO-A to Ca2+. With this in 

mind, C6 glial cells, which lost MAO-A activity as well as its sensitivity to Ca2+ when 

confluent (higher passage number?) (recall Fig. 11), were re-examined. C6 cells grown to 

confluence lost MAO-A activity (inhibited to 43.78 ± 3.3% of MAO-A activity 
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Fig. 25: Mutagenesis of the MAO-A-D328 Ca2+-binding site diminishes its 

association with a high molecular weight complex. Myc-epitope tagged MAO-A(WT) 

and the three Ca2+-binding mutants were overexpressed in HEK293A cells. Prior to 

harvest the cells were treated with the cell permeable cross-linking reagent DSS (1mM, 

30 min) or the DMSO vehicle [DSS(-)]. The SDS-PAGE resolved proteins were then 

probed for MAO-A. A high molecular weight (HMW) complex (>200 kDa) was 

observed in extracts from the DSS-treated cultures (left). The intensity of the signal of the 

HMW complex was lowest in MAO-A(D328G) extracts. This HMW complex was not 

detected in DMSO-treated cultures. β-Actin expression demonstrates equal protein 

loading. Data represent the results of two separate experiments. n.s.: non-specific band. 
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Fig. 26: The activities of overexpressed MAO-A(WT) and Ca2+-binding site mutants 

in HEK293A cell homogenates do not respond to Ca2+. None of the overexpressed 

proteins responded significantly to addition of Ca2+ to the reaction buffer. Data are 

represented as mean ± StDev (n=5). 
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Fig. 27: The activity of overexpressed MAO-A(WT) in N2a cell homogenates does 

not respond to Ca2+. Overexpressed MAO-A did not respond significantly to the 

addition of Ca2+ to the reaction buffer. Data are represented as mean ± StDev (n=3). 
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in subconfluent cultures, Fig. 28A) (P=0.0003, t=12.25, df=4) as well as their sensitivity 

to Ca2+ (Fig. 28B; same as Fig. 11, included for purposes of comparison) (P=0.0049, 

t=5.619, df=4). MAO-B activity in confluent cells was not affected (levels were at 93.57 

± 7.17% of MAO-B activity in subconfluent cell culture, P=0.8629, t=0.1841, df=4) (Fig. 

28A). Confluence is already known to affect the phosphorylation of p38(MAPK) in 

human fibroblasts [318], so p38(MAPK) phosphorylation was also examined in C6 cells 

grown to confluence. The phosphorylation of p38(MAPK) was clearly increased in 

confluent C6 cell cultures (Fig. 28C) and suggested an inverse relation between 

p38(MAPK) phosphorylation and MAO-A activity (and its response to Ca2+). 

 

3.8 p38(MAPK) regulates MAO-A activity and its response to Ca2+ 

3.8.1 p38(MAPK) phosphorylation was inversely correlated with MAO-A activity 

level in 4 cell lines. 

The levels of p38(MAPK) phosphorylation were examined in the four cell lines 

used so far (these include C6, HT-22, HEK293A cells & N2a cells). It was observed that 

MAO-A activity (Fig. 29A) did not correspond with the levels of MAO-A protein (Fig. 

29B), but that MAO-A activity was higher in cell lines (i.e. C6 & HT-22) that had 

significantly lower proportions of activated p38(MAPK) [F(3,8)=99.29, P<0.0001] (Fig. 

29C&D). These data supported the hypothesis that p38(MAPK) phosphorylation might 

be negatively regulating MAO-A activity. 
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Fig. 28: C6 cell confluence diminishes MAO-A activity and its response to Ca2+; 

correlation with increased phosphorylation of p38(MAPK). (A) Re-examination of 

MAO-A activity in C6 homogenates revealed that cell confluence influenced basal 

MAO-A activity (43.78% ± 3.3%, compared to 100% in subconfluent cells; P=0.0003, 

t=12.25, df=4), but not MAO-B activity (P=0.8629, t=0.1841, df=4). (B) The response of 

MAO-A to Ca2+ demonstrated in subconfluent cells was abolished in confluent cells 

(P=0.0049, t=5.619, df=4). (C) Confluence is known to activate the p38(MAPK) 

signaling pathway in human fibroblasts [318]. The confluence of C6 cells clearly affects 

the phosphorylation (p-p38) of p38(MAPK) in corresponding cell lysates (n=3). β-Actin 

expression demonstrates equal protein loading. 
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Fig. 29: MAO protein expression and activity, and phosphorylation of p38(MAPK) 

in four cell lines. (A) The differing levels of MAO-A (labelled as “A”) activities in four 

cell lines does not (B) correspond with the expression of the MAO-A protein. β-Actin 

expression was used to demonstrate equal protein loading. (C) MAO-A activity, however, 

does appear to be inversely related to the level of constitutive p38(MAPK) activation 

(reflected in the degree of p38(MAPK) phosphorylation, p-p38) as quantified by (D) 

densitometric analysis of the ratios of phospho-p38 (p-p38) to total p38 in these four cell 

lines [F(3,8)=99.29, P<0.0001] (**: P<0.01 & ***: P<0.001 vs. HEK293A; ###: P< 0.001 

vs. N2a; ^: P<0.05 vs. C6).  
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3.8.2 p38(MAPK) associates with MAO-A protein, but not with MAO-B protein. 

Protein-protein interactions are important for many biological functions. The 

potential association between p38(MAPK) and MAO-A (or MAO-B) was examined in 

HEK293A cells (low basal MAO-A activity, high p38(MAPK) phosphorylation) 

andHT-22 cells (high basal MAO-A activity, low p38(MAPK) phosphorylation). Lysates 

were immunoprecipitated for p38(MAPK) or for MAO-A or MAO-B. MAO-A (but not 

MAO-B) was detected in p38(MAPK) immunoprecipitates from both HT-22 and 

HEK293A cells (Fig. 30A), although the association was less in HT-22 cells. These 

observations were corroborated by the detection of p38(MAPK) in MAO-A, but not in 

MAO-B, immunoprecipitates (Fig. 30B). This supported the suggestion that p38(MAPK) 

could regulate MAO-A function. 

 

3.8.3 Chemical p38(MAPK) inhibition increases MAO-A activity and its response 

to Ca2+. 

The influence of p38(MAPK) on MAO-A activity was tested using the specific 

chemical inhibitor, SB203580, which inhibits the activity, but not the phosphorylation, of 

p38(MAPK) [319]. A concentration of SB203580 (10 μM) was used based on the 

published literature [320, 321]. MAPKAP-K2 (MK2) is a downstream target 

phosphorylated directly by p38(MAPK) [322]. In HT-22 cells, SB203580 decreased 

MK2 phosphorylation (Fig. 31A) and increased MAO-A activity as well as its response 

to Ca2+ [F(3,12)=29.67, P<0.0001] (Fig. 31B). MAO-A activity in HEK293A cells  
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Fig. 30: p38(MAPK) associates selectively with MAO-A protein. (A) Precleared 

protein extracts from HEK293A and HT-22 cells were immunoprecipitated for 

p38(MAPK) (p38). The immune complex was resolved by SDS-PAGE and probed for 

MAO-A or MAO-B using standard immunoblot analysis. MAO-A associated with 

p38(MAPK), but MAO-B did not. (B) The complementary experiment where either 

MAO-A or MAO-B was immunoprecipitated confirmed the selective association 

between MAO-A and p38(MAPK). (C) Total cell lysates (TCL) expressed MAO-A, 

MAO-B, and p38(MAPK), with β-Actin being used as a loading control. 
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Fig. 31: The specific p38(MAPK) inhibitor SB203580 increases MAO-A activity in 

HEK293A cells and HT-22 cells. The inhibition of p38(MAPK) in HT-22 cell cultures 

using SB203580 (SB: 10 μM, 60 min) (A) decreased the phosphorylation of its 

downstream target MAPKAPK-2 (MK2), but (B) increased MAO-A activity to 126.4 ± 

10.91% (** vs. VEH, P<0.01). It also enhanced the response of MAO-A to Ca2+ (1mM) 

(149.5 ± 0.88%, # vs. VEH with Ca2+ (1mM), P<0.05) [F(3,12)=29.67, P<0.0001]. (C) In 

HEK293A cells SB increased basal MAO-A activity (* vs. VEH: P<0.05), but did not 

significantly increase the response to Ca2+ [F(3,12)=10.94, P=0.0009]. 
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treated with SB203580 was also significantly increased [F(3,12)=10.94, P=0.0009], but the 

response to Ca2+, although tending to increase, was not significant (Fig. 31C).   

SB203580 is a pyridinyl imidazole compound and it could be exerting an effect directly 

on MAO-A as imidazoline is known to bind to, and inhibit, MAO [83, 86, 87]. MAO-A 

activity in HT-22 cell homogenates was unaffected by addition of SB203580 to the 

incubation buffer (P=0.1653, t=1.707, df=4) (Fig. 32). 

 

3.8.4 Genetic modulation of p38(MAPK) affects MAO-A activity and its response 

to Ca2+. 

The pEBG-p38(MAPK)α expression vector, obtained from Dr. Brent Zanke (Cross 

Cancer Institute, Edmonton, AB), was used for PCR-amplification of p38(MAPK). The 

resulting p38(MAPK) cDNA was subcloned into the ECoRV and XhoI restriction sites of 

pcDNA3.1. Using EcoRI (note, ECoRI restriction sites flank the multiple cloning site and 

there is one additional EcoRI restriction site within the p38(MAPK) cDNA; Fig. 33) 

Restrictive digestion of p38/pcDNA3.1 with EcoRI gave the expected band pattern, thus 

confirming the presence of p38(MAPK) cDNA within the expression vector. This was 

further confirmed by the band pattern obtained using SalI restriction analysis (Fig. 33) as 

well as by DNA sequencing using the T7-20 primer. The TGY motif necessary for full 

activation of p38(MAPK) by its upstream kinases MEK3 or MEK6 is evident (Fig. 34) 

and DNA sequencing of the entire open reading frame indicated that no mutations had 

been introduced to the cDNA during the PCR amplification process. 
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Fig. 32: SB203580 added directly to HT-22 homogenates does not affect MAO-A 

activity. SB203580 (SB, 10 μM, 60 min) was added directly to HT-22 homogenates to 

test whether its effects were occurring as a consequence of direct interaction with the 

MAO-A protein. No significant effect was observed (P=0.1653, t=1.707, df=4).  
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Fig. 33: p38(MAPK) cDNA was subcloned into the pcDNA3.1/Hygro(+) expression 

vector. p38(MAPK) cDNA was subcloned into the EcoRV and XhoI restrictions sites in 

the pcDNA3.1/Hygro(+) expression vector (top, right). Band size (in base pair: Bp) 

following restriction analysis using EcoRI or SalI (bottom, left) confirmed the presence 

of the inserted gene as well as its orientation. The positions of the EcoRI and SalI 

restriction sites in the pcDNA3.1-p38(MAPK) plasmid DNA used to calculate the sizes 

of the expected bands are shown in the boxes on the lower right.  
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Fig. 34: The sequence of p38(MAPK) cDNA in the pcDNA3.1/Hygro(+) vector was 

confirmed by sequence analysis. The plasmid-specific T7 primer was used to sequence 

across the ATG (start codon) for p38(MAPK) and the 3′ end of the sequence was 

obtained using the p38(T/A)F primer (corresponding chromatogram not shown). The 

cDNA sequence shown in the chromatogram (bottom) shows the position of the codons 

corresponding to the TGY motif, a dual phosphorylation site linked to p38(MAPK) 

activation and targeted in subsequent experiments (see Figure 35) for generating 

activated and dominant negative forms of the enzyme. 
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Mutagenesis of the “TGY” dual phosphorylation activation motif to “EGD” or 

“AGF” resulted in an activated form of p38(MAPK) and a dominant negative form of 

p38(MAPK), respectively (Fig. 35). This is based on the notion that mutating a “T” to an 

“E” or a “Y” to a “D” mimics phosphorylation of the “T” and “Y”, respectively, whereas 

mutating the “T” to an “A” or a “Y” to an “F” precludes phosphorylation on these sites 

(and, hence, inactivates the kinase). This was accomplished using the Quikchange 

mutagenesis kit.  

 

3.8.4.1 Overexpression of p38(MAPK) mutants affects MAO-A activity, but not gene 

expression, in HT-22 cells. 

Overexpression of the constitutively active form of p38(MAPK)-AF induced the 

phosphorylation of the p38(MAPK) substrate MK2 in HT-22 cells, whereas 

overexpression of the dominant negative form of p38(MAPK)-DN did not (Fig. 36). 

Neither mutant exerted any effect on the expression of mao-A or mao-B genes in these 

same cells (Fig. 36).  

Overexpression of p38(MAPK)-DN resulted in an increase in MAO-A activity and 

also enhanced the response of MAO-A to Ca2+. In contrast, overexpression of 

p38(MAPK)-AF diminished MAO-A activity to 25.64±2.83% of basal MAO-A activity 

and also blocked the response of MAO-A to Ca2+ [F(5,24)=78.48, P<0.0001] (Fig. 37). 
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Fig. 35: Mutagenesis of the “TGY” motif in p38(MAPK). cDNA sequences confirm 

the codons (underlined) that were mutated to allow for targeted amino acid substitutions 

in the expressed protein. The corresponding amino acid is indicated below the mutated 

codon. Generation of the dominant negative (DN: upper panels) first required 

mutagenesis of the “T” to an “A” (left), then mutagenesis of the “Y” to an “F”. Similarly, 

the activated form (AF: bottom panels) necessitated sequential mutagenesis, i.e. first the 

codon for “T” was mutated to a codon for “E”, then the codon for “Y” was mutated to a 

codon for “D”. 
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Fig. 36: Activated and dominant negative forms of p38(MAPK) do not affect mao-A 

or mao-B gene expression in HT-22 cells. (A) Overexpression of p38(MAPK) wild type 

[p38(WT)], the activated form [p38(AF)] and the dominant negative [p38(DN)] form 

were confirmed by immunoblot. The constitutive activation of p38(MAPK) was 

confirmed by the phosphorylation of its downstream substrate, MAPKAPK-2 (MK2). 

β-Actin expression was used to demonstrate equal protein loading. (B) None of the 

overexpressed proteins affected mao-A or mao-B gene expression in these cells. 
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Fig. 37: The overexpression of p38(MAPK) mutant proteins affects MAO-A activity 

and its response to Ca2+ in HT-22 cells. (A) Overexpression of dominant negative 

p38(MAPK)-DN [p38(DN)] increased endogenous MAO-A activity (122.84 ± 4.28% of 

control ) and its response to 1mM Ca2+ (146.34 ± 12.68%, shown again in (B) for ease of 

interpretation). Overexpression of constitutively active p38(MAPK)-AF [p38(AF)] 

greatly diminished endogenous (A) MAO-A activity (74.36 ± 2.83% of control) and (B) 

blocked any response to Ca2+ (76.76 ± 4.05%) [F(5,24)=78.48, P<0.0001]. *: P<0.05 &***: 

P<0.001 vs CTL; ###: P<0.001 vs p38DN.  
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3.8.4.2 The effect of activated p38(MAPK) is cell line-dependent. 

It was reported that mao-A gene expression might be downstream target of the 

p38(MAPK) pathway in PC12 cells [311]. This was confirmed by overexpression of the 

p38(MAPK)-AF (P=0.0001, t=15.33, df=4) (Fig. 38A&B), yet, surprisingly, there was no 

change in MAO-A activity (P=0.6582, t=0.4771, df=4) (Fig. 38C). The efficiency of 

p38(MAPK)-AF was confirmed by the change in phosphorylation of its substrate MK2 in 

these cells (Fig. 38D). 

The effect of overexpressing p38(MAPK) wild type either alone or in combination 

with its upstream activating kinase, MEK3, was examined in SH-SY5Y cells treated with 

cytotoxic agent hydrogen peroxide (H2O2, 100 μM, 2 hours before harvest). H2O2 

induced the phosphorylation of [endogenous] p38(MAPK) and this was potentiated in 

cells overexpressing p38(MAPK) wild type or co-expressing p38(MAPK) and MEK3 

(Fig. 39A). Changes in mao-A gene expression were only evident in cultures 

overexpressing p38(MAPK) [F(4,10)=39.04, P<0.0001] (Fig. 39B). This did not 

necessarily concord with MAO-A activity levels, which were highest in cultures 

overexpressing the MEK3 construct alone (note, MAO-A activity in cultures 

overexpressing p38(MAPK) were high, but not as high as those in cultures 

overexpressing MEK3) [F(4,15)=31.51, P<0.0001] (Fig. 39C). 

These combined data clearly indicate that p38(MAPK) is exerting cell 

line-dependent effects on mao-A gene and activity. The effect of MEK3 also reveals the  
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Fig. 38: The overexpression of p38(MAPK) mutant proteins affects mao-A gene 

expression, but not MAO-A activity, in PC12 cells. (A) p38(MAPK)-AF [p38(AF)] 

increased mao-A (P=0.0001, t=15.33, df=4), but not mao-B, gene expression as 

confirmed by (B) densitometric analysis (expressed relative to β-actin gene expression). 

(C) Overexpression of p38(AF) did not affect MAO-A activity (P=0.1577, t=1.735, df=4) 

or MAO-B activity (P=0.2031, t=1.52, df=4) in these same cells. (D) The overexpression 

and constitutive activity of p38(AF) was confirmed by the change in phosphorylation of 

its substrate MK2.  
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Fig. 39: The effects of overexpression of p38(MAPK) and its upstream kinase MEK3 

on mao-A gene expression and MAO-A activity in SH-SY5Y cells. (A) Hydrogen 

peroxide (H2O2, 100 μM, 2 hours) induced the phosphorylation of p38(MAPK) (p-p38) 

in SH-SY5Y cells overexpressing p38MAPK (p38) ± MEK3. (B) This corresponded with 

an increase in mao-A gene expression [F(4,10)=39.04, P<0.0001] (*: P<0.05; ***: 

P<0.001,  vs. VEC with H2O2,). (C) MEK3 induced MAO-A activity independent of 

any change in mao-A gene expression in these cells. [F(4,15)=31.51, P<0.0001] (*: P<0.05; 

***: P<0.001, vs. VEC with H2O2; ##: P<0.01, vs. p38 with H2O2). 
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potential for additional post-translational modification of MAO-A by components of the 

p38(MAPK) signalling pathway. 

 

3.8.5 The mutation of a putative p38(MAPK) phosphorylation site in MAO-A 

influences its activity and sensitivity to Ca2+. 

As p38(MAPK) could associate with MAO-A (Fig. 30) and p38(MAPK) clearly 

affected MAO-A activity (Fig. 37), the possibility existed that p38(MAPK) was exerting 

its effects directly on MAO-A. Examination of the deduced amino acid sequence of 

MAO-A (Fig. 40) revealed a putative RXXS p38(MAPK) phosphorylation motif [312]. 

In this motif serine would be the amino acid that would be phosphorylated. Interestingly, 

MAO-B also contained such a motif (Fig. 40).  

The RXXS209 motif in MAO-A4 was mutated so that the serine, i.e. ”S”, was 

substituted with an alanine (A; precludes phosphorylation) or a glutamic acid (E: mimics 

phosphorylation). Both mutations were confirmed by DNA sequencing (Fig. 41). The 

resulting proteins were labeled MAO-A(S/A) and MAO-A(S/E), respectively. 

Homologous mutations were made in the MAO-B protein (Fig. 41). Mutagenesis of these 

sites did not affect the expression of the respective MAO-A and MAO-B proteins, 

although the MAO-A(S/A) protein did migrate at a slightly lower molecular weight (Fig. 

42).  

The overexpressed MAO-A(WT) and MAO-A(S/A) proteins had similar inherent 

activities, where overexpression of the MAO-A(S/E) phosphorylation mutant had  
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Fig. 40: MAO contains a putative p38(MAPK) phosphorylation motif, RXXS. A 

serine residing in a putative p38(MAPK) phosphorylation motif exists in both MAO-A 

and MAO-B protein.  
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Fig. 41: Confirmation of the mutagenesis of Ser209 in MAO-A cDNA. 

Chromatograms depict the codon for Serine209 (wild type) in MAO-A cDNA (upper, 

left), the mutation to an alanine “Ala” codon (upper, middle) and the mutation to a 

glutamic acid “Glu” codon (upper, right). The corresponding cDNA sequences of the 

homologous codons in MAO-B (e.g. based on Serine200) are depicted in the lower 

panels.  



 141 

 

 

 

 

 

 

 

Fig. 42: The overexpression of MAO wild type and Serine substitution mutants in 

HEK293A cells. (A) MAO-A wild type [MAO-A(WT)] and the Ser209Glu 

[MAO-A(S/E)] and Ser209Ala [MAO-A(S/A)] proteins were overexpressed in 

HEK293A cells. (B) The corresponding MAO-B proteins also expressed well in 

HEK293A cells. β-Actin expression demonstrated equal protein loading in both cases. 

These data are representative of three separate experiments. 
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significantly lower activity [F(7,16)=184.2, P<0.0001] (Fig. 43A). More importantly, the 

MAO-A(S/A) [dephosphorylated] mutant had significantly greater sensitivity to Ca2+, 

whereas the MAO-A(S/E) mutant actually was inhibited by Ca2+ [F(3,8)=555.8, P<0.0001] 

(Fig. 43B). The homologous mutations in MAO-B did not significantly affect MAO-B 

activity [F(3,8)=130.8, P<0.0001] (Fig. 44A). The corresponding serine substitution 

mutants in MAO-A did not change MAO-B activity (P>0.05) (Fig. 44B). 

Cross-linking experiments revealed that the activities of the MAO-A(S/A) and 

MAO-A(S/E) mutants appeared to coincide with their detection in a high molecular 

weight complex (Fig. 45), in a manner similar to that already observed for the MAO-A 

Ca2+-binding mutants (see Fig. 45). 

 

3.8.6 p38(MAPK) associates with, and phosphorylates, MAO-A. 

The myc-tagged MAO-A(WT) was overexpressed in HEK293A either alone or in 

combination with p38(MAPK)-AF or p38(MAPK)-DN. In addition, MAO-A(S/A) was 

co-expressed with p38(MAPK)-AF (Fig. 46). Co-immunoprecipitation experiments 

revealed that MAO-A(WT) associated with both p38(MAPK)-AF and p38(MAPK)-DN, 

and was seryl phosphorylated only by p38(MAPK)-AF (Fig. 46). In contrast, 

MAO-A(S/A) neither associated with p38(MAPK)-AF, nor was it seryl phosphorylated 

(Fig. 46). Overexpression of MAO-A(S/E) and MAO-A(S/A) in N2a cells revealed a 

similar pattern of MAO-A activities [F(3,8)=51.55, P<0.0001] (Fig. 47A) as seen 

previously in the HEK293A cells (Fig. 43). The significantly higher level of MAO-A  
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Fig. 43: The MAO-A Serine209 substitution mutants have different activities and 

sensitivities to Ca2+ in HEK293A cells. The MAO-A(S/E) phosphorylation mimic (A) 

has significantly lower inherent activity than do the MAO-A(WT) and MAO-A(S/A) 

proteins [F(7,16)=184.2, P<0.0001], and (B) does not respond to Ca2+, whereas the 

MAO-A(S/A) protein is very sensitive to Ca2+  [F(3,8)=555.8, P<0.0001]. The data 

represent mean ± StDev (n=3). ***: P<0.001 vs. VEC; ###: P<0.001 vs. MAO-A(WT).  
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Fig. 44: The MAO-B Serine200 substitution mutants do not affect the activity of the 

overexpressed protein in HEK293A. (A) MAO-B wild type [MAO-B(WT)], the Ser200 

phosphorylation mimic [MAO-B(S/E)] and the dephosphorylation mutant 

[MAO-B(S/A)] were overexpressed in HEK293A cells (see Fig. 43) and were equally 

active [F(3,8)=130.8, P<0.0001] (*** vs. VEC, P<0.001). (B) The corresponding Serine 

substitution mutants in MAO-A did not change MAO-B activity (P>0.05). 
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Fig. 45: The MAO-A(S/E) protein is less associated with a high molecular complex. 

Myc-epitope tagged MAO-A(WT) and the two serine substitution mutants were 

overexpressed in HEK293A cells. Prior to harvest, the cells were treated with the 

cross-linking reagent DSS (1mM, 30 min) or the DMSO vehicle [DSS(-)]. The 

SDS-PAGE resolved proteins were then probed for the myc-epitope. A high molecular 

weight (HMW) complex (>200 kDa) was observed in all extracts, although the intensity 

of the signal of the HMW complex was lowest in MAO-A(S/E) extracts. This HMW 

complex was not detected in DMSO-treated cultures. β-Actin expression demonstrates 

equal protein loading. Data represent the results of three separate experiments. n.s.: 

non-specific band. 
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Fig. 46: p38(MAPK) associates with, and phosphorylates, MAO-A. Lysates from 

HEK293A cells co-expressing MAO-A(WT) and either p38(MAPK)-AF [p38(AF)] or 

p38(MAPK)-DN [p38(DN)] were immunoprecipitated with anti-c-myc antibody. The 

SDS-PAGE-resolved proteins were probed for p38(MAPK) or for phospho-serine 

(p-Ser). While MAO-A-myc associated with both p38(AF) and p38(DN), a p-Ser signal 

was evident only in the p38(AF) lane. Overexpressed MAO-A(S/A) (far right lane) 

neither associated with p38(AF), nor was it serine-phosphorylated. These data are 

representative of three experiments.  
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Fig. 47: The MAO-A Serine209 substitution mutants exert different effects on 

mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) 

production in N2a cells. (A) The overexpressed MAO-A(WT), MAO-A(S/A), and 

MAO-A(S/E) proteins have a similar pattern of activities in N2a cells to that  

determined previously in HEK293A cells [F(3,8)=51.55, P<0.0001] (see Figure 43) . *: 

P<0.05 & ***: P<0.001 vs. VEC; ##: P<0.01 vs. MAO-A(WT). (B) The activities of the 

Serine209 substituted MAO-A proteins correspond with their ability to disrupt Δψm (as 

determined using JC-1 fluorescence imaging: JC-1). Recall, a lower red/green ratio 

indicates disruption of the Δψm (a sign of apoptosis). Their activities also correspond with 

their ability to generate ROS (as determined using H2O2-sensitive DCF fluorescence 

imaging: DCF). The data are representative of three experiments.  
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activity in N2a cells overexpressing MAO-A(S/A) parallels a significantly greater level 

of toxicity, as demonstrated by the greater loss of Δψm (visualized using JC-1 staining) 

and the concurrent increase in H2O2-sensitive DCF fluorescence (Fig. 47B). These 

combined data support a protective role for phosphorylated MAO-A-Serine209 and 

implicates p38(MAPK) in the process. 

 

3.8.7 Chemical inhibition of p38(MAPK) results in ROS production that is 

mediated, in part, by MAO-A. 

HT-22 cells treated with the p38(MAPK) inhibitor SB203580 displayed a 

significant increase in peroxy radical production (determined using the H2O2-sensitive 

DCF fluorogen). This was partially attenuated by pretreatment with the specific MAO-A 

inhibitor clorgyline (CLG, 1μM) for 60 min (Fig. 48). 

 

3.8.8 Chemical inhibition of p38(MAPK) increases MTT conversion. 

MTT conversion, normally used as a means of determining cell viability, was 

increased in HT-22 cells treated with the p38(MAPK) inhibitor SB203580. This was not 

affected by pretreatment with the specific MAO-A inhibitor clorgyline (CLG, 1μM) for 

60 min [F(3,20)=10.21, P=0.0003] (Fig. 49). 
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Fig. 48: The p38(MAPK) inhibitor SB203580 induces reactive oxygen species 

production via a MAO-A sensitive mechanism in HT-22 cells. Treatment of HT-22 

cells with SB203580 (SB: 10 μM, 60 min) resulted in an increase in DCF-sensitive 

peroxy radical production that was partially reversed by specific inhibition of MAO-A 

with clorgyline (CLG: 1 μM, 60 min). These results are representative of two-three 

experiments. 

CTL CLG

SB CLG/SB
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Fig. 49: The p38(MAPK) inhibitor SB203580 increases MTT conversion in HT-22 

cells. HT-22 cells were treated with SB203580 (SB, 10 μM, 60 min) and “viability” was 

tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 

conversion assay (used routinely to determine cell “viability”). SB induced an increase in 

MTT conversion as did the specific MAO-A inhibitor clorgyline (CLG: 1 μM, 60 min) 

[F(3,20)=10.21, P=0.0003]. ***: P<0.001 vs. VEH. Data are presented as mean±StDev 

(n=3). 
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3.8.9 Chemical inhibition of p38(MAPK) diminishes mitochondrial membrane 

potential in an MAO-A-sensitive manner. 

Treatment of HT-22 cells with SB203580 decreased the ratio of red to green 

fluorescence, indicating a loss of Δψm. This decrease was reversed by the pretreatment of 

specific MAO-A inhibitor CLG (1 μM, 60 min) [F(3,8)=17.03, P=0.0008] (Fig. 50). 

 

3.8.10 The sensitivity of MAO-A to Ca2+ is revealed by chemical inhibition of 

p38(MAPK). 

The activities of overexpressed MAO-A proteins (including the Ca2+-binding 

mutants) were previously shown not to respond to the addition of Ca2+ to the incubation 

buffer (see Fig. 26). Treatment of similarly transfected cells with SB203580 revealed 

their sensitivity to Ca2+, except for the MAO-A(D61A) protein, which still did not 

respond [F(5,12)=82.33, P<0.0001] (Fig. 51). 

 

3.9 Manipulation of Ca2+ levels in cultures affects MAO-A activity.  

3.9.1 The Ca2+ ionophore A23187 increases MAO-A activity independent of a 

change in mao-A expression. 

The Ca2+ ionophore A23187 is commonly used to increase the levels of free 

intracellular Ca2+. Treatment of of HT-22 cells with A23187 (10 μM, 30 min) induced a 

large increase in free Ca2+, as shown by the increase in the Ca2+-sensitive Fluo-3 AM 

fluorescence that paralleled a significant increase in ROS production (Fig. 52A).  
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Fig. 50: The p38(MAPK) inhibitor SB203580 decreases mitochondrial membrane 

potential (Δψm) via a MAO-A sensitive mechanism in HT-22 cells. Treatment of 

HT-22 cells with SB203580 (SB: 10 μM, 60 min) resulted in a significant loss of Δψm, as 

determined by the lower red/green JC-1 ratio (indicating apoptosis) which was reversed 

by treatment with the specific MAO-A inhibitor clorgyline (CLG: 1 μM, 60 min) 

[F(3,8)=17.03, P=0.0008]. **: P<0.01 vs. vehicle control (VEH); ##: P<0.01 vs. SB. Data 

are presented as mean±StDev (n=3). 
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Fig. 51: MAO-A Ca2+-binding site mutants respond in distinct manners to Ca2+ , as 

revealed by inhibition of p38(MAPK) with SB203580 in HEK293A cells. (A) Cells 

overexpressing MAO-A wild type (WT) and the Ca2+-binding site mutants (see Fig. 

22-26) were treated with SB203580 (SB: 10 μM, 60 min). The effect of SB was 

confirmed by the loss of phosphorylation of the p38(MAPK) substrate, MK2). β-Actin 

expression was used to demonstrate equal protein loading. (B) The effect of Ca2+ (1 mM) 

on MAO-A activity in corresponding homogenates revealed that SB increased 

Ca2+-sensitive MAO-A activity in all homogenates except the one from cultures 

overexpressing MAO-A(D61A) [F(5,12)=82.33, P<0.0001]. **: P<0.01 & ***: P<0.001 vs. 

vector control (VEC); #: P<0.05: ###: P<0.001 vs. MAO-A(WT); ^: P<0.05 & 

^^^:P<0.001 vs. MAO-A(WT)/SB.  
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Fig. 52: The Ca2+ ionophore A23187 increases MAO-A activity and function in 

HT-22 cells. (A) Treatment of HT-22 cells with A23187 (10 μM, 30 min) resulted in 

increased levels of free intracellular Ca2+, [Ca2+]i (determined using the Ca2+-binding 

Fluo-3 AM fluorescent dye) as well as increased production of reactive oxygen species 

(ROS), as assessed using the H2O2-sensitive DCF fluorogen. (B) This corresponded with 

a selective increase in MAO-A activity (***:P=0.0002, t=6.824, df=6 vs. control levels). 

Treatment with A23187 did not affect (C) mao-A or mao-B gene expression (D, results of 

densitometric analysis of mao gene expression relative to β-actin gene expression) or (E) 

MAO-A or MAO-B protein expression. β-Actin expression demonstrates equal protein 

loading.  
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Examination of MAO-A and MAO-B activities revealed that only MAO-A activity was 

increased by treatment with A23187 (P=0.0002, t=6.824, df=6) (Fig. 52B). A23187 did 

not affect either mao-A (or mao-B) gene expression (Fig. 52C&D) or MAO-A (or 

MAO-B) protein expression (Fig. 52E). The levels of phosphorylated p38(MAPK) were 

not detectably affected by treatment with A23187 (Fig. 52E). The production of ROS 

induced by A23187 was attenuated by pretreatment with the MAO-A specific inhibitor 

clorygline (CLG: 1 μM, 60 min) (Fig. 53). 

 

3.9.2 Overexpression of the Ca2+-binding protein CB28K decreases MAO-A 

activity independent of a change in mao-A expression. 

Overexpression of calbindinD-28K (CB28K) (Fig. 54A) was used to decrease the 

levels of intracellular free Ca2+ (Fig. 54B). Overexpression of CB28K did not affect 

MAO-A protein expression (Fig. 54A), nor did it affect mao-A gene expression (Fig. 

54C&D), but it did result in a selective decrease in MAO-A activity (P=0.0007, t=5.561, 

df=6) (Fig. 54E). In addition, it caused a rightward shift in the response curve of MAO-A 

to Ca2+ (Fig. 54F). These effects coincided with a decrease in ROS production (Fig. 55) 

as well as an increase in the phosphorylation of p38(MAPK) (Fig. 56). 
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Fig. 53: The Ca2+ ionophore A23187 induces reactive oxygen species production via 

a MAO-A sensitive mechanism in HT-22 cells. Treatment of HT-22 cells with the 

A23187 (5 μM, 30 min) resulted in increased production of reactive oxygen species as 

assessed using the H2O2-sensitive DCF fluorogen which was blocked by specific MAO-A 

inhibition with CLG (1 μM, 60 min). Results represent two-three separate experiments.  
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Fig. 54: Overexpression of the Ca2+-binding protein calbindinD-28K (CB28K) 

decreases MAO-A activity as well as its sensitivity to Ca2+ in HT-22 cells. (A) 

Overexpression of CB28K (B) diminishes the levels of intracellular free Ca2+ ([Ca2+]i) in 

HT-22 cells. While (A) MAO-A protein expression and (C, D) mao-A gene expression 

are not affected, (E) overexpression of CB28K does result in a selective decrease in 

MAO-A activity (***P=0.0007, t=5.561, df=6, vs. vector control (VEC)). (F) 

Overexpression of CB28K also affects the sensitivity of MAO-A to Ca2+ as shown by 

right-shift in the peak response of MAO-A to Ca2+. 
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Fig. 55: Overexpression of the Ca2+-binding protein calbindinD-28K (CB28K) 

diminishes reactive species production in HT-22 cells. Overexpression of CB28K 

resulted in a decrease in the levels of reactive oxygen species, as assessed using the 

H2O2-sensitive DCF fluorogen.
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Fig. 56: Overexpression of the Ca2+-binding protein calbindinD-28K (CB28K) 

results in the activation of p38(MAPK) in HT-22 cells. Overexpression of CB28K 

resulted in increased phosphorylation of p38(MAPK) (p-p38) as well as a corresponding 

increase in the phosphorylation of MAPKAPK-2 (p-MK2), a downstream target of 

p38(MAPK). β-Actin expression was used to demonstrate equal protein loading. 
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3.10  The AD-related peptide β-amyloid (Aβ) induces chromatin condensation in 

primary neuronal cultures; potentiation by inhibition of p38(MAPK) and 

protection by inhibition of MAO-A. 

Primary cortical cultures treated with the p38(MAPK) inhibitor SB203580 showed 

significant increases in chromatin (nuclear) condensation, as determined by Hoechst 

33258 staining [F(7,34)=380.2, P<0.0001] (Fig. 57). This was reversed by inhibition of 

MAO-A with clorgyline. Treatment of cortical cultures with the AD-related peptide 

Aβ(1-42) induced chromatin condensation in an even greater number of cells. This was 

also reversed by inhibition of MAO-A (Fig. 57). Treatment with SB203580 did not 

impact the effect of Aβ(1-42), but it did diminish the protection afforded by MAO-A 

inhibition (Fig. 57). 

 The link between Aβ toxicity and MAO-A was corroborated by the demonstration 

that MAO-A inhibition with clorgyline was able to reverse the generation of ROS (and 

cellular swelling) in HT-22 cells treated with Aβ (Fig. 58). 

 

3.12 Additional means of post-translational modification of MAO-A activity 

Preliminary investigations revealed that inhibition of the PI3K/Akt signalling 

pathway (with LY294002) as well as inhibition of the ERK1/2 signalling pathway (with 

PD98059) could both increase MAO-A activity [F(5,13)=6.997, P=0.0028], but not the 

response to Ca2+ [F(2,6)=219.3, P<0.0001] (Fig. 59). Examination of the MAO-A deduced 

amino acid sequence revealed several TXY motifs (possible phosphorylation  
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Fig. 57: Specific p38(MAPK) inhibition is toxic to primary cortical cultures via 

MAO-A sensitive mechanism: contribution to the toxicity of the AD-related peptide, 

β-amyloid (Aβ). p38(MAPK) inhibition with SB203580 (SB) induces nuclear 

condensation in primary cortical neurons that is sensitive to specific MAO-A inhibition 

with clorgyline (CLG) (assessed by Hoechst 33258 stain, top panels). SB did not affect 

Aβ(1-42)-induced toxicity, but did attenuate the protection afforded by CLG in 

Aβ(1-42)-treated cultures [F(7,34)=380.2, P<0.0001]. **: P<0.01; ***: P<0.001 vs. CTL, 

###: P<0.001 vs. CLG, ^^: P<0.01 vs. SB, $$$: P<0.001 vs. Aβ, &&&: P<0.001 vs. 

Aβ/CLG. 
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Fig. 58: The ROS production induced by AD-related peptide Aβ was attenuated by 

specific MAO-A inhibition in HT-22 cells. Treatment of HT-22 cells with Aβ(1-40) (30 

μM, 24 h) resulted in an increase in the generation of reactive oxygen species production, 

as assessed using the H2O2-sensitive DCF fluorogen. Furthermore, the cells appeared 

swollen. These effects were partially attenuated by specific MAO-A inhibition with 

clorgyline (CLG: 1 μM, 60 min). 
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Fig. 59: Inhibition of the ERK and PI3K pathways also enhance MAO-A activity, 

but not the response to Ca2+. (A) Preliminary investigations revealed that MAO-A 

activity was sensitive to inhibition of two other signalling cascades, namely the ERK and 

PI3K cascades in HT-22 cells [F(5,13)=6.997, P=0.0028]. The inhibition of both cascades 

also inhibited the response of MAO-A to Ca2+ (re-depicted in (B) for ease of 

interpretation). ERK was inhibited specifically with PD98059 (PD: 50 μM, 30 min), 

whereas PI3K was specifically inhibited with LY294002 (LY: 25 μM, 30 min). Data are 

represented as mean ± STDev (n=3) (** vs. VEH: P<0.01).
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sites for MKKs and ERK) (Fig. 60). Notably, the first TXY motif, e.g. T33EY35, was 

specific to MAO-A. The Y35 (tyrosine35) was substituted with either an F (Y/F) or a D 

(Y/D) (Fig. 61A). The corresponding MAO-A(Y/F) protein was moderately less active 

than MAO-A wild type, whereas the MAO-A(Y/D) protein was basically inactive 

[F(3,15)=128.5, P<0.0001] (Fig. 61B). Their respective activities did not concord with their 

protein overexpression levels (Fig. 61C). 
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Fig. 60: Comparison of MAO-A and MAO-B amino acid sequences reveals a TXY 

motif that is specific to MAO-A. Alignment of the human MAO-A and MAO-B 

deduced amino acid sequences revealed several TXY motifs, which are potential target 

sites for ERK and/or MEKs (boxed) motifs. The motif at T33EY35 is exclusive to MAO-A 

and, consequently, was mutagenized (see next figure) to determine the role of this motif 

in regulation of MAO-A activity. 
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Fig. 61: Mutagenesis of tyrosine(Y35) in MAO-A affects MAO-A activity. (A) cDNA 

sequences indicating the codons (underlined) that were mutated to allow for targeted 

amino acid substitutions within the T33EY35 motif in MAO-A. The cDNA sequence 

shows the wild type codon “TAT” that was mutagenized to either “TTT” (top left, 

allowing for a Y-to-F (phenylalanine) substitution in the expressed protein) or to “GAT” 

(top right, allowing for a Y-to-D (aspartate) substitution in the expressed protein). (B) 

The activity of the overexpressed MAO-A(Y/F) protein was partly reduced compared to 

that of MAO-A(WT), whereas the MAO-A(Y/D) protein had basically no activity 

[F(3,15)=128.5, P<0.0001]. (C) Activities did not correspond with the expression levels of 

the respective proteins. Data are presented as mean ± STDev (n=5). ***: P<0.001 vs. 

vector control (VEC). ##: P<0.01 vs. MAO-A(WT). ###: P<0.001 vs. MAO-A(WT).  
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4  DISCUSSION 

MAO function is implicated in neuropsychiatry due to its ability to regulate the levels 

of biogenic neurotransmitters. It can also contribute to neurodegeneration given that H2O2, 

an important precursor to free radicals implicated in oxidative stress, is produced as a 

by-product of deamination. Although the regulation of MAO is crucial, endogenous 

mechanisms involved in its regulation are not clearly defined. 

The current thesis provides evidence for a unique mechanism based on the 

availability of Ca2+ as well as on the activation of a kinase, p38(MAPK), that is often 

associated with cell stress (Fig. 62-63). This mechanism might contribute to several 

MAO-related pathologies, but given that the current thesis work indicates a selective 

effect on MAO-A, the contribution of this mechanism to pathologies linked to 

dysfunction of MAO-B, such as Parkinson’s disease, might not be as clear.  

The effect of Ca2+ on brain homogenates and cultured cell homogenates is selective 

for MAO-A and is maximal at approximately 1 mM. This is a significantly higher 

concentration than the [physiological] nanomolar concentrations of Ca2+ normally found 

within the cells and suggests pathological relevance. The response of MAO-A to Ca2+ 

occurs in different regions of rat and mouse brain, such as the hippocampus, cortex, and 

cerebellum, and thus supports a generalized effect of Ca2+ on regional MAO-A function.  
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Fig. 62: Schematic depicting how p38(MAPK) might protect the cell during a 
transient stress that involves an increase in Ca2+ and a corresponding increase in 
MAO-A activity. (note, this figure includes panels B & C on the following page). (A) 
Under normal circumstances a modest amount of Ca2+ enters the cell, MAO-A function is 
normal and p38(MAPK) might have modest consitutive activity (depicted by the yellow 
“P” circles). The effect of p38(MAPK) on nuclear events is minor. (B) During a minor or 
transient stressful event (indicated by the orange “lightning” bolt), more Ca2+ enters the 
cell and this activates MAO-A; consequently, more H2O2 is generated and some of this 
H2O2 will activate p38(MAPK) (depicted by the orange “P” circles), which will, in turn, 
phosphorylate MAO-A on Serine209; this will limit the effect of Ca2+ on MAO-A 
activity as well as on basal MAO-A activity; H2O2 production and any associated damage 
is thereby minimized. The effect of p38(MAPK) on nuclear events is still minor. (C) The 
stressor is very potent (three “lightning” bolts) and allows a massive influx of Ca2+ into 
the cell and also fully activates p38(MAPK) (depicted by the red “P” circles); the effect 
of Ca2+ goes beyond simply activating MAO-A and causes damage on its own, whereas 
the activation of the p38(MAPK) pathway now activates other toxic downstream 
effectors, some of which exert substantial toxic nuclear effects. The beneficial effect of 
p38(MAPK)-mediated phosphorylation on MAO-A activity is lost in the generalized 
disruptive cellular response. 
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Fig. 63: Continued from Fig. 62. 
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Interestingly, the mitochondria can modulate cytoplasmic Ca2+ homeostasis by 

accumulating Ca2+ into the very high micromolar range [202]. Furthermore, elevated Ca2+ 

concentrations localized to microdomains may also represent unique means of 

modulating localized mitochondrial membrane and/or matrix function [323], including 

the activation of dehydrogenases [324]. In neurons and chromaffin cells, mitochondria 

rapidly and reversibly buffer Ca2+ during cell stimulation to help clear large Ca2+ loads 

[325-327]. The ensuing overloading of mitochondria with Ca2+ may be involved in 

several pathological conditions, including ischemia-reperfusion lesions, neurotoxicity and 

neurodegenerative diseases, where ATP depletion, overproduction of ROS and release of 

apoptotic factors lead to cell damage [328]. 

In the present study, Ca2+ increases MAO-A activity by ~20% (addition of Ca2+ to the 

reaction buffer) and ~35% (treatment with the Ca2+ ionophore A23187). This seems 

modest (and might have been more obvious if the activity assay was carried out in 

mitochondria-enriched fractions). However, [11C]-harmine binding to MAO-A is only 

34% greater in untreated depressed patients compared to normal controls [329], 

indicating that even a modest change in MAO-A function can significantly impact brain 

function. The decrease in KM, without any alteration to VMAX, of the substrate oxidation 

suggests that Ca2+ accelerates MAO-A activity, but not by a direct effect on the substrate 

binding site. 

Regulation of MAO function by ions is not limited to Ca2+ [303-305]. Indeed, the 

transition metal Al3+ increases both MAO-A [330] and MAO-B [331] activity in vitro, 



 171 

whereas Zn2+ selectively inhibits MAO-A activity [304], the latter effect being 

competable by Ca2+. Interestingly, the toxicity of Al3+, which has been linked to AD, is 

reported to depend on an increase in free intracellular Ca2+ [332, 333]. The observation 

that Mg2+ can block the effect of Ca2+ on MAO-A activity is not surprising given that it is 

an antagonist for Ca2+ [334]. However, it is interesting that Mg2+ is effective in treating 

major depression [335], a pathology classically associated with MAO-A/monoaminergic 

[dys]function. It is also interesting that the antidepressant fluoxetine (as well as its 

metabolite norfluoxetine) is an effective blocker of both T-type and N-type Ca2+ channels 

[336, 337] and that blockade of the N-type Ca2+ with nimodipine blocks the selective 

increase in MAO-A activity observed in senescence-accelated mouse brain [306]. MAO 

inhibition by the  anti-tuberculosis drug isoniazid could rely on its ability to block 

vitamin D synthesis (presumably leading to less Ca2+ absorption) [338, 339].    

In neuronal cells, Ca2+-binding proteins are ubiquitously expressed. Of these, 

calbindinD-28K (CB28K) is the most abundant, comprising about 1% of all soluble 

proteins. CB28K is reduced in aging and, even more so, in neurodegenerative diseases 

[340]. The reduction of CB28K disrupts Ca2+ buffering, exacerbates Ca2+-mediated stress 

signals, and leaves neurons more vulnerable to toxic insults, whereas the overexpression 

of CB28K attenuates apoptosis [250, 252, 253]. In the present study, mouse hippocampal 

HT-22 cells overexpressing CB28K have lower levels of free intracellular Ca2+ and have 

significantly lower basal MAO-A activity (MAO-B activity remains unaffected). 

Furthermore, the MAO-A in these cells is not as responsive to Ca2+. The immediate 
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conclusion to be drawn from these data is that the ability of CB28K to reduce 

MAO-A-mediated events, apparently because of a concurrent reduction in available Ca2+, 

could be contributing to the protection afforded by CB28K [252]. Yet CB28K can also 

exert Ca2+-independent effects such as binding directly to, and inhibiting, caspase-3 [341], 

and promoting neuronal MND9 cell differentiation via activation of p38(MAPK) [282]. 

In keeping with the latter observation, the overexpression of CB28K in HT-22 cells also 

activates p38(MAPK) and as the reduction in MAO-A activity in these cells is not 

accompanied by any reduction in MAO-A protein or in mao-A gene, this suggests a 

possible post-translational regulation of MAO-A and implicates p38(MAPK) in the 

process. 

 A role for post-translational modification of MAO-A as a contributing factor to its 

activity is further suggested by the observation that mao-A gene expression across cell 

lines does not match MAO-A protein expression, which itself does not necessarily match 

MAO-A activity. Comparison across the cell lines further revealed that cell lines with 

lower MAO-A activities often have higher constitutive levels of phosphorylated 

p38(MAPK). This is even more marked for C6 cells grown to confluence, which not only 

selectively lose their inherent MAO-A activity, but MAO-A is no longer as responsive to 

Ca2+. Cell confluence was already known to result in the hyperactivation of p38(MAPK) 

[318]. This would support a regulatory role for p38(MAPK) in MAO-A function that 

would benefit the cell. 
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 Support for a pro-survival role for p38(MAPK) is demonstrated by the increase in 

MAO-A activity and the induction of apoptosis (inferred by the loss of Δψm and the 

increase in ROS production) in cells treated with the specific p38(MAPK) inhibitor, 

SB203580. A link between MAO-A and apoptosis in SB203580-treated cells is supported 

by the protection afforded by specific MAO-A inhibition. The observation that SB203580 

treatment actually increases MTT conversion is counterintuitive as an increase in MTT 

conversion is commonly used to demonstrate an increase in “viability”. However, if 

SB203580 treatment is affecting the activity of MAO-A, a mitochondrial enzyme, then it 

is quite possible that SB203580 can also affect other mitochondrial enzymes, including 

succinate dehydrogenase, the enzyme responsible for MTT conversion. This would mean 

that the MTT assay is an unreliable means for demonstrating that “inhibition” of 

p38(MAPK) can “enhance” viability; any conclusions in the p38(MAPK) literature that 

are based on this assay would be highly questionable. 

 It has recently been shown that staurosporine can induce MAO-A-sensitive 

apoptosis, independently of any transcriptional event, via a p38(MAPK)-dependent 

mechanism [183]. However, other lines of evidence have linked p38(MAPK) to induction 

of mao-A gene expression during nerve growth factor withdrawal-induced apoptosis in 

PC12 cells [311] and serum-withdrawal-induced apoptosis in SK-N-BE(2)-C cells [182]. 

These observations suggest that any effect of p38(MAPK) on mao-A gene or protein 

might be cell line-dependent. Yet these results may be misleading as these models of cell 
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stress activate the entire p38(MAPK) pathway and would not allow for determination of 

the specific role for p38(MAPK). 

 To better determine the role of p38(MAPK) in the regulation of MAO-A function, 

a constitutively active form of p38(MAPK), p38(MAPK)-AF (bearing T180E/Y182D 

substitutions), and a dominant negative mutant, p38(MAPK)-DN (bearing T180A/Y182F 

substitutions), were generated. Overexpression of p38(MAPK)-AF induces mao-A gene 

expression in PC12 cells, confirming the observations made by De Zutter and colleagues 

using these same cells [311]. Surprisingly, there is not a corresponding increase in 

endogenous MAO-A activity. In contrast, overexpression of p38(MAPK)-AF does not 

alter mao-A gene expression, but does significantly reduce MAO-A activity in the HT-22 

cells, thus further supporting the potential for post-translational modification of MAO-A. 

p38(MAPK)-mediated regulation of MAO-A activity is confirmed by the increase in 

activity observed in HT-22 cells overexpressing the p38(MAPK)-DN protein or treated 

with the specific p38(MAPK) inhibitor, SB203580. The observation that SB203580 

induces endogenous MAO-A activity in both HEK293A and HT-22 cells is not surprising 

given that p38(MAPK) associates with MAO-A, but not with MAO-B, in these same cell 

lines. What is intriguing, however, is that SB203580 alters the sensitivity of MAO-A to 

Ca2+ only in the HT-22 cell line. This could be indicating that p38(MAPK) may be 

exerting several effects with respect to regulation of MAO-A function; one effect would 

regulate the inherent activity of the enzyme, whereas the other effect would regulate the 

enzyme’s sensitivity to Ca2+. SB203580, a pyridinyl imidazole compound, can 
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theoretically bind to, and allosterically modulate, MAO-A [86], apparently by binding in 

close proximity to the flavin in the active site [342]. Imidazoline compounds also bind to 

other deaminating enzymes such as semicarbizide sensitive amine oxidase [343]. This is 

not an issue herein as SB203580, at concentrations used during the course of cell culture 

studies, does not affect MAO-A activity when added directly to the reaction buffer 

(although some inhibition of MAO-A activity is observed at higher concentrations). 

The above-mentioned effect of chemical p38(MAPK) inhibition (with SB203580) on 

MAO-A activity is corroborated by substitution of Serine209 (which resides in a putative 

RXXS p38(MAPK) phosphorylation motif [312]), with either an alanine (A), which 

precludes phosphorylation on this residue, or with a glutamic acid (E), which is routinely 

used to mimic the phosphorylated state of proteins. Indeed, the “dephosphorylated” 

MAO-A(S/A) is fully active and is very responsive to Ca2+, the latter effect being 

significantly greater than that observed with MAO-A(WT) [much the same as what is 

observed with chemical inhibition of p38(MAPK)]. In contrast, the MAO-A(S/E) 

phosphorylation mimic was less active and did not respond to Ca2+. These combined 

effects confirm that p38(MAPK) could be eliciting several effects with regard to MAO-A; 

one effect would determine MAO-A activity itself while the other effect would determine 

its response to Ca2+. 

The differences in activities of the MAO-A(S/A) and MAO-A(S/E) mutants 

correspond to their different abilities to induce toxicity, as demonstrated by the greater 
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potential for the MAO-A(S/A) dephosphorylation mimic to generate ROS and to induce a 

greater loss of Δψm. 

A negative feedback mechanism is suggested by these data. The ability of H2O2 (the 

by-product of MAO-A-mediated catabolism) to activate p38(MAPK) (demonstrated 

herein in SH-SY5Y cells) is not new. Indeed, H2O2 can activate several signalling 

cascades, including the ERK and p38(MAPK) pathways [344], apparently via a 

Ca2+-dependent mechanism [345]. But if this is considered in the present hypothesis, then 

the generation of H2O2 (by MAO’s?) could activate p38(MAPK), which, in turn, could 

phosphorylate MAO-A and reduce its potential for generating more H2O2. This would 

diminish the toxic effect of H2O2, thus acting as a pro-survival [compensatory, feedback] 

mechanism during periods of modest and/or transient cell stress. This novel mechanism 

might also contribute to the mode of action for drugs with relevance to neuropsychiatry. 

For example, the selective serotonin reuptake inhibitor, fluoxetine (Prozac), is routinely 

used to treat depression as well as obsessive-compulsive disorder. While its efficacy is 

attributed predominantly to its ability to increase synaptic concentrations of serotonin 

(5-HT), fluoxetine has been shown to also inhibit MAO-A function [314, 346] and, more 

recently, to block Ca2+ uptake [336, 337] and activate p38(MAPK) [347]. These effects 

do not appear to be a consequence of increased 5-HT availability [348]. The influence of 

this mechanism might also reach beyond neuropsychiatry. For example, 

glucocorticoid-mediated stress can induce mao-A gene and protein expression in skeletal 

muscle [349], whereas MAO-A-mediated oxidative stress is important during 
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postischemic myocardial damage [350]. Interestingly, preischemic treatment of myocytes 

with low doses of H2O2 (i.e. preconditioning) not only activates p38(MAPK) [351, 352], 

but also mitigates subsequent damage induced by a Ca2+ overload [352]. 

 While the previous discussion is based on suggestion and correlational evidence, the 

fact that MAO-A(WT) associated with both p38(MAPK)-AF and p38(MAPK)-DN, and 

was serine-phosphorylated by p38(MAPK)-AF, surely provides strong evidence of a 

direct effect of p38(MAPK) on MAO-A. Additional evidence of this is provided by the 

fact that MAO-A(S/A) can not be serine-phosphorylated. This, in addition to the fact that 

neuroblastoma N2a cells overexpressing MAO-A(S/A) are less viable than those 

overexpressing MAO-A(S/E), clearly provides for a protective role for the 

phosphorylation of MAO-A Serine209 and supports the notion that MAO-A is a novel 

substrate for p38(MAPK) in vivo. While it is unclear how the phosphorylation of MAO-A 

on Serine209 can affect its function, it is interesting to note that Serine209 resides in the 

cavity shaping loop that contributes to the structure of the catalytic site of human 

MAO-A [78] and could clearly limit access of any substrate. It is important to note that 

substitution of Serine209 for an “A” or an “E” does not shift the substrate specificity of 

the overexpressed MAO-A protein to that of MAO-B. While substitution of the 

phenylalanine at position -1, i.e. phenylalanine208 immediately upstream of Serine209, 

does not induce a shift in human MAO-A [69], it does in rat MAO-A [68]. Furthermore, 

the homologous residue in human MAO-B, i.e. isoleucine199, clearly dictates inhibitor 

specificity [353]. The species-dependence for the differential contribution of these sites to 
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MAO function is unclear; it could be indicating subtle differences in species’ MAO 

conformations, or perhaps species differences in other residues that could potentially be 

differentially post-translationally modified. It should be noted that substitutions in 

MAO-B on Serine200 (homologous to the MAO-A Serine209 substitutons) do not exert 

any effect on the activity of overexpressed proteins. This suggests that p38(MAPK) is 

probably selective for MAO-A function in vivo. The reason for this selectivity is also 

unclear. While both MAO-A and MAO-B are very similar in the amino acid sequences 

flanking the RXXS motif, any effect of p38(MAPK) could rely on different 

conformations of the two proteins, thus limiting access to this site by p38(MAPK), and/or 

the influence of another post-translational modification that could supercede the effect of 

Serine200 phosphorylation in MAO-B. This discrepancy warrants further investigation. 

The fact that MAO-A activity is selectively enhanced by addition of Ca2+ to the 

reaction buffer also suggests the presence of Ca2+-binding sites that are specific to this 

isoform. Based on the reported sequence of putative Ca2+-binding motifs [307-309], three 

such motifs are found to be specific for MAO-A. These were D61XXD, DXXXD248, and 

DXD328. Following their expression in human embryonic kidney (HEK) 293A cells (used 

because of their low endogenous MAO-A activity and their transfectability), it is 

observed that the mutageneses of these sites affect the inherent activities of the expressed 

proteins differently, which are reflected in differences in their respective toxicity profiles. 

The lower inherent activity of the MAO-A(D248A) mutant can result from the fact that 

this residue is found within one of the FAD-binding domains [77] and can therefore 
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interfere with association of this co-factor. The lack of inherent activity of the 

MAO-A(D328G) mutant has been observed before and has been attributed to possible 

effects on the active site [66]. Interestingly, the activities of the respective MAO-A 

Ca2+-binding mutants appear to correlate with their presence in a high molecular weight 

complex. Normally, MAO-A is purified as a monomer [77]; however, it is quite possible 

for a bioactive protein to associate with a multimeric protein complex, one that perhaps 

includes various modulators. Although the actual reason for the inclusion of MAO-A in 

this larger complex remains unclear, it is interesting to speculate (i) that its inclusion is an 

obligate requirement for full activity, or (ii) that the complex might simply be a 

trafficking mechanism allowing for the proper packaging and re-localization of MAO-A 

from the Golgi/ER to the mitochondria. Support for a role for this complex in activity, 

however, is provided by the observation that the MAO-A(S/E) phosphorylation mimic, 

which is also nearly devoid of any inherent activity, is also barely detectable in the high 

molecular weight complex. p38(MAPK) was not detectable in the high molecular weight 

complex, which is perhaps not surprising, as a kinase would be expected to have a rapid 

association and dissociation from its substrate(s). 

Unexpectedly, the MAO-A wild type and the three putative Ca2+-binding site mutants 

do not respond to Ca2+ when overexpressed in HEK293A cells. It has already been 

determined that HEK293A cells have a significant level of constituitively active 

p38(MAPK) and that p38(MAPK) affects both basal MAO-A activity as well as its 

response to Ca2+. In light of this, the response to Ca2+ of the three MAO-A Ca2+-binding 
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site mutants was tested in HEK293A cells treated with the chemical p38(MAPK) 

inhibitor SB203580. Not surprisingly, and in keeping of a role for p38(MAPK) in the 

response of MAO-A to Ca2+, inhibition of p38(MAPK) allows the overexpressed proteins, 

with the exception of the D61A mutant, to respond to Ca2+. This implies that the D61 

residue in MAO-A is very important for mediating the response to Ca2+, particularly in a 

phosphorylated p38(MAPK)-rich environment. Interestingly, D61 is particular to human 

MAO-A, whereas D248 and D328 are found in many species (see Fig. 20). As D61 is not 

itself a target for phosphorylation, then p38(MAPK), via the phosphorylation of 

Serine209, must be influencing protein topography and, by extension, binding site 

geometries and/or conformational integrity. Examination of the effect of Serine209 

phosphorylation on the conformation of MAO-A can give great insight into its function 

and can help with the design of newer and/or better tolerated drugs. 

Reactive oxygen species (ROS) are a group of molecules comprised of, but not 

limited to, H2O2, superoxide anion, singlet oxygen, and hydroxyl radicals. Among these, 

H2O2 plays a key role in oxidative stress because it is generated metabolically, appears in 

nearly all oxidative stress conditions, and is able to diffuse freely across the cell 

membrane. At low levels, H2O2 is also recognized as a second messenger that can dictate 

Ca2+ release [354] and stimulate proliferation or enhance survival [355]. At higher 

concentrations, it is well known to lead to cell death. 

Excessive ROS is the source of oxidative stress and is a well-accepted etiopathology 

for neurodegenerative disorders such as Alzheimer’s disease (AD). It is known that the 
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AD-related Aβ peptide is toxic, and that part of its mechanism of action is the 

perturbation of cellular Ca2+ homeostasis [356, 357] as a direct consequence of the 

formation of Aβ ion channels that are permeable to Ca2+ [358, 359]. In HT-22 cells, Aβ 

elevates Ca2+, as expected, and also increases the production of ROS in an 

MAO-A-sensitive manner. In primary cortical cells, Aβ-induced apoptosis occurs via an 

MAO-A-sensitive mechanism that is influenced by p38(MAPK). Obviously MAO-A and 

p38(MAPK) participate jointly in the toxicity profile of Aβ. 

In keeping with this, the overexpression of CB28K is also known to be 

neuroprotective in models of AD, apparently as a result of its Ca2+-binding properties. 

Yet the observation that overexpression of CB28K induces the phosphorylation of 

p38(MAPK) could be revealing another mechanism underlying the neuroprotection 

afforded by CB28K. The fact that overexpression of CB28K and the phosphorylation of 

p38(MAPK) coincide with a reduction in MAO-A activity (without any concurrent loss 

in gene or protein expression) and a diminished response of MAO-A to Ca2+ supports a 

toxic contribution by both MAO-A and Ca2+ in these models, and implicates p38(MAPK) 

in the process. The substantial loss of CB28K expression, considered critical to the 

pathogenesis of AD, and any inferred loss of p38(MAPK) activity, therefore could 

explain the heightened vulnerability of cells immunoreactive for both CB28K and 

MAO-A in AD brain [59]. 

A link between Ca2+, MAO and AD is further implied by the ability of CB28K to 

protect against apoptosis, including that induced by Aβ [250, 360-362] and by the fact 
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Ca2+ signalling can be altered early in AD, well before any detectable Aβ deposition 

[363]. A link between Ca2+ and MAO-A is further suggested by the observation that 

dihydropyridine Ca2+ channel blockers, which are known to block the aging-related, 

selective increase in MAO-A [306], may improve learning and behavioural deficits in 

animals [364] and may improve age- and AD-related memory impairment in the human 

population [365, 366]. As cells co-immunoreactive for CB28K and MAO-A are often 

reduced during AD [59, 367], any loss of CB28K can, theoretically, facilitate 

MAO-A-mediated H2O2 production in an increasingly toxic Aβ environment, leading to 

localized cell death. Aβ can increase Ca2+ availability [368], possibly through its effect 

on ryanodine receptors [369]. A pathological contribution by MAO-A in AD is also 

suggested by the accumulation of toxic metabolites of MAO-mediated deamination in 

AD patients [370] as well as by the MAO-A-sensitive ROS production associated with 

treatment of HT-22 cells and primary neuronal cultures with Aβ [371]. A closer in vivo 

examination of the effect of Ca2+ on MAO-A as well as a closer examination of the 

relation between Ca2+/CB28K and MAO-A in AD tissues is certainly warranted. 

As only the C-terminal tail of MAO is membrane-bound, most of the protein remains 

exposed for possible cytoplasmic post-translational modification. It is surprising, 

therefore, that very little is known regarding the potential for post-translational 

modification of MAO-A. Ca2+ as well as p38(MAPK) clearly, and selectively, enhance 

MAO-A activity (present study), whereas ubiquitination may be necessary for insertion 

of MAO-A and MAO-B into the mitochondrial membrane [372, 373]. Preliminary 
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investigations reveal that mutagenesis of tyrosine35, which resides in a motif recognized 

by ERK (another MAPK), influences MAO-A function significantly. A role for ERK 

(and even a role for the PI3K/Akt pathway) is corroborated by the fact that inhibition of 

the ERK (and PI3K) pathway result in enhanced MAO-A activity. Of particular interest, 

however, is the fact that inhibition of ERK or PI3K only affects the basal activity of 

MAO-A, but not its sensitivity to Ca2+, which remains specific for p38(MAPK) inhibition. 

Also of interest is the fact that H2O2 can activate the p38(MAPK) pathway as well as the 

ERK and PI3K/Akt pathways [345], suggesting that the generation of H2O2 can, in 

principle, activate all three pathways that in turn can, via feedback inhibition, help 

diminish the contribution of MAO-A to stress and potentially to cell toxicity. This effect 

may not be limited to H2O2. Indeed, another highly diffusible molecule, H2S, also exerts 

protection that is sensitive to inhibition of the ERK and JNK pathways, but not to 

inhibition of the p38(MAPK) pathway [374]. Perhaps an ERK-mediated regulation of 

MAO-A, specifically via tyrosine35 in MAO-A, plays a role here? 

Certain amino acid residues appear to mediate co-factor binding or access to the 

catalytic site, whereas other residues may be targets for post-translational modification 

(because of their potential for phosphorylation, e.g. Tyrosines, Serines, Threonines). 

Histidine382 might be acting as a nucleophile during MAO-B-mediated catalysis [87]. 

Cysteine374 and 406 in MAO-A and Cysteine156, 365 and 397 in MAO-B contribute to 

catalytic activity [75, 375]. These authors suggest that the contribution of Cysteine406 to 

MAO-A activity and Cysteine397 to MAO-B activity may rely on their role in binding of 
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FAD. Yet the binding of FAD may not necessarily determine catalytic activation of 

MAO-A as much as it might determine the structural core for the active conformation of 

the enzyme [376]. The role of cysteine residues and their ability to influence FAD 

binding, binding site geometries and/or conformational integrity in both MAO-A and 

MAO-B is relatively clear [75, 375]. While the contribution of tyrosines, serines and 

threonines to MAO function is undeniable, their contribution has never been discussed in 

terms of their potential for being phosphorylated. Tyrosine44 (as well as Glutamate34) is 

necessary for the initial binding of FAD by MAO-B [74]. Tyrosine326 determines 

substrate specificity and inhibitor binding in MAO-B and substitution of the homologous 

residue in MAO-A, i.e. Isoleucine335, to a Tyrosine switches its substrate specificity to 

that of MAO-B [66]. Mutagenesis of Tyrosine435 in MAO-B does not significantly alter 

active site structure or activity, yet mutagenesis of the homologous site in MAO-A (i.e. 

Tyrosine444) renders it completely unstable upon extraction from membrane 

preparations [377] and results in a complete loss of ability to oxidize serotonin (but not 

phenylalanine!) [378]. Threonine428 ([379] and Threonine158 (but not serine394) [87] in 

MAO-B appear to be critical for enzymatic activity. Interestingly, the residue shown to 

exert significant effect on MAO-A function in the current project, i.e. Serine209, lies 

within "cavity shaping loop" which contributes to the structure of the catalytic site of 

human MAO-A [78] .  

These combined observations provide for a unique mechanism for the selective 

regulation of MAO-A. The effect of p38(MAPK) on MAO-A appears to be cell-line 
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specific as it induces mao-A gene expression, but does not induce MAO-A activity in 

PC12 cells ([311], present study), it induces mao-A gene expression and MAO-A activity 

in H2O2-treated SH-SY5Y cells (present study), but induces MAO-A activity independent 

of any change in mao-A gene expression is staurosporine-treated SH-SY5Y cells [183]. 

In the cells used herein (e.g. HEK293A, HT-22, N2a, and C6) p38(MAPK) has a clear 

inhibitory effect on MAO-A activity and determines the sensitivity of MAO-A to Ca2+. 

This would, theoretically diminish the toxicity of MAO-A during stressful events, 

particularly those associated with an increase in Ca2+ availability. These combined 

observations are important as many of these are CNS-derived cell lines and as such could 

be giving insight into the function of the brain. One immediate conclusion is that 

patient-to-patient variability in terms of response to antidepressant drugs could 

potentially include a p38(MAPK)/MAO-A-sensitive component. Similarly, variability in 

MAO phosphorylation between patients could also explain why inhibition of this enzyme 

appears to be useful in improving the cognitive dysfunction in certain patients with AD, 

while having no effect in other patients. 
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5  FUTURE DIRECTIONS 

The present study has revealed many new properties of MAO-A function and 

regulation. Some observations warrant further examination. These include, but are not 

limited to: examination of the role of the high molecular weight complex in MAO-A 

function; determination of the role of Tyr35 phosphorylation in MAO-A function and 

protein stability; determination of how p38(MAPK)-mediated phosphorylation of 

MAO-A affects, via Serine209, MAO-A function and its sensitivity to Ca2+ (is this due to 

a conformational change of the activation loop?). Why does the phosphorylation of 

Serine209 in MAO-A exert such a potent effect, while phosphorylation of the 

homologous residues in MAO-B, e.g. Serine200, does not appear to have any effect on 

this isoform? Do the MAO-A and MAO-B proteins exist in different phosphorylation 

states in extracts from AD patients’ brains? In Parkinson’s disease patients’ brains? In 

[untreated] depressed patients’ brains? Do antidepressants alter the phosphorylation states 

of the MAO proteins? Do phosphorylation states of MAO proteins contribute to 

non-neuropsychiatric conditions such as cardiomyopathies? Obviously, the mechanism 

described in this thesis could have an impact on any pathology where MAO is implicated 

and should be considered when interpreting the relevant published data that would 

suggest a role for MAO’s, but which can not demonstrate a change in the actual 

expression of the protein or in the ex vivo activity of the MAO protein [e.g. following a 

long post-mortem interval].  
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