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ABSTRACT 

Aging is a universal biological phenomenon in all living cells. Questions 

regarding how cells age are beginning to be answered. Thus, great biological interest and 

practical importance leading to interventions rest on uncovering the molecular 

mechanism of aging. This would ultimately delay the aging process while maintaining 

the physical and mental strengths of youth. The conservation of metabolic and signaling 

pathways between yeast and humans is remarkably high, leading to the expectation that 

aging mechanisms are also common across evolutionary bounaries. By utilizing the 

budding yeast, Saccharomyces cerevisiae, one of the best characterized model systems 

for studying aging, the span in knowledge between yeast and human aging can possibly 

be bridged. 

Evidence is accumulating that a genetic program exists for lifespan 

determination. Model organisms expressing mutations in single specific genes live 

longer with increased resistance to stress and cancer development. Mutations that 

accelerate aging in yeast affect the activity of the APC (Anaphase-Promoting Complex). 

Our finding that the APC is critical for longevity provides us with a potential central 

mechanism controlling lifespan determination. The APC is required for mitotic 

progression and genomic stability in presumably all eukaryotes by targeting regulatory 

proteins, such as cyclin B (Clb2p in yeast) for degradation. The key feature defining the 

APC as a central mediator of lifespan is the fact that multiple signaling pathways 
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regulate APC activity and many of these pathways influence lifespan. For example, Snf1 

and PKA have antagonistic effects on the APC and on lifespan. Thus, it is intriguing to 

speculate that the APC may link these signaling pathways to downstream targets 

controlling longevity.  

Our hypothesis states that the APC targets a protein that reduces lifespan for 

ubiquitin-dependent degradation. The results from our two-hybrid screen utilizing 

Apc5p as bait are consistent with this hypothesis, as Fob1p was isolated as an Apc5p 

binding partner. The FOB1 gene is located on chromosome IV and the well-known 

molecular function of FOB1 is the creation of a unidirectional block in replication of 

rDNA. Fob1p binds to the rDNA locus and overall stalls progression of the replication 

fork, which increases rDNA recombination and the production of toxic 

extrachromosomal rDNA circles (ERCs). The FOB1 deletion (fob1∆) mutant confers 

reduced rDNA recombination, and an increased lifespan of more than 50% compared to 

WT (wild type) cells. 

In this study, we expanded on the molecular mechanisms controlling lifespan 

through a genetic approach, and found that Fob1p was targeted by the APC for 

degradation in order to prolong lifespan. By utilizing the yeast two-hybrid approach, we 

confirmed the Apc5p-Fob1p interaction, and determined that the C-terminal half of 

Fob1p was required for the interaction with Apc5p. BLAST search analysis revealed 

sequence similarity with the Fob1p C-terminus that was shared with many other proteins 
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from yeast to humans. We speculate that this shared domain may serve as an APC 

interaction domain employed across evolutionary boundaries. A genetic interaction 

analysis revealed the influence of FOB1 on the APC, and the cell. For example, deletion 

of FOB1 increased lifespan in apc5CA and apc10∆ mutant cells and partially suppressed 

the temperature sensitive (ts) growth of apc10∆ cells. On the other hand, increased 

FOB1 expression reduced the lifespan of WT and cells and was toxic to apc mutants, 

particularly the more severe apc mutants, apc10∆ and cdc16-1. Interestingly, 

overexpression of SIR2, which prolongs lifespan and acts antagonistically with Fob1p, 

was toxic to WT cells, but suppressed apc5CA ts defects, especially when FOB1 was 

deleted. These observations suggest that accumulation of Fob1p is harmful to yeast cells, 

especially when the APC is compromised. This notion was borne out when a cell cycle 

and steady state analysis of Fob1p revealed that Fob1p was an unstable protein, which 

was stabilized in apc5CA cells. Taken together, the work presented in this thesis supports 

a model whereby Fob1p is targeted for degradation by the APC in order to prolong 

lifespan in yeast. In conclusion, the extreme evolutionarily conserved nature of the APC 

and the Fob1p C-terminal sequence homology observed in human proteins strongly 

suggests that the mechanism discovered here could be directing human lifespan. 
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CHAPTER ONE: INTRODUCTION AND BACKGROUND 

 

1.1 Chromatin silencing and lifespan in yeast 

1.1.1 Chromatin silencing 

Chromatin is a complex molecular structure composed of nucleosome repeats in 

which 147 base pairs of DNA are wrapped around two copies of the four core histones, 

H2A, H2B, H3 and H4 (LUGER et al., 1997; RICHMOND and DAVEY, 2003). The 

critical components within chromatin that are central to the control of many cellular 

processes are histones. Chromatin-associated histones are post-translationally modified 

by a variety of activities and these modifications, including histone acetylation, 

methylation, phosphorylation, ubiquitylation, sumoylation and ADP-ribosylation 

(reviewed in EMRE and BERGER, 2006) are responsible for the control of a vast 

number of cellular activities (Van LEEUWEN and GOTTSCHLING, 2002b; FISCHLE 

et al., 2003). Deacetylation of lysine residues within histone N-terminal tails is believed 

to play a large role in gene silencing by creating conformational changes within 

chromatin that renders it resistant to transcription factors (GRUNSTEIN, 1997; 

EBERHARTER and BECKER, 2002). Silencing of the yeast rDNA locus, in particular, 

represses rRNA gene repeats (rDNA) recombination, reducing the formation and release 

of extrachromosomal rDNA circles (ERCs) (KAEBERLEIN et al., 1999; KIM et al., 

1999; PARK et al., 1999; LIN et al., 2002; ROY and RUNGE, 2000; DEFOSSEZ et al., 
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2001). As mother cells continue to produce daughter cells they accumulate ERCs, which 

are not passed onto the daughters (McMURRY and GOTTSCHLING, 2003).  

 

1.1.2 ERCs, a cause of aging in yeast 

The accumulation of ERCs in mother cells has been proposed to be a key factor 

in yeast aging (KENNEDY et al., 1994; SINCLAIR et al., 1997; DEFOSSEZ et al., 

2001). In budding yeast, mother cells divide asymmetrically, giving rise to a newly made 

daughter cell that is smaller than the aging mother cell (KENNEDY et al., 1994). The 

mother cell adopts phenotypes of aging, including an enlarged size and sterility, and 

senesces after approximately 20 divisions (BITTERMAN et al., 2002). As mentioned 

above, aging mother cells accumulate ERCs, but do not pass them to daughter cells until 

later stage of life (McMURRAY and GOTTSCHLING, 2003). Mutations that slow the 

generation of these circles, such as that observed in FOB1 mutants, extend yeast lifespan 

(KOBAYASHI et al., 1998; DEFOSSEZ et al., 1999). However, mutations to the 

RAD52 epistasis group (rad50∆, rad51∆, rad52∆; ∆ denotes a complete deletion; PARK 

et al., 1999) that reduce the formation of ERCs surprisingly shorten the lifespan of the 

mother cells. These RAD52 class mutants, which are defective in DNA repair through 

homologous recombination, likely, accelerate aging due to spontaneous DNA damage 

and unrepaired double-strand breaks (DSB; RICHARDSON et al., 2004; LOEILLET et 

al., 2005). Nevertheless, rDNA instability has not been observed in other organisms, and 

is evidently an idiosyncratic feature of yeast aging.  
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1.1.3 Caloric restriction (CR) and aging 

Repression of ERC formation is believed to be at the heart of enhanced 

replicative lifespan afforded by caloric restriction (CR) (LIN et al., 2002). Replicative 

lifespan is a measure of how many daughter cells a given mother cell will produce 

(KENNEDY et al., 1994). CR is an experimental method of reducing caloric intake and 

is correlated with extended lifespan, increased stress resistance and postponement of 

cancer in organisms ranging from yeast to mammals (reviewed in LONGO and FINCH, 

2003; KOUBOVA and GUARENTE, 2003). It has been known for almost 70 years that 

restricting the food intake of laboratory rats extends their mean and maximum lifespan 

(McCAY et al., 1935; reviewed in MASORO, 2005). Such lifespan extension has been 

observed over the years in many other species, including mice, hamsters, dogs, fish, 

invertebrate animals, and yeast (MASORO, 2002). As well as increasing longevity, CR 

is reported to cause additional phenotypes, including increased resistance to oxidative 

stress (ARMENI et al., 1998; MERRY, 2004; DE CABO et al., 2004), enhanced DNA 

damage repair (GUO et al., 1998; RAO, 2003), decreased levels of oxidatively damaged 

proteins (YOUNGMAN et al., 1992; YU, 1996; SOHOL and WEINDRUCH, 1996), 

improved glucose homeostasis and insulin sensitivity (MASORO et al., 1989; 1992; 

KEMNITZ et al., 1994), altered levels of apoptosis (ZHANG and HERMAN, 2002), and 

delayed onset of a number of age-related diseases (WEINDRUCH and WALFORD, 

1988; MATTSON et al., 2002;  SAFFREY, 2004; JOLLY, 2005). CR delays the onset 

and/or slows the progression of most age-associated diseases, including neoplastic 

diseases, degenerative diseases, and immune diseases (MAEDA et al., 1985; 
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BRONSON and LIPMAN, 1991; ROE et al., 1995). This action has been viewed as 

evidence that CR extends lifespan by slowing and/or delaying the aging processes. 

 In mammalian cells (NEMOTO et al., 2004) and also budding yeast, CR 

extends lifespan, in part, by increasing the activity of Sir2 (silent information regulator) 

(KAEBERLEIN et al., 1999; ALBERTO et al., 2003), a member of the conserved sirtuin 

family of NAD+-dependent protein deacetylases. These enzymes catalyse a unique 

reaction in which NAD+ and acetylated substrate are converted into deacetylated product, 

nicotinamide, and a novel metabolite O-acetyl ADP-ribose (TANNER et al., 2000; 

SAUVE et al., 2001; TANNY and MOAZED, 2001; JACKSON and DENU, 2002). In 

addition, a functional PNC1 gene is also required for CR-induced replicative life 

extension. The PNC1 gene encodes a protein with nicotinamidase activity and CR acts to 

increase the amount of this enzyme (GHISLAIN et al., 2002; ANDERSON et al., 2003; 

GALLO et al., 2004). The deacetylase activity of the yeast Sir2p at the rDNA locus 

involves the generation of nicotinamide, which is an inhibitor of Sir2p deacetylase 

activity SIR2 protein. By reducing the level of nicotinamide, Pnc1p increases Sir2p 

deacetylase activity, and it is this deacetylase activity and subsequent silencing of the 

rDNA locus that plays a key role in the CR-induced increase in the replicative lifespan 

of yeast cells (ANDERSON et al., 2003; GALLO et al., 2004). 

 

1.1.4 Chromatin regulation 

The role of chromatin as a dynamic and active participant in multiple nuclear 



 

5

processes was first recognized by its ability to regulate gene expression in eukaryotic 

cells (reviewed in JENUWEIN and ALLIS, 2001). One way of modulating chromatin 

structure is by post-translational modification of the histones present in the minimal 

chromatin unit, the nucleosome. Potential post-translational modifications on the 

histones include histone acetylation, methylation, phosphorylation, ubiquitylation, 

sumoylation and ADP-ribosylation ( reviewed in EMRE and BERGER, 2006). Most 

modifications were originally observed on the N-terminal tails of histones, with the 

exception of ubiquitylation, which occurs on the C-terminal tails of H2A and H2B. The 

acetylation and deacetylation of histones in nucleosomes play an important role in 

regulating gene expression and chromatin modification and lead to the “Histone Code 

Theory” (reviewed in JENUWEIN and ALLIS, 2001). 

 

1.1.4.1 Histone acetyltransferases (HATs) 

Histone acetylation has been proposed to play a dual role in the cell. Histone 

acetylation affects the amino-terminal tails of the histones, where lysine residues can be 

post-translationally acetylated. Acetylation (with Acetyl-CoA as a donor coenzyme) is 

carried out by histone acetyltransferases (HATs). First, the covalent addition of acetyl 

groups to specific lysine residues neutralizes the positive charge of the histone tail, 

which weakens histone–DNA contacts within the nucleosome and/or histone–histone 

contacts involved in higher-order chromatin structure. Acetylation of histones also 

provides an epigenetic marker for gene expression because it blocks association of 

heterochromatin-stabilizing complexes like SIR and it can be recognized by protein 
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domains, such as bromodomains, present in various components of the transcription 

machinery (ANNUNZIATO and HANSEN, 2000; FISCHLE et al., 2003). Thus, 

post-translational modifications of histones do not just change chromatin structure 

directly; they also modulate interaction of specific proteins with chromatin 

(JENUWEIN and ALLIS, 2001; NARLIKAR et al., 2002; FISCHLE et al., 2003; 

VAQUERO et al., 2003). HATs can be grouped into four families in yeast, based on 

homology: 

i. The Gcn5 family members, GNAT (Gcn5-related N-acetyltransferase) which 

include yeast Gcn5, and human Gcn5/PCAF. Gcn5p is the catalytic subunit of 

the SAGA transcriptional activation complex (STERNER and BERGER, 2000; 

ROTH et al., 2001; CARROZZA et al., 2003). 

ii. The MYST family of HATs is named after the founding members MOZ, 

Ybf2/Sas3p, Sas2p and Tip60. Sas3p is part of the NuA3 complex, and the 

MYST HAT Esa1p, the only essential HAT in yeast, is part of the NuA4 

complex (DOYON and COTE, 2004). Apart from their role as specific 

transcription co-activators, MYST proteins are involved in a wide variety of 

cell functions such as gene silencing in yeast, dosage compensation in 

Drosophila and oncogenic transformation leading to specific human diseases 

such as leukemia (CARROZZA et al., 2003; UTLEY and CÔTÉ, 2003). 

iii. The CBP/p300 family, coactivators of different classes of transcription factors, 

including the tumor suppressor protein p53, act as bridging proteins between 

inducible transcription factors and the basal transcription apparatus, and as 
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integrators of diverse signaling pathways. Coactivators of nuclear receptors and 

associated proteins forming a multicomponent complex have an intrinsic 

histone acetylase activity in contrast to nuclear receptor and heterodimer 

Mad-Max corepressors, which recruit histone deacetylase (SHIKAMA and 

LATHANGUE, 1997; BORGER and DECAPRIO, 2006). 

iv. The general transcription factor HATs include the TFIID subunit TAF250, 

TFIIIC, a general transcription factor in the RNA polymerase III basal 

machinery, and Nut1p in yeast, a component of the Mediator complex 

(TABTIANG and HERSKOWITZ, 1998). 

 

1.1.4.2 Histone deacetylases (HDACs) 

Histone acetylation is a reversible process and, accordingly, histone deacetylases 

(HDACs) have been isolated that catalyze this reaction (Table 1.1; PETERSON, 2002). 

Sir2p, the founding member of the “Sirtuin” family, is a Class III HDAC, which is 

structurally unrelated to the other two families and has the unusual property of requiring 

NAD+ as a cofactor in the deacetylation reaction. HDAC families also include the 

HDAC I class that resemble yeast Rpd3p, and the Class II HDACs that are similar to 

yeast Hda1p. The yeast HDACs Hos1p and Hos2p are more similar to Rpd3p, while 

Hos3p is more closely related to Hda1p. Sir2p, Rpd3 and Hda1p are found to be 

involved in the extension of the yeast lifespan of mother cells (GUARENTE and 

KENYON, 2000). Deletion of SIR2 accelerates the aging process (KAEBERLEIN et al., 

1999; TISSENBAUM and GUARENTE, 2001), while RPD3 knock out increases  
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Table 1.1: Deacetylase activities in yeast HDACs 

 
Histone deacetylases Type of HDACs 

Rpd3p Class I 

Hos2p Class I 

Hos1p Class II 

Hos3p Class II 

Hda1p Class II 

Sir2p Class III 

Hst1p Class III 

Hst2p Class III 

Hst3p Class III 

Hst4p Class III 
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in yeast by increasing rDNA silencing (KIM et al., 1999a; CHANG and MIN, 2002). 

Also, it was found that deletion of both HDA1 and SIR3 showed increased rDNA 

silencing and extended lifespan (CHANG and MIN, 2002). 

 

1.1.4.2.1 SIR2, a Nicotinamide Adenine Dinucleotide (NAD)-dependent histone 

deacetylase, promotes longevity in yeast 

Members of the evolutionarily conserved Sir2 family include five homologues in 

yeast (Sir2 and Hst1–4) and seven in humans (SIRT1–7) (FRYE, 1999; 2000), with key 

roles in cellular processes such as gene expression, apoptosis, metabolism and aging. 

The Sir2 protein (Sir2p) is of particular interest, as it has been recently linked with 

coordination of aging mechanisms in yeast, the nematode (Caenorhabditis elegans) and 

mammals (KEABERLEIN and GUARENTE, 1999; FRYE, 1999; 2000; TISSENBAUM 

and GUARENTE, 2001; CHUA et al., 2005). 

Sir2p was first discovered in a screen for regulators of transcription at the silent 

mating-type loci (MILLER and NASMYTH, 1984; reviewed in GASSER and 

COCKELL, 2001). Repression at these loci is important for formation of wild type 

haploid yeast that can mate normally. Sir2p (along with other proteins including Sir1p, 

Sir3p, Sir4p, and Rap1p) also binds yeast telomeres and helps to repress transcription by 

deacetylating the N-terminal tails of histones H3 and H4, which help package DNA in 

the cell (MORETTI et al., 1994; HECHT et al., 1995; BRAUNSTEIN et al., 1996). The 

removal of acetyl groups from the histone tails causes them to become positively 

charged, and this is believed to cause a stronger interaction with negatively charged 
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DNA molecules (FINNIN et al., 1999; BUGGY et al., 2000). Tightly packed 

DNA/histone complexes contribute to tighter packing of chromatin in this region, which 

causes transcriptional repression (STRAHL and ALLIS, 2000; WADE, 2001; YOSHIDA 

et al., 2001). In addition, Sir2p functions in double-stranded DNA break repair and 

suppression of mitotic recombination in rDNA (RINE et al., 1987; ALBERTO et al., 

2003). Therefore, The SIR genes serve several functions, which are crucial for the 

establishment of ‘silent’ heterochromatin at telomeres and mating-type (HM) loci.  

Sir2p is one of the critical components functioning at the rDNA locus (RINE 

and HERSKOWITZ, 1987). Sir2p was shown to inhibit rDNA recombination, which 

reduced the generation of ERCs (PETES and BOTSTEIN, 1977; PHILIPPSEN et al., 

1978; RUSTSHENKO and SHERMAN, 1994). These ERCs are able to replicate via 

ARS (Autonomous Replication Sequence) contained within the rDNA repeat, and are 

preferentially segregated to mother cells during division (Fig. 1.1). The unidirectional 

replication fork barrier (RFB) in the rDNA is required for the formation of the majority 

of these ERCs. It was demonstrated that RFB can trigger aging by causing 

chromosomal breaks, the repair of which results in the generation of ERCs 

(DEFOSSEZ et al., 1999). Introduction of an ERC into young mother cells shortens life 

span and accelerates the onset of age-associated sterility (SINCLAIR et al., 1997). 

Accordingly, a sir2∆ mutation results in ERC accumulation and reduced lifespan while 

increased expression of Sir2p reduces ERC formation and thus extends lifespan in both 

yeast and worms (KAEBERLEIN et al., 1999; TISSENBAUM and GUARENTE, 

2001).  
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Fig. 1.1 Structure of rDNA repeats in S. cerevisiae. There are about 100-200
copies of rDNA units arrayed tandemly in a central position on the
chromosome XII. Each repeat of rDNA (9.1 kb) consists of a 35S rRNA
coding region (further processed into 5.8S, 18S and 25S RNAs). The 35S and
5S rRNAs are transcribed in directions opposite to each other. The rDNA
locus also contains two nontranscribed spacers (NTS), i.e., NTS1 and NTS2.
Two DNA elements related to DNA replication, the RFB and ARS are located
in NTS1 and NTS2, respectively The genes encoding 35S precursor rRNA and
5S rRNA are indicated as thick arrows, with their directions shown. Adapted
from JOHZUKA and HORIUCHI, 2002.
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1.2 Fob1 promotes aging by inducing rDNA recombination in yeast 

1.2.1 Replication fork barrier (RFB) 

Replication fork-blocking sites have been identified in the rDNA from yeast to 

human cells (ROTHSTEIN et al., 2000). In the yeast S. cerevisiae, there are about 

100-200 copies of rDNA units arrayed tandemly in a central position on the 

chromosome XII. Each repeat of rDNA (9.1 kb) consists of a 35S rRNA coding region 

(further processed into 5.8S, 18S and 25S RNAs; see Fig. 1.1), which is transcribed by 

RNA polymerase I, and the 5S rRNA coding region transcribed by RNA polymerase III 

(NOMURA, 2001). The 35S and 5S rRNAs are transcribed in directions opposite to 

each other. The rDNA locus also contains two nontranscribed spacers (NTS), i.e., NTS1 

and NTS2 (SKRYABIN et al., 1984; BREWER and FANGMAN, 1988; LINSKENS 

and HUBERMAN, 1988). Two DNA elements related to DNA replication, the RFB and 

ARS are located in NTS1 and NTS2, respectively (Fig. 1.1). In the S phase of the cell 

cycle, replication starts at the ARS bidirectionally and the rightward-moving replication 

forks are arrested at the RFB located near the 3' end of the 35S rRNA in NTS1. RFB 

blocks progression of the replication fork in only one direction, which is opposite to 

that of transcription of 35S rRNA gene, thus ensuring that rDNA is replicated in one 

direction, the same direction with that of transcription of 35S rRNA and persists even 

when rDNA is cloned into a plasmid (BREWER et al., 1992). In E. coli, it has been 

demonstrated that RFBs lead to double-strand breaks (DSBs) in the bacterial 

chromosome (MICHEL et al., 1997; SEIGNEUR et al., 1998). Similarly, RFBs in the 
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rDNA of yeast elicit the formation of DSBs that must be repaired by the machinery of 

homologous recombination machinery. ERCs can then be generated by 

intrachromosomal recombination. It has been shown that the machinery for 

homologous recombination is required for the generation of ERCs (DEFOSSEZ et al., 

1999). Cells have shown a very short lifespan in the absence of this machinery, likely 

due to the persistence of DSBs (DEFOSSEZ et al., 1999; 2001; PARK, et al., 1999). It 

was found that ERCs do not form in cells in which double-strand break repair has been 

eliminated by mutation in genes involved in homologous recombination, such as 

RAD52 epistasis group genes (PARK, et al., 1999; RICHARDSON et al., 2004; 

LOEILLET et al., 2005). 

 

1.2.2 FOB1, a replication fork block gene in yeast 

One of the best-characterized RFBs in eukaryotes is found in rDNA repeats of S. 

cerevisiae (BREWER and FANGMAN, 1988, KOBAYASHI et al., 1998). More recently, 

a gene (FOB1) was isolated whose product (Fob1p), a nucleolar protein required for the 

RFB, has been shown to influence the aging process in yeast by regulating the 

abundance of ERC (DEFOSSEZ et al., 1999). The FOB1 gene is located on 

chromosome IV and the well-known molecular function of FOB1 is the creation of a 

unidirectional block in replication of rDNA (KOBAYASHI and HORIUCHI, 1996). 

Fob1p binds to the rDNA locus and overall stalls progression of the replication fork, 

which increases rDNA recombination and ERC accumulation (DEFOSSEZ et al., 1999; 
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KOBAYASHI and HORIUCHI, 1996). The FOB1 deletion (fob1∆) mutant confers 

reduced rDNA recombination, as measured by loss of a marker gene inserted into the 

rDNA (KOBAYASHI and HORIUCHI, 1996), and an increased lifespan of more than 

50% compared to WT cells (DEFOSSEZ et al., 1999). In a sir2∆ mutant, deletion of 

FOB1 was observed to suppress the sir2∆ reduced lifespan phenotype (KAEBERLEIN 

and GUARENTE, 1999; DEFOSSEZ et al., 1999). Thus, Sir2p and Fob1p play 

antagonistic roles at the rDNA loci. 

The importance of the FOB1 gene is based on the following relevant findings: 

FOB1 is required for rDNA recombination and blocking of the replication fork to 

prevent collision between DNA replication and rDNA transcription events 

(KOBAYASHI and HORIUCHI, 1996). In addition, Fob1p is necessary for either 

contraction or expansion of ribosomal units (KOBAYASHI et al., 1998). Moreover, 

Fob1p is involved in the control of transcriptional activation occurring at the enhancer 

region of rDNA (HUANG and MOAZED, 2003). FOB1 is not evolutionary conserved, 

however it is noteworthy that a unidirectional replication block in the rDNA is a feature 

conserved in higher eukaryotes, such as plants, Xenopus, and humans (HERNANDEZ et 

al., 1993; LITTLE et al., 1993; WIESENDANGER et al., 1994). Proteins, such as Sir2p, 

play an analogous role as Fob1p in these systems. In addition, Fob1p was found to share 

sequence similarity with retroviral intergrases in a three-dimensional (3-D) model using 

the catalytic core domains of HIV-1 intergases as template (DLAKIC, 2002). This 

finding suggests that besides its fork-blocking activity, Fob1p also could act as nuclease. 
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1.2.3 Fob1p promotes aging in yeast 

The short lifespan of a sir2∆ mutant reveals a direct failure to repress 

recombination generated by the Fob1p-mediated replication block in the rDNA 

(GERSHON and GERSHON, 2000). Accordingly, silencing of the rDNA locus by Sir2p 

extends lifespan, whereas Fob1p destabilizes the rDNA locus, resulting in reduced 

lifespan. These observations regarding Fob1p are central to this thesis. Significantly, 

preliminary work prior to this thesis using the Anaphase-Promoting Complex (APC) 

subunit Apc5p as bait in a yeast 2-hybrid screen resulted in the isolation of Fob1p. 

Hence, based on the above findings, I will test the hypothesis that the APC, a ubiquitin 

protein ligase, targets a lifespan inhibitor (Fob1p) for degradation in order to promote 

longevity. 

 

1.3 Ubiquitin signaling pathway 

1.3.1 Ubiquitin 

One of the most complex post-translational modifications to which eukaryotic 

proteins are subject is the covalent attachment of one protein to another. Ubiquitin is the 

most familiar of these proteinaceous protein modifiers.  

Ubiquitin (Ub), a small molecule of 76 amino acids that can be covalently linked 

to itself or other proteins, was discovered in the 1970s (SCHLESINGER et al., 1975). 

The first function attributed to Ub was the proteasome-dependent degradation of 

short-lived proteins in mammalian cells (CIECHANOVER et al., 1984; FINLEY et al., 
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1984). Since then, research in this area has exploded and Ub had been associated with 

nearly every aspect of eukaryotic cell biology (GLICKMAN and CIECHANOVER, 

2002; AGUILAR and WENDLAND, 2003; WELCHMAN et al., 2005). Ub is found 

throughout eukaryotic cells and is highly conserved, with only three amino-acid 

differences between yeast and humans. This remarkable conservation reflects the 

importance of Ub’s biological functions in eukaryotic cells.  

 

1.3.2. Ubiquitination components    

The conjugation of Ub to substrates is completed through three steps involving 

three different enzymes (Fig. 1.2): a ubiquitin-activating enzyme (E1), multiple 

ubiquitin-conjugating enzymes (E2), and a growing list of ubiquitin-conjugating enzyme 

(E3). First, a thioester bond between the C-terminal glycine of Ub and the active 

cysteine of E1 is formed in an ATP-dependent manner. Ub is then transferred to a 

ubiquitin-protein ligase (E2), again through a thioester linkage. Finally, an E3 catalyzes 

the formation of an isopeptide bond between the C-terminus of Ub and a lysine residue 

of a specific target protein. Additional Ub moieties can be conjugated to Lys48 

(HERSHKO and HELLER, 1985; CHAU et al., 1989) or Lys63 (ARNASON and 

ELLISON, 1994; SPENCE et al., 1995) on the previous Ub to form a polyubiquitin 

chain.  
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Fig. 1.2 The ubiquitin-proteasome system. E1 enzymes form a thioester bond
with ubiquitin (Ub) in an ATP-dependent manner. Ubiquitin is then transferred
via an E2 and an E3 (all of which possess both an E2-interacting domain and a
target-recognizing domain) to a lysine residue of the target protein, to which it is
linked by an isopeptide bond. Polyubiquitylated target proteins are recognized
by the S5a subunits of the 26S proteasome and degraded in an ATP-dependent
manner. The ubiquitin moieties on the target are removed by deubiquitylating
enzymes and recycled. Adapted from HATAKEYAMA and  NAKAYAMA,
2003.
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1.3.2.1 E1s  

During ubiquitination, the first task is to activate the C-terminus of Ub, thus 

making it capable of conjugating to a substrate. This reaction is catalyzed by an E1 

enzyme in two steps. Firstly, an Ub-adenylate intermediate is formed in which the 

C-terminal carboxyl group of Ub is covalently linked to AMP. Breakage of the Ub-AMP 

linkage is followed by the formation of an E1-Ub thioester with the C-terminus of Ub 

linking to a cysteine residue on E1. There is only one E1 in yeast (Uba1p; 

CIECHANOVER et al., 1982; McGRATH et al., 1991), which suggests that the first 

step in ubiquitination is conserved although there are many ubiquitination substrates.  

  

1.3.2.2 E2s  

The next step in the ubiquitination process is the transfer of Ub from the E1 

cysteine residue to an E2 cysteine. There is a large family of E2s dedicated to 

ubiquitination, comprising 11 enzymes in S. cerevisiae and many more in higher 

organisms (PICKART, 2001). Each E2 may serve several E3s and several E2s may serve 

a single E3. The number of E3s is much larger. Each E3 cooperates with one or a few 

E2s (CHEN et al., 1993; SOMMER and WOLF, 1997) to recognize specific substrate(s). 

Different combinations of E2s and E3s lead to the large number and extraordinary 

diversity of ubiquitination substrates. The E2 active site cysteine, which is absolutely 

conserved, sits in a shallow cleft on the protein surface. Not surprisingly, many of the 

most highly conserved E2 residues surround the active cysteine (COOK et al., 1994; 

WORTHYLAKE et al., 1998; JIANG and BASAVAPPA, 1999). Some of these residues 
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interact with Ub, and others presumably interact with E1. Most of the poorly conserved 

E2 residues cluster on the opposite side of the active cysteine. Some E2s also have 

N-terminal or C-terminal extensions, which are believed to mediate interactions between 

E2s and downstream factors: E3s or substrates (PICKART, 2001). The extensions make 

these E2s distinct, thus achieving the specificity and diversity of E2-E3 interaction in 

spite of the core structure similarity of all E2s.  

 

1.3.2.3 E3s  

The last step in the ubiquitination cascade is the covalent ligation of one or more 

Ub molecules to the substrate mediated by an E3. There are many E3s in higher 

organisms, ranging from several hundred to over a thousand (PICKART and EDDINS, 

2004). The large number of E3 reflects the breadth of ubiquitination involved in 

biological functions. Different from E2s, E3s are structurally diverse and may function 

as single polypeptides or as large multi-subunit protein complexes. Nevertheless, to date, 

all known E3s belong to only three protein families: Homologous to E6AP Carboxy 

Terminus (HECT), Really Interesting New Gene (RING), and Ufd2 (Ub fusion 

degradation protein 2) homology (U-box) proteins (JOHNSON et al., 1995; LIU, 2004; 

ARDLEY and ROBINSON, 2005).  

 

1.3.2.3.1 RING finger E3s  

It is not clear whether all RING finger proteins play roles in ubiquitination. 
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However, a large number of these proteins are E3s and they comprise the largest known 

class of E3s. The RING finger domain can be defined by existence of the consensus 

sequence Cys-X2-Cys-X(9/39)-Cys-X-1/3-His-X2/3-Cys/His-X2-Cys-X4-48-Cys-X2- 

Cys, where X is any amino acid, Cys and His represent zinc binding residues 

(JOAZEIRO and WEISSMAN, 2000). Every RING motif coordinates two zinc atoms 

with each atom ligated tetrahedrally by either four cysteines, or three cysteines and a 

histidine, in a unique cross-brace arrangement. One feature of RING domains is that 

they can directly bind E2s. The structure of one E3-E2 complex (c-Cbl–UbcH7–ZAP-70 

Peptide Complex) revealed that no RING domain side chain comes closer than ~15 Å to 

the E2 active site cysteine (ZHENG et al., 2000). This observation and other structures 

(ORLICKY et al., 2003; ZHENG et al., 2002) suggest that RING E3s function in 

ubiquitination as molecular scaffolds that bring together the substrate lysine and the 

E2-Ub intermediate. RING E3s can be classified into two types: single-subunit and 

multi-subunit. Single-subuint RING E3s are a polypeptide containing a RING finger 

domain (no two or more RING domains protein reported) and other motifs necessary for 

E3 activity. Multi-subunit RING E3s include the SCF and the APC. The SCF 

(Skp1/Culin/F-box protein) and APC are composed of several proteins in which Cullin 

and RING domain subunits are core members (KAMURA et al., 1999; OHTA et al., 

1999; SEOL et al., 1999; TAN et al., 1999). Human cells express seven different Cullins 

(Cul 1, 2, 3, 4A, 4B, 5 and 7; PETROSKI and DESHAIES, 2005); each of them 

functions as a scaffold protein to recruit the RING protein and adapter protein(s) to form 

a RING E3 complex. The adapter protein binds to the N-terminal region of Cullins, 
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whereas the RING protein which recruits E2, binds to the C-terminal globular domain 

(ZHENG et al., 2002). This E3 complex recruits the substrate through an adapter protein 

or a substrate receptor which binds to an adapter protein. For example, in the SCF, Cul1p 

binds to Skp1p which in turn binds the F-box substrate receptor (SCHULMAN et al., 

2000). F-box proteins contain an F-box motif, which is required for binding to Skp1p, as 

well as a specific substrate-recognition motif. F-box proteins are highly variable and 

interchangeable. Thus, Cul1p can assemble with numerous substrate receptors to form 

CRLs (Cullin-RING Ligase) that share a common catalytic core yet recruit different 

substrates (NAKAYAMA et al., 2001). Other Cullins have a similar mechanism to 

assemble multi-subunit RING E3s (PETROSKI and DESHAIES, 2005).  

The APC is a high molecular mass complex composed of at least 13 subunits, but 

it is only fully active as an E3 once it has bound to Cdc20 or Cdh1 activators (PETERS, 

2002). Two of its subunits, APC2 and APC11, are distant members of the Cullin and 

RING domain families, respectively (YU et al., 1998; ZACHARIAE et al., 1998b).  

 

1.4 The APC promotes mitotic progression, genomic stability and 

longevity 

1.4.1 Anaphase-Promoting Complex (APC) 

The eukaryotic cell division cycle involves the replication of chromosomal DNA 

and equal distribution of DNA to daughter cells in an organized manner. Failure to 

faithfully duplicate and segregate chromosomes can have dire consequences, such as the 
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onset of cancer in multicellular organisms. One of the essential regulatory components of 

chromosome segregation in eukaryotes is a large multi-subunit enzyme termed the APC. 

The APC, an evolutionarily conserved, multi-subunit complex E3 ubiquitin ligase that is 

essential for yeast viability, functions as an E3 (ZACHARIAE and NASMYTH, 1999; 

HARPER et al., 2002). The APC controls progression through mitosis by targeting 

mitotic inhibitors for degradation by the 26S proteasome (KING et a., 1996; HOYT, 

1997), such as cyclin B (Clb2p in yeast), which inhibits cell separation (cytokinesis; 

HERSHKO, 1999; IRINER, 2002; KRAFT et al., 2006). To initiate anaphase, the APC 

also targets securin (Pds1p in yeast), an inhibitor of chromosome segregation, and 

Scc1p/Mcd1p, a protein required for sister chromatid cohesion, for degradation 

(SUDAKIN et al., 1995; GUACCI et al., 1997; MICHAELIS et al., 1997). In addition, 

Ase2p, a protein required for elongation of the mitotic spindle during mitosis, is an APC 

target (UFANO et al., 2004). Defects that alter APC activity are associated with cancer 

development in humans (PRAY et al., 2002; LIU et al., 2003; WANG et al., 2003; 

NAKAYAMA and NAKAYAMA, 2006). 

 

1.4.2 APC subunits 

Recent studies are now shedding light on the function of individual APC subunits, 

most of which are essential for yeast viability. Yeast cells lacking APC subunits arrest as 

large budded cells with the chromosomes aligned along the metaphase plate 

(ZACHARIAE and NASMYTH, 1999). However, distinct functions for individual 
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subunits are apparent. In S. cerevisiae, the APC contains 13 core subunits, most of which 

are stably associated throughout the cell cycle (PETERS et al., 1996; GROSSBERGER 

et al., 1999), and three known different activators (Cdc20p, Cdh1/Hct1p and Ama1p), 

whose binding to APC is cell cycle regulated (FANG et al., 1998a, b; KALLIO et al., 

1998; ZACHARIAE et al., 1998a; COOPER et al., 2000).  

 

1.4.2.1 Apc1p, Apc2p, Apc11p, Cdc16p, Cdc27p and Cdc23p 

Apc1p has been suggested to play a possible role in the interaction with 

polyubiquitinated proteins or as a scaffold for the assembly of APC complex 

(THORNTON et al., 2006). Apc1p shares a structural motif with the two large subunits 

of the 19S cap complex of the 26S proteasome (LUPAS et al., 1997). Apc2p and Apc11p 

form the catalytic core, responsible for the ubiquitination of target molecules 

(LEVERSON et al., 2000; TANG et al., 2001), while Cdc16p, Cdc27p and Apc1p are 

regulatory subunits, as they are the targets of activating and inhibitory phosphorylation 

(KOTANI et al., 1998; RUDNER and MURRAY, 2000). Furthermore, Apc1p, the largest 

subunit of APC, was found in many eukaryotic organisms (STARBORG et al., 1994; 

YAMASHITA et al., 1996; PETERS et al., 1996; ZACHARIAE, 1996; ZACHARIAE et 

al., 1998b; JORGENSEN et al., 2001). As mentioned above, Apc2p and Apc11p are 

distant members of the Cullin and RING domain families, respectively (YU, et al., 1998; 

ZACHARIAE et al., 1998b). Like Cdc16p and Cdc27p, Cdc23p is also an essential 

protein required for cell cycle progression through mitosis in S. cerevisiae (ICHO and 

WICKNER, 1987; SIKORSKI et al., 1990, 1991, 1993). Cdc23p was suggested to bind 
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cyclin in the first step toward its ubiquitination and degradation (MEYN et al., 2002). 

 

1.4.2.2 Cdc26p and Apc9p 

Cdc26p, unlike Apc9p, which is only found in yeast, has been identified in both 

yeast (ZACHARIAE et al., 1998b) and vertebrates (GMACHL et al., 2000). But the 

function of Cdc26p is only required for growth at increased temperatures and Apc9p 

lacks a phenotype when mutated (ZACHARIAE et al., 1998b; PAGE et al., 2005). Both 

Cdc26p and Apc9p are unessential APC subunit. Haploid cells containing a deletion of 

APC9 are viable at 25° and 37°C. However, Cdc27p was largely absent in precipitates 

from apc9∆ strains. Apc9p might stabilize the interaction of Cdc27p with the APC, 

which may underscore the requirement for Apc9p for efficient entry into anaphase 

(ZACHARIAE et al., 1998b). 

 

1.4.2.3 Apc4p and Apc5p 

Neither Apc4p nor Apc5p share significant homology to any previously 

identified proteins (PAGE and HIETER, 1999; CASTRO, 2005). Apart from its 

association with APC complex, Apc5p binds to human Poly (A) Binding Protein (PABP), 

a protein involved in many aspects of RNA metabolism and other heavier complexes 

(KOLOTEVA-LEVINE et al., 2004). As a translational stimulator, PABP is responsible 

for the activation of 5'-capped 3'-polyadenylated transcripts (GALLIE, 1998; SACHS, 

2000). The binding of Apc5p/PABP was shown to inhibit the stimulation of internal 

ribosome entry sites (IRESs) by PABP (KOLOTEVA-LEVINE et al., 2004), which 



 

25

suggests a role for Apc5 in the control of gene expression, in addition to its APC 

function. 

 

1.4.2.4 Apc10 

      Apc10p is not essential for viability, but encodes a conserved protein and is 

required for efficient ubiquitination and degradation of mitotic B-type cyclins 

(GROSSBERGER et al., 1999; AU et al., 2000). A 33-kDa protein called Apc10p or 

Doc1p was initially identified in a screen that enriched for mutants arrested in M/G1 and 

killed cells in other cell cycle stages (HWANG and MURRAY, 1997). The apc10∆ 

mutants show, in addition to sterility, ts growth with defects in chromosome segregation. 

Apc10p was found to function as a processivity factor that promotes the building of 

poly-Ub chains (CARROLL and MORGAN, 2002). 

 

1.4.2.5 APC subcomplex 

The cullin subunit Apc2p and its binding partner, the RING finger protein 

Apc11p, are found in a subcomplex with Apc1p, Apc4p, and Apc5p and are essential for 

the assembly of multiubiquitin chains from ubiquitin residues donated by E2 enzymes 

(VODERMAIER et al., 2003). But this complex (Apc1/2/4/5/11p) is not able to bind 

Cdh1p and to ubiquitinate substrates. Another subcomplex, which consists of all the 

other APC subunits except Apc2p/Apc11p, was found to recruit Cdh1p via the TPR 

(Tetratrico Peptide Repeat) subunits Apc3p and Apc7p. However, it is not able to support 

any ubiquitination reaction.  
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Apc5p also likely forms a subcomplex with other APC component(s) to 

ubiquitinate a target protein involved in chromatin assembly (HARKNESS et al., 2002). 

It was suggested in this study that Apc5p associated with Apc10p to regulate chromatin 

assembly. This was supported by another study demonstrating that injection of C. 

elegans with apc-5 or apc-10 dsRNAs does not result in the expression of the same 

meiotic phenotypes as other tested APC mutants (DAVIS et al., 2002). Thus, the APC 

may have additional uncharacterized functions regulated by individual subunits. 

1.4.3 Regulation of APC 

APC activity is regulated at the protein level by a complex network of 

interactions (KOTANI et al., 1998; RUDNER and MURRY, 2000; SCHWAB et al., 

2001; PASSMORE and BARFORD, 2005). 

 

1.4.3.1 Regulation of APC by two activators, Cdc20 and Cdh1 

   The APC is regulated by the binding of two conserved activators, Cdc20p and 

Cdh1p (also known as Hct1p; SCHWAB et al., 1997; 2001; VISINTIN et al., 1997; 

FANG et al., 1998b; KITAMURA et al., 1998; LORCA et al., 1998). In budding yeast, 

Cdc20p-dependent APC activity initiates the metaphase to anaphase transition and the 

series of events that activate the Cdh1p-dependent APC, which induces complete mitotic 

cyclin destruction (LIM and SURANA, 1996; VISINTIN et al., 1997; SHIRAYAMA et 

al., 1999). Although phosphorylation of Cdc16p, Cdc23p, and Cdc27p is not essential 

for viability in budding yeast, this phosphorylation stimulates Cdc20p-dependent APC 
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activity and Cdc20p binding to the APC in vivo (RUDNER and MURRY, 2000).  

 

1.4.3.2 Phosphorylation of APC by Cdc5p and Cdc28p 

Studies have indicated APC activity is controlled by MPF-activated Plk (Cdc5p 

in yeast) in late mitotic progression (KOTANI et al., 1998). In addition to the APC, 

Cdc5p, a member of a conserved group of protein kinases called the Polo kinases 

(GLOVER et al., 1996; LANE and NIGG, 1997), is required by yeast cells to complete 

mitosis. Polo kinases have been implicated in budding yeast (CHARLES et al., 1998; 

SHIRAYAMA et al., 1998), Xenopus (DESCOMBES and NIGG, 1998) and mammalian 

cells (KOTANI et al., 1998) to function in late mitosis, which activates the 

cyclin-specific APC activity. In addition, Polo kinases have been shown to be required 

for cytokinesis and the establishment of bipolar spindles (LLAMAZARES et al., 1991; 

KITADA et al., 1993; LANE and NIGG, 1997). They have also been shown to 

phosphorylate a number of mitotic regulatory proteins including CHO-1/mitotic 

kinesin-like protein 1 (MKLP-1) (LEE et al., 1995), Xcdc25 (KUMAGAI and DUNPHY, 

1996), and β-tubulin and microtubule-associated proteins (TAVARES et al., 1996). The 

phosphorylation of the APC by Cdc5p (Plk in humans) and Cdc28p (MPF in humans) 

activates the APC (KOTANI et al., 1998; 1999; RUDNER and MURRAY, 2000). Both 

Cdc5p and Cdc28p phosphorylate the APC subunits Cdc16p and Cdc27p, while Cdc5p 

also phosphorylates Apc1p (KOTANI et al., 1999; RUDNER and MURRAY, 2000). 

 

 



 

28

1.4.3.3 Phosphorylation of APC by Protein Kinase A (PKA) 

Alternatively, another notable example of APC regulation is the negative 

influence of Protein Kinase A (PKA) signaling on the APC in both yeast and mammalian 

cells (YAMASHITA et al. 1996; KOTANI et al. 1998; IRNIGER et al. 2000; BOLTE et 

al. 2003). The phosphorylation of APC subunits, such as Cdc27p and Apc1p, by PKA 

represses APC activity (KOTANI et al., 1998). PKA signaling is induced through 

glucose signaling (THEVELEIN and DE WINDE, 1999) and recent studies have shown 

that APC activity is repressed by glucose (IRNIGER et al., 2000; BOLTE et al., 2003). 

Furthermore, PKA is considered to play an important role in maintaining chromosomal 

stability in both interphase and metaphase nuclei, through its association with the 

centrosome, mitotic spindle and microtubules, and cytokinesis (MATYAKHINA et al., 

2002). The APC is also required for genome stability (HARTWELL and SMITH, 1985; 

PALMER et al., 1990; HARKNESS et al., 2002) as chromosome maintenance, 

chromatin assembly (HARKNESS et al., 2005; HARKNESS, 2005) and histone 

acetylation (RAMASWAMY et al., 2003) are altered in apc mutants. Our lab isolated 

and described a mutation in the Apc5p APC subunit that rendered cells temperature 

sensitive (ts) at 37oC, predisposed to chromosome loss and chromatin assembly 

defective in vitro (HARKNESS et al., 2002; 2003). These observations suggest that the 

APC is critical for chromosome maintenance, chromatin metabolism and genomic 

stability during mitosis.  
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1.4.3.4 Regulation of APC by other kinases 

In addition, the following kinases, Cyclin B/cdk1 and BubR1, are also involved 

in APC regulation in mammalian cells (YU, 2002; CHAN and YEN, 2003; MORROW 

et al., 2005). Activation of APC requires phosphorylation by protein kinase Cyclin 

B/cdk1 (HERSHKO, 1999). BubR1 is an essential component of the spindle checkpoint, 

which maintains genome stability by phosphorylating Cdc20 to inhibit Cdc20-mediated 

activation of the APC until all the chromosomes correctly align on the microtubule 

spindle apparatus via their kinetochores (CHAN et al., 1999; SUDAKIN et al., 2001; 

TANG et al., 2001; 2004; FANG, 2002). Thus, the APC receives a diverse and complex 

set of signals that are interpreted to produce the correct response. 

 

1.4.4 The APC is required for prolonged lifespan 

Our lab has shown that the APC is required for the longevity of both dividing and 

non-dividing yeast (HARKNESS et al., 2004). Two routine assays were used to 

investigate whether the APC influenced aging: replicative and chronological aging 

assays. Lifespan in dividing cells is measured by scoring the number of daughters a 

single mother cell produces (replicative assay). This methodology has been employed 

extensively (KENNEDY et al., 1994; JAZWINSKI, 2004; 2005; PIPER, 2006). In this 

approach, the finite number of buds produced by a ‘mother’ cell is determined and is 

designated budding lifespan. After the cells undergo a certain number of buddings they 

cease to divide. A longer cell cycle (slower bud production) is observed in late buddings 
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prior to the complete cessation of cell division (MORTIMER and JOHNSTON, 1959). 

Alternatively, the lifespan of non-dividing cells is measured by counting the number of 

days a population of cells remains viable after reaching stationary phase (chronological 

assay; FABRIZIO, 2001), in which the cells are not grown individually on nutrient agar 

plates but rather whole populations are maintained in liquid medium until cell number 

reaches a plateau (LONGO, 1999). The cells are then maintained for an additional 

period on either the expired medium or distilled water (CR; MASORO, 2005; WOLF, 

2006). Viability is determined by the ability of individual cells plated from aliquots that 

are removed periodically from the cultures to form colonies on agar plates. Our lab 

measured replicative and chronological lifespan in apc5CA (chromatin assembly) cells, as 

apc5CA cells suffer genomic instability (HARKNESS et al., 2002). Cells expressing 

apc5CA generated fewer daughters and senesced faster than isogenic WT cells after 

reaching stationary phase, indicating that the APC is indeed required for normal lifespan. 

However, Apc5 was recently found in complexes other than the APC in human cells 

(KOLOTEVA-LEVINE et al., 2004). Therefore, to determine whether apc5CA-associated 

accelerated aging phenotypes reflect a relevant biological role for the APC in aging, 

three other APC mutants were studied (apc9∆, apc10∆ and cdc26∆). All 3 mutations 

conferred reduced chronological and replicative lifespan. These observations 

demonstrated that the APC is a critical factor required for increased longevity 

(HARKNESS et al., 2004). We predict that the APC targets a protein that accelerates 

aging for degradation. 
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1.4.5 The APC physically interacts with Fob1p in a yeast two-hybrid assay 

My hypothesis states that the APC targets a protein that reduces lifespan for 

ubiquitin-dependent degradation. The results from our two-hybrid screen utilizing 

Apc5p as bait are consistent with this hypothesis, as Fob1p was isolated as an Apc5p 

binding partner. If binding of Fob1p to the rDNA locus persists in apc mutants, cell 

cycle progression may be blocked. Thus, removal of Fob1p from the rDNA locus may 

be a prerequisite for cell cycle progression. Since the basic function of the APC is to act 

as a ubiquitin-protein ligase, I hypothesize that the Apc5p-Fob1p interaction defines 

Fob1p as a critical target for APC-dependent lifespan determination. This would be an 

important result as it potentially identifies an APC target that is directly involved in 

aging in yeast.  

 

1.5 Significance 

Aging is a universal biological phenomenon in all living cells. Questions 

regarding how the cells age are beginning to be answered (reviewed in TROEN, 2003; 

HELFAND and ROGINA, 2003; SINCLAIR, 2005; VIJG and SUH, 2005). Thus, great 

biological interest and practical importance leading to interventions rest on uncovering 

the molecular mechanism of aging. This would ultimately delay the aging process while 

maintaining the physical and mental strengths of youth.  

The conservation of metabolic and signaling pathways between yeast and 

humans is remarkably high, leading to the expectation that aging mechanisms are also 

common across evolutionary boundaries (SINCLAIR, 1999; GUARENTE and 
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KENYON, 2000; LONGO and FINCH, 2003; GOURLAY et al., 2004; HARKNESS, 

2006). The biology of aging in humans has always been a topic of interest. Different 

theories of human aging have been presented, such as the Hormesis Hypothesis of CR 

(TURTURRO et al., 2000; MATTSON et al., 2002; CALABRESE, 2004; RATTAN, 

2004; SINCLAIR, 2005), which states that low intake of calories represents a mildly 

stressful condition for an organism that requires the organism to induce or activate a 

survival response to combat the stress. In contrast, the biology of aging in model 

organisms is relatively well understood. Cells of organisms including yeast, worms, flies, 

and rodents all display nearly identical survival strategies (SINCLAIR, 1999; 

GUARENTE and KENYON, 2000; LONGO and FINCH, 2003). One hypothesis is the 

Xenohormesis Hypothesis (HOWITZ et al., 2003; LAMMING et al., 2004), which 

states that organisms are conditioned to acquire stress-signaling molecules from other 

species to allow protection against environmental decline. Furthermore, proposed causes 

of human aging, such as oxidative damage, genomic instability, and metabolic 

dysfunction have all been found to affect longevity in these model organisms. It has been 

demonstrated that some genes regulate lifespan in model organisms have direct 

correlation with human longevity (SIRT1); model systems have already provided 

valuable insights into the molecular basis of senescence in humans. For example, 

activation of the stress pathway mediated by the FOXO proteins, and repressed by the 

AKT survival pathway, has been shown to promote longevity through studies in worms, 

flies and yeast (FABRIZIO et al., 2001; GREER and BRENET, 2005; KAEBERLEIN et 

al., 2005; POWERS et al., 2006). 
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One of the best characterized model systems for studying aging is the budding 

yeast, S. cerevisiae. Certainly, many of the genes that extend yeast life span have human 

counterparts. By utilizing this model, the span in knowledge between yeast and human 

aging can be bridged. 

 

1.6 Rationale and hypothesis 

Evidence is accumulating that a genetic program exists for lifespan 

determination (LONGO and FINCH, 2003; SINCLAIR, 2005). Model organisms 

expressing mutations in single specific genes live longer with increased resistance to 

stress and cancer development. Mutations that accelerate aging in yeast affect the 

activity of the APC. Our finding that the APC is critical for longevity (HARKNESS et 

al., 2004) provides us with a potential central mechanism controlling lifespan 

determination. The APC is required for mitotic progression and genomic stability in 

presumably all eukaryotes by targeting regulatory proteins, such as cyclin B (Clb2p in 

yeast) for degradation (ZACHARIAE and NASMYTH, 1999; HARPER et al., 2002). 

The key feature defining the APC as a central mediator of lifespan is the fact that 

multiple signaling pathways regulate APC activity and many of these pathways 

influence lifespan. For example, Snf1 and PKA have antagonistic effects on the APC 

(KOTANI et al., 1998; IRNIGER et al., 2000; HARKNESS et al., 2004) and on lifespan 

(LIN et al., 2000; 2002; 2003; HARKNESS et al., 2004; HARKNESS, 2006). Thus, it is 

intriguing to speculate that the APC may link these signaling pathways to downstream 

targets controlling longevity. 
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1.7 Objectives of this thesis 

I will expand on the molecular mechanisms controlling lifespan through a genetic 

approach. This thesis will focus on the yeast aging determinant, Fob1p, which acts to 

accelerate aging (DEFOSSEZ, 1999). The product of the FOB1 gene is required to elicit 

a replication block in the rDNA locus; in the fob1∆ mutant, the generation of ERCs is 

decreased and thus extends lifespan in yeast (DEFOSSEZ, 1999). In a yeast two-hybrid 

screen, designed to identify proteins that interact with APC, using the APC subunit 

Apc5p as bait, our lab isolated Fob1p. The objective of this thesis is to test whether the 

APC promotes longevity by targeting Fob1p for degradation in vivo. The specific aims 

of this study are as below:  

 
1. Identify the Apc5p interaction domain within Fob1p  

A two-hybrid approach will be utilized to assess whether subcloned 

domains of Fob1p interact with Apc5p. 

2. Assess genetic interactions between FOB1 and APC mutants. 

We predict that deletion of FOB1 should overcome mutant phenotypes 

associated with apc mutants. 

3. Cell cycle and steady state analysis of Fob1p. 

The purpose of this approach is to determine whether Fob1p is an unstable 

protein in vivo and whether this is APC-dependent. 
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CHAPTER TWO: MATERIALS AND METHODS 

 

2.1 Yeast genetics 

2.1.1 Yeast strains and cell culture 

The yeast strains used in this study are listed in Table 2.1. Media used in this 

study to propagate yeast include YPD (1% Bacto-yeast extract, 2% Bacto-peptone, 2% 

glucose) and SD medium (0.67% Bacto-yeast nitrogen base without amino acids, 2% 

glucose or galactose, and addition of any necessary auxotrophic supplements at 

recommended concentrations) (SHERMAN et al., 1983). SD medium was used for 

selective growth of yeast auxotrophs. The necessary auxotrophic supplements included 

20 mg/L adenine hemisulfate salt, 20 mg/L L-histidine HCl monohydrate, 100 mg/L 

L-leucine, 20 mg/L L-tryptophan, 20 mg/L L-uracil. Any of the above auxotrophic 

supplements can be omitted to provide a selection media for yeast transformation 

(ROSE et al., 1990). The auxotrophic supplements were made in 100 X stocks which 

were filter sterilized and added into media after autoclaving. To make plates, 2% agar 

was added to either YPD or SD medium prior to autoclaving. According to the different 

plasmids, galactose or sucrose was supplemented at 2% in place of glucose. For long 

term storage, yeast cells were grown on plates (YPD or drop out media) at 30oC. After 

2-3 days growth the yeast cells were removed from the plate with a sterile tooth-pick and 

inoculated into 2 ml liquid culture (YPD or drop out media). Next morning, 1220 µl of 
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Table 2.1: Yeast strains used in this thesis. All strains are S288c derivatives. 

 
Yeast strains Yeast genotype  Source/Reference 
YTH5 MATα ade2 his3∆200 lys2∆201 ura3-52 W. NEUPERT 
YTH6 MATa ade2 his3∆200 lys2∆201 ura3-52 W. NEUPERT 
YTH225 
(PJ69-4A) 

MATa trp1-901 leu2-3 ura3-52 his3-200 
gal4∆ gal80∆ LYS2::GAL1-HIS3 
GAL2-ADE2 met2::GAL7-lacZ 

E. CRAIG/P. JAMES 

YTH1049 MAT(?) cdc16-1 leu2 his3 ura3 This study; original strain 
from D. STUART; 
backcrossed 5 times to 
YTH5/6 

YTH1029 MATa his3∆1 ∆leu2 ∆met15 ∆ura3  Res. Gen. Collection of 
Yeast Deletion Mutants 

YTH1033 As 1029, apc10::KanMX6 Res. Gen. Collection of 
Yeast Deletion Mutants 

YTH1037 As 1029, fob1::KanMX6 Res. Gen. Collection of 
Yeast Deletion Mutants 

YTH1236 MATa ade2 his3∆200 leu2∆3,112 
lys2∆201 ura3-52 

HARKNESS et al., 2003 

YTH1636 MAT (?) ade2 his3 leu2 lys2(?) ura3 HARKNESS et al., 2004 
YTH1637 MAT(α) ade2 his3 leu2 lys2(?) 

 ura3 apc5CA-PA::His5+ 
HARKNESS et al., 2004 

YTH1693 MAT(?) ade2 his3 leu2 ura3 
apc10::KanMX6 

This study; a spore from 
YTH1033 X YTH5; 
backcrossed 5 times to 
YTH5/6 

YTH3371 MAT(?) ade2 his3 leu2 lys2(?) ura3 This study; a spore from 
YTH1037 X YTH1637; 
backcrossed 4 times to 
YTH5/6 

YTH3175 MAT (?) ade2 his3 leu2 ura3 lys2(?) 
apc5CA-PA::His5+ fob::KanMX6 

This study; as YTH3371 

YTH3176 MAT (?) ade2 his3 leu2 ura3 lys2(?) 
apc5CA-PA::His5+ 

This study; as YTH3371 

YTH3178 MAT(?) ade2 his3 leu2 ura3 
apc5CA-PA::His5+ fob1::KanMX6 

This study; as YTH3371 

YTH3179 MAT(?) ade2 his3 leu2 ura3 
fob::KanMX6 

This study; as YTH3371 

YTH3181 MAT (?) ade2 his3 leu2 ura3 lys2(?) 
apc5CA-PA::His5+ fob1::KanMX6 

This study; as YTH3371 

YTH3182 MAT (?) ade2 his3 leu2 ura3 lys2(?) 
apc5CA-PA::His5+ fob1::KanMX6

This study; as YTH3371 



 

37

YTH3335 MAT(?) ade2 his3 leu2 ura3 
apc10::KanMX6 fob::KanMX6 

This study; a spore from 
YTH1693 X YTH3179 

YTH3608 Congenic with YTH5 This study; a spore from 
YTH3335 X YTH1236 

YTH3611 Congenic with YTH5, apc10:: KanMX6 
fob1::KanMX6 

This study; as YTH3608 

YTH3612 Congenic with YTH5, apc10:: KanMX6 
fob1::KanMX6 

This study; as YTH3608 
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the cells were mixed with 280 µl of 80% glycerol (final 1.5% (v/v)). The cells were then 

stored at -80oC. 

 

2.1.2 Yeast transformation 

Yeast cells were transformed using lab protocols (modified from Current 

Protocols). A 5 ml culture of S. cerevisiae was grown overnight at 30oC in YPD (or 

appropriate drop out media). The next day the cells were diluted to an OD600 (optical 

density of 600 nm wavelength) of 0.5 in freshly prewarmed media, and allowed to grow 

until an OD600 of 1.0 was reached. Yeast cells were then collected by centrifugation at 

4000 rpm at 4oC, washed in sterile water, resuspended in 500 µl of 100 mM LiOAc 

solution (0.1 M lithium acetate, 10 mM Tris-HCl pH 8.0, 1 mM EDTA) and incubated 

for 15 minutes at 30oC. 5 µl of carrier DNA (single stranded salmon sperm) and 1-5 µl 

of transforming DNA were added. After vortexing, 300 µl of a PEG4000 solution (5% 

polyethylene glycol 4000 in LiOAc solution) was added and the contents were mixed by 

inverting the tube 4-6 times. The transformation mixture was incubated for 20 minutes at 

30oC, followed immediately by heat shocking at 42oC for 15 minutes. Yeast cells were 

then centrifuged for 30 seconds and resuspended in 100 µl of 1 M sorbital. The 

resuspended cells were plated on the appropriate drop out media using a “hockey stick” 

in 95% ethanol and incubated at 30oC for 2-4 days. 
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2.1.3 Yeast plasmid extraction (Smash and Grab) 

Yeast plasmid extractions were performed using lab protocol (modified from 

Current Protocol). Briefly, cells grown on plates were removed with a sterile toothpick 

and resuspended in 5 ml YPD or appropriate drop out media overnight with gentle 

shaking at 30oC. Cells from a liquid culture were collected by centrifugation and 

resuspended into 200 µl SCE (1M sorbital, 0.1 M sodium citrate, and pH 5.8, 0.01 M 

EDTA) + lyticase (high-yield purification of yeast lytic enzymes; SCOTT and 

SCHEKMAN, 1980) (0.0033 grams of lyticase, 1 ml SCE). After the cells were 

incubated for 1 hour at 37oC, 400 µl fresh SDS (sodium dodecyl sulfate)/NaOH lysis 

buffer (10 N NaOH, 10% SDS and dH2O) was added, and mixed by inverting 5 times. 

The mixture was then kept on ice for 5 minutes. 300 µl of 3 M NaAC (PH 4.8) was 

added, mixed and then the mixture was centrifuged for 5 minutes and the aqueous layer 

was transferred into a new microcentrifuge tube with 600 µl iospropanol. After 10 

minutes on ice, the mixture was centrifuged for 10 minutes. After discarding the 

supernatant, the pellet was washed in 500 µl 70% ethanol and then resuspended in 100 

µl of ddH2O. In order to obtain a pure DNA preparation, the precipitated DNA was 

treated with 5 µl of RNaseA (10 mg/ml stock) at 37oC for 30 minutes. After the RNaseA 

treatment, 100 µl of phenol/chloroform (1:1) was added, and the mixture was 

centrifuged and the upper layer was transferred to a fresh tube, and mixed with 100 ul 

ddH2O and 20 µl 3 M NaAC. Next, 500 µl of 95% ethanol was added, mixed and 

incubated on ice for 10 minutes. The mixture was centrifuged for 10 minutes, and the 

pellet was resuspended in 100 µl ddH2O. 
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2.1.4 Sporulation and yeast tetrad dissection 

Two haploid strains with opposite mating types were cross-streaked in an X 

formation on YPD plates to allow diploid formation. After overnight growth at 30oC, 

cells from the overlapping section of the streaks were restreaked onto sporulation media 

(1% potassium acetate, 0.1% yeast extract, 0.05% glucose/dextrose, 2% agarose and 5 

ml adenine after autoclaving), and incubated at room temperature for 7-14 days. 

Sporulation was checked by visual inspection of the cells with a light microscope for the 

formation of tetrads. Dissection of tetrads was carried out as follows: a small amount of 

cells from the sporulation media plate were resuspended in 100 µl of ddH2O, to which 

10 µl lyticase solution was added. The tetrads were dissected on YPD plates using a 

Singer MSM micromanipulator (Singer Instrument Co. Sumerset, England). Markers 

were scored by testing the growth of each spore on the appropriate drop out media. 

Segregation of mutants created by gene replacement using the KanMX6 cassette was 

followed using YPD media supplemented with 0.2 mg/ml Geneticin. Double mutants 

where KanMX6 was used for each deletion were selected by identifying tetrads that 

segregated 2:2 on Geneticin plates. The plates were incubated for 2-3 days at 30oC. 

 

2.1.5 Spot dilutions 

Spot dilution assays were conducted by pipetting 3 µl of cells from samples 

generated from a 10-fold dilution series onto various media and grown at the 

temperatures indicated, as previously discussed (HARKNESS et al., 2004). 
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2.1.6 Lifespan determination 

Replicative, or generational, lifespan of the strains tested in this study was based 

on previously published protocols (KENNEDY et al., 1994; HARKNESS et al., 2004). 

Briefly, cells from a fresh culture were struck out onto fresh YPD plates and grown 

overnight at 30°C. Drop out media was used if plasmids were to be maintained. The next 

day 30-50 cells containing small buds were micromanipulated to isolated areas of the 

plate. The small daughter buds were kept as the starting mother cells. All additional buds 

from the starting mother cells were scored and discarded. The plates were kept at 30°C 

during working hours and stored at 4°C to 16°C overnight.  

 

2.1.7 In vivo assay of protein interaction using yeast two-hybrid system 

Yeast two-hybrid strain YTH225 (PJ69-4A) was transformed simultaneously 

with different combinations of pGBT-APC5 and pGAD-FOB1 constructs (Table 2-2; see 

Introduction for details). The co-transformed colonies were streaked on SD- 

TRP-LEU-ADE plates to test for the activation of ADE2 expression.  

 

2.1.8 Cell cycle dependent stability analysis 

2.1.8.1 Arrest and release 

Hydoxyurea (HU) was used to arrest the cell cultures in G1. For our first 

experiments (Fig. 3.11), cells were grown entirely in 10 ml 2% galactose supplemented 
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Table 2-2 Plasmids and markers 

Plasmids Plasmid marker Source or reference 
pVA3 TRP1-2µ 2 hyb.GAL4BD W. NEUPERT 
pTD1 LEU2-2µ 2 hyb.GAL4AD W. NEUPERT 
pGAD424 LEU2-2µ 2 hyb.GAL4AD W. NEUPERT 
pGBT9 TRP1-2µ 2 hyb.GAL4BD W. NEUPERT 
pGBD APC5 TRP1-2µ 2 hyb. GAL4BD T. HARKNESS 
pGBD APC5FLS TRP1-2µ 2 hyb. GAL4BD T. HARKNESS 
pGBD APC5V.P. TRP1-2µ 2 hyb. GAL4BD T. HARKNESS 
pGAD FOB1 LEU2-2µ 2 hyb. GAL4AD T. HARKNESS 
pGAD FOB1 D1 LEU2-2µ 2 hyb. GAL4AD This study 
pGAD FOB1 D2 LEU2-2µ 2 hyb. GAL4AD This study 
pGAD FOB1 D3 LEU2-2µ 2 hyb. GAL4AD This study 
pGAD FOB1 D1+2 LEU2-2µ 2 hyb. GAL4AD This study 
pGAD FOB1 N-terminal 
half 

LEU2-2µ 2 hyb. GAL4AD This study 

pGAD FOB1 C-terminal 
half 

LEU2-2µ 2 hyb. GAL4AD This study 

YCp50 CEN-URA3 W. NEUPERT 
YCp50 FOB1 CEN-URA3 T. KOBAYASHI 
YCp50 APC5 CEN-LEU2 T. HARKNESS 
YCp50GALprom.CLB2.HA URA3 D. STUART 
YEplac181 2µ- LEU2 W. NEUPERT 
BG1805 URA3 W. XIAO 
BG1805 GALprom. FOB1. 
6XHis.HA.prot.A 

URA3 W. XIAO 

BG1805 GALprom. SIR2. 
6XHis.HA.prot.A 

URA3 W. XIAO 
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media at 30°C for 2 days. The cells were then inoculated into 100 ml 2% galactose 

supplemented media and grown at 30°C for 2-3 days to an OD600 of 0.5. Next, 1 ml 

samples were harvested for protein extract and the remaining yeast cultures were 

synchronized using overnight incubation in 300 mM HU at RT. Following this, 1 ml 

sample were taken for protein extract and FACS (Fluorescence Activated Cell Sorting). 

Yeast cells were then collected by centrifugation at 4000 rpm at 4°C, washed twice in 

2% glucose, resuspended in 2% glucose supplemented media to repress expression of 

GAL-FOB1-HA and allow the cells to re-enter the cell cycle. Samples (1 ml) were taken 

every hour for 7 hours and then again after 25 hours. Protein extracts were prepared 

from the samples and resolved using SDS-PAGE.  

A second arrest and release experiment was performed (Fig. 3.13). For the 

experiment, the cells were initially grown up in 2% sucrose supplemented media at 30°C 

to an OD600 of 0.5, synchronized using a 6 hour incubation in 300 mM HU and then 

induced to express Fob1p-HA in a 6 hour incubation in 2% galactose at RT. The cells 

were then collected by centrifugation, and the HU and galactose were washed away. The 

cells were resuspended in 2% glucose supplemented media to repress expression of 

FOB1-HA and to allow the cells to re-enter the cell cycle. The cultures were then split, 

with one half incubated at 30°C and another half at 37oC. Samples were taken before 

HU and galactose were added, following 6 hours incubation and every hour of release 

for protein and FACS analysis up to 6 hours. 
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2.1.8.2 FACS (fluorescence activated cell sorting) 

FACS was used to confirm G1 arrest and release into a new round of cell growth. 

Cells taken from each arrest and release experiment were collected by centrifugation at 

4000 rpm for 5 minutes, washed with 1 ml of 50 mM Tris-HCl (pH 8.0), and 

resuspended in 1 ml of 70% EtOH. The mixture was incubated for 1 hour at RT, 

centrifuged at 1500 rpm for 30 seconds, and resuspended in 500 µl of 50 mM Tris-HCl 

(pH 8.0). Next, 10 µl of RNase A (10 mg/ml) was added and the mixture was incubated 

for 2 hours at 37oC.  The mixture was centrifuged and washed with 1 ml of 50 mM 

Tris-HCl (pH 8.0), and resuspended in 500 µl Propidium iodide staining solution (PI 

solution; 1 mg/ml Propidium iodide in PBS (phosphate-buffered saline: 8% (w/v) NaCl, 

0.2% (w/v) KCl, 1.44% (w/v) Na2HPO4, and 0.24% (w/v) KH2PO4)), and incubated for 

1 hour at RT in the dark. The samples were transferred to FACS tubes (Falcon 

polystyrene round-bottom tubes, 12 X 75 mm) and sent to the Health Research Division 

Cancer Research Unit for FACS analysis. 

 

2.2 Molecular biology techniques 

2.2.1 Bacterial culture and storage 

The Escherichia coli (E. coli) strains DH5α and NM522 were used for bacterial 

transformations. All plasmids used in this study contained the ampicillin resistance 

marker gene, ampR. Transformed strains were cultured in Luria broth (LB: 1% 

Bacto-tryptone, 0.5% Bacto-yeast extract, 0.5% NaCl) containing 50 µg/ml of 
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Ampicillin. Plates were solidified using 2% agar. For short-term storage (2 or 3 months), 

transformed cells were stored on LB + Amp plates at 4oC. For long term storage, 

transformed cells were grown overnight in 2 ml of LB + ampicillin (50 µg/ml), and 1220 

µl of the cells were mixed with 280 µl of 80% glycerol. The mixture was then 

submerged in liquid nitrogen for approximately 10 seconds, and stored in a -80oC 

freezer. 

 

2.2.2 Preparation of competent cells 

For chemical transformation, E. coli DH5α was treated as previously described 

(CHUNG et al., 1989). Cells were grown in LB media to an OD600 of 0.4-0.5. The cells 

were swirled in an ice bath for 10 minutes and diluted 1:1 in ice cold TSS solution (1 X 

TSS: LB with 10% PEG8000, 5% DMSO, and 50 mM Mg2+ (MgSO4 or MgCl, pH 6.5)). 

The cells were aliquoted, 500 µl/tube, and placed in -80oC for storage. 

For electro-transformations, E. coli cells were prepared as indicated in the 

BioRad E. coli Pulser manual. Briefly, the cells were incubated in 1 liter of LB medium 

until an OD600 of 0.6 was reached. The culture was collected by centrifugation at 3500 

rpm in a Beckman GSA rotor and the pellet was resuspended in 500 ml of 10% sterile 

glycerol. The centrifugation was repeated 4 times, each time reducing the resuspending 

volume, with the final volume being 4 ml of cold 10% glycerol. Aliquots of 1 ml were 

placed into 1.5 ml microcentrifuge tubes and quickly placed in the -80oC freezer for 

storage. 



 

46

2.2.3 Bacterial transformation 

2.2.3.1 Chemical transformation 

Competent E. coli cells for chemical transformations were prepared as previously 

described (CHUNG et al., 1989). Chemical transformation of bacterial was performed 

using the KCM method (WALHOUT et al., 2000). 1-5 µl of transforming DNA and 

Distilled water were added to 20 µl of 5 X KCM (0.5 M KCL, 0.15 M CaCl2 and 0.25 M 

MgCl2) up to a total volume of 100 µl 100 µl of competent cells were added to the tube, 

mixed up and kept on ice for 20 minutes. The cells were then incubated for 20 minutes 

at room temperature or heat shocked 5 minutes at 37oC. After heat shocking, 1 ml of 

pre-warmed LB or SOC media (2% Bacto-tryptone, 0.5% Yeast extract, 10 mM NaCl, 

20 mM MgCl2, 20 mM MgSO4, and 20 mM glucose) was added to the cells, and the 

cells were incubated at 37oC for 1 hour with constant shaking. The cells were plated 

onto LB + Ampicillin (50 µg/ml) plates and incubated at 37oC overnight.  

 

2.2.3.2 Electro-transformation 

Competent E. coli cells (NM522) for electroporation were prepared as indicated 

in the BioRad E. coli Pulser manual. Transforming DNA was added to the competent 

cells to a final concentration no greater than 10% of the final volume. After one minute 

incubation on ice, the cell mixture was transferred to a pre-chilled 1 mm width 

electroporation cuvette (BioRad). The cells were then exposed to a voltage of 1.7 kV 

using the E. coli Pulser (BioRad). After electroporation, 1 ml of pre-warmed LB was 

added to the cuvette, and the cells were transferred to a 1.5 ml microcentrifuge tube. The 
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cells were incubated for 60 minutes at 37oC with constant shaking and plated onto LB + 

Amp plates for incubation at 37oC overnight. 

 

2.2.4 Plasmid DNA isolation 

2.2.4.1 LiCl plasmid Mini-prep 

A 5 ml overnight culture of the transformed bacterial cells was centrifuged, the 

pellet was resuspended fully in 200 µl cold GTE (50 mM glucose, 25 mM Tris-HCl PH 

8.0 and 10 mM EDTA) and incubated at room temperature for 5 minutes. 400 µl of fresh 

lysis buffer (2% 10 N NaOH, and 1% SDS) was added, mixed fully by inverting several 

times and sat on ice for 5 minutes. 300 µl of 3M NaAc (pH 4.8) was added, mixed fully 

by inverting several times and incubated on ice for 5 minutes. The mixture was 

centrifuged and the supernatant was transferred to a new tube. 450 µl of isopropanol was 

added, mixed thoroughly and incubated on ice for 5 minutes. After centrifugation for 5 

minutes, the supernatant was discarded, and the pellet was resuspended fully in 100 µl of 

1 X TE (10 mM Tris-HCl pH 8.0 and 1 mM EDTA pH 8.0). 100 µl of 10 M LiCl was 

added and the tube was mixed. Next, 100 µl of chloroform was added, mixed by 

vortexing and incubated for 10-20 minutes at room temperature. The mixture was then 

centrifuged and 200 µl of the upper layer of supernatant was transferred to a new tube, 

added with 600 µl of 95% EtOH and incubated for 15-30 minutes at -80oC. The pellet 

was then colleted by centrifugation, washed with 500 µl of 70% EtOH, resuspended in 

50 µl of 1 X TE and stored at -20oC or -80oC. 
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2.2.4.2 Large scale DNA isolation (Maxi-prep) 

A 5 ml overnight culture of the transformed bacterial cells was subcultured into 500 

ml of fresh LB + Amp medium. The culture was grown overnight at 37oC. The cells 

were harvested by a 15 minute centrifugation at 4000 rpm in a Beckman GSA rotor at 

4oC, and resuspended in 100 ml of ice cold STE (0.1 M NaCl, 10 mM Tris-HCl pH 8.0 

and 1 mM EDTA pH 8.0). The cells were collected by centrifugation and resuspended in 

18 ml of Solution I (50 mM Glucose, 25 mM Tris-HCl pH 8.0 and 10 mM EDTA pH 

8.0). Next, 40 ml of freshly prepared solution II (0.2 NaOH, 1% SDS and 88 ml ddH2O) 

was added and mixed by gently inverting several times and stored at room temperature 

for 5-10 minutes. 20 ml of ice cold solution III (5 M potassium acetate, 11.5% glacial 

acetic acid and 28.5% ddH2O) was added, mixed by shaking and stored on ice for 10 

minutes. The solution was centrifuged for 15 minutes at 4000 rpm in a 250 ml Corex 

bottle using a Beckman SS34 rotor. The supernatant was filtered into a 250 ml plastic 

bottle through four layers of cheesecloth, 0.6 volume of isopropanol was added, and was 

then incubated for 10 minutes at room temperature. The nucleic acids were recovered by 

centrifugation at 5000 rpm for 15 minutes at room temperature. The supernatant was 

decanted carefully to allow the last few drops of supernatant to drain away. The pellet 

was rinsed with 70% EtOH at room temperature. After draining off the EtOH, the cells 

were dissolved in 3 ml TE (10 mM Tris-HCl, 1 mM EDTA pH 8.0). 
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2.2.5 Agarose gel electrophoresis and DNA fragment isolation 

For analysis of plasmid and genomic DNA, a 0.8% agarose gel was used. 

Electrophoresis was performed in 1 X TAE (24% Tris-base, 5.7% glacial acetic acid, 

10% EDTA pH 8.0) and the gel was stained in 0.5 µg/ml EtBr (ethidium bromide) for 

viewing under UV light. Isolation of DNA fragments from an agarose gel was modified 

from current protocols. Briefly, DNA was extracted using a DNA extraction kit (MBI 

Fermentas). The agarose gel containing the DNA fragment was cut out, placed into an 

eppendorf tube and weighed. According to the mass of agarose slice (mg), 3 volumes 

binding solution was added and incubated for 5 minutes at 55oC to dissolve the agarose 

slice. Next, 5 µl of silica powder suspension was added and incubated for 5 minutes at 

55oC. After vortexing, the suspension was centrifuged for 5 second and washed 4 times 

with 500 ul of cold wash buffer. The DNA was collect by centrigation and incubated 

twice for 5 minutes with 10-20 µl of ddH2O at 55oC. The eluted DNA was purified by 

phenol/chloroform (1:1) extraction as described below (2.2.6). 

 

2.2.6 Phenol/chloroform extraction of DNA  

Phenol/chloroform extraction was performed to remove proteins from nucleic 

acid samples. The nucleic acid sample was diluted to 200 µl in a 1.5 ml eppendorf tube. 

RNaseA (5 µl) was added from a stock of 10 mg/ml and incubated for 30 minutes at 

37oC. 100 µl of phenol/chloroform mixture (previously mixed 1:1) were added to the 

tube, and the tube was then inverted several times to mix the phases. After centrifugation 
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at 13,000 rpm for 3 minutes, the upper layer was transferred to a new tube. To 

precipitate the DNA, 100 µl of dH2O, 20 µl of 3 M NaAc (pH 4.8) and 500 µl of EtOH 

were added and incubated at -80°C for at least 30 minutes. After centrifugation at 13,000 

rpm for 10 minutes, the supernatant was discarded. After washing with 70% EtOH, the 

DNA sample in the tube was dried in a vacuum device at 37°C for 10 minutes and 

resuspended in 50 µl of ddH2O.  

 

2.2.7 Construction of plasmids  

All plasmids used or constructed in this study are listed in Table 2-2. Plasmid 

manipulation was performed using enzymes from New England Biolabs as 

recommended by the manufacturers. Plasmid DNA was linearized with the appropriate 

restriction enzymes (Table 2-3) and purified using phenol/chloroform extraction method. 

Alternatively, purified DNA fragments (as an insert) were created by PCR (Polymerase 

Chain Reaction) using appropriate primers (Table 2-4), and then cloned into the TOPO 

vector according to the TOPO TA Cloning Kit (Invitrogen). Insert DNA was then 

combined with linearized pGAD vector DNA (Fig. 2.1) in a 20 µl volume with T4 DNA 

ligase (1 µl). To increase the probability of concatermeric ligation, which reduces the 

chance of vector DNA self-ligation, the molar ratio of vector DNA to insert DNA was 

set to ~1:3. The mixture was incubated at room temperature overnight. This reaction was 

used to transform E. coli competent cells.  
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Table 2-3 Primers and enzymes used to create clones 

plasmids vectors inserts primers enzymes
GADFOB1.5' Pst I pGAD FOB1 D1 FOB1D1 
Fob1DOM2.3' BamH I 
GADFOB1.5' Pst I pGAD FOB1 D2 FOB1D2 
Fob1DOM2.3' Blg II 
Fob1DOM3.5' BamH I pGAD FOB1 D3 FOB1D3 
GADFOB1.3' Sal I 
GADFOB1.5' BamH I pGAD FOB1 D1+2 FOB1D1+2 
Fob1DOM2. 3' Sal I 
GADFOB1.5' BamH I pGAD FOB1 

N-terminal half 
FOB1 
N-terminal half Fob1N-terminal.3' Sal I 

Fob1C-terminal.5' BamH I pGAD FOB1 
C-terminal half 

 
 
 
 
 
 

pGAD424

FOB1 
C-terminal half GADFOB1.3' Bgl II 
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Table 2-4 PCR primers used to create clones 

Primer names Primer sequence 5' to 3' 
GADFOB.5' ATGCTAGGATCCACACGAAACCGCGTTACAATG 
GADFOB.3' ATGCTAGTCGACTTACAATTCCATTGATGTG 
Fob1Dom2.3' ATGCTAAGATCTACATTAGCAAGGGCAAAAG 
Fob1Dom3.5' ATGCTAGGATCCAAGCGGATAATAGCTGTAAC 
Fob1N-terminal.3' ACGTGTCGACAATTGGAACCCTAFCAAATG 
Fob1C-terminal.5' ACGTGGATCCACTTCGTAACATCAAGCATCTTAG 
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Fig. 2.1 M ap of pGAD424 vector (Clontech laboratories, Inc.). This
vector generates a hybrid protein that contains the sequences for the
GAL4 activation domain (aa 768-881). For the construction of a hybrid
protein, the gene encoding the protein of interest is ligated into the MCS in
the correct orientation and in the correct reading frame such that a fusion
protein is generated. The fusion protein is expressed at high levels in yeast
host cells from the constitutive ADH1 promoter and transcription is
terminated by the ADH1 transcription termination signal. The hybrid
protein is targeted to the yeast nucleus by nuclear localization sequences
that have been added to the AD sequence from a heterologous source.
pGAD424 is a shuttle vector that replicates autonomously in both E. coli
and S. cerevisiae. It carries the ampR gene (for ampicillin resistance in E.
coli) and the LEU2 selectable marker that allows yeast Leu- auxotrophs
carrying pGAD424 to grow on drop out medium lacking Leu.
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2.2.8 DNA sequencing 

All DNA sequencing was performed at the National Research Council (NRC) 

Plant Biotechnology Institute (PBI) DNA Technologies Unit using the primers provided 

(indicate in Table 2-4). 

 

2.2.9 Protein expression and purification 

Proteins were extracted according to published lab protocols (HARKNESS et al., 

2002). A 10 ml overnight culture of transformed yeast cells was centrifuged at 4000 rpm 

at 4oC for 5 minutes and resuspended in 1 ml of cold 1 X PBS. The mixture was 

transferred to eppendorf tube pelleted and resuspended fully in 250 µl of freshly cold 

solution C (1.85 M NaOH, 7.4% 2-Mercaptoethanol), and 250 µl of 100% TCA 

(trichloroacetic acid). The mixture was then vortexed rapidly. After incubating on ice for 

5 minutes, the cells were centrifuged for 10 minutes at 4oC and washed with cold 1 X 

PBS. The protein pellet was resuspended in the appropriate amount of solution A (13% 

SDS and 1 M Tris) and solution B (30% glycerol plus Bromophenol Blue), typically 50 

µl each, depending on the pellet size. After boiling for 2 minutes, the proteins were 

incubated on ice for 2 minutes and sonicated for 3 seconds. Next, the protein lysate was 

centrifuged for 10 minutes at 4oC. The supernatant was transferred to a new tube and 

stored at -80oC. 
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2.2.10 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blot   

Proteins were separated and visualized by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) according to Current Protocols. 

Gels were prepared with a 15% acrylamide separating gel bed topped with a 4% 

stacking gel. For one mini-gel (6 cm X 8 cm), the separating and stacking gel mixtures 

were prepared as follows: 10 ml of separating gel containing 2.3 ml of dH2O, 5 ml of 

30% acrylamide (Sigma), 2.5 ml of 1.5M Tris-HCl (PH 8.8), 100 µl of 10% SDS and 

100 µl of 10% APS (Ammonium persulphate); and 2.7 ml of 4% stacking gel with 2.1 

ml of dH2O, 500 µl of 30% acrylamide, 38 µl of 1.0 M Tris-HCl (PH 6.8), 30 µl of 10% 

SDS and 30 µl of 10% APS. Polymerization was initiated with 4 µl and 3 µl of TEMED 

(N, N, N’, N’-Tetramethylethylenediamine) respectively just before use. The separating 

gel was poured between plates separated with 1 mm spacers, anchored and sealed in a 

Bio-Rad mini gel caster, and topped with 1 ml isobutanol for an even level gel surface. 

After polymerization was complete, isobutanol was drained and the stacking gel was 

poured over the separating gel. The comb was placed in the stacking gel and the gel was 

allowed to polymerize (around 20 minutes). Gels were clamped into the electrophoresis 

apparatus and kept at RT for 20 minutes until the gel was polymerized. Both the top and 

bottom buffer chambers were filled with 1 X SDS-Page running buffer (25 mM Tris, 

250 mM glycine, 0.1% (w/v) SDS) and the combs were removed. Samples were kept on 

ice prior to loading. Gels were run at constant voltage, 150V, for about 1 hour, using 

bromophenol blue as a running dye. The gel was stained for 60 minutes in Coomassie 
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stain (0.25% (w/v) Coomassie brilliant blue R250 dissolved in 40% methanol (v/v), 10% 

(v/v) acetic acid in water). Gels were photographed wet to determine, the equivalency of 

load for Western blot analysis. Equal samples of protein were then separated again by 

SDS-PAGE and transferred to a nitrocellulose membrane according to published 

protocols (Current Protocol) as follow. Briefly, the cassette was assembled by first 

laying the black side down, then placing the fiber pad, Watman paper, gel, nitrocellulose 

membrane, Watman paper and the fiber pad in order. The cassette was filled with 

transblot buffer (1.8% glycine, 0.4% Tris and 400 ml methanol) and transferred under 

constant voltage, 160V, for about 1 hour, at 4oC. Membranes were stained with Ponceau 

S staining solution (0.1% (w/v) Ponceau S in 5% (v/v) acetic acid), to confirm equal 

load of the proteins and then incubated in 5% PBST blocking milk (PBS, 0.05% Tween 

(v/v), 5% non-fat milk) for 1 hour at room temperature or overnight at 4oC. Anti-HA 

high affinity antibodies (Roche Diagnostics GmbH) were diluted 1:1000 in 20 ml PBST 

milk and the PBST solution was incubated with membranes overnight at 4oC. 

Membranes were then washed 3 times with 5% PBST blocking milk for 15 minutes each 

time. The secondary antibody, anti-rat IgG conjugated with horse radish peroxidase 

(HRP; Sigma), was used at a 1:10000 dilution for 30 minutes at RT. Followed by 3 

times washes with 5% PBST blocking milk for 15 minutes each time, and 15 minutes 

wash with 1X PBST (PBS, 0.05% Tween (v/v)) solution. The Western Lightning 

Chemiluminescence Reagents (PerkimElmer Life Science) were then utilized for 

detecting, and the membrane was then exposed to X-ray film.  
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CHAPTER THREE: RESULTS 

 

3.1 Defining the Fob1p-Apc5p interaction domain in Fob1p 

3.1.1 Fob1p-Apc5p yeast two-hybrid interaction 

Apc5p is an essential subunit of the APC (ZACHARIAE and NASMYTH 1999; 

HARPER et al., 2002). A temperature sensitive (ts) mutation in the gene encoding this 

protein was identified in a screen of yeast mutants for those defective for an in vitro 

chromatin assembly assay (HARKNESS et al., 2002). Further work confirmed that the 

APC was indeed required for chromatin assembly (HARKNESS et al., 2005; 

ARNASON et al., 2005; HARKNESS, 2005). In order to gain an understanding of the 

molecular interactions underlying the role of the APC in chromatin assembly, a yeast 

two-hybrid screen was conducted using APC5 as bait (HARKNESS, unpublished data). 

The following describes the results of that screen. 

The APC5 gene was cloned into the two-hybrid bait vector pGBT9. pGBT9 

allowed fusion of the GAL4 DNA binding domain to a gene of interest (all two-hybrid 

reagents, including the library were generous gifts from ELIZABETH CRAIG; see 

JAMES et al., 1996 for details). pGBT-APC5 was transformed into the specially 

designed two-hybrid yeast strain PJ69-4A (YTH225). The ADE2 and HIS3 genes within 

PJ69-4A were modified by replacing the promoters with the GAL2 and GAL1 promoters, 
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respectively (JAMES et al., 1996). A library of random yeast DNA fragments cloned 

into the pGAD424 prey vector, which allowed the fusion of a gene to the GAL4 

transcriptional activator domain, was then transformed into the PJ69-4A strain harboring 

the pGBT-APC5 construct. This was possible since the pGBT9 plasmid expressed the 

TRP1 selectable gene, the pGAD424 plasmid the expressed LEU2 selectable gene, and 

PJ69-4A was trp1∆ and leu2∆. Thus, transformants were selected on media lacking 

tryptophan and leucine. From 30 transformations, 1.5 million transformants were 

obtained that contained pGBT9-APC5 and a library plasmid. Each plate was then 

replica-plated to plates lacking tryptophan, leucine and adenine (SD-TRP-LEU-ADE) 

and tryptophan, leucine and histidine (SD-TRP-LEU-HIS). Since expression of ADE2 

and HIS3 can only be achieved by recruiting the GAL activator domain to the ADE2 and 

HIS3 promoter through interactions with the GAL DNA binding domain, growth on the 

triple drop out plated reflects interaction of a prey molecule with bait. Using APC5 as 

bait, the following prey molecules of interest were obtained: IQG1, SRS2, PRP2 and 

FOB1. Based on our recent report showing that the APC is required for extended 

longevity (HARKNESS et al., 2004; HARKNESS, 2006) and that Fob1p promotes yeast 

aging (DEFOSSEZ et al., 1999), the focus of this thesis was to understand the link 

between the APC and Fob1p. Considering that the APC targets proteins for degradation 

by ubiquitination and Fob1p physically interacts with an APC subunit, a logical 

explanation for these observations would be that the APC targets Fob1p for degradation 

by ubiquitination, promoting longevity (Fig. 3.1).  

The first set of experiments was designed to confirm the two-hybrid interaction  
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Fig. 3.1 Model depicting the targeting of Fob1p for degradation by the APC as a
means to extend lifespan. Fob1p binds to the rDNA locus and overall stalls
progression of the replication fork, which increases rDNA recombination, ERCs
and furthermore, increases aging in yeast. In this study,  APC is believed to target
Fob1p for degradation, which increases longevity.
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between Fob1p and Apc5p. The yeast strain PJ69-4A (YTH225) was used for all 

subsequent two-hybrid assays, and all interactions were assessed using SD-TRP- 

LEU-ADE, as proteins or peptides fused to Gal4BD 
and Gal4AD 

will drive the expression 

of the ADE2 gene if an interaction occurs, resulting in the growth of this strain on media 

lacking adenine. The results in Fig. 3.2 show the two-hybrid interaction between Fob1p 

and Apc5p could indeed be reproduced in vivo. Yeast cells transformed with 

combinations of Apc5p or Fob1p fusions with control vectors and mutants were plated 

on SD-TRP-LEU and SD-TRP-LEU-ADE media to determine interactions (Fig. 3.2).  

In addition to the positive control, pVA3/pTD1 (pVA3 and pTD1 encode the Snf1p and 

Snf4p interacting proteins, respectively), two mutant alleles of APC5 were used as 

negative controls in this experiment. The pGBT-APC5FLS allele contains an amino acid 

substitution at position 43 to generate the FLR to FLS alteration, which results in a ts 

phenotype when expressed as the sole source of APC5 (HARKNESS, unpublished data). 

The pGBT-APC5∆V-P mutation was generated by deleting amino acids 40 to 47 

(HARKNESS, unpublished data). This allele is not capable of supporting growth when 

expressed as the sole source of APC5. The observation that neither APC5 mutant allele 

supports an interaction with Fob1p suggests that this region of Apc5p is required to 

interact with Fob1p (Fig. 3.2C) 

 

3.1.2 The Apc5p interaction domain is located within the C-terminal half of Fob1p  

Yeast two-hybrid assays were used to identify and localize the motif within  
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Fig. 3.2 Interactions of pGBT-APC5 constructs and pGAD-FOB1 domains in a
yeast two-hybrid assay. (A) The alignment of sequences from yeast to humans
identified in a BLAST search with Fob1p used to define the three Fob1p domains.
(B) Six subcloned domains of Fob1p that define the sequence motifs identified in
(A). (C) PJ69-4A was transformed with the different combinations of pGBT and
pGAD constructs. All transformants were first selected on SD-TRP-LEU (TL)
plates. The same transformants were then struck out on SD-TRP-LEU-ADE
(TLA) plates to test for activation of ADE2 transcription. The transformants which
grew on TLA plates indicated an interaction between Fob1p and Apc5p constructs.
+ve, pVA3/pTD1 encoding Snf1 and Snf4;  -ve, pGBD/pGAD empty vector.
Combining the Fob1p constructs with WT pGBT-APC5 (i), the pGBD empty
vector (ii), pGBT-APC5FLS (iii) and pGBT-APC5∆V-P (iv). pGBT-APC5FLS and
pGBT-APC5∆V-P mutants serve as additional negative controls. The plates were
then scanned using an EPSON Perfection 1650 scanner.
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Fob1p that is crucial for interaction with Apc5p. Six subcloned domains (D1, D2, D3, 

D1/D2, N-terminal half and C-terminal half) of Fob1p were chosen according to a 

BLAST (Basic Local Alignment Search Tool) sequence alignment with Fob1p (Fig. 3. 

2A and B). Fob1p is not conserved in higher eukaryotes but motifs within Fob1p share 

sequence identity with many proteins from yeast to humans (Fig. 3.2A). The sequence 

motifs within Fob1p were subcloned into the pGAD424 vector to test for interaction 

with Apc5p. PJ69-4A was transformed with the pGAD424 and pGBT9 constructs, the 

transformants were selected on SD-TRP-LEU media and then tested on 

SD-TRP-LEU-ADE. The only Fob1p construct to interact with Apc5p was the 

C-terminal half domain (Fig. 3.2C panel i). As neither D2 nor D3 interacted with Apc5p, 

this observation suggests that the region split by D2 and D3 may define the Apc5p 

binding domain. As noted above for full length Fob1p, the C-terminal half construct did 

not interact with the Apc5p mutants (Fig. 3.2C, panels: iii and iv).  

To gain a greater understanding of this interaction, we analyzed the sequence of 

the C-terminal half domain of Fob1p using a BLAST search (Fig. 3.3). Fig. 3.3 lists 

several proteins of interest, found in humans, which share homology with the Fob1p 

C-terminal half sequence. One notable example is the human Zinc finger protein PEG3. 

A zinc finger is a protein domain that can bind to DNA, and it consists of two 

antiparallel β strands and one α helix. One very well explored sub-set of zinc-fingers 

comprises a pair of cysteine residues in the beta sheets and two histidine residues in the 

alpha helix which are responsible for binding a zinc ion. As DNA binding proteins, it is 

feasible that they play a role in gene silencing. This observation describes several  
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tripartite motif-containing protein 26

Matches on query sequence

Ubiquitin-specific protease 31
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Fig. 3.3 Relevant human  proteins sharing homology with C-terminal half of
Fob1p, as revealed by BLAST. Akt substrate AS250 contains a predicted
GTPase activating protein (GAP) domain. It was found in our lab that the yeast
AKT orthologue, Sch9p, inhibits APC activity (WONG and HARKNESS,
unpublished). Zinc finger protein PEG3 contains a zinc finger DNA-binding
domain. Tripartite motif-containing protein 26 contains a zinc finger domain and a
RING finger domain. NEDD4-like ubiqutin ligase 1 is an orthologue of the yeast
Rsp5p, an E3 protein. Rsp5p and Apc5p were found to interact in an intracellular
pathway regulating chromatin remodeling (HARKNESS et al., 2002; ARNASON
et al., 2005). The yeast Ubiquitin-specific protease 31 (USP31) orthologue,
Ubp3p associates with Sir2p. Both Ubp3p and Sir2p are essential for gene
silencing and interact with the amino terminal segments of histones H3 and H4.
SEG is the filtering program for BLAST, which will mask off segments of the
query sequence that have low compositional complexity.
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important human proteins that may be involved in cell cycle or APC function. The 

homology search points to the fact that although Fob1p is not evolutionarily conserved, 

it contains domains that are evolutionarily important and are important for interacting 

with Apc5p. 

 

3.2 Genetic interaction analysis of APC5 and FOB1 mutants 

3.2.1 Deletion of FOB1 in apc5CA cells has no effect on growth, but deletion of FOB1 

partially suppresses apc10∆ ts growth 

We hypothesized that if the APC is required for Fob1p turnover, the 

accumulation of Fob1p in apc mutant cells will have a deleterious affect. To test this, we 

disrupted FOB1 in apc mutant cells with the expectation that removal of FOB1 from apc 

mutants may alleviate apc mutant phenotypes. Thus, single apc5CA and apc10∆ mutants 

were crossed with fob1∆ cells to generate apc5CA fob1∆ and apc10∆ fob1∆ double 

mutants. The double mutants were compared to WT, fob1∆, apc10∆ and apc5CA cells 

with regards to growth on rich media and at various temperatures. It was observed that 

disruption of FOB1 had no effect on apc5CA (Fig. 3.4A) but partially suppressed the 

apc10∆ growth defect at 34oC (Fig. 3.4B). This suggests that deletion of FOB1 has 

differential effect on the apc mutants used and may indeed have an impact on APC 

function. 
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Fig. 3.4 Effects of FOB1 deletion on apc5CA and apc10∆ ts phenotypes.
YTH3371 (WT), YTH3608 (WT), YTH3176 (apc5CA), YTH1693 (apc10∆),
YTH3179 (fob1∆), YTH3175 (apc5CA fob1∆), YTH3178 (apc5CA fob1∆),
YTH3181 (apc5CA fob1∆), YTH3182 (apc5CA fob1∆), YTH 3611 (apc10∆ fob1∆),
and YTH 3612 (apc10∆ fob1∆) cells were cultured in liquid YPD at 30oC until
they reached log-phase. 10-fold serial dilutions of the cell suspension were then
spotted onto YPD plates. The plates were then incubated at 30, 34 or 37oC for 2
days. The plates were scanned using an EPSON Perfection 1650 scanner.
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3.2.2 Deletion of FOB1 in apc5CA and apc10∆ cells extends replicative lifespan 

Although deletion of FOB1 had modest effects on the overall growth rate of only 

apc10∆ cells, it still remained possible that Fob1p expression influenced lifespan in wild 

type and apc mutant cells. Thus, we conducted replicative lifespan assays in cells 

lacking FOB1. We expected that loss of FOB1 would extend lifespan, as previously 

shown (DEFOSSEZ et al., 1999). If deletion of FOB1 suppressed the reduced lifespan 

observed in apc mutants (HARKNESS et al., 2004), this would strongly suggest that 

Fob1p is a physiologically relevant target of the APC that must be degraded in order to 

experience maximal longevity. As predicted, deletion of FOB1 in wild type, apc5CA and 

apc10∆ cells extended replicative lifespan (Fig. 3.5). This data suggests that Fob1p is a 

major obstacle blocking apc mutants from experiencing extended longevity. However, it 

should be noted that deletion of FOB1 in apc10∆ cells does not fully restore lifespan to 

wild type levels. Therefore, there is likely a Fob1p-independent component to how 

Apc10p influences longevity in addition to a Fob1p-dependent component. This is also 

consistent with our earlier report suggesting that Apc5p and Apc10p play redundant 

roles in promoting longevity (HARKNESS et al., 2004). That is, apc5CA apc10∆ cells 

have a shorter lifespan than either single mutant indicating that Apc5p and Apc10p have 

independent functions in promoting longevity. Lifespan in yeast is now believed to 

respond to the accumulation of ERCs and the activation of the stress response pathway 

(KAEBERLEIN et al., 2004). The APC is required for both of these pathways 

(HARKNESS, 2006). Thus, the apc10∆ result likely reflects a role for at least Apc10p in 

regulating ERC accumulating and in activating the stress response pathway. Taken  
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Fig. 3.5 Replicative lifespan of apc mutants in the presence and absence of FOB1. 
The wild type curve is the average of 11 separate experiments, the fob1∆ and apc5CA

 fob1∆  curves are the average of 5 separate experiments, and the apc5CA curve is the 
average of 9 separate experiments. The apc10∆ and apc10∆  fob1∆ were done once. 
The number of daughters  scored for each strain was typically between 30 and 40 for 
each experiment. 
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together, these observations support our model that Fob1p is a target of the APC and 

accumulates in apc mutants as a result of compromised APC activity. This ultimately 

increases the aging process in apc mutant cells. 

3.2.3 Increased expression of FOB1 reduces replicative lifespan  

To further test our theory that accumulation of Fob1p in apc mutants increases 

the aging process, we expressed FOB1 in wild type and apc5CA cells under the control of 

the 2µ promoter. Under these conditions, FOB1 expression is increased as approximately 

50 copies of the 2µ plasmid are maintained in cells (ZAKIAN et al., 1979). As predicted, 

we observed that increased expression of FOB1 reduces lifespan (Fig. 3.6). Interesting, 

the lifespan curves of WT and apc5CA cells expressing 2µ-FOB1 is similar, indicating 

that increased FOB1 expression is dominant to the apc5CA allele. 

 

3.2.4 Overexpression of FOB1 impairs growth of WT and apc5CA cells  

The involvement of Fob1p in APC-dependent aging suggests that proper 

regulation of the rDNA locus, where Fob1p is known to function (KOBAYASHI and 

HORIUCHI, 1996), may be impaired in apc5CA cells. If chromatin in the rDNA locus is 

misregulated in apc5CA cells, then increased expression or increased stability of Fob1p 

would be predicted to further destabilize the rDNA locus and reduce lifespan to below 

what is observed when FOB1 is expressed in wild type cells. It was found that 

overexpression of Fob1p from the GAL promoter, but not increased expression from the 

2µ promoter reduced growth of both WT and apc5CA cells (Fig. 3.7). The GAL promoter  
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Fig. 3.6 Increased expression of FOB1 reduces replicative lifespan. The isogenic
strains YTH1636 (WT) and YTH1637 (apc5CA) were used in this experiment.
The strains were transformed with either an empty 2µ vector control or a 2µ
vector expressing FOB1 under the control of its own promoter (a kind gift from
TAKEHIKO KOBAYASHI, National Institute for Basic Biology, Okazaki,
Japan). The experiment was performed on SD-URA plates to maintain
selection of the plasmids.  The number of daughter cells scored were WT +
empty vector, 31; WT + FOB1, 32; apc5CA + empty vector, 32; and apc5CA +
FOB1, 32.
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Fig. 3.7 The effect of various levels of FOB1 expression on cells. FOB1 was
expressed from either a 2µ plasmid under the control of its own promoter or from a
2µ plasmid in which FOB1 expression was driven by the galactose inducible
promoter. Expression from the GAL promoter is believed to produce greater
quantities of protein than from a 2µ plasmid alone (LAUGHON et al., 1984).
YTH1636 (WT) and YTH1637 (apc5CA) were transformed with the plasmids
shown above, grown overnight in selection media, and then spot diluted onto
glucose and galactose supplemented SD-URA plates. The plates were incubated at
30°C and 37°C for 3 to 5 days, and then scanned using an EPSON Perfection 1650
Scanner.
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is activated in the presence of galactose and down regulated in the presence of glucose. 

Thus, the level of FOB1 expression is lowest from the GAL promoter in glucose, higher 

from the constitutive 2µ plasmid and greatest when the GAL promoter is induced with 

galactose. Interestingly, low level and 2µ expression suppresses the apc5CA ts defect, 

even though expression of 2µ-FOB1 reduces replicative lifespan (Fig. 3.6). 

 

3.2.5 Genetic interaction of SIR2 and APC 

Another key factor functioning at the rDNA locus is Sir2p. In yeast, Sir2p 

deacetylates histone H3 within the rDNA locus, leading to silencing of the rDNA locus, 

decreased rDNA recombination, reduced ERC generation and extended lifespan 

(KAEBERLEIN et al., 1999; TISSENBAUM and GUARENTE, 2001). Fob1p and Sir2p 

have been shown to act antagonistically at the rDNA locus (Fob1p increases rDNA 

recombination while Sir2p represses it; JOHZUKA and HORIUCHI, 2002; BENGURIA 

et al., 2003) and the fob1∆ sir2∆ mutant has WT lifespan and reduced ERCs 

(KAEBERLEIN et al., 1999). Furthermore, increased expression of SIR2 promotes 

longevity in both yeast and worms (KAEBERLEIN et al., 1999; TISSENBAUM and 

GUARENTE, 2001). Thus, we predicted that increased SIR2 expression would benefit 

the growth of apc5CA and apc5CA fob1∆ mutants. First, overexpression of GAL-SIR2 in 

the presence of galactose was toxic at 30oC to all cells tested except the apc5CA single 

mutant (Fig. 3.8). Next, low level expression of GAL-SIR2 was not toxic to any of the 

cells tested and suppressed the ts growth of apc5CA cells. However, in apc5CA cells  
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Fig. 3.8 The effect of SIR2 expression on cells. SIR2 was expressed from a 2µ plasmid
in which SIR2 expression was driven by the Galactose inducible promoter. YTH3371
(WT), YTH3176 (apc5CA), YTH3179 (fob1∆) and YTH3175 (apc5CA fob1∆) were
transformed with the plasmids shown above, grown overnight in selection media, and
then spot diluted onto glucose and galactose supplemented SD-URA plates. The plates
were incubated at 30°C and 37°C for 3 to 5 days, and then scanned using an EPSON
Perfection 1650 scanner.
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lacking FOB1, low level expression of SIR2 completely restored growth to WT levels. 

Therefore, SIR2 expression is beneficial to apc5CA cells, especially when FOB1 is 

deleted. This supports a model where Fob1p and Sir2p have opposite effects on APC 

function, which ultimately may direct the aging program of the cell (Fig. 3.9). 

 

3.3 Fob1p is degraded in an Apc5p-dependent manner 

Our hypothesis focused on the premise that Fob1p serves as a downstream target 

of the APC (Fig. 3.1). According to this model, Fob1p is targeted for degradation via the 

APC. Thus, compromised APC function is predicted to allow Fob1p to accumulate in 

cells, thereby increasing the aging process. The purpose of the next set of experiments 

was to determine whether Fob1p is indeed an unstable protein in vivo and whether 

Fob1p stability depends on APC activity. 

 

3.3.1 GAL-FOB1-HA expressing yeast strain 

If Fob1p is targeted by the APC for degradation, then Fob1p is predicted to have 

increased stability in apc mutant cells. To determine whether Fob1p is an unstable 

protein in yeast we used an arrest/release protocol, which depends on a plasmid 

expressing an HA tagged FOB1 gene under the control of the GAL promoter (see Fig. 

3.7 for details). Fig. 3.10 shows Fob1p-HA is expressed only in galactose supplemental 

media in WT and apc5CA cells. Fob1-HA proteins levels were determined using a 

Western analysis with antibodies against the HA epitope. A plasmid expressing  
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Fig. 3.9 Sir2p and Fob1p have antagonistic effects on rDNA silencing and
recombination. Mutations to APC subunits favor Fob1 activity. Increased
expression of SIR2 would therefore increase rDNA silencing and decrease the
impact of a defective APC. Increased expression of SIR2 would have an even
greater effect on apc mutant cells lacking FOB1, as the benefits of Sir2p would
no longer be opposed by Fob1p.
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Fig. 3.10 A GAL-FOB1-HA plasmid was used as a means to detect Fob1p
expression. As shown, Fob1p-HA can be detected in WT and apc5CA cells using
an antibody against the HA epitope only when grown in the presence of
galactose. The positive control, GAL-CLB2-HA, was detected under induction of
galactose. The negative control, untransformed WT cells (YTH6), does not show
a protein band detectable with the HA antibody.

WT apc5CA WT

GAL-FOB1-HA+ + - --++

Glucose+ + + +---
GAL-CLB2-HA- - + -+--

Galactose- - - -+++
 GAL-FOB1-HA
 GAL-CLB2-HA
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GAL-CLB2-HA under the inducible GAL promoter was used as a control. This 

experiment shows that in unsynchronized steady state cells, overexpressed 

GAL-FOB1-HA is similar in both WT and apc5CA cells.  

 

3.3.2 Fob1p is an unstable protein 

Since steady state expression of FOB1 was similar in WT and apc5CA cells (Fig. 

3.10), we examined cell cycle expression of FOB1. Thus, yeast cultures were 

synchronized in G1 using a 6 hour incubation in 300 mM hydroxyurea (HU). HU is a 

potent inhibitor of the enzyme ribonucleotide reductase (RNR) and induces a G1 arrest 

by inhibiting DNA synthesis in a wide variety of cells, including S. cerevisiae (SLATER, 

1973). HU inhibits DNA synthesis by starving the DNA polymerase at the replication 

forks for dNTPs (KRAKOFF et al., 1968; KOC et al., 2004). For our first experiments, 

cells were grown up entirely in galactose to induce FOB1-HA expression. Cells were 

then released into glucose media and turnover of Fob1p-HA was followed every hour. 

Protein extracts were prepared from the samples taken every hour and resolved using 

SDS-PAGE. FACS (Fluorescence Activated Cell Sorting) was used to confirm G1 arrest 

and release into a new round of cell growth. The experiment was initially performed in 

WT and apc5CA cells at 30oC (Fig. 3.11). In WT cells after 4 hours of release, Fob1p 

levels began to decline, suggesting that Fob1p is turned over (Fig. 3.11A). However in 

apc5CA cells, Fob1p remained stable for at least an additional hour. From our previous 

results, we observed that overexpression of FOB1-HA is toxic to cells (Fig. 3.7).  
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Fig. 3.11 Arrest and release of GAL-FOB1-HA expressing cells. (A) Cells were
grown in galactose, arrested in G1 with 300 mM hydroxyurea (HU) for 6 hours, and
then released into glucose at 30°C to induce synchronous re-entry into the cell cycle.
Samples were harvested at the times indicated for protein extract preparation and
FACS. Fob1p-HA protein levels were monitored by a western analysis with
antibodies against the HA epitope. Pre, prior to HU arrest; 0, immediately following
release into glucose; 1-25, hours following glucose release. (B) FACS profiles of WT
cells from experiment in A. G1 refers to cells with unreplicated DNA. G2/M refers
to cells with replicated DNA. (C) FACS profiles of apc5CA cells from experiment in
A.
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However, WT cells are not as sick when overexpressing FOB1-HA as apc5CA cells. This 

was also observed in this experiment (Fig. 3.11B and C). WT cells prior to arrest were 

actively cycling as shown by G1 and G2/M peaks in the FACS samples. On the other 

hand, apc5CA cells were already arrested in G1 (compare Pre lane in 3.11B with C). This 

is significant as apc5CA cells typically accumulate in G2/M (HARKNESS et al., 2002; 

2005; ARNASON et al., 2005). Thus, overexpression of FOB1-HA causes apc5CA cells 

to arrest in G1 while having little effect on cell cycle progression in WT cells. 

Furthermore, release of the WT cells into glucose resulted in cell cycle re-entry. Re-entry 

into the cell cycle was slow as it took approximately 4 hours to begin degrading 

Fob1p-HA. In contrast, apc5CA cells never re-entered the cell cycle. Therefore, chromic 

overexpression of FOB1 in apc5CA cells was fatal, and this was not observed to occur in 

WT cells. This observation is significant, as Fob1p blocks replication through the rDNA 

and clearly must be removed to allow cell cycle progression. The APC is implicated as 

Fob1p stability is prolonged in apc5CA cells. Moreover, the APC is active in G1, 

providing a more detailed mechanism of regulation of Fob1p.     

 

3.3.3 Arrest and induction of Fob1p in WT cells  

In the previous experiment, the cells were grown in galactose to induce 

FOB1-HA expression, but overexpressed FOB1 is toxic to cells (Fig. 3.7). Therefore, the 

experiment was redesigned to first grow the cells in sucrose (to limit expression of 

FOB1-HA), and then add HU and galactose to arrest the cells and induce FOB1-HA 
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expression simultaneously. The cells were grown to an early log optical density (OD600 

of 0.5), to which HU (300 mM) was added. After 2 hours in HU, galactose was added to 

2% for an additional 4 hours. Fob1p was induced and the FACS results confirmed the 

arrest of the cells in G1 (Fig. 3.12).  

 

3.3.4 Fob1p degradation is delayed in apc5CA cells  

Upon establishing the arrest and induction protocol (Fig. 3.12), the experimental 

design was now adapted to include the synchronous release phase.  As above, the cells 

were initially grown in sucrose, HU and galactose were then added to arrest the cells and 

express Fob1p-HA. The cells were then collected by centrifugation, and the HU and 

galactose were washed away and 2% glucose supplemented media was added to repress 

expression of FOB1-HA and allow the cells to re-enter the cell cycle. The cultures were 

then split, with one half incubated at 30°C and another half at 37oC. Samples were taken 

every hour for protein analysis up to 6 hours. When the experiment was performed with 

all steps at 30°C (Fig. 3.13A), Fob1p-HA levels steadily decline in WT cells after 1 hour 

of release up to 5 hours when most of the protein is gone. However, in apc5CA cells at 

30°C, Fob1p-HA levels remained high, providing evidence that Fob1p is indeed turned 

over in at least an Apc5p-dependent manner. When the cells were shifted to 37oC, 

following arrest and expression at 30oC, degradation of Fob1p-HA was again much more 

rapid in WT cells compared to apc5CA cells (Fig. 3.13C and D).  
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Fig. 3.12 Arrest and expression of GAL-FOB1-HA in WT cells. (A) Cells were
grown overnight in sucrose-supplemented media. HU (300mM) was then added to
the cultures. After 2 hours in HU, galactose was added to 2% for an additional 4
hours for a total of 6 hours. (B) FACS was used to follow the state of cell cycle
arrest. Pre is the 0 time point of HU arrest, 1-6 hours each indicates the time point
post HU addition.
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Fig. 3.13 Fob1p degradation is delayed in apc5CA cells.  (A) Arrest and release
of Fob1p-HA in WT and apc5CA at 30°C. Levels of Fob1p-HA continue to
decline in WT cells, but remain stable in apc5CA cells. Levels of a NS (non-
specific) protein in WT cells are included as a control for protein load. (B) Arrest
and release of Fob1p-HA in WT and apc5CA at 37°C. Fob1p-HA stability was
increased in apc5CA cells compared to WT cells. Levels of a NS (non-specific)
protein in WT cells are included as a control for protein load. (C, D) FACS was
used to follow the state of cell cycle arrest. (E, F) The densitometry of Fob1p-HA
in WT and apc5CA cells at 30 and 37°C, respectively, was measured using NIH
image 1.63. Pre, prior to HU arrest; 0, immediately following release into glucose;
1-6, hours following glucose release. The G1 and G2/M peaks are the same as
those depicted in Fig. 3.12.

A B

FOB1-HA

C D

E F

30oC 37oC

WT
apc5CA

NS

0
10

20

30

40
50

FL3 LIN: FL3 LIN

WT

apc5CA

WT
apc5CA FOB1-HA

NSWT WT

Pre 0 1 2 3 4 5 6 Pre0 1 2 3 4 5 6

0
10

20

30

40
50

FL3 LIN: FL3 LIN

hours

0
10

20

30

40
50

FL3 LIN: FL3 LIN

WT
hours

hours

hours hours

Fo
b1

p 
co

nt
en

t (
%

 o
f 0

 h
r)

Fo
b1

p 
co

nt
en

t (
%

 o
f 0

 h
r)

0

50

100

25

75

125

0

50

100

25

75

125

0
10

20

30

40
50

FL3 LIN: FL3 LIN

Pre0123456

apc5CA

hours

Pre 0 1 2 3 4 5 6 Pre 0 1 2 3 4 5 6
hours hours

WT

Pre0123456

Pre0123456

Pre01 23456

WT

apc5CA
WT

apc5CA



 

83

3.3.5 The severe apc mutants, apc10∆ and cdc16-1, are hypersensitive to even low 

FOB1 expression   

To examine the effect of FOB1 on other apc mutants, we attempted to repeat the 

arrest/release experiments in apc10∆ and cdc16-1 cells; however these cells were 

hypersensitive to any increase in Fob1p expression (Fig. 3.14) and would not grow 

under any condition, including sucrose and glucose, where very little FOB1 is presumed 

to be made, when harboring the GAL-FOB1-HA plasmid. apc10∆ and cdc16-1 cells 

arrest at elevated temperatures at the metaphase transition as large budded cells. 

Furthermore, deletion of CDC16 is lethal. Therefore, our observation that even weak 

expression of FOB1 is lethal to apc10∆ and cdc16-1 cells supports the notion that the 

inability to clear Fob1p from the cell blocks cell cycle progression.  

Taken together, our data strongly supports a model whereby the APC promotes 

longevity by targeting Fob1p, a known promoter of aging, for degradation (Fig. 3.1) 
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Fig. 3.14 The severe apc mutants (apc10∆ and cdc16-1) are hypersensitive to even
low level FOB1 expression. Cells density OD600 was determined every 24 hours for
the duration of this experiment. FOB1 was expressed from a 2µ plasmid in which
FOB1 expression was driven by the galactose promoter. (A) Cells were grown in
sucrose for 11 days. (B) Cells were grown in glucose for 7 days. Glucose represses
the GAL promoter, whereas sucrose does not. We expect less expression of GALp-
FOB1 when grown in glucose versus sucrose.
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CHAPTER FOUR: DISCUSSION 

 

The results described in this study allowed us to make multiple key observations. 

i) The C-terminus of Fob1p is required for the interaction with Apc5p. However the 

interaction of the C-terminus of Fob1p and Apc5p is appreciably weaker than the 

interaction between full length Fob1p and Apc5p. Thus, the 3-D structure of Fob1p may 

be necessary for its interaction and essential functions. ii) Our genetic studies revealed 

that deletion of FOB1 in apc5CA cells had no effect on growth, but deletion of FOB1 

partially suppressed apc10∆ ts growth. iii) Deletion of FOB1 in apc5CA and apc10∆ cells 

extended replicative lifespan, while increased expression of FOB1 reduced it. iv) 

Overexpression of FOB1 impaired growth of WT and apc5CA cells. Furthermore, we 

found that the severe apc mutants, apc10∆ and cdc16-1, are hypersensitive to even low 

level FOB1 expression. v) We showed that an additional key factor that functions at the 

rDNA locus, Sir2p, effected APC function in a manner that is antagonistic to Fob1p. And 

lastly, vi) our cell cycle and steady state analysis of Fob1p revealed that Fob1p is an 

unstable protein, which is targeted for degradation in an Apc5p-dependent manner.  

 

4.1 C-terminal half of Fob1p is responsible for interaction with Apc5p 

in vivo in yeast two-hybrid assays  

The yeast two-hybrid system has proven invaluable for identifying interactions 
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between proteins since its inception (FIELDS and SONG, 1989; CHIEN et al., 1991). 

Yeast two-hybrid analyses provide a method to investigate weak and transient 

interactions which are difficult with conventional assays. In this study, after the 

confirmation of an Apc5p-Fob1p interaction in yeast two-hybrid assays, we found that 

the C-terminal half of Fob1p can interact with Apc5p in vivo (Fig. 3.2). However, the 

interaction between the C-terminal half of Fob1p with Apc5p is appreciably weaker than 

the interaction between full length Fob1p and Apc5p. This weak interaction has been 

observed in multiple experiments. This may reflect that these Fob1p domains are weakly 

expressed or unstable. Alternatively, a full interaction with Apc5p may involve a 

3-dimensional motif made up multiple regions of Fob1p. The structure in the Fob1p 

C-terminal half may have reasonable similarity to the full structure, thus supporting a 

weak interaction. These possibilities await investigation.  

The results (Fig. 3.2B) showed that D2 and D3 of Fob1p cannot interact with 

Apc5p, which indicated the overlap region between D2 and D3 defines the Apc5p 

binding domain for Fob1p. As mentioned previously, Fob1p is not conserved in higher 

eukaryotes, however, motifs within Fob1p, especially the C-terminal half domain of 

Fob1p shares sequence identity with many proteins from yeast to humans (Fig. 3.2A). 

This region was analyzed by a BLAST homology search, which identified several 

human proteins of interest, including Akt substrate AS250, PEG3, tripartite 

motif-containing protein 26, NEDD4-like ubiquitin ligase 1, and Ubiquitin-specific 

protease 31. The interest in these proteins is described below.  

A 103 amino acid motif in the human Akt substrate AS250, a novel 250 kDa 
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protein in adipocytes that is a substrate for the insulin-activated protein kinase Akt 

(GRIDLEY et al., 2006), is 24% identical with amino acids 1338-1620 of Fob1p. The 

only distinctive domain in AS250 is a predicted GTPase activating protein (GAP) 

domain at its carboxy terminus (amino acids 1510-1873), which does not overlap with 

Fob1p related domain (amino acids 757-859). The activation of the protein kinase Akt is 

involved in the cell survival pathway and in tumor progression. Our recent experiments 

suggest the yeast AKT orthologue, Sch9p, inhibits APC activity (WONG and 

HARKNESS, unpublished data). Thus, upon phosphorylation, AS250 may interact with 

the APC as a means to inhibit APC activity.  

A 63 amino acid motif in the human protein PEG3 (paternally expressed gene 3) 

is 31% identical with amino acids 1398-1593 of Fob1p, and another 89 amino acid motif 

in ZNF341 (Zinc finger protein 341) is 25% identical with amino acids 1404-1638 of 

Fob1p. Both PEG3 and ZNF341 contain zinc finger DNA-binding domains. A zinc 

finger is a protein domain that can bind to DNA. Those proteins contain two antiparallel 

β strands, and an α helix. One very well explored subset of zinc-fingers comprises a pair 

of cysteine residues in the beta sheets and two histidine residues in the alpha helix which 

are responsible for binding a zinc ion. As DNA binding proteins, several scenarios of 

action can be envisioned. For example, perhaps they play a role in gene activation within 

the human rDNA locus that is inhibited by APC activity. Or, perhaps, these DNA binding 

proteins recruit the APC to active region of chromatin that are silenced in part through 

APC activity. 

A 63 amino acid motif in the human tripartite motif-containing protein 26 (Zinc 
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finger protein 173; Acid finger protein; AFP; RING finger protein 95), is 24% identical 

with amino acids 1326-1533 of Fob1p. It contains not only a Zinc finger domain, but 

also a RING finger domain. The RING finger domain can basically be considered a 

protein interaction domain. RING finger proteins have been implicated in a range of 

diverse biological processes from transcriptional regulation to targeted proteolysis 

(BORDEN, 2000). One class of ubiquitin ligases contains catalytic subunits with a 

RING finger domain. As mentioned previously, Apc11p, the catalytic APC subunit, is 

one such RING finger protein. Hence, this protein may facilitate an interaction between 

the APC and a target protein.  

A 104 amino acid motif in the human NEDD4-like ubiquitin ligase 1 is 24% 

identical with amino acids 1353-1623 of Fob1p. Human NEDD4-like ubiquitin ligase 1 

is an orthologue of the yeast Rsp5p. Rsp5p and the Nedd4-like E3 belong to the HECT 

domain-containing family of E3 proteins (HUIBREGTSE et al., 1995; HARVEY and 

KUMAR, 1999). The HECT domain is critical for ubiquitin ligase activity and contains 

a conserved cysteine residue that can form a thioester with ubiquitin. Rsp5p and Apc5p 

were found to interact in an intracellular pathway regulating chromatin remodeling 

(ARNASON et al., 2005). Therefore, like Fob1p, the NEDD4-like E3 may interact with 

the APC.  

A 64 amino acid motif in the human Ubiquitin-specific protease 31 (USP31), is 

31% identical with amino acids 1479-1662 of Fob1p. Human USP31 is an orthologue of 

the yeast Ubp3p, which is a deubiquitination enzyme and a member of a large family of 

cysteine proteases that cleave ubiquitin moieties from protein substrates. Ubp3p 
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associates with Sir2p, both are essential for gene silencing and both interact with the 

amino terminal segments of histone H3 and H4 (BREW and HUFFAKER, 2002). Thus, 

USP31 may facilitate APC activities that control genome silencing. 

       The subset of proteins listed above suggests that the motif expressed in the 

C-terminal half of Fob1p may serve as an APC interaction domain employed across 

evolutionary boundaries. This hypothesis could be tested by yeast two-hybrid assays, 

genetic interaction analyses or in vivo coimmunoprecipitation analysis. The implications 

of these putative interactions would support the significance of the Apc5p-Fob1p 

interaction, as an evolutionarily conserved design that mediates aging.  

 

4.2 Genetic interaction analysis reveals the influence of FOB1 on APC 

      To genetically characterize the interaction of Apc5p with its potential 

downstream target, Fob1p, a series of genetic analyses were performed. First, the FOB1 

gene was deleted in congenic WT, apc5CA and apc10∆ cells. The apc5CA fob1∆ and 

apc10∆ fob1∆ double mutants were compared with WT, and the single apc5CA, apc10∆ 

and fob1∆ mutants with regard to growth rate on different medias and at various 

temperatures. If accumulation of Fob1p in apc5CA cells is at the heart of the ts and 

reduced lifespan phenotypes associated with apc5CA, then we expected that these 

phenotypes would be suppressed when fob1∆ and apc5CA were combined. To our 

surprise, the disruption of FOB1 had no effect on the apc5CA growth phenotype (Fig. 3.4). 

However, deletion of FOB1 did partially suppress the apc10∆ growth phenotype (Fig. 

3.4). This is consistent with disruption of APC10 being more severe than the apc5CA 
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mutation. Thus, perhaps WT levels of Fob1p are more deleterious to apc10∆ cells than 

to apc5CA, explaining why deletion of FOB1 had no effect on the growth of apc5CA cells. 

Although deletion of FOB1 did not fully suppress the apc5CA or apc10∆ growth 

defects, we continued to investigate whether Fob1p expression influenced the lifespan of 

WT and apc mutant cells. A replicative lifespan analysis revealed that, as we predicted, 

deletion of FOB1 extended lifespan in apc5CA and apc10∆ cells. On the other hand, 

increased expression of FOB1 decreased replicative lifespan in apc5CA and WT cells 

(Fig. 3.6). These telling observations are consistent with our hypothesis that deletion of 

FOB1 suppresses the reduced lifespan observed in apc mutant cells, and that 

accumulation of Fob1p in apc mutants increases the aging process.  

We found that extreme overexpression of FOB1 from the GAL promoter in the 

presence of galactose reduced growth of both WT and apc5CA cells. However, low level 

(from GAL promoter in the presence of glucose) and medium level (from the constitutive 

2µ plasmid) suppressed the apc5CA ts defect (Fig. 3.7). Interestingly, even low level 

expression of FOB1 was toxic to the severe apc mutants, apc10∆ and cdc16-1 (Fig. 

3.14). The toxic effects of FOB1 overexpression is in harmony with our proposal that 

Fob1p must be targeted for degradation by the APC for normal cell function. This is 

supported by our finding that FOB1 overexpression blocks cell cycle progression in G1 

in apc5CA cells, but not in WT (Fig. 3.11). However, the observation that lower levels of 

FOB1 expression suppressed the apc5CA growth defect is intriguing (Fig. 3.7). This 

observation requires future investigation but it could involve Sir2p. Sir2p silences and 

stabilizes the rDNA locus. Thus, increased FOB1 expression may stabilize, or optimize, 
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a Fob1p/Sir2p interaction within rDNA locus that is impaired in apc5CA cells. 

 

4.3 Low level expression of SIR2 and deletion of FOB1 are required for 

full suppression of the apc5CA growth defect 

  The Sir2 protein was demonstrated to play a critical role in facilitating the 

effects of caloric restriction (GUARENTE, and KENYON, 2000; LIN et al., 2000). 

Sir2p was subsequently shown to be a histone deacetylase required to silence the rDNA 

locus, which inhibits rDNA recombination (SMITH and BOEKE, 1997; FRITZE et al., 

1997; IMAI et al., 2000). Inhibition of rDNA recombination reduced the generation of 

ERCs, which is significant since the accumulation of ERCs in yeast cells is correlated 

with accelerated aging (SINCLAIR et al., 1997; DEFOSSEZ et al., 1999). Accordingly, 

a sir2∆ mutation resulted in reduced lifespan and increased expression of Sir2p extended 

lifespan of both yeast and worms (KAEBERLEIN et al., 1999; TISSENBAUM and 

GUARENTE, 2001). As already discussed, Fob1p stalls progression of the replication 

fork through the rDNA locus, and subsequently increases rDNA recombination and ERC 

accumulation (KOBAYASHI and HORIUCHI, 1996; DEFOSSEZ et al., 1999). Cells 

lacking the gene encoding Fob1p live longer and the fob1∆ mutation suppressed the 

reduced lifespan observed in sir2∆ mutants (KAEBERLEIN et al., 1999; DEFOSSEZ et 

al., 1999). Thus, silencing of the rDNA locus by Sir2p extends lifespan, whereas Fob1p 

destabilizes the rDNA locus, resulting in reduced lifespan. The research in this study 

suggests that in apc mutants, Fob1p activity is increased, which would lead to increased 

rDNA instability. On the other hand, increased expression of SIR2 would be predicted to 
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increase rDNA silencing and stability, thus decreasing the impact of a defective APC. 

This is what we observed, as SIR2 overexpression is toxic to WT and fob1∆ cells at all 

temperatures tested, but not to apc5CA cells (Fig. 3.8). Furthermore, weak expression of 

SIR2 partially suppresses the apc5CA growth defect and completely restores growth of 

the apc5CA fob1∆ mutants. The toxic effects of SIR2 overexpression in WT cells, but not 

apc5CA cells could reflect the inability to replicate through the rDNA locus when SIR2 

activity is too high. In apc5CA cells, the effects of higher than normal Fob1p levels 

require higher than normal levels of SIR2 activity. This study suggests that Sir2p and 

Fob1p have antagonistic effects on APC function, and ultimately may direct the aging 

program of the cell. 

 

4.4 Fob1p, an unstable protein, is targeted for degradation by Apc5p to 

prolong lifespan in yeast 

     As suggested by our hypothesis in this study, the APC likely prolongs 

lifespan by targeting a protein for degradation that normally acts to accelerate aging. 

Cell cycle dependent stability analyses of Fob1p were therefore performed to determine 

whether Fob1p is indeed targeted by the APC for degradation. The arrest/release 

experiments, Western and FACS analyses all lead to the conclusion that Fob1p is an 

unstable protein. The conclusive link to APC activity was provided when we observed 

that the degradation of Fob1p is delayed in apc5CA cells. This finding is consistent with 

the model that, if Fob1p is targeted by APC for degradation, then comprised APC 

function will allow Fob1p to accumulate in cells.  Further study is required to confirm 
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the APC-dependent ubiquitination of Fob1p. 

Overall, the results demonstrated in this study that APC targets Fob1p for 

degradation in order to prolong lifespan in yeast is a novel finding in the literature. 

Another protein, Geminin, an inhibitor of DNA replication initiation, which is found 

universally in vertebrates and in Drosophila but is absent from yeasts and the nematode 

C. elegans, was shown to be degraded by the APC during mitosis (McGARRY and 

KIRSCHNER, 1998). Even though Geminin is not the homologue or orthologue of yeast 

Fob1p, it might be analogous to Fob1p.  

The data illustrated in this study allowed us to provide additional support linking 

the APC to longevity. As formerly discussed, CR has been undoubtedly demonstrated to 

extend lifespan in virtually all system studied (WEINDRUCH and WALFORD, 1988). 

In mammalian cells and also budding yeast, CR extends lifespan, partially, by increasing 

the activity of Sir2p (KAEBERLEIN et al., 1999; ALBERTO et al., 2003). Sir2p and 

Fob1p were found to act antagonistically at the rDNA locus, where Sir2p represses 

rDNA recombination, while Fob1p increases it (JOHZUKA and HORIUCHI, 2002; 

BENGURIA et al., 2003). The suppression of rDNA recombination reduces the 

production of ERCs, which is linked to aging in yeast. APC, which is essential for 

prolonged lifespan, is repressed by glucose (KOTANI et al., 1998; IRNIGER et al., 

2000), which suggests the possibility that APC activity is induced by CR. Our lab found 

that the Snf1p kinase, known to be required for longevity (LIN et al., 2003), promoted 

APC activity by inhibiting the action of the Mig1p transcriptional repressor, which 

blocked the expression of at least APC4 and APC9 (HARKNESS et al., 2004). Snf1p, 
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the yeast orthologue of the human AMP kinase (WOODS et al., 1994; MOMCILOVIC 

et al., 2006), is vital when substitute carbon sources are utilized, such as under 

conditions of CR. Our story comes full circle as deletion of FOB1 was recently shown to 

restore normal lifespan to cells harboring a deletion of the SIP2 gene, which is essential 

for Snf1p activity (LIN et al., 2003). It was not understood why deletion of FOB1 would 

suppress the short lifespan of sip2∆ cells, but our work shows that in the absence of 

functional Snf1p, the APC is not fully active (HARKNESS et al., 2004). Therefore, 

Fob1p would be expected to accumulate in sip2∆ cells (Fig. 3.15). 

The results established in this study provide a possible mechanism linking the 

APC not only to longevity, but possibly, through Sir2p and Snf1p, to CR. The 

mechanistic action of CR in higher eukaryotes is presently a matter of hot debate 

(SINCLAIR, 2005). Our ability to link APC function to Sir2p in this study and to Snf1p 

in a prior study, suggests a solid foundation upon which to examine the role of the APC 

in human aging. Thus, the molecular mechanisms regulating longevity and CR in yeast 

likely utilize highly conserved proteins, such as Sir2p, Snf1p and the APC (Fig. 3.15).  
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Fig. 3.15 Snf1p activated APC suppresses the effect of aging by targeting
Fob1p for degradation. Sir2p and Fob1p were found to act antagonistically at
the rDNA locus, where Sir2p represses rDNA recombination, while Fob1p
increases it. The APC is not fully activated in the absent of Snf1p, which
explains Fob1p accumulates in sip2∆ cells. Adapted from HARKNESS, 2006.
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